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Abstract. We introduce a new notion of �-product of two integrable series

with coefficients in distinct Grothendieck rings of algebraic varieties, preserving
the integrability and commuting with the limit of rational series. In the same

context, we define a motivic multiple zeta function with respect to an ordered

family of regular functions, which is integrable and connects closely to Denef-
Loeser’s motivic zeta functions. We also show that the �-product is associative

in the class of motivic multiple zeta functions.

Furthermore, a version of the Euler reflexion formula for motivic zeta func-
tions is nicely formulated to deal with the �-product and motivic multiple zeta

functions, and it is proved for both univariate and multivariate cases by using

the theory of arc spaces. As an application, taking the limit for the motivic
Euler reflexion formula we recover the well known motivic Thom-Sebastiani

theorem.

1. Introduction

We study extensions of Denef-Loeser’s motivic zeta functions under motivations
from a nice simple formula concerning multiple zeta values ζ and from a problem
on poles of the Igusa local zeta function of a Thom-Sebastiani type function. The
latter may involve the monodromy conjecture, the highest interest of ours so that
the present work is just a start. The relation between real numbers s1, s2 ≥ 2
presented through the single and double zeta values as

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

is widely known as the Euler reflexion formula, whose further important generaliza-
tions can be found in Zagier’s works, such as [16]. This beauty partially inspires us
to consider an analogous phenomenon in the framework of motivic zeta functions,
which probably provides more profound relations than the motivic Thom-Sebastiani
theorem does.

In [2] and [8], Denef and Denef-Veys discuss poles of the Igusa local zeta function
ZΦ(s, χ, f) of a polynomial f with respect to a Schwartz-Bruhat function Φ and
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to a character χ. It is proved that there exists a function A(s, χ) depending on a
character such that, for polynomials f and g and Schwartz-Bruhat functions Φ and
Ψ, the poles of A(s, χ)ZΦΨ(s, χ, f(x) + g(y)) are of the form s1 + s2, where s1 and
s2 are poles of A(s, χ1)ZΦ(s, χ1, f) and A(s, χ2)ZΨ(s, χ2, g), respectively, for some
χ1χ2 = χ. Naturally, we can ask whether a similar result still holds for motivic
zeta functions, and, hopefully, a motivic Euler reflexion formula may be the first
step to answer it.

The motivic zeta function of a regular function was developed in the background
of Denef-Loeser’s motivic integration [3, 4, 5]. Afterwards, a version for a family of
regular functions was also discussed in [9] and [11]. Such a motivic zeta function for
r regular functions fi on a smooth algebraic variety X over a field k of characteristic
zero is a formal series Zf1,...,fr (T1, . . . , Tr) with coefficients in a certain monodromic

Grothendieck ring M
µ̂
X0

, where X0 is the common zero set of the family of fi.
Originally, it is defined as follows

Zf1,...,fr (T1, . . . , Tr) =
∑

[Xn1,...,nr ]L−d
∑
ni Tn1

1 · · ·Tnrr ,

where the sum is taken over Nr>0 and Xn1,...,nr is the set of arcs ϕ ∈ L∑
ni(X)

such that fi(ϕ) = tni modulo tni+1. When looking for a motivic analogue of the
Euler reflexion formula, we recognize that Zf1,...,fr is still rather far to be an ap-
propriate one, even letting the sum run over the “optimal” subset ∆ of Nr>0 defined
by 1 ≤ n1 < · · · < nr. This requires a solid improvement in many aspects, in-
cluding motivic zeta functions and products of them. In our approach, we replace
the conditions fi(ϕ) = tni modulo tni+1 by ordfi > ni for every 2 ≤ i ≤ r, and
take the sum over ∆, where the resulting motivic zeta function will be denoted
by ζf1,...,fr (T1, . . . , Tr). This new notation still covers classical motivic zeta func-
tions Zf1(T1), thus from now on we shall write ζf1(T1) in stead of Zf1(T1) for the
coherence in literature. The integrability of ζf1,...,fr (T1, . . . , Tr) will be proved in
Corollary 5.9.

We introduce a new product of two integrable series (e.g., motivic zeta functions)

in different rings of formal series. More precisely, if a(T) ∈ M
µ̂

X [[T]] and b(U) ∈
M
µ̂

Y [[U]] are integrable series in several variables, we define a reasonable element

a(T) � b(U) in M
µ̂

X×Y [[T,U]] which is also an integrable series (Definitions 3.1
and 5.10, Corollary 5.9). Here, for a technical reason, we work in an appropriate

localization M
µ̂

X of M
µ̂
X for any base X. Roughly speaking, the �-product is an

object lying in the middle of the external product and the convolution. When T
and U reduce to univariates T and U , the commuting of � with limT=U→∞ will
be stated in Theorem 3.2 and given a complete proof. This product allows us to
describe the motivic zeta function of a Thom-Sebastiani type regular function in
terms of motivic multiple zeta functions.

The following is the statement of the most important results of the present
article, the motivic Euler reflexion formulas. Let X and Y be smooth algebraic
k-varieties, on which it admits regular functions f and g with the zero loci X0 and
Y0, respectively. Let f⊕g be the function on X×Y defined by the sum f(x)+g(y).
Denote by ι the inclusion of X0×Y0 in X×Y . The motivic Euler reflexion formula
in this case states that the identity

ζf (T ) � ζg(U) = ζf,g(T,U) + ζg,f (U, T ) + ι∗ζf⊕g(TU),
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holds in M
µ̂

X0×Y0
[[T,U ]]. This formula is given in Theorem 4.1. As an application,

taking T = U and using the fact that � and limT→∞ commute, we can deduce from
the motivic Euler reflexion formula the motivic Thom-Sebastiani theorem, which
was proved previously in [5], [15] and [13].

More generally, we consider ordered families of regular functions f = (f1, . . . , fr)
and g = (g1, . . . , gs) on smooth algebraic k-varieties X1, . . . , Xr and Y1, . . . , Ys,
with common zero loci X0 and Y0, respectively, and formulate the general motivic
Euler reflexion formula as follows

ζf (T) � ζg(U) =
∑

ι∗ζp1,...,pη (T a1α1
U b1β1

, . . . , T aηαηU
bη
βη

),

where the context of the identity is M
µ̂

X0×Y0
[[T,U]], and the sum is taken over all

the ordered families of regular functions (p1, . . . , pη) satisfying

pi = aifαi ⊕ bigβi , 1 ≤ i ≤ η,
with (ai, bi) ∈ {0, 1}2 \ {(0, 0)},

∑
(ai + bi) = r + s, and {αi}ai=1 and {βi}bi=1

being strictly monotonic increasing sequences, and ι is the inclusion of X0 × Y0 in∏r
i=1Xi ×

∏s
j=1 Yj (see Theorem 5.12). An direct corollary of this formula is the

associativity of the �-product in the class of motivic multiple zeta functions (see
Corollaries 5.13 and 5.14).

Acknowledgement. Part of the present article was written at the Mathematisches
Forschungsinstitut Oberwolfach (MFO) and the Vietnam Institute for Advanced
Study in Mathematics (VIASM). Thanks are sincerely sent to the institutes for
their warm hospitality during the authors’ visits.

2. Preliminaries

2.1. Grothendieck rings and rings of formal series. Let k be a field of char-
acteristic zero, X an algebraic k-variety and VarX the category of X-varieties.
The Grothendieck group K0(VarX) of X-varieties is an abelian group generated by
symbols [Y → X] for objects Y → X in VarX modulo the following relations

[Y → X] = [V → X]

if Y → X and V → X are isomorphic in VarX , and

[Y → X] = [V → X] + [Y \ V → X]

if V is Zariski closed in Y . Furthermore, K0(VarX) has structure of a ring with
unit with product induced by fiber product of X-varieties and the unit being the
class of the identity morphism X → X. Let MX be the localization of K0(VarX)
with respect to the multiplicative system of Li with i ∈ N, where L := [A1

X ] =
[A1
k × X → X]. In this situation and from now on, whenever writing X × X ′ for

k-schemes X and X ′ we means the fiber product X ×k X ′.
Let µn = µn(k) be the group scheme of nth roots of unity in k, Spec(k[t]/(tn−1)).

The family of all µn, n ∈ N>0, forms a projective system with respect to morphisms
µnm → µn given by ξ 7→ ξm, we denote its projective limit by µ̂. By definition,
a good µn-action on an X-variety Y is a group action µn × Y → Y , which is a
morphism of X-varieties, such that each orbit is contained in an affine k-subvariety
of Y ; a good µ̂-action on Y is an action of µ̂ on Y factoring through a good µn-action.

The monodromic Grothendieck group Kµ̂
0 (VarX) of X-varieties endowed with

good µ̂-action is an abelian group generated by the µ̂-equivariant isomorphism
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classes [Y → X,σ], σ being a good µ̂-action on X-variety Y , modulo the following
conditions

[Y → X,σ] = [V → X,σ|V ] + [Y \ V → X,σ|Y \V ]

if V is Zariski closed in Y and

[Y × Ank → X,σ] = [Y × Ank → X,σ′]

if σ, σ′ lift the same µ̂-action on Y → X to an affine action on Y ×Ank → X. When
no confusion may happen, we write [Y, σ] for [Y → X,σ] for simplicity. Thanks to

fiber product of X-varieties, Kµ̂
0 (VarX) has the natural structure of a ring. Define

M
µ̂
X := Kµ̂

0 (VarX)[L−1],

the µ̂-equivariant version of the ring MX . We also consider the ring M
µ̂r

X when

working with good µ̂r-actions. Let M
µ̂

X be the localization of Mµ̂
X with respect to

the multiplicative family generated by the elements 1 − Ln with n ∈ N>0. There

is a natural morphism loc : Mµ̂
X → M

µ̂

X , which has not been proved or disproved
to be injective; however, for simplicity of notation, if necessary, we shall identify a

with loc(a), that is, consider a ∈M
µ̂
X as an element of M

µ̂

X .
For a morphism of k-varieties f : X → X ′, one defines group morphisms f! :

M
µ̂
X → M

µ̂
X′ and f! : M

µ̂

X → M
µ̂

X′ by composition, also defines ring morphisms

f∗ : M
µ̂
X′ → M

µ̂
X and f∗ : M

µ̂

X′ → M
µ̂

X by fiber product. If X ′ = Speck, f! is
usually denoted by

∫
X

.

Let M be a Z[L,L−1]-module, and let T = (T1, . . . , Tr) be a multivariate. We
shall consider M[[T]] and the following sub-Z[L,L−1]-modules

M[[T]]sr := M[T]
[
(1− LmTn)−1

]
(m,n)∈Z×(Nr\{(0,...,0)}) ,

M[[T]]ssr := M[T]
[
(1− LmTn)−1

]
(m,n)∈Z≤0×(Nr\{(0,...,0)}) , and

M[[T]]int := M[T]
[
(1− LmTn)−1

]
(m,n)∈Z<0×(Nr\{(0,...,0)}) .

The identity
1

1− LmTn
=
∑
l≥0

(LmTn)l

induces canonical embeddings of the previous modules in M[[T]]. Elements of
M[[T]]sr are called rational series, elements of M[[T]]ssr are called strongly rational
series, and elements of M[[T]]int are called integrable series, over M. It is immediate
that an integrable series is also a strongly rational series and a strongly rational
series is also a rational series. The terminology “integrable” is inspired from the
discussions of Cluckers and Loeser on integrable constructible functions in Section
4, especially Theorem 4.5.4, of their article [1].

In particular, if we fix a k-variety X and let M be one of two rings Mµ̂
X and M

µ̂

X ,
then the previous rings can be obviously viewed as M-modules. If this is the case,
and if T reduces to a univariate T , we get that every integrable series is also of
finite mass in the sense of Looijenga [15]. Moreover, as shown in [3], there exists a

unique M
µ̂
X -linear morphism

lim
T→∞

: M[[T ]]sr →M

such that limT→∞
LmTn

1−LmTn = −1 for any (m,n) ∈ Z× N>0.
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2.2. Arc spaces and motivic zeta functions. Let X be an algebraic k-variety.
For any n ∈ N>0, let Ln(X) be the space of n-jet schemes of X, which is a k-scheme
representing the functor sending a k-algebra A to the set of morphisms of k-schemes
Spec(A[t]/(tn+1))→ X. For any pair n ≤ m, the truncation defines a morphism of
k-schemes

πmn : Lm(X)→ Ln(X)

and this is an affine morphism. If X is smooth of dimension d, the morphism πmn is

a locally trivial fibration with fiber A(m−n)d
k . The n-jet schemes and the morphisms

πmn form in a natural way a projective system of k-schemes, we denote its limit by
L(X) and call this space the arc space of X. For any field extension k ⊂ K, the
K-points of L(X) correspond one-to-one to the K[[t]]-points of X.

Furthermore, the schemes Ln(X) and L(X) are endowed with a natural action
of µn given by ξϕ(t) := ϕ(ξt). The profinite group scheme µ̂ acts on these schemes
via µn’s.

Assume in the rest of this section that X is a smooth algebraic k-variety of pure
dimension d. Let f : X → A1

k be a regular function with the zero locus X0. For
n ∈ N>0, let Xn(f) be the set of arcs ϕ ∈ Ln(X) such that f(ϕ) = tn mod tn+1.
Since the image of Xn(f) under the canonical morphism Ln(X)→ X is contained
in X0, it is also an X0-variety. Furthermore, Xn(f) is stable for the action of µn
on Ln(X), thus it defines a motivic class [Xn(f)] := [Xn(f) → X0] in M

µ̂
X0

. The
motivic zeta function of f is defined as follows

Zf (T ) :=
∑
n≥1

[Xn(f)]L−ndTn,

which lives in M
µ̂
X0

[[T ]]. If x is a closed point in X0, we define the local motivic zeta
function Zf,x(T ) to be x∗Zf (T ), where x∗ stands for the pullback of the inclusion

of x in X0. Clearly, the series Zf,x(T ) is an element of Mµ̂
k [[T ]].

Theorem 2.1 (Denef-Loeser). The motivic zeta function Zf (T ) is an integrable
series.

The proof of Theorem 2.1 by Denef and Loeser in [3] uses in a crucial way
invariants of a log-resolution of X0. Let us now recall briefly their work with such
a resolution h : Y → (X,X0). The exceptional divisors and irreducible components
of the strict transform for h will be denoted by Ei, where i is in a finite set A. For
∅ 6= I ⊂ A, one puts

EI =
⋂
i∈I

Ei and E◦I = EI \
⋃
j 6∈I

Ej .

Consider an affine covering {U} of Y such that on each piece U ∩ E◦I 6= ∅ the

pullback of f has the form u
∏
i∈I y

Ni
i with u a unit and yi a local coordinate

defining Ei. Let mI denote gcd(Ni)i∈I . Denef and Loeser study the unramified

Galois covering πI : Ẽ◦I → E◦I with Galois group µmI defined locally with respect
to {U} as follows {

(z, y) ∈ A1
k × (U ∩ E◦I ) | zmI = u(y)−1

}
.

The local pieces are glued over {U} as in the proof of [3, Lemma 3.2.2] to give

Ẽ◦I and πI as mentioned, and the definition of the covering πI is independent of
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the choice of the affine covering {U}. Furthermore, Ẽ◦I is endowed with a µmI -
action by multiplication of the z-coordinate with elements of µmI , defining a class

[Ẽ◦I ] = [Ẽ◦I → E◦I → X0] in M
µ̂
X0

(cf. [7]). For each i ∈ A, we denote by νi − 1
the multiplicity of Ei in the divisor of h∗ωX , where ωX is a local generator of the
sheaf of differential forms on X of maximal degree. Then Denef-Loeser’s formula
of motivic zeta function in terms of h is the following

Zf (T ) =
∑
∅6=I⊂A

(L− 1)|I|−1[Ẽ◦I ]
∏
i∈I

L−νiTNi
1− L−νiTNi

,(2.1)

which holds in M
µ̂
X0

[[T ]]. This proves that Zf (T ) is an integrable series.
The quantity

Sf := − lim
T→∞

Zf (T ) =
∑
∅6=I⊂A

(1− L)|I|−1[Ẽ◦I ]

in M
µ̂
X0

is called the motivic nearby cycles of f . Also, the element Sf,x := x∗Sf of

M
µ̂
k is called the motivic Milnor fiber of f at x. Recently, Sf and Sf,x have been

getting more important in singularity theory because of their relations with various
classical invariants, such as Euler characteristic, Hodge spectrum, monodromy zeta
functions (cf. [6, 7], [9], [10]).

More generally, we are going to consider a modification of the motivic zeta
function in several variables concerning a family of functions mentioned in Guibert
[9]. The version with a rational polyhedral convex cone in Nr>0 was studied by
Guibert-Loeser-Merle [11] for one variable with respect to an appropriate linear
form on the cone. Let f be an ordered family of r regular functions fi : X → A1

k.
For simplicity of notation, we also write X0 for X0(f), the common zeros of the
family f . For any n ∈ Nr>0, let |n| =

∑r
i=1 ni, and we define

Xn(f) :=
{
ϕ ∈ L|n|(X) | fi(ϕ) = tni mod tni+1, 1 ≤ i ≤ r

}
.

In the particular case where X = X1×· · ·×Xr with Xi smooth algebraic k-varieties
and, for every 1 ≤ i ≤ r, fi is a regular function on Xi, we define

Dn(f) :=

{
ϕ = (ϕ1, . . . , ϕr) ∈ L|n|(X)

f1(ϕ1) = tn1 mod tn1+1

ordfi(ϕi) > ni, 2 ≤ i ≤ r

}
.

It is clear that, for every n ∈ Nr>0, Xn(f) (resp. Dn(f)) is stable under the good
µgcd(n)-action (resp. µn1

-action) on the space L|n|(X) given by ξϕ(t) := ϕ(ξt)
(resp. ξϕ(t) := (ϕ1(ξt), ϕ2(t), . . . , ϕr(t)), and that Xn(f) (resp. Dn(f)) admits a
morphism to X0. This fact thus gives rise to an element [Xn(f)] := [Xn(f) → X0]

(resp. [Dn(f)] := [Dn(f)→ X0]) in M
µ̂
X0

.
Let C be a rational polyhedral convex cone in Nr>0, let ∆ be the special one

among C’s which consists of n = (n1, . . . , nr) such that 1 ≤ n1 < · · · < nr. Let T
denote the r-tuple (T1, . . . , Tr) of variables, and let Tn stand for Tn1

1 · · ·Tnrr .

Definition 2.2. The motivic zeta function ZCf (T) of a family f of regular functions

on X is the following series in M
µ̂
X0

[[T]]:

ZCf (T) :=
∑
n∈C

[Xn(f)]L−|n|dTn.



MOTIVIC EULER REFLEXION FORMULAS 7

If f = (f1, . . . , fr) is an ordered family f of regular functions fi : Xi → A1
k, 1 ≤ i ≤ r,

the motivic multiple zeta function ζf (T) of f is the series

ζf (T) :=
∑
n∈∆

[Dn(f)]L−|n|dTn

in M
µ̂
X0

[[T]]. For a closed point x ∈ X0, we define the local motivic and the local

motivic multiple zeta functions as ZCf ,x(T) := x∗ZCf (T) and ζf ,x(T) := x∗ζf (T),

elements of Mµ̂
k [[T]].

We refer to [11, Section 2.9] and [4, Lemma 3.4] to see that ZCf (T) is a rational

series. Indeed, we can obtain the motivic zeta function ZC,`f (T ) in [11], which

depends on a linear form ` positive on the closure C of C in Rr≥0 except at the

origin, in terms of replacing Tn in ZCf (T) by T `(n). There, Guibert, Loeser and

Merle deduce the rationality of ZC,`f (T ) thanks to [4, Lemma 3.4], and, fortunately,
their arguments are definitely applicable to the rationality of ZCf (T). To be more
precise, let us consider a log-resolution h : Y → (X,X0(F )), with F = f1 · · · fr.
Assume that

h−1(X0(F )) =
∑
i∈A

Ni(F )Ei and KY = h∗KX +
∑
i∈A

(νi − 1)Ei,

where Ei’s are irreducible components of h−1(X). As previous, we shall work with

[Ẽ◦I ] in M
µ̂
X0(F ) for any nonempty I ⊂ A. Denote by Ni(fj) the multiplicity of Ei

in the divisor of fj ◦ h, and by Ni the vector (Ni(f1), . . . , Ni(fr)) ∈ Nr. Denote by
A the set of all nonempty subsets I of A such that h(E◦I ) ⊂ X0 = X0(f). For any
I ∈ A, we consider the linear morphisms NI : RI → Rr and νI : RI → R defined
as follows: for any α = (αi)i∈I ∈ RI , NI(α) :=

∑
i∈I αiNi and νI(α) :=

∑
i∈I αiνi.

Using the same method as doing with (2.1) we obtain a formula for ZCf (T), which

lives in M
µ̂
X0

[[T]], as follows

ZCf (T) =
∑
I∈A

(L− 1)|I|−1[Ẽ◦I ]
∑

k∈N−1
I (C)

L−νI(k)TNI(k).(2.2)

Thus ZCf (T) is integrable, since
∑

k∈N−1
I (C) L

−νI(k)TNI(k) is integrable, for any

I ∈ A, i.e., ZCf (T) ∈M
µ̂
X0

[[T]]int.

Furthermore, with ` being a linear form on Rr positive on C \ {0}, where C is
the closure of C in Rr≥0, it follows from (2.2) that

ZC,`f (T ) =
∑
I∈A

(L− 1)|I|−1[Ẽ◦I ]
∑

k∈N−1
I (C)

L−νI(k)T `(NI(k)),

which means that ZC,`f (T ) is integrable, thus rational, and we can take its limit

lim
T→∞

ZC,`f (T ) =
∑
I∈A

χ(N−1
I (C))(L− 1)|I|−1[Ẽ◦I ].

Observe that the element limT→∞ ZC,`f (T ) of Mµ̂
X0

is independent of the choice of

such an `, hence one usually writes SCf for it. For a closed point x ∈ X0, we define

Sf ,x := x∗Sf , which evidently equals the limit limT→∞ x∗ZC,`f (T ).
Similarly, we have
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Proposition 2.3. As an element of M
µ̂

X0
[[T]] the motivic multiple zeta function

ζf (T) is integrable, i.e, ζf (T) ∈M
µ̂

X0
[[T]]int.

To prove this proposition we may compute directly the series ζf (T) in terms of
a resolution of singularity as done for ZCf (T) in (2.2), with a slight modification.

More precisely, using the previous notation Ẽ◦I but changing the definition so that
mI = gcd(Ni)i∈I is replaced by m′I = gcd(Ni)i∈I1 , where I1 is the subset of i ∈ I
coming from resolution of {f1 = 0}, and by convenience, m′I = 1 if I1 = ∅, we get

ζf (T) =
∑
I∈A

(L− 1)|I|−1[Ẽ◦I ]
∑

β∈N−1
I ({0}×Nr−1

>0 )

∑
k′∈N−1

I (∆)

k′i>−βi,i∈I

L−νI(k′+β)TNI(k′).

Remark that, in this setting, although k′ and β are rational vectors, k′ + β are
positively integral vectors. A generalization of Lemma 8.5.2 of [12] (see also [10,
Section 2.9]) shows that

S(I; T) :=
∑

β∈N−1
I ({0}×Nr−1

>0 )

∑
k′∈N−1

I (∆)

k′i>−βi,i∈I

L−νI(k′+β)TNI(k′),(2.3)

viewed as a series in M
µ̂

X0
[[T]], is integrable. This proves ζf (T) ∈M

µ̂

X0
[[T]]int. We

also notice that we shall provide another proof for Proposition 2.3 in Corollary 5.9.
Furthermore, in terms of (2.3), we get the following formula

lim
T→∞

S(I;T, . . . , T ) = χ(N−1
I ({0} × Nr−1

>0 ))χ(N−1
I (∆)),

which allows to compute the limit limT→∞ ζf (T, . . . , T ) of the motivic multiple zeta
function of f (see Definition 2.4).

Definition 2.4. The motivic multiple nearby cycles of the family f in Proposition
2.3, denoted by Sf , is defined to be the element

− lim
T→∞

ζf (T, . . . , T ) = −
∑
I∈A

χ(N−1
I ({0} × Nr−1

>0 ))χ(N−1
I (∆))(L− 1)|I|−1[Ẽ◦I ]

of the ring M
µ̂

X0
. For a closed point x ∈ X0, we set

Sf ,x := ({x} ↪→ X0)∗Sf

and call it the local motivic multiple nearby cycles of f at x.

3. Hadamard products and �-product

3.1. Convolution and Hadamard products. The standard concept of convo-
lution product on the monodromic Grothendieck rings of algebraic varieties was
given earlier in [5], [15] and [10]. To recall it explicitly, let us consider the Fermat
varieties Fn0 and Fn1 in G2

m,k defined by the equations un+vn = 0 and un+vn = 1,
respectively. Note that the varieties Fn0 and Fn1 admit the obvious action of µn×µn.

Let X, Y and Z be algebraic k-varieties endowed with good µn-action. Assume
that there are µn-equivariant morphisms Y → X and Z → X. Define operations
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in M
µn
X as follows

[Y → X] ∗0 [Z → X] := [Fn0 ×µn×µn (Y ×X Z)],

[Y → X] ∗1 [Z → X] := [Fn1 ×µn×µn (Y ×X Z)],

[Y → X] ∗ [Z → X] := [Y → X] ∗0 [Z → X]− [Y → X] ∗1 [Z → X],

where, for i ∈ {0, 1}, Fni ×µn×µn (Y ×X Z) is the quotient of Fni × (Y ×X Z) with
respect to the equivalence relation by which any two elements (ξu, ηv, x, y) and
(u, v, ξx, ηy) are equivalent, for ξ, η ∈ µn. The group scheme µn acts diagonally on
Fni ×µn×µn (Y ×X Z). Then passing through the projective limit with respect to

n ∈ N>0 we get the (standard) convolution product ∗ on M
µ̂
X . We can also extend

the ∗-product to M
µ̂

X in a natural way. By [10, Proposition 5.2], the convolution
product ∗ is commutative and associative.

Let X, Y , Z and W be algebraic k-varieties which are endowed with good µ̂-
action and admit µ̂-equivariant morphisms Z → X and W → Y (we may choose
the trivial action of µ̂ on the bases X and Y ). The cartesian product induces a

morphism of rings M
µ̂
X × M

µ̂
Y → M

µ̂2

X×Y , by which the diagonal action induces

naturally a canonical morphism M
µ̂2

X×Y → M
µ̂
X×Y . Then the composition of these

morphisms yields an external product

M
µ̂
X ×M

µ̂
Y →M

µ̂
X×Y ,(3.1)

where, by abuse of notation, we also denote it by ×. As previous, we let T be an
r-tuple of variables. The (external) Hadamard ×H-product of two series a(T) =∑

n∈Nr anTn in M
µ̂
X [[T]] and b(T) =

∑
n∈Nr bnTn in M

µ̂
Y [[T]] is the series

a(T)×H b(T) :=
∑
n∈Nr

an × bnTn(3.2)

in M
µ̂
X×Y [[T]]. This product is commutative, and it is also associative in the fol-

lowing sense, where the verification is straightforward. If a(T) is in M
µ̂
X [[T]], b(T)

is in M
µ̂
Y [[T]] and c(T) is in M

µ̂
Z [[T]], then the identity

(a(T)×H b(T))×H c(T) = a(T)×H (b(T)×H c(T))(3.3)

holds in M
µ̂
X×Y×Z [[T]]. It is stated similarly as in Lemma 7.6 of [15] that, in the

univariate case (i.e., r = 1), the ×-product is “anti-compatible” with the Hadamard

×H-product via the morphism limT→∞. Namely, if a(T ) is in M
µ̂
X [[T ]]sr and b(T )

is in M
µ̂
Y [[T ]]sr, then a(T )×H b(T ) is in M

µ̂
X×Y [[T ]]sr and the identity

lim
T→∞

(a(T )×H b(T )) = −
(

lim
T→∞

a(T )
)
×
(

lim
T→∞

b(T )
)

(3.4)

holds in M
µ̂
X×Y . An analogous assertion for an arbitrary r is also true when we

replace the morphism limT→∞ by the morphism limT1=···=Tr→∞, the composition
of limT→∞ and the assignment T = T1 = · · · = Tr.

The previous external product also deduces naturally the following external prod-
uct, which we again denote by ×,

M
µ̂

X ×M
µ̂

Y →M
µ̂

X×Y .

This product has the same properties as the previous ones that we have mentioned.
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Let us now introduce a generalized (external) convolution product of the previous
standard one. Using the external product, the generalized (external) convolution
product

∗ : Mµ̂
X ×M

µ̂
Y →M

µ̂
X×Y

(again by abuse of notation) is defined as follows

[Z → X] ∗0 [W → Y ] := ([Z → X]× [Y → Y ]) ∗0 ([X → X]× [W → Y ]) ,

[Z → X] ∗1 [W → Y ] := ([Z → X]× [Y → Y ]) ∗1 ([X → X]× [W → Y ]) ,

[Z → X] ∗ [W → Y ] :=[Z → X] ∗0 [W → Y ]− [Z → X] ∗1 [W → Y ].

The Hadamard ∗H-product of two formal series a(T) =
∑

n∈Nr anTn ∈ M
µ̂
X [[T]]

and b(T) =
∑

n∈Nr bnTn ∈M
µ̂
Y [[T]] is the formal series

(3.5) a(T) ∗H b(T) :=
∑
n∈Nr

an ∗ bnTn

in M
µ̂
X×Y [[T]]. The associativity of the Hadamard product ∗H is obtained from that

of the convolution product ∗. Similarly to [15, Lemma 7.6], the ∗-product is anti-
compatible with the Hadamard product ∗H-product via the morphism limT1=···=Tr→∞.

Namely, for r = 1 for instance, if a(T ) is in M
µ̂
X [[T ]]sr and b(T ) is in M

µ̂
Y [[T ]]sr,

then a(T ) ∗H b(T ) is in M
µ̂
X×Y [[T ]]sr, and moreover,

lim
T→∞

(a(T ) ∗H b(T )) = −
(

lim
T→∞

a(T )
)
∗
(

lim
T→∞

b(T )
)
.(3.6)

The external convolution product can be extended to the following

∗ : M
µ̂

X ×M
µ̂

Y →M
µ̂

X×Y ,

which remains the properties mentioned previously.

3.2. The �-product of integrable univariate series. Let X and Y be two al-
gebraic k-varieties, and let T and U be univariates. In this paragraph, we introduce

a new product of two integrable series a(T ) ∈ M
µ̂

X [[T ]]int and b(U) ∈ M
µ̂

Y [[U ]]int,

which is an element of M
µ̂

X [[T,U ]]int and commutes with the morphism limT=U→∞.

We use the augmentation map M
µ̂
X → MX defined in [15, Section 5], with re-

mark that in the context of µ̂ the characteristic zero ground field is not necessarily
algebraically closed. There is a more effective way to obtain a generalized augmen-

tation map M
µ̂r

X → M
µ̂r−1

X using [10, Proposition 2.6, Section 3.10]. The image of

an element z ∈M
µ̂
X under the augmentation map will be denoted by z′.

Definition 3.1. The �-product of the series a(T ) =
∑
n≥1 anT

n and b(U) =∑
m≥1 bmU

m is defined as follows

a(T ) � b(U) :=
∑
n,m≥1

cn,mT
nUm ∈M

µ̂

X×Y [[T,U ]],

where cn,m equals
(L− 1)

∑
l>m an × b′l if n < m,

(L− 1)
∑
l>n a

′
l × bm if n > m,

−an ∗ bn +
∑
l≤n Ll−nal ∗0 bl + (L− 1)

∑
l>n(an × b′l + a′l × bn) if n = m.
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Remark that the integrability of a(T ) and b(U) implies that a(T ) � b(U) is well
defined. Indeed, since a(T ) and b(U) are integrable, they are of finite mass, a

condition guarantees that
∑
l>n al and

∑
l>m bl make sense and belong to M

µ̂

X and

M
µ̂

Y , respectively.

Theorem 3.2. The �-product preserves the integrability and commutes with the

limit of integrable series. More precisely, if a(T ) is in M
µ̂

X [[T ]]int and b(U) is in

M
µ̂

Y [[U ]]int, then a(T ) � b(U) is in M
µ̂

X×Y [[T,U ]]int, and

lim
T=U→∞

(a(T ) � b(U)) = lim
T→∞

a(T ) ∗ lim
U→∞

b(U).

Proof. The first statement that a(T ) � b(U) is in M
µ̂

X×Y [[T,U ]]int if a(T ) is in

M
µ̂

X [[T ]]int and b(U) is in M
µ̂

Y [[U ]]int will be proved in the general case for several
variables in Theorem 5.11.

Let us prove the second one. Write the series a(T ), b(U) and a(T ) � b(U) as∑
n≥1 anT

n,
∑
m≥1 bmU

m and
∑
n,m cn,mT

nUm, respectively. Take T = U in

a(T ) � b(U) so that the resulting series can be written as

∑
n,m

cn,mT
n+m = A1 +A2 + (L− 1)(B1 +B2),

where, by definition,

A1 = −
∑
n≥1

an ∗ bnT 2n, A2 =
∑
n≥1

∑
l≤n

Ll−nal ∗0 bl

T 2n,

B1 =
∑

1≤n≤m

(
an ×

∑
l>m

b′l

)
Tn+m, B2 =

∑
1≤m≤n

(∑
l>n

a′l × bm

)
Tn+m.

Here the integrability of a(T ) and b(U) implies that
∑
l>n a

′
l converges in MX and∑

l>m b
′
l converges in MY . The first limit is computed to be

lim
T→∞

A1 = lim
T→∞

a(T 2) ∗ lim
T→∞

b(T 2) = lim
T→∞

a(T ) ∗ lim
T→∞

b(T )

by means of (3.6). It is quite easy to obtain that

lim
T→∞

A2 = lim
T→∞

∑
n≥1

(
n∑
l=1

(L−1)n−lal ∗0 bl

)
T 2n

=

 lim
T→∞

∑
n≥0

L−nT 2n

 ·
 lim
T→∞

∑
n≥1

an ∗0 bnT 2n
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which vanishes in M
µ̂

X×Y , since limT→∞
∑
n≥0 L−nT 2n vanishes in M

µ̂

X×Y . The

limits of B1 and B2 require more computations. It is verified in M
µ̂

X×Y [[T ]]int that

B1 =
∑

1≤n≤m

(an × b′(1))Tn+m −
∑

1≤n≤m

an × ∑
1≤l≤m

b′l

Tn+m

=
∑
n≥1

an × b′(1)
∑

1≤m≤n

Tn+m −
∑

1≤n≤m

an × ∑
1≤l≤m

b′l

Tn+m

=
a(T 2)

1− T
× b′(1)−

∑
1≤n≤m

an × ∑
1≤l≤m

b′l

Tn+m,

and, similarly, that

B2 =

 a′(1)

1− T
∑
n≥1

T 2n

×H

b(T 2)

1− T
−

∑
1≤m≤n

∑
l≤n

a′l × bm

Tn+m,

where a′(T ) :=
∑
n≥1 a

′
nT

n and b′(U) :=
∑
m≥1 b

′
mU

m. Note that we can extend

naturally the augmentation map to a map M
µ̂2

X×Y →M
µ̂
X×Y , from which, for every

m and n, the elements (L− 1)an× b′m and (L− 1)a′n× bm in M
µ̂
X×Y coincide, since

both are the image of (L−1)an×bm in M
µ̂2

X×Y . We may also refer to [10, Proposition

2.6, Section 3.10] to see this fact. In M
µ̂

X×Y , because L−1 is invertible, the identity
an × b′m = a′n × bm holds. Thus, for each κ ≥ 1, by combinatoric computation, we

obtain the following identity in M
µ̂

X×Y :

∑
n+m=κ

 ∑
1≤n,j≤m

an × b′j +
∑

1≤m,i≤n

a′i × bm


=

∑
n+m=κ

 ∑
1≤n,j≤m

an × b′j +
∑

1≤m,i≤n

ai × b′m


=

∑
n+m=κ

∑
j≤m

an × b′j +
∑
i≤bκ2 c

ai ×
∑
j≤bκ2 c

b′j ,

where bκ2 c is the integer part of κ
2 . It implies that, in M

µ̂

X×Y [[T ]]int,

B1 +B2 =
a(T 2)

1− T
× b′(1) + a′(1)× b(T 2)

1− T
−
∑
l≥1

alT
l ×
∑
l≥1

(∑
m≤l

b′m
)
T l

− (1 + T )
∑
l≥1

(∑
n≤l

an
)
T 2l ×H

∑
l≥1

(∑
m≤l

b′m
)
T 2l

=
a(T 2)

1− T
× b′(1) + a′(1)× b(T 2)

1− T
− a(T )× b′(T )

1− T

− (1 + T )

(
a(T 2)

1− T 2
×H

b′(T 2)

1− T 2

)
,
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since ∑
κ≥1

( ∑
i≤bκ2 c

ai ×
∑
j≤bκ2 c

b′j
)
Tκ = (1 + T )

∑
l≥1

(∑
n≤l

an ×
∑
m≤l

b′m
)
T 2l.

Here, for any two series α(T ) ∈ M
µ̂

X [[T ]] and β(T ) ∈ M
µ̂

Y [[T ]], by α(T ) × β(T )
we mean the usual product of formal series in which the multiplication for the
coefficients uses the external product ×. Now it is easy to obtain the vanishing of

limT→∞(B1 +B2) in M
µ̂

X×Y , and the theorem is proved. �

4. A motivic analogue of the Euler reflexion formula

4.1. Main theorem. In this paragraph we state and prove an analogue of the
Euler reflexion formula for motivic zeta functions, the most important result of the
present article.

Theorem 4.1. Let X and Y be smooth algebraic k-varieties, let f and g be regular
functions on X and Y with the zero loci X0 and Y0, respectively. Define a function
f ⊕ g on X × Y by f ⊕ g(x, y) = f(x) + g(y). Let ι be the inclusion of X0 × Y0 in
X × Y . Then the following identity

ζf (T ) � ζg(U) = ζf,g(T,U) + ζg,f (U, T ) + ι∗ζf⊕g(TU)

holds in M
µ̂

X0×Y0
[[T,U ]]. It is called the motivic Euler reflexion formula for (f, g).

Proof. Let d1 and d2 be the pure k-dimensions of X and Y , respectively, and let

d := d1 + d2. For brevity of notation, we write an for [Xn(f)]L−nd1 in M
µ̂
X0

and bn

for [Xn(g)]L−nd2 in M
µ̂
Y0

, we also ignore writing arrows to base for relative objects
when they are clearly understood, e.g., let [Xn(f)] simply stand for [Xn(f)→ X0].
The motivic zeta functions of f and g can be rewritten as follows

ζf (T ) =
∑
n≥1

anT
n ∈M

µ̂
X0

[[T ]] and ζg(U) =
∑
n≥1

bnU
n ∈M

µ̂
Y0

[[U ]].

Let us consider the coefficients of the series ι∗ζf⊕g(TU). For n ∈ N>0, we have

[ι∗Xn(f ⊕ g)] =
[{

(ϕ,ψ) ∈ Ln(X × Y ) | f(ϕ) + g(ψ) = tn mod tn+1
}]

that equals the sum A
(n)
1 +A

(n)
2 +A

(n)
3 , where A

(n)
1 , A

(n)
2 and A

(n)
3 are given by the

expressions

A
(n)
1 =

[{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) + g(ψ) = tn mod tn+1

ordf(ϕ) = ordg(ψ) = n

}]
,

A
(n)
2 =

[{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) + g(ψ) = tn mod tn+1

ordf(ϕ) 6= ordg(ψ)

}]
,

A
(n)
3 =

∑
1≤l<n

[{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) + g(ψ) = tn mod tn+1

ordf(ϕ) = ordg(ψ) = l

}]
.

It is useful for the rest of the proof to introduce another notation, Bn, so that

Bn = (L− 1)

[{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) = tn mod tn+1

g(ψ) = −tn mod tn+1

}]
.

Lemma 4.2. The identities an ∗1 bn = A
(n)
1 L−nd and an ∗0 bn = BnL−nd hold in

M
µ̂
X0×Y0

.
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Proof of Lemma 4.2. We shall prove the first identity, that an ∗1 bn = A
(n)
1 L−nd,

proving the second one can be done in the same way. The mapping from the
k-variety Xn(f)× Xn(g)× Fn1 toward the k-variety

E :=

{
(ϕ,ψ) ∈ Ln(X × Y )

ordf(ϕ) = ordg(ψ) = n
f(ϕ) + g(ψ) = tn mod tn+1

}
that sends (ϕ(t), ψ(t); ξ, η) to (ϕ(ξt), ψ(ηt)) gives rise to a morphism θ of (X0×Y0)-
varieties

Xn(f)× Xn(g)×µn×µn Fn1 → E.

It is clear that the source and the target of θ are endowed with the natural action
of µn, and that θ is a µn-equivariant isomorphism. The desired identity an ∗1 bn =

A
(n)
1 L−nd is now proved. The reader may also find in the proof of Lemma 5.2 in

[13] to obtain more detailed arguments. �

Lemma 4.3. The identity (L − 1)
∑
l>n (an × b′l + a′l × bn) = A

(n)
2 L−nd holds in

M
µ̂
X0×Y0

.

Proof of Lemma 4.3. Note that the condition ordf(ϕ) 6= ordg(ψ) in the definition

of A
(n)
2 may be presented as

(ordf(ϕ) < ordg(ψ)) ∨ (ordf(ϕ) > ordg(ψ)) ,

so we can write A
(n)
2 as follows

A
(n)
2 =

[{
ϕ ∈ Ln(X) | f(ϕ) = tn mod tn+1

}]
× [{ψ ∈ Ln(Y ) | ordg(ψ) > n}]

+ [{ϕ ∈ Ln(X) | ordf(ϕ) > n}]×
[{
ψ ∈ Ln(Y ) | g(ψ) = tn mod tn+1

}]
.

Let us denote by D the constructible subset {ϕ ∈ Ln(X) | ordf(ϕ) > n} of Ln(X).
Then µ(π−1

n (D)) = [D]L−d1 , with µ being the motivic measure. Putting

Dl := {ϕ ∈ L(X) | ordf(ϕ) = l} ,
for any l > n, we get π−1

n (D) =
⋃
l>nDl, and, by σ-additivity of µ, we have

[D] = Ld1µ(π−1
n (D)) = Ld1

∑
l>n

µ(Dl) =
∑
l>n

[πl(Dl)]L−ld1 .

Since {ϕ ∈ Ll(X) | ordf(ϕ) = l} is isomorphic as an algebraic X0-variety to the
quotient of Xl(f)×Gm,k by the µl-action given by ξ · (ϕ, λ) := (ξϕ, ξ−1λ), we have
[πl(Dl)]L−ld1 = (L− 1)a′l, thus we get

[D] = (L− 1)
∑
l>n

a′l,

and in the same way, [{ψ ∈ Ln(Y ) | ordg(ψ) > n}] is equal to (L− 1)
∑
l>n b

′
l. The

lemma is then proved. �

Lemma 4.4. The equality
∑
l<n al ∗0 blLl−n = A

(n)
3 L−nd holds in M

µ̂

X0×Y0
.

Proof of Lemma 4.4. For any l < n, let us consider the k-varieties

Ul =

{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) + g(ψ) = tn mod tn+1

ordf(ϕ) = ordg(ψ) = l

}
,

Ũl =

(ϕ,ψ) ∈ Ln(X × Y )
f(ϕ) + g(ψ) = tn mod tn+1

f(ϕ) = tl mod tl+1

g(ψ) = −tl mod tl+1

 ,
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and

Wl =

(ϕ,ψ) ∈ Ln(X × Y )
ord (f(ϕ) + g(ψ)) = n
f(ϕ) = tl mod tl+1

g(ψ) = −tl mod tl+1

 ,

which admit evidently the natural action of µl. Here, the class of Ul is nothing else

than the l-th term of the sum A
(n)
3 . Again as in the proof of Lemma 4.3, since Ul is

isomorphic as a (X0×Y0)-variety to the quotient of Ũl×Gm,k by the µl-action given

by ξ · (ϕ,ψ, λ) := (ξϕ, ξψ, ξ−1λ), we get [Ul] = (L − 1)[Ũl]
′ in M

µ̂
X0×Y0

. Similarly,

[Wl] = (L− 1)[Ũl]
′ in M

µ̂
X0×Y0

. Hence [Ul] = [Wl] in M
µ̂
X0×Y0

.

Now we write [Wl] = [W≥nl ]− [W≥n+1
l ]L−d, where

W≥nl =

(ϕ,ψ) ∈ Ln(X × Y )
ord (f(ϕ) + g(ψ)) ≥ n
f(ϕ) = tl mod tl+1

g(ψ) = −tl mod tl+1

 .

Put

En,l =

{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) = tl mod tl+1

g(ψ) = −tl mod tl+1

}
A =

{
τ ∈ Ln−l(A1

k) | τ = t+ α2t
2 + · · ·+ αn−lt

n−l} .
The (X0 × Y0)-morphism W≥nl × A → En,l sending (ϕ,ψ, τ) to (ϕ ◦ τ, ψ) is an

isomorphism, from which [W≥nl ] = [En,l]Ll+1−n. Since [En,l] = Bl(L−1)−1L(n−l)d,

it follows from Lemma 4.2 that [En,l] = al ∗0 bl(L− 1)−1Lnd, therefore

[W≥nl ] = al ∗0 bl(L− 1)−1Lnd+l+1−n.

Consequently,

[Wl] = [W≥nl ]− [W≥n+1
l ]L−d = al ∗0 blLnd+l−n.

Then we get A
(n)
3 L−nd =

∑
l<n[Wl]L−nd =

∑
l<n al ∗0 blLl−n as desired. �

Let us continue the proof of Theorem 4.1. Using Lemmas 4.2, 4.3 and 4.4 gives
the coefficient of TnUn in ι∗ζf⊕g(TU), also the coefficient of TnUn in the right
hand side of the Euler reflexion formula, as follows

[ι∗Xn(f ⊕ g)]L−nd = an ∗1 bn +
∑
l<n

Ll−nal ∗0 bl + (L− 1)
∑
l>n

(an × b′l + a′l × bn)

= −an ∗ bn +
∑
l≤n

Ll−nal ∗0 bl + (L− 1)
∑
l>n

(an × b′l + a′l × bn) .

This quantity agrees with the coefficient of TnUn in the left hand side, according
to the �-product of the motivic zeta functions ζf (T ) and ζg(U) (see Section 3.2).

On the other hand, for n < m, the coefficient of TnUm in the right hand side of
the Euler reflexion formula is nothing else than [Dn,m(f, g)]L−(n+m)d, which equals

[Xn(f)]L−nd1 ×
∑
l>m

[{(ψ ∈ Ll(Y ) | ordg(ψ) = l}]L−ld2 = (L− 1)
∑
l>m

an × b′l,

definitely coinciding the coefficient of TnUm in the left hand side of the Euler
reflexion formula. For the detail in proving these identities, see the proof of Lemma
4.3. The previous arguments obviously run for the case n > m, and Theorem 4.1
is now proved. �
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4.2. Motivic multiple nearby cycles and the motivic Thom-Sebastiani
theorem. Let X, Y , f and g be as in Theorem 4.1. Let us now compute the
motivic multiple zeta functions Sf,g and Sg,f , which are the limit of the series
−ζf,g(T, T ) and −ζg,f (T, T ), respectively. Afterward, together with the commuting
of �-product and limT→∞, and the motivic Euler reflexion formula, we deduce the
motivic Thom-Sebastiani theorem.

Proposition 4.5. The identities Sf,g = −Sf × [Y0] and Sg,f = −[X0]× Sg hold in

M
µ̂
X0×Y0

.

Proof. It suffices to check for the first identity. As in the proof of Theorem 4.1,
for brevity of notation, let an and bn stand for [Xn(f)]L−nd1 and [Xn(g)]L−nd2 ,
respectively. By definition,

Sf,g = − lim
T→∞

ζf,g(T, T ),

we get the following

−Sf,g = (L− 1) lim
T→∞

∑
1≤n<m

an ×
∑
l>m

b′lT
n+m

= (L− 1) lim
T→∞

∑
1≤n<m

an ×
∑
l≥1

b′lT
n+m − (L− 1) lim

T→∞

∑
1≤n<m

an ×
∑
l≤m

b′lT
n+m

= lim
T→∞

∑
1≤n<m

anT
n+m × [Y0]− (L− 1) lim

T→∞

∑
1≤n<m

an ×
∑
l≤m

b′lT
n+m

= lim
T→∞

∑
n≥1

an
T 2n+1

1− T
× [Y0]− (L− 1) lim

T→∞

∑
1≤n<m

∑
l≤m

an × b′lTn+m

= lim
T→∞

Tζf (T 2)

1− T
× [Y0] + (L− 1) lim

T→∞
ZC,`f,id,g

= Sf × [Y0] + (L− 1)SC,`f,id,g,

where C is the rational polyhedral convex cone{
(n, l,m) ∈ N3 | 1 ≤ n < m, 1 ≤ l ≤ m

}
,

`(n,m, l) = n + m, for (n,m, l) ∈ R3, and id is the identity morphism on A1
k.

According to [11, Section 2.9], in fact, S
C,`
f,id,g is independent of the choice of `

provided ` is linear on R3 and positive on the closure of C in R3 outside the origin.

By this, we may replace ` by `′ defined by `′(n,m, l) = m to get ZC,`
′

f,id,g(T ) so that

ZC,`
′

f,id,g(T ) has the same limit limT→∞ as ZC,`f,id,g(T ). More precisely,

−SC,`f,id,g = −SC,`
′

f,id,g = lim
T→∞

ZC,`
′

f,id,g = lim
T→∞

∑
1≤n<m

∑
1≤l≤m

an × blTm.

By applying Lemma 7.6 of [15] to the external product×, which was already recalled

in Section 3.1, together with the previous identity, we obtain a formula for −SC,`f,id,g
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as follows

−SC,`f,id,g = lim
T→∞

∑
m≥1

( ∑
n<m

an ×
∑
l≤m

bl
)
Tm

= − lim
T→∞

∑
m≥1

( ∑
n<m

an
)
Tm × lim

T→∞

∑
m≥1

(∑
l≤m

bl
)
Tm

= − lim
T→∞

∑
m≥1

amT
m+1 × lim

T→∞

∑
m≥1

bmT
m

= lim
T→∞

∑
m≥1

am
Tm+1

1− T
× lim
T→∞

∑
m≥1

bm
Tm

1− T
,

which vanishes because of the vanishing of the second factor of the last expression,
completing the proof of Proposition 4.5. �

Theorem 4.6 (Motivic Thom-Sebastiani theorem). Using the assumption as in
Theorem 4.1, the following identity

ι∗Sf⊕g = −Sf ∗ Sg + Sf × [Y0] + [X0]× Sg

holds in M
µ̂

X0×Y0
.

Proof. This is a direct consequence of Theorems 4.1, 3.2 and Proposition 4.5. �

5. Generalization of �-product and motivic Euler reflexion formula

5.1. Integrable series. First of all, let us recall some basic results on integrability
of formal series. We define

Z[L]loc := Z[L,L−1, (1− Ln)−1, n ≥ 1].

Let M and N be Z[L]loc-modules, and let M⊗N denote M⊗Z[L]loc N for short.

Lemma 5.1. If a(T) ∈ M[[T]]int and b(T) ∈ N[[T]]ssr, then a(T) ⊗H b(T) ∈
M⊗N[[T]]int.

Proof. Looijenga gave a similar statement for the univariate case in [15, Lemma
7.6], which claims that the Hadamard product corresponding to tensor product on
coefficients of two rational series is again rational. His arguments in fact still work
in our situation. Moreover, there are methods more direct to prove this lemma, such
as combinatorics or Cluckers-Loeser’s computations for the constructible motivic
functions in [1, Section 4] together with the version with action in [14]. �

Lemma 5.2. Let M be Z[L]loc-modules, and T and U separated multivariates.
Then

M[[T]]int[[U]]int ⊂M[[T,U]]int ⊂M[[T]]int[[U]],

where M[[T]int[[U]] is the set of formal series in U over M[[T]]int.

Proof of Lemma 5.2 is elementary and left to the readers.
For any pair of formal series with some variables mixed, namely, a(T,V) =∑
n,l an,lT

nVl in M[[T,V]] and b(U,V) =
∑

m,l bm,lU
mVl in N[[U,V]], their

V-Hadamard product is an element of M⊗N[[T,U,V]] given by

a(T,V)⊗H b(U,V) :=
∑
n,m,l

an,l ⊗ bm,lT
nUmVl.(5.1)
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Lemma 5.3. If a(T,V) is in M[[T,V]]int and b(U,V) is in N[[U]]int[[V]]ssr, then
the V-Hadamard product a(T,V)⊗H b(U,V) is in M⊗N[[T,U,V]]int.

Proof. It is easy to see that the series c(T,U,V) := a(T,V) ⊗H b(U,V) can be
presented as the Hadamard product of two elements of M⊗N[[T,U,V]] as follows

c(T,U,V) =
a(T,V)∏
(1− Uj)

⊗H

b(U,V)∏
(1− Ti)

,(5.2)

where
∏

(1− Ti) := (1− T1) · · · (1− Tr) and
∏

(1−Uj) := (1−U1) · · · (1−Us). By
setting b(U,V) =

∑
m bm(V)Um, we may write the factors in (5.2) as follows

a(T,V)∏
(1− Uj)

=
∑
m

a(T,V)Um ∈M⊗N[[T,V]]int[[U]]ssr, and

b(U,V)∏
(1− Ti)

=
∑
m

b̃m(T,V)Um ∈M⊗N[[T,V]]ssr[[U]]int,

where

b̃m(T,V) :=
bm(V)∏
(1− Ti)

.

This together with Lemma 5.1 implies that c(T,U,V) ∈ M ⊗ N[[T,V]]ssr[[U]]int.
Moreover, we have

c(T,U,V) =
∑
m

a(T,V)⊗H b̃m(T,V)Um,

which belongs to M⊗N[[T,V]]int[[U]], by Lemma 5.1. It follows that c(T,U,V) is
an element of M⊗N[[T,V]]int[[U]]int, hence an element of M⊗N[[T,U,V]]int. �

Let Xi, 1 ≤ i ≤ r, be smooth algebraic k-varieties, and let X := X1×· · ·×Xr. As
usual we use the multivariate T = (T1, . . . , Tr). To each 1 ≤ i ≤ r and formal series

a(T) =
∑

n anTn in M
µ̂
X [[T]] associate a unique formal series ai(T) :=

∑
n a

(i)
n Tn

in M
µ̂
Xi

[[T]] in such a way that a
(i)
n = (pri)!an ∈ MXi , where pri is the natural

projection of X onto Xi.

Lemma 5.4. If the series a(T) is integrable, so are the series ai(T) for 1 ≤ i ≤ r.

Proof of this lemma is straightforward.

Definition 5.5. For any r ∈ N>0 and 1 ≤ i ≤ r, a r-tuple n = (n1, . . . , nr) ∈ Nr
is said to have the ∆i,<-property (resp. the ∆<-property), written as n ∈ ∆i,<-
property (resp. n ∈ ∆<-property) or simply as n ∈ ∆i,< (resp. n ∈ ∆<), if

n1 < · · · < ni = ni+1 = · · · = nr (resp. n1 < · · · < nr).

We denote by M
i,<
X [[T]] (resp. M<

X [[T]]) the subset of M
µ̂
X [[T]] consisting of

formal series of the form
∑

n∈∆i,<
anTn (resp.

∑
n∈∆<

anTn). We also have an

analogous definition for M
i,<

X [[T]] and M
<

X [[T]] as subset of M
µ̂

X [[T]]. By definition,

for any a(T) in M
i,<
X [[T]] (resp. in M

i,<

X [[T]]), there exists a series ã(T1, . . . , Ti) in

M<
X [[T1, . . . , Ti]] (resp. in M

<

X [[T1, . . . , Ti]]) such that

a(T) = ã(T1, . . . , Ti−1, Ti · · ·Tr).
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Let us now introduce a new notion of ordered cells. For an increasing sequence
of positive integers 0 = r0 < r1 < · · · < ri = r we define the basic ordered cell
∆(r0,...,ri) to be the set{

(n1, . . . , nr) ∈ Nr | nrj−1+1 = · · · = nrj and nrj−1 < nrj , 2 ≤ j ≤ i
}
.

A subset ∆ of Nr is called an ordered cell if it is the image of a basic ordered
cell ∆(r0,...,ri) under a permutation map ρ : Nr → Nr that sends (n1, . . . , nr) to
(nρ(1), . . . , nρ(r)). It is easy to see that Nr can be partitioned into all the ordered

cells ∆. This implies that any formal series a(T) ∈ M
µ̂

X [[T]] can be uniquely
decomposed as a finite sum of formal series

a(T) =
∑
∆

a∆ (T) =
∑
∆

a<∆
( r1∏
l=1

Tρ(l), . . . ,

ri∏
l=ri−1+1

Tρ(l)
)
,(5.3)

where a∆(T) :=
∑

n∈∆ anTn and a<∆ ∈M
<

X [[T1, . . . , Ti]] in viewing X as

r1∏
l=1

Xρ(l) × · · · ×
ri∏

l=ri−1

Xρ(l).

Lemma 5.6. If the series a(T) is integrable, so are the series a∆(T) for all ordered
cells ∆.

Remark 5.7. Actually, in view of Cluckers-Loeser’s theory on constructible mo-
tivic functions one can show that the lemma also works for any definable subset of
Nr, cf. [1, Lemma 4.5.8].

Proof of Lemma 5.6. It suffices to prove that a∆ (T) is integrable for ∆ = ∆(r0,...,ri)

being a basic ordered cell. We can check easily that

a∆ (T) = ε(T) ·H a(T),

where, be definition,

ε(T) :=

∏i
j=2

(∏r
l=rj−1+1 Tl

)
∏i
j=1

(
1−

∏r
l=rj−1+1 Tl

) ,
which is strongly rational. Then the present lemma follows from Lemma 5.1. �

We consider the morphism of M
µ̂

X -modules

Φ: M
<

X [[T]]→M
<

X [[T]]

given by

Φ
(∑

n

anTn
)

= (L− 1)1−r
∑
n

a(1)
n ×

r∏
i=2

(a
(i)
n−ei − a

(i)
n )Tn,

where a
(i)
n := (pri)!an ∈ MXi , pri is the natural projection of X onto Xi, and ei

is the i-th standard vector in Zr, 1 ≤ i ≤ r. Here by
∏r
i=2 we mean temporarily

the external products. It is clear that Φ can be extended to an endomorphism of

M
µ̂

X [[T]],

Φ : M
µ̂

X [[T]]→M
µ̂

X [[T]],(5.4)
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by linearity, namely,

Φ(a(T)) :=
∑
∆

Φ
(
a∆

( r1∏
l=1

Tρ(l), . . . ,

ri∏
l=ri−1+1

Tρ(l)
))
,

in terms of the decomposition of a(T) ∈ M
µ̂

X [[T]] into finitely many terms of the
form (5.3).

Now we work with the restriction of Φ to the sub-M
µ̂

X -module M
µ̂

X [[T]]int of

M
µ̂

X [[T]].

Lemma 5.8. The restriction of Φ to M
µ̂

X [[T]]int is an automorphism.

Proof. Define the morphism Φ−1 : M
<

X [[T]]int →M
<

X [[T]]int as follows

a(T) =
∑

n∈∆<

anTn 7→ (L− 1)r−1
∑

n∈∆<

a(1)
n ×

r∏
i=2

(∑
l>1

a
(i)
n+lei

)
Tn,

with
∏r
i=2 being the external products at the moment. Let us show that Φ−1(a(T))

is an integrable series. We first prove that, for any 2 ≤ i ≤ r,

(L− 1)
∑

n∈∆<

∑
l>1

a
(i)
n+lei

Tn =
γi(T)

1− Ti
,

for some γi(T) ∈ M
µ̂

Xi [[T]]int. Indeed, by setting n̂i := n − niei and T̂i := T −
(Ti − 1)ei, 2 ≤ i ≤ r, we have

(L− 1)
∑

n∈∆<

∑
l>1

a
(i)
n+lei

Tn = (L− 1)
∑
l>1

∑
n̂i∈∆<

a
(i)
n̂i+lei

T̂n̂i
i

∑
i≤ni<l

Ti
ni

= (L− 1)
∑
l>1

∑
n̂i∈∆<

a
(i)
n̂i+lei

T̂n̂i
i

Ti
i − T li

1− Ti

=
(L− 1)Ti

i

1− Ti
ai(T̂i)−

(L− 1)ai(T)

1− Ti
,

which has the form as desired. It therefore follows that

Φ−1(a(T)) = a1(T) ·H
γ2(T)

1− T2
·H · · · ·H

γr(T)

1− Tr
,

which is obviously integrable due to Lemma 5.1. By the decomposition (5.3), the

morphism Φ−1 may be extended to M
µ̂

X [[T]]int. It is easily checked that Φ ◦Φ−1 =
Φ−1 ◦ Φ = id

M
µ̂
X [[T]]int

. The lemma is thus proved. �

Corollary 5.9. Let f = (f1, . . . , fr) be an ordered family of regular functions on
X1, . . . , Xr. Then the multiple motivic zeta function ζf (T) is an integrable series,

i.e., ζf (T) ∈M
µ̂

X [[T]]int.

Proof. Let a(T) = Z
Nr>0

f (T) be the motivic zeta function with respect to the trivial
cone Nr>0 defined as in Definition 2.2. Then we have

a(T) = Zf1(T1)×H · · · ×H Zfr (Tr),

it is therefore integrable due to Lemma 5.3. On the other hand, we deduce from

Lemma 5.6 that the series a∆<
(T) = Z∆<

f (T) is integrable. Since the identity
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Φ−1
(
Z∆<

f (T)
)

= ζf (T) holds in M
<

X [[T]], Lemma 5.8 gives us the integrability of

the series ζf (T). �

5.2. Generalized �-product. Let Xi and Yj , 1 ≤ i ≤ r, 1 ≤ j ≤ s, be smooth
algebraic k-varieties, and let

X := X1 × · · · ×Xr and Y := Y1 × · · · × Ys.(5.5)

As usual we also use the multivariates T = (T1, . . . , Tr) and U = (U1, . . . , Us). Now
for tuples n = (n1, . . . , nr) and m = (m1, . . . ,ms) having the ∆<-property, we let

I := In,m := {(i, j) ∈ N2 | ni = mj},
and let I1 (resp. I2) be the image of I under the projection on the first component

(resp. the second component). Then, to define the �-product of a series in M
µ̂

X [[T]]

and a series in M
µ̂

Y [[U]] it suffices to define the �-product of a series in M
<

X [[T]]

and a series in M
<

Y [[U]].

Definition 5.10. Let a(T) =
∑
anTn and b(U) =

∑
bmUm be formal series in

M
<

X [[T]] and M
<

Y [[U]], respectively. We define the product a(T) � b(U) in two
steps as follows.

(i) Put

a(T) �0 b(U) :=
∑

n∈∆<,m∈∆<

cn,mTnUm,

where
cn,m =

∏
i 6∈I1

a(i)
n ×

∏
j 6∈I2

b(j)m ×
∏

(i,j)∈I

c̃(i,j)n,m,

and, for any (i, j) ∈ I, the quantity c̃
(i,j)
n,m is defined to be

−a(i)
n ∗b(j)m +

∑
0≤l<ni

L−la(i)
n−lei∗0b

(j)
m−lej+(L−1)

∑
l>0

(
a(i)
n × (b

(j)
m+lej

)′ + (a
(i)
n+lei

)′ × b(j)m

)
with z′ the image of z under the augmentation map.

(ii) Put
a(T) � b(U) := Φ−1 (Φ(a(T)) �0 Φ(b(U))) ,

where Φ is defined previously in (5.4).

It is clear that the �-product in Definition 5.10 is well defined since Φ is well
defined. Moreover, when reduced to the univariate case, i.e., r = s = 1, this product
is nothing else than the one defined in Definition 3.1.

Theorem 5.11. With previous notation and hypotheses, if a(T) is in M
µ̂

X [[T]]int

and b(U) is in M
µ̂

Y [[U]]int, then a(T) � b(U) is in M
µ̂

X×Y [[T,U]]int.

Proof. We first consider a(T) and b(U) in M
<

X [[T]]int and M
<

Y [[U]]int, respectively.
It follows from the proof of Lemma 5.8 that

(L− 1)
∑

n∈∆<

∑
l>0

a
(i)
n+lei

Tn =
αi(T)

1− Ti
,

and that

(L− 1)
∑

m∈∆<

∑
l>0

b
(j)
m+lej

Um =
βj(U)

1− Uj
,
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for some integrable series αi(T) and βj(U). Then, by simple computation, we
deduce that

a(T) �0 b(U) =
∏
i6∈I1

ai(T)×H

∏
j 6∈I2

bj(U)×H

∏
(i,j)∈I

cij(T,U),

where for each (i, j) ∈ I, the series cij(T,U) is equal to

−ai(Ti) ∗H bj(Uj) +
ai(Ti)∗0Hbj(Uj)

1− L−1TiUj
+ ai(Ti)×H

βj(Uj)

1− Uj
+
αi(Ti)

1− Ti
×H bj(Uj),

where
Ti := (T1, . . . , Ti−1, TiUj , Ti+1, . . . , Tr)

and
Uj := (U1, . . . , Uj−1, TiUj , Uj+1, . . . , Us).

By using Lemma 5.3, we get the integrability of the series a(T) �0 b(U). The
theorem is then follows from Lemma 5.6 and 5.8. �

5.3. Motivic reflexion formulas. In this paragraph, we formulate the motivic
reflexion formulas for the multivariate case that generalize the motivic Euler reflex-
ion formula. As a consequence, we show that the �-product is associative in the
class of motivic multiple zeta functions defined in Definition 2.2. A corollary of the
associativity will be also given.

Theorem 5.12. Let f = (f1, . . . , fr) and g = (g1, . . . , gs) be ordered families of
regular functions on smooth algebraic k-varieties X1, . . . , Xr and Y1, . . . , Ys, respec-
tively. Then

ζf (T) � ζg(U) =
∑

ι∗ζp1,...,pη (T a1α1
U b1β1

, . . . , T aηαηU
bη
βη

),

where the sum is taken over all the ordered families of regular functions (p1, . . . , pη)
satisfying

pi = aifαi ⊕ bigβi , 1 ≤ i ≤ η,
with (ai, bi) ∈ {0, 1}2 \{(0, 0)},

∑
(ai+bi) = r+s, and {αi}ai=1 and {βi}bi=1 being

strictly monotonic increasing sequences; ι is the inclusion of X0×Y0 in X ×Y (cf.
(5.5)).

Proof. First, we note that ζf (T) and ζg(U) are elements of M
<

X0
[[T]] and M

<

Y0
[[U]],

respectively. By definition, it suffices to show that

Φ(ζf (T)) �0 Φ(ζg(U)) =
∑
p

Φ(ι∗ζ̃p),(5.6)

where p = (p1, . . . , pη), ζ̃p = ζp(T a1α1
U b1β1

, . . . , T
aη
αηU

bη
βη

), and the sum is taken over

all the p in the theorem. Writing Φ(ζf (T)) =
∑

n∈∆<
anTn and Φ(ζg(U)) =∑

m∈∆<
bmUm we get

a(i)
n =

[{
ϕ ∈ Lni(Xi) | fi(ϕ) = tni mod tni+1

}
→ Xi,0

]
L−dini ,

b(j)m =
[{
ψ ∈ Lmj (Yj) | gj(ψ) = tmj mod tmj+1

}
→ Yj,0

]
L−ejmj ,

with di = dimkXi and ej = dimk Yj .
Observe that the coefficients of TnUm in both sides of (5.6) are zero for n 6∈ ∆<

or m 6∈ ∆<. In this case, indeed, the statement for the left hand side comes
from Definition 5.10 (i), and that for the right hand side is due to the hypothesis
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that the sequences {αi}ai=1 and {βi}bi=1 are strictly monotonic increasing. For

n ∈ ∆< and m ∈ ∆<, since the supports of the ζ̃p are distinct, it suffices to show

that there exists p such that the coefficient of TnUm in Φ(ι∗ζ̃p) equals the one in
Φ(ζf (T)) �0 Φ(ζg(U)). To prove this, we set

{l1 < · · · < lη} := {n} ∪ {m} = {n1, . . . , nr,m1, . . . ,ms}
and set

pi = aifαi ⊕ bigβi , 1 ≤ i ≤ η,
with ai = 1 (resp. bi = 1) if li = nαi ∈ {n} (resp. li = mβi ∈ {m}), otherwise
ai = 0 (resp. bi = 0). Define l := (l1, . . . , lη). It is easily checked that the coefficient

cl of TnUm in Φ(ι∗ζ̃p) equals c
(1)
l × · · · × c

(η)
l , where

c
(i)
l :=

[{
ω ∈ Lli(Zi) | pi(ω) = tli mod tli+1

}
→ Zi,0

]
L−δili

with Zi := (Xαi)
ai×(Yβi)

bi and δi = dimk Zi. It follows from the proof of Theorem
4.1 and direct calculations that

c
(i)
l =


a

(αi)
n if bi = 0,

b
(βi)
m if ai = 0,

a
(αi)
n ∗ b(βi)m if ai = bi = 1.

This proves the theorem. �

The following corollaries are direct consequences of Theorem 5.12.

Corollary 5.13. Let f = (f1, . . . , fr), g = (g1, . . . , gs) and h = (h1, . . . , hτ ) be
ordered families of regular functions on smooth algebraic k-varieties X1, . . . , Xr,
Y1, . . . , Ys and Z1, . . . , Zτ , respectively. Then

(ζf (T) � ζg(U)) � ζh(V) =
∑

ι∗ζp1,...,pτ (T a1α1
Sb1β1

U c1γ1 , . . . , T
aτ
ατ S

bτ
βτ
U cτγτ ),

where the sum is taken over all the ordered families of regular functions (p1, . . . , pη)
satisfying

pi = aifαi ⊕ bigβi ⊕ cihγi , 1 ≤ i ≤ η,
with (ai, bi, ci) ∈ {0, 1}3 \ {(0, 0, 0)},

∑
(ai + bi + ci) = r + s + τ , and {αi}ai=1,

{βi}bi=1 and {γi}ci=1 being strictly monotonic increasing sequences.
In particular, the �-product is associative in the class of motivic multiple zeta

functions.

Corollary 5.14. Let f , g and h be regular functions on smooth algebraic k-
varieties X, Y and Z, respectively. Then, up to the pullback of an inclusion of
X0 × Y0 × Z0 in a Zariski closed subset of X × Y × Z, the following identity holds

in M
µ̂
X0×Y0×Z0

[[T,U, V ]]:

ζf (T ) � ζg(U) � ζh(V ) = ζf,g,h(T,U, V ) + ζf,h,g(T, V, U) + ζg,h,f (U, V, T )

+ ζg,f,h(U, T, V ) + ζh,f,g(V, T, U) + ζh,g,f (V,U, T )

+ ζf⊕g,h(TU, V ) + ζh,f⊕g(V, TU) + ζf,g⊕h(T,UV )

+ ζg⊕h,f (UV, T ) + ζg,f⊕h(U, TV ) + ζf⊕h,g(TV,U)

+ ζf⊕g⊕h(TUV ).

Remark 5.15. After many attempts we still do not know whether the �-product
is associative in the class of integrable series over monodromic Grothendieck rings
of algebraic varieties.
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14. Q. T. Lê, A proof of the integral identity conjecture, II, preprint, arXiv:1508.00425.
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