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Abstract
It is known that hydrodynamic instabilities in turbulent premixed combustion are
described by the Michelson-Sivashinsky (MS) equation. A model of the flame front
propagation based on the G-equation and on stochastic fluctuations imposed to the
mean flame position is considered. By comparing the governing equation of this
model  and  the  MS  equation,  an  equation  is  derived  for  the  front  curvature
computed  in  the  mean  flame  position.  The  evolution  in  time  of  the  curvature
emerges to be driven by the inverse of the dispersion relation and by the nonlinear
term of the MS equation.

Introduction
In  this  Extended  Abstract  we  proceed  further  with  the  research  presented  in
[1,2,3,4].  A model  to study turbulent premixed combustion is developed on the
basis of the G-equation and the introduction of stochastic fluctuations for the flame
position [1]. The evolution equation for the resulting observable can be reduced to
equations  for  the  progress  variable  by  choosing  the  proper  probability  density
function (PDF) of the fluctuations. This approach reduces to the G-equation when
there are no fluctuations [1] and to the Zimont equation when there are Gaussian
fluctuations [1,2]. The proper PDF of fluctuations for reduction to the Michelson-
Sivashinsky  (MS)  equation  was  derived  in  [3,4].  Within  this  framework,  the
evolution equation of the front curvature computed in the mean flame position is
derived.  

G-Equation analysis
Let the scalar function G (x , t ) , x∈ℝn , be a level surface that represents the front
which splits the considered domain into burned and unburned sub-domains. Let
xc  be  a  point  on  the  level  surface  G=c at  the  instant  t0 .  The  level  surface

propagates with a consumption speed given by the laminar burning velocity sL  in
the normal direction n relative to the mixture element and its evolution is described
by the following Hamilton-Jacobi equation where the flow velocity field is u
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∂G
∂ t

+u⋅∇G=sL‖∇ G‖  ,   n= ∇G
‖∇G‖

  . (1)

Let  the  front  motion  be  described  by  the  random process  Xc
ω( x̂ , t ) where  ω

labels  any  independent  realization  and the  mean value  of  Xc
ω  be  denoted  by

⟨Xω( x̂ , t )⟩= x̂( t ) ,  then if  P c ( xc ; t|x̂ )  is the corresponding PDF, with initial

condition   Pc ( xc ; t0| x̂ )=δ (x−x0 ) ,  the  mean  flame  position  is  given  by  the

integral

⟨xc⟩=∫
ℝn

xc P c( xc ; t|x̂ )d xc= x̂ ( t ) .
(2)

Introducing Ǧ( x̂ , t ) , with Ǧ ( x̂ , t0 )=Ǧ ( x0 , t0 )=c , as the implicit formulation of

the mean flame position x̂ , the ensemble averaging of (1) gives [5]

∂ Ǧ
∂ t

+ û⋅∇ Ǧ= ŝL n⋅∇ Ǧ . (3)

Since  the  G-equation  can  be  derived  on  the  basis  of  considerations  about
symmetries, there is a unique model for the RHS term of equation (3) providing a
relation  between  the  laminar  burning  velocity  sL  and  the  turbulent  burning
velocity sT  [5], i.e.

ŝ
L

n=s
T

ň   ,    ň= ∇ Ǧ
‖∇ Ǧ‖

. (4)

Finally, combining equation (3) and (4), the G-equation that describes the surface
motion along the mean flame position results to be

∂ Ǧ
∂ t

+ û⋅∇ Ǧ=s
T
‖∇ Ǧ‖ . (5)

Let the curvature of the front be defined as κ̌=−∇⋅ ∇ Ǧ
||∇ Ǧ||

. Under the assumptions

of null-mean velocity field and unitary-gradient G field, i.e.,  û=0 ,     ‖∇ Ǧ‖=1 ,
the evolution equation of the front curvature is 

∂ κ̌
∂t

=−Δ sT , (6)

and in the Fourier domain
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~κ=ξ2~G , (7)

where the Fourier integral transform and anti-transform are defined as 

~
f (ξ)=∫

ℝ
n exp(+ i ξ x) f (x)dx , f (x)= 1

(2π)n
∫

ℝ
n exp(−i ξ x)~f (ξ)d ξ , (8)

and the turbulent burning velocity reads 

sT (x , t)=
1

(2 π)n
∫ℝn exp(−iξ x) ∂

~κ
∂t

d ξ

ξ2 . (9)

Michelson-Sivashinsky Equation analysis
The 1D M-S equation reads [6]

∂ g
∂ t

=
∂

2 g
∂ x2

−( ∂ g
∂ x )

2

−Dx
1 g , (10)

where Dx
1 is the fractional derivative of order 1 in the Riesz-Feller sense with

Fourier  symbol −|ξ| ,  which differs  from the classical  first  derivative,  being
related to the Hilbert transform by the formula 

Dx
1g=

1
π

d
dx
∫
−∞

+∞ g (x')
(x '−x)

d x' . (11)

Let us introduce the field g (x , t )  in analogy with [1], i.e., 

g ( x,t )=∫
−∞

+∞

Ǧ ( x̂ ,t )Pc ( x− x̂ ,t )d x̂ . (12)

It is well-known that the dispersion relation of equation (10) is, see Fig. 1(a), 

e−ξ2t +|ξ|t . (13)

This  suggests  the  following  fractional  differential  equation  for  the  PDF of  the
fluctuations of the front position:
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∂PC

∂ t
=ΔPC−(−Δ )1/2PC ,    PC ( x ,0)=δ ( x ). (14)

Actually, the dispersion relation (13) is the Fourier transform of the Green function
of (14).
It is here highlighted that the PDF of fluctuations which solves (14) emerges to be
a quasi-probability distribution showing negative values that requires high care, see
Fig.  1(b).  However,  these  negative  values  can  be  interpreted  as  due  to  local
extinction phenomena when local reversibility of the value of the progress variable
occurs following from the entering of fresh mixture into a volume just now fully
burned.  This  effect  can  be  ascribed  to  the  so-called  counter-gradient  that  is
generated by the density difference between reactants and products.

(a) (b)

Figure 1: (a) Influence of non-locality on the dispersion relation (13). (b) Quasi-
probability distribution solution of (14).

The evolution equation of the function g (x , t)  is: 

∂ g
∂t

=
∂2 g

∂ x2
−Dx

1 g+∫
−∞

+∞

sT (x̂ ,t )PC ( x−x̂ , t )d x̂ . (15)

Comparing (10) and (15) we have 

−(∂ g
∂ x )

2
=∫

−∞

+∞

sT ( x̂ t ) PC ( x− x̂ t )d x̂≡ω , (16)

 
that in Fourier domain reads  
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~ω=~sT
~Pc=

~sT exp(−ξ2 t+|ξ|t ) , (17)

and the turbulent burning velocity turns out to be 

sT (x ,t )= 1
2π∫−∞

+∞

exp(−i ξ x)exp(ξ2t−|ξ|t )~ω(ξ ,t )d ξ . (18)

Front Curvature analysis

Equalling the RHS of (9) and (18) we obtain the following relationship between the
nonlinear term and the dispersion relation of  M-S equation (10), and the front 
curvature:

∂~κ
∂ t

=exp(ξ2t−|ξ|t )ξ2~ω , (19)

that is,

~κ=~κ0+ξ
2∫0

t
exp(ξ2

τ−|ξ|τ)~ω d τ , (20)

and after anti-transforming we get 

ǩ (x ,t)=ǩ 0(x)−∫0

t
{∫−∞

+∞

ω(x−μ ,τ) ∂
2h

∂μ2
dμ }d τ , (21)

where h(x , t) is the solution of 

∂ h
∂ t

=−
∂

2h

∂ x2
+D

x
1h ;   h ( x ,0 )=δ ( x ) . (22)

To conclude, the evolution equation of the flame curvature in the mean flame 
position is 

∂ ǩ (x , t )
∂t

=−∫
−∞

+∞

ω(x−μ ,t ) ∂
2 h

∂μ2
dμ . (23)

Fixed ξ=ξ0 , t=1 and defining δ~κ=~κ−~κ0 we note that if |ξ0|<1

ξ
2∫0

t
exp(ξ2t−|ξ|t)~ωd τ<∫0

t
~ωd τ , (24)
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and inequality (24) is inverted in the case |ξ0|>1 .
It is worth noting that, when |ξ0|=1 , the reference length scale is considered 
and the evolution is driven only by the non-linear term ω of the M-S equation.
We finally get to the chain of inequalities 

δ~κ
|ξ|>1>δ

~κ
|ξ|=1>δ

~κ
|ξ|<1  . (25)
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Corrigendum
The  acknowledgements,  which  were  unintentionally  missing  in  the  published
version, are reported in the present Corrigendum:
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