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UNIQUENESS PROPERTIES FOR DISCRETE EQUATIONS AND

CARLEMAN ESTIMATES

AINGERU FERNÁNDEZ-BERTOLIN AND LUIS VEGA

Abstract. Using Carleman estimates, we give a lower bound for solutions to the discrete
Schrödinger equation in both dynamic and stationary settings that allows us to prove unique-
ness results, under some assumptions on the decay of the solutions.

1. Introduction

The aim of this paper is to continue the study started in [9,10] to prove uniqueness properties
for functions u ∈ C1([0, 1], ℓ2(Zd)) such that they satisfy the property

(1) |i∂tuj + ∆duj | ≤ |Vjuj |, t ∈ [0, 1], j ∈ Z
d.

which bounded potential V , under the assumptions that the function u has fast decay at times
t = 0 and t = 1. Here ∆d stands for the discrete Laplace operator

∆duj =

d
∑

k=1

(uj+ek
+ uj−ek

− 2uj), j ∈ Z
d.

In particular, all the results we give can be written in terms of solutions to the discrete
Schrödinger equation

(2) i∂tuj + ∆duj + Vjuj = 0, t ∈ [0, 1], j ∈ Z
d.

In the continuous case, these results are related to Hardy uncertainty principle for the Fourier
transform:

|f(x)| ≤ Ce−|x|2/β2

, |f̂(ξ)| ≤ Ce−4|ξ|2/α2

, and 1/αβ > 1/4 =⇒ f ≡ 0.

If 1/αβ =
1

4
, then f(x) = ce−|x|2/β2

.

The relation comes from the fact that basically the solution to the free Schrödinger equation,
i∂tu + ∆u = 0, has the same size as the Fourier transform of an appropriately modulated initial
datum, so then Hardy uncertainty principle can be stated, in an L2 setting, as follows:

‖eα|x|2

u(0)‖L2(Rd) + ‖eβ|x|2

u(1)‖L2(Rd) < +∞, αβ >
1

16
⇒ u ≡ 0.
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The classical proof of Hardy uncertainty principle is based on complex analysis arguments
(Phragmén-Lindelöf principle and properties of entire functions), but in the dynamical context
there is a series of papers, [2, 3, 5–7], where the authors prove Hardy uncertainty principle using
real variable methods. Furthermore, not only do they prove their results for the free evolution, but
they also include a potential term V u to the Schrödinger equation, under some size constraints
for the potential V and without any regularity assumption on the potential needed. The main
techniques in the proof of their results are log-convexity properties for solutions with Gaussian
decay and Carleman estimates.

In the discrete setting, the first thing we have to understand is how to replace the Gaussian
decay, so in [9] we give an analogous version of Hardy uncertainty principle by using complex
analysis arguments that suggests that the discrete version of the Gaussian we have to consider
is the product of modified Bessel functions, given by the following integral representation,

Im(x) =
1

π

∫ π

0

ez cos θ cos(mθ), m ∈ Z.

This product of modified Bessel functions appears naturally if we understand the Gaussian
as the minimizer of Heisenberg uncertainty principle. When we take discrete versions of the
position and momentum operators to give a discrete Heisenberg principle, it turns out that the
minimizer is precisely the product of modified Bessel functions. On the other hand, we can
also understand the Gaussian as the fundamental solution to the heat equation, and, again, the
fundamental solution in the discrete setting is given in terms of modified Bessel functions, whose
decay is, for n large,

(3) In(z) ∼ 1√
2πn

(ez

2

)n

e−n log n,

and we see here that for n large, depending on the argument z In(z) behaves like e−n log n.

Once we have a discrete version of Hardy uncertainty principle proved by complex analysis,
we proved in [10] some log-convexity properties for solutions to the discrete Schrödinger equation
with discrete Gaussian decay, where not only did we understand the Gaussian decay as above, but
we also use other discrete versions of the Gaussian function. Then, by using Carleman estimates

we can only give a preliminary result, that says that a solution cannot decay faster than e−µ|j|2

at two different times. Looking at the behavior of modified Bessel functions, it is clear that
this is far from the sharp result. Actually, independently in [11] it has recently been proved, for
bounded and real-valued potentials, that in the one-dimensional case a solution cannot decay

faster than e−µ|j| log |j| for µ > 3+
√

3
2 .

In this paper we try a different approach, exploited in [3, 4] in the continuous setting for
Schrödinger and KdV equations and also based in log-convexity properties and Carleman esti-
mates, in order to improve the result in [10]. The main difference comes from the fact that first
we prove the following lower bound for the solution:

Theorem 1.1 (Lower bound for solutions to Schrödinger equation). Let u ∈ C1([0, 1] : ℓ2(Zd))
satisfying (1) such that

∫ 1

0

∑

j∈Zd

|uj(t)|2 dt ≤ A2,

∫ 1/2+1/8

1/2−1/8

|u(0, t)|2 dt ≥ 1,

and
‖V ‖∞ = sup

t∈[0,1],j∈Zd

{|Vj(t)|} ≤ L,
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then there exists R0 = R0(d, A, L) > 0 and c = c(d) such that for R ≥ R0 it follows that

λ(R) ≡





∫ 1

0

∑

R−2≤|j|≤R+1

|u(j, t)|2




1/2

≥ ce−cR log R.

Then, by the use of similar log-convexity properties to those proved in [10] we deduce the
following result:

Theorem 1.2 (Uniqueness result). Let u ∈ C1([0, 1] : ℓ2(Zd)) satisfying (1) with V a bounded
potential. Then there exists µ0 = µ0(d) such that if, for µ > µ0

∑

j∈Zd

e2µ|j| log(|j|+1)
(

|uj(0)|2 + |uj(1)|2
)

< +∞,

then u ≡ 0.

Notice that in the one-dimensional setting this result agrees with the one in [11], although

here we obtain worst constants. On the other hand, the good behavior of the function eα|j|2

in
Z

d allows us to give a similar result in higher dimensions.

However, the approach we use here is not suitable if one wants to relate this result to the
continuous Hardy uncertainty principle. In order to do that, we should include the mesh step
of the lattice, typically denoted by h, and study what happens when h tends to zero. In that
case, the relevant region that relates the discrete and continuous results is of the type |j|h . 1.
Now, the Carleman inequality (see Lemma 2.1 below), which is the key element in this approach

holds as long as one assumes that |j|
R ≥ 1 with R large enough. If we identify the role of 1

R
with the role of h, we clearly see that this result is giving information in the region that is
not related to the continuous setting, and, therefore, this result is purely discrete. In order to
give a relation between the discrete and the continuous settings, the appropriate weights for
the Carleman estimates and log-convexity properties should be related to the modified Bessel
function, and, as in [5], some interior estimates on the gradient should be required.

On the other hand, all the arguments can be adapted to the stationary case, where now we
consider functions u ∈ ℓ2(Zd) such that

(4) |∆duj| ≤ Vjuj , j ∈ Z
d,

so we also have a lower bound in the ring {R − 2 < |j| < R + 1} and a uniqueness result. In this
case, it seems that the result obtained (see Corollary 3.1) can be improved, although we will see
here that with this method this is not the case. Furthermore, in [1] it is proved a lower bound
for solutions to the continuous elliptic problem but instead of the ring {R −2 < |j| < R +1}, the
lower bound is attained in a ball of radius 1 centered at some point of the sphere of radius R. In
that paper it is pointed out that such a lower bound is not known in the discrete setting and it is
most likely to be false, since one can extend the identically 0 function in a ball in such a way that
its discrete Laplacian is zero but the extended function is not zero. For the sake of completeness,
we will construct an example of a ℓ2(Z2) solution to ∆duj + Vjuj = 0 with bounded potential
that is 1 at the origin but vanishes on a ball of fixed radius centered at a sphe re of ra dius R,
for R large enough.

Nevertheless, the same method explained here can be used in the continuous setting, and
as an easy application one can get uniqueness properties for solutions to the elliptic problem
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∆u + V u = 0, assuming that the potential is bounded and that a solution decays faster than

e−η|x|4/3

for some η > 0, which coincides with the sharp result proved in [13].

The paper is organized as follows: In Section 2 we prove the main results of the paper, the
lower bound and the uniqueness property for the time-dependant problem (1). In Section 3 we
see that, as opposed to the continuous case, using this method we cannot improve the rate of
decay from the evolution problem to the stationary one, and we also give an example of solution
which shows that the behavior explained in [1] is not possible in the discrete setting.

2. Uniqueness for solutions to Discrete Scrhödinger equations

Before proving the main results, we need a discrete Carleman inequality for discrete Schrödinger
evolutions in the spirit of the method developed in [3,4]. In the case of Schrödinger, the condition
in the Carleman parameter is α ≥ cR2, which leads to the Gaussian decay as the sharp rate of
decay. In the discrete setting, the analogous of this condition is α ≥ cR log R, so in this case we
should look for solutions with this rate of decay, instead of solutions with Gaussian decay.

In order to simplify the notation, we write the notation ‖ · ‖2 = ‖ · ‖L2([0,1],ℓ2(Zd)).

Lemma 2.1 (Carleman inequality for Schrödinger evolutions). Assume that R > 0 and ϕ :
[0, 1] → R is a smooth function. Then, there exists c = c(d, ‖ϕ′‖∞ + ‖ϕ′′‖∞) such that, the
inequality

√

sinh(2α/R2) sinh(2α/
√

dR)‖eα| j
R +ϕ(t)e1|2

g‖2 ≤ c‖eα| j
R +ϕ(t)e1|2

(i∂t + ∆d)g‖2

holds, when α ≥ cR log R and g ∈ C1
0 ([0, 1], ℓ2(Zd)) has its support contained in the set

{(j, t) : |j/R + ϕ(t)e1|2 ≥ 1}.

Proof. Let fj = eα| j
R +ϕ(t)e1|2

gj . If we write

eα| j
R +ϕ(t)e1|2

(i∂t + ∆d)gj = Sfj + Afj ,

with S and A symmetric and skew-symmetric respectively, it turns out that (δmn denotes Kro-
necker’s delta function)

(5)

Sfj =i∂tfj − 2dfj +

d
∑

k=1

cosh

(

2α

R

(

jk + 1/2

R
+ ϕδ1k

))

fj+ek

+

d
∑

k=1

cosh

(

2α

R

(

jk − 1/2

R
+ ϕδ1k

))

fj−ek
,

(6)

Afj = − 2iα

(

j1

R
+ ϕ

)

ϕ′fj −
d
∑

k=1

sinh

(

2α

R

(

jk + 1/2

R
+ ϕδ1k

))

fj+ek

+

d
∑

k=1

sinh

(

2α

R

(

jk − 1/2

R
+ ϕδ1k

))

fj−ek
.

Moreover, an easy computation shows that

‖eα| j
R +ϕ(t)e1|2

(i∂t + ∆d)g‖2
2 = 〈Sf + Af, Sf + Af〉 ≥ 〈[S, A]f, f〉.
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After some calculations, we have that the commutator is given so that
(7)

〈[S, A]f, f〉 =4 sinh

(

2α

R2

)∫

∑

j∈Zd

d
∑

k=1

sinh2

(

2α

R

(

jk

R
+ ϕδ1k

))

|fj |2

+ 4 sinh

(

2α

R2

)∫

∑

j∈Zd

d
∑

k=1

∣

∣

∣

∣

fj+ek
− fj−ek

2

∣

∣

∣

∣

2

+ 2α

∫

∑

j∈Zd

[(

j1

R
+ ϕ

)

ϕ′′ + (ϕ′)2

]

|fj |2.

+
8α

R

∫

∑

j∈Zd

ϕ′ cosh

(

2α

R

(

j1 + 1/2

R
+ ϕ

))

ℑ(fj+e1
fj).

We want to hide the third and fourth term in the last expression in a fraction of the positive
terms. We note first that this is something that only depends on the first component of j, so we
may assume that d = 1. For the last term we are going to see that

sinh

(

2α

R2

)

sinh2

(

2α

R

(

j

R
+ ϕ

))

≥ 8α‖ϕ′‖∞
R

cosh
( α

R2

)

cosh

(

2α

R

(

j

R
+ ϕ

))

,

and then using Cauchy-Schwarz inequality we can hide this term. First, if α ≥ R2 then the
inequality follows from the equivalent inequality

e
2α
R2

+ 4α
R | j

R +ϕ| ≥ 16α‖ϕ′‖∞
R

e
α

R2
+ 2α

R | j
R +ϕ| ⇐⇒ e

α
R2

+ 2α
R | j

R +ϕ| ≥ c
α

R
,

and looking at the behavior of both sides, when
∣

∣

j
R + ϕ

∣

∣ ≥ 1 this holds. On the other hand if

α ≤ R2, then the behavior of sinh
(

2α
R2

)

and cosh
(

α
R2

)

is different from before and what we need
in order to hide the term is

e
2α
R | j

R +ϕ| ≥ 8R‖ϕ′‖∞,

and this holds when α ≥ cR log R for some c depending on the dimension and ‖ϕ′‖∞.

For the third sum in the expression of the commutator, we need to see that

sinh

(

2α

R2

)

sinh2

(

2α

R

(

j

R
+ ϕ

))

≥ 2α‖ϕ′′‖∞

∣

∣

∣

∣

j

R
+ ϕ

∣

∣

∣

∣

.

In this case, if α ≥ R2 it is clear that this holds. On the other hand, if cR log R ≤ α ≤ R2

what we really need is

R4c| j
R +ϕ| ≥ R2‖ϕ′′‖∞

∣

∣

∣

∣

j

R
+ ϕ

∣

∣

∣

∣

,

and this holds since
∣

∣

j
R + ϕ

∣

∣ ≥ 1 and we can choose c large enough (depending only on the allowed
parameters) so that the inequality, and therefore the lemma, holds. In higher dimensions, notice

that the condition on the support tells us that there is k ∈ {1, . . . , d} such that
∣

∣

jk

R + ϕδ1k

∣

∣ ≥ 1√
d

and this explains the factor sinh(2α/
√

dR) in the statement. �

Now we are going to use this lemma to prove the lower bound for a nonzero solution to the
discrete Schrödinger equation. We recall that the fundamental solution to this equation is related
to the Bessel function, Jn(z) = In(−iz)in, whose decay, for fixed z, is of the type e−n log n when
n → +∞, as in formula (3).
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Proof of Theorem 1.1. We define the C∞(Rd) cut-off functions θR(x), µ(x) (0 ≤ θR, µ ≤ 1) and
the C∞([0, 1]) function ϕ (0 ≤ ϕ ≤ 3) in the following way.

(8) θR(x) =

{

1, |x| ≤ R − 1,
0, |x| ≥ R,

µ(x) =

{

1, |x| ≥ 2,
0, |x| ≥ 1,

ϕ(t) =

{

3, t ∈ [ 1
2 − 1

8 , 1
2 + 1

8 ],
0, t ∈ [0, 1

4 ] ∪ [ 3
4 , 1].

We are going to apply the previous lemma to

gj(t) = θR
j µ

(

j

R
+ ϕ(t)e1

)

uj(t),

where θR
j = θR(j). Notice that the evolution of g is given by the expression

(9)

(i∂t + ∆d)gj = iϕ′θR
j ∂x1

µ

(

j

R
+ ϕe1

)

uj + θR
j µ

(

j

R
+ ϕe1

)

(i∂tuj + ∆duj)

+

d
∑

k=1

[

θR
j+ek

(

µ

(

j + ek

R
+ ϕe1

)

− µ

(

j

R
+ ϕe1

))

+ µ

(

j

R
+ ϕe1

)

(

θR
j+ek

− θR
j

)

]

uj+ek

+

d
∑

k=1

[

θR
j−ek

(

µ

(

j − ek

R
+ ϕe1

)

− µ

(

j

R
+ ϕe1

))

+ µ

(

j

R
+ ϕe1

)

(

θR
j−ek

− θR
j

)

]

uj−ek
.

Thus, by paying with a dimensional constant cd and using (1) we have
(10)
√

sinh(2α/R2) sinh(2α/
√

dR)‖eα| j
R +ϕe1|2

g‖2 ≤ ‖eα| j
R +ϕe1|2

(i∂t + ∆d)g‖2

≤L‖eα| j
R +ϕe1|2

g‖2 + cd





∫ 1

0

∑

j∈Zd

e2α| j
R +ϕe1|2

∣

∣

∣

∣

∂x1
µ

(

j

R
+ ϕe1

)∣

∣

∣

∣

2

|uj |2dt





1/2

+ cd





∫ 1

0

∑

j∈Zd

d
∑

k=1

e2α| j
R +ϕe1|2

∣

∣

∣

∣

µ

(

j + ek

R
+ ϕe1

)

− µ

(

j

R
+ ϕe1

)∣

∣

∣

∣

2

|uj+ek
|2dt





1/2

+ cd





∫ 1

0

∑

j∈Zd

d
∑

k=1

e2α| j
R +ϕe1|2

∣

∣

∣

∣

µ

(

j − ek

R
+ ϕe1

)

− µ

(

j

R
+ ϕe1

)∣

∣

∣

∣

2

|uj−ek
|2dt





1/2

+ cd





∫ 1

0

∑

j∈Zd

d
∑

k=1

e2α| j
R +ϕe1|2 ∣

∣θR
j+ek

− θR
j

∣

∣

2 |uj+ek
|2dt





1/2

+ cd





∫ 1

0

∑

j∈Zd

d
∑

k=1

e2α| j
R +ϕe1|2 ∣

∣θR
j−ek

− θR
j

∣

∣

2 |uj−ek
|2dt





1/2

.

Now we study carefully the support of each term and we finish the proof taking α = cR log R
with c = c(d) a constant satisfying the statement of the Carleman inequality. Indeed, with this
choice of α the product of sinh functions in the left-hand side takes the form, for R large,

(11)
√

2c log RR
2c√

d
− 1

2 ,

and, therefore, if c is large enough, only depending on the dimension, this grows with R, so we
can absorb the term that comes from the potential taking R large enough, depending on L.



UNIQUENESS PROPERTIES FOR DISCRETE EQUATIONS AND CARLEMAN ESTIMATES 7

Now, by the definition of θR and µ, we see that if |j| ≤ R − 1 and t ∈ [1/2 − 1/8, 1/2 + 1/8]

then
∣

∣

j
R + ϕe1

∣

∣ ≥ 3 − R−1
R = 2 + 1

R , so the cut-off functions are 1 and gj = uj. This allows us to
bound the left-hand side of the Carleman inequality of the lemma by

‖eα| j
R +ϕe1|2

g‖2 ≥ eα(2+ 1

R )
2

,

since
∫ 1/2+1/8

1/2−1/8 |u(0, t)|2 ≥ 1.

On the other hand, we can use again the support of the cut-off functions to bound each term of
the right-hand side in (10). In the first term, the one which involves a derivative of the function

µ, we see that in its support
∣

∣

j
R + ϕe1

∣

∣ ≤ 2. For the terms involving the difference of θ functions,

for each k ∈ {1, . . . , d} we need to compute the coefficients where θR
j±ek

6= θR
j , that is, we have to

distinguish three different cases. First, when θR
j±ek

= 1, but θR
j 6= 1, then when θR

j±ek
= 0, but

θR
j 6= 0, and finally when 0 < θR

j±ek
< 1, where since |j ±ek| 6= |j| we have that θR

j±ek
6= θR

j . After
doing a shift in each terms, it is easy to see that the difference is not zero in a region included
in {R − 2 < |j| < R + 1}, and we have that

∣

∣

j
R + ϕe1

∣

∣ ≤ 4 + 1
R . Observe that when we get rid o

f the te rms where this difference of θ functions vanishes and we bound the corresponding term
in the Carleman inequality we get the term λ(R) of the statement.

Finally, we have to see what happens with the terms involving the difference of µ. In this case,
we will see that if

∣

∣

j
R + ϕe1

∣

∣ ≥ 2 + 1
R , then the function µ takes the same value at both points,

so the difference is 0. Indeed, in this case we have that µ
(

j
R + ϕe1

)

= 1 and
∣

∣

j
R + ϕe1

∣

∣− 1
R > 0.

Therefore,
∣

∣

∣

∣

j ± ek

R
+ ϕe1

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

∣

∣

∣

j

R
+ ϕe1

∣

∣

∣

∣

− 1

R

∣

∣

∣

∣

≥ 2 +
1

R
− 1

R
= 2,

so µ
(

j±ek

R + ϕe1

)

= 1 as well. Gathering all these results we have, when α = cR log R,
(12)
√

sinh

(

2c log R

R

)

sinh

(

2c log R√
d

)

ecR log R(2+ 1

R )2

≤ cd

(

ecR log R(4+ 1

R )2

λ(R) + ecR log R(2+ 1

R )2

A
)

.

So for R large enough, depending on A (recall that before we showed that R depends on L as
well) we can absorb the second term in the right-hand side in the left-hand side and conclude

1 ≤
√

2c log RR
2c√

d
− 1

2 ≤ cde13cR log Rλ(R).

�

We finish this section by proving the uniqueness result Theorem 1.2. For the sake of complete-
ness, we recall the following result which proof for solutions to the discrete Schrödinger equation
can be found in [10]. We recall that its proof is based in an abstract argument (see [5, Lemma
2]), and it is clear that the same proof works for functions satisfying (1).

Lemma 2.2. Assume that u is satisfies (1) where V is a time-dependent bounded potential.
Then, for t ∈ [0, 1] and β ∈ R

d we have

(13)
∑

j∈Zd

e2β·j|uj(t)|2 ≤ eC‖V ‖∞
∑

j∈Zd

e2β·j(|uj(0)|2 + |uj(1)|2
)

,

where C is independent of β, provided the left-hand side is finite.
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From this result we can get a large variety of log-convexity properties for different weights,
just by multiplication of (13) with a proper function and integrating with respect to β, as it is
explained in [8]. For example, if we multiply it by the function exp(−2 cosh(β/µ)/e), we have
that

∫

R

ejβ−2 cosh(β/µ)/e dβ = Kµj

(

2

e

)

∼ c
√

2µ|j|eµ|j| log |j|+µ|j|µ log µ,

so the growth of this function is given by eµ|j| log |j| and we can adapt this to the multidimensional

case to end up with a function that grows as eµ‖j‖⋆ , where ‖j‖⋆ =
∑d

k=1 |jk| log(|jk| + 1). On
the other hand, it is easy to check that there is a dimensional constant cd such that

‖j‖⋆

cd
≤ |j| log(|j| + 1) ≤ cd‖j‖⋆,

hence, combining these two facts we have the following corollary.

Corollary 2.1. Assume that u = (uj)j∈Zd satisfies (1) where V is a time-dependent bounded
potential. Then, for µ > 0 and t ∈ [0, 1], there are constants c0 = c0(d) and c > 0 independent
of µ and t such that

∑

j∈Zd

e2µc0|j| log(|j|+1)|uj(t)|2 ≤ ec‖V ‖∞
∑

j∈Zd

e2µ|j| log(|j|+1)
(

|uj(0)|2 + |uj(1)|2
)

,

provided that the right-hand side is finite.

Proof of Theorem 1.2. If u is not zero, by translation and dilation, we may assume that u satisfies
∫ 1/2+1/8

1/2−1/8

|u(0, t)|2 dt ≥ 1,

so that we can apply the previous theorem to find a lower bound for λ(R). On the other hand,
using the previous corollary we have that

sup
t∈[0,1]

∑

j∈Zd

|u(j, t)|2e2µc0|j| log |j| < +∞.

Hence, from this property for the solution, we prove the following upper bound for the quantity
λ(R) defined above,

λ(R) ≤ ce−µc0R log R,

while, by the previous theorem we know that λ(R) ≥ ce−cR log R for some c depending on the
dimension. Therefore, if µ is large enough (we need µ to be larger than the quotient c

c0

, so it

only depends on the dimension) by letting R → ∞ we reach a contradiction, so u ≡ 0. �

3. Uniqueness for the stationary problem

Now we turn to the stationary problem in (1), and we get uniqueness from Theorem 1.2 as an
immediate consequence, since, obviously, a stationary function satisfying (1) satisfies |∆duj| ≤
|Vjuj|. Moreover, we can give a stationary version of Lemma 2.1, just by taking ϕ ≡ 3, which
makes the commutator positive.

As a result we have the following corollary:
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Corollary 3.1. Let u ∈ ℓ2 such that |∆duj | ≤ |Vjuj |,
‖u‖2 ≤ A, |u(0)| ≥ 1, and ‖V ‖∞ ≤ L.

Then there exist R0 = R0(d, L, A) and c = c(d) such that for R ≥ R0

λ(R) ≡





∑

R−2≤|j|≤R+1

|uj |2




1/2

≥ ce−cR log R.

Furthermore, there is η0 depending on the dimension such that if
∑

j∈Zd

e2η0|j| log(|j|+1)|uj |2 < +∞,

then u ≡ 0.

Remark 3.1. In this section, as opposed to the previous one, we consider ‖ · ‖2 and ‖ · ‖∞ as the
ℓ2 and ℓ∞ norms of a sequence.

As we have pointed out above, since the commutator in the Carleman inequality for the
discrete Laplacian is positive, we do not need the extra assumption α ≥ cR log R required in the
time-dependent case. Moreover, remember that in the application of the Carleman inequality,
if we consdier α = cR log R the behavior of the left-hand side (11) grows with R, so one could
think that this result is most likely not sharp, and that we could consider α = cRφ(R) with
1 < φ(R) < log R and such that the product of the sinh functions in the Carleman inequality
still grows with R or we can make it independent of R but as large as we want. However, in
order to absorb the term that comes from the potential V we require that

sinh(2α/R2) sinh2(2α/
√

dR) ≥ L2,

so, if α = cRφ(R) with 1 < φ(R) < log(R) we have that this is equivalent to

log(2c) + log(φ(R)) +
4c√

d
φ(R) − log(R) ≥ L2,

and, in order to satisfy this inequality, we need φ(R) to behave as log(R) when R is large.

This result show that the discrete and continuous settings exhibit different behaviors. On
the one hand in the discrete setting the rate of decay is given by the exponential e−c|j| log(|j|+1)

while in the continuous case the solutions can decay faster. On the other hand, whereas in the
discrete setting we get the same rate of the decay in our results, in the continuous setting the
evolution and the stationary problems exhibit different rates of decay. In the case of Schrödinger,
the decay is given in terms of Gaussians, while for the elliptic problem in [13] is stated that the

sharp rate of decay is of the type e−cR4/3

. Actually using the same method we have used here
in the discrete setting and Lemma 3.1 below, one can prove a lower bound for solutions to the

problem (∆ + V )u = 0 and the lower bound is precisely given in terms of e−cR4/3

.

Lemma 3.1. The inequality

α3/2

R2
‖eα| x

R +3e1|2

g‖2 +
α1/2

R
‖eα| x

R +3e1|2

∇g‖2 ≤ ‖eα| x
R +3e1|2

∆g‖2

holds, when g ∈ H2(Rd) has its (compact) support contained in the set {|x/R + 3e1|2 ≥ 1}.
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Theorem 3.1. Let u ∈ H2 solution to ∆u + V u = 0 such that

‖V ‖∞ ≤ L,

∫

|x|<1

|u(x)|2 dx ≥ 1,

∫

(|u(x)|2 + |∇u(x)|2) dx ≤ A2,

then, there is c = c(L, A) such that

λ(R) ≡
(

∫

R−1<|x|<R

(|u(x)|2 + |∇u(x)|2) dx

)1/2

≥ ce−cR4/3

.

Furthermore, there is η0 depending on the dimension such that if
∫

Rd

e2η0|x|4/3|u(x, t)|2 dx < +∞,

then u ≡ 0.

Moreover, in [13] is constructed a counterexample of solution with this rate of decay, which
implies that the decay is sharp. It would be interesting to know if the sharp decay in the discrete
setting is e−|j| log(|j|+1) by constructing a similar counterexample.

Nevertheless, in [1] the lower bound given in Theorem 3.1 is improved in the sense that it is
given in a smaller region. Instead of the ring R−1 < |x| < R, they proved, for bounded solutions
that for x0 ∈ R

d such that |x0| = R,

max
|x−x0|≤1

|u(x)| > ce−c log RR4/3

,

that is, they consider a ball of radius 1 centered at a point on the sphere of radius R centered at
the origin. This suggests that the discrete setting could have the same behavior. However, as was
pointed out in [12] this is not the case, due to the existence of a counterexample (unpublished)
of D. Jerison and C. Kenig who kindly sent us the details of it. For the sake of completeness we
include below the counterexample appropriately modified for our needs. More concretely we will
construct a function u satisfying the following properties:

• u ∈ ℓ2(Z2),
• (∆d + Vj)uj = 0 with V ∈ ℓ∞(Z2),
• u(0, 0) = 1,
• u(j1, j2) = 0 in the region {|j1| + |j2 − R| ≤ 2}, for R > 0 (large).

The only thing we have to care about is that, whenever u(j1, j2) = 0, then the discrete
Laplacian at that point must be zero, in order to have a solution to the problem at that point,
defining V (j1, j2) = 0.

We define u(j1, j2) at the points such that |j1| + |j2 − R| > 2 as

u(j1, j2) =























2−(|j1|+|j2|), j1 ∈ Z, j2 ≤ R − 3,

−2−(|j1|+R−5), j1 ∈ Z \ {0}, j2 = R ± 2,
2−(|j1|+R−6), j1 ∈ Z \ {0, ±1}, j2 = R ± 1,

−2−(|j1|+R−6), j1 ∈ Z \ {0, ±1, ±2}, j2 = R,

2−(|j1|+|j2|−6), j1 ∈ Z, j2 ≥ R + 3.

It is clear that u ∈ ℓ2(Z2) and now let us see that at the region where u vanishes, its discrete
Laplacian also vanishes. We remind that the discrete Laplacian of a function at the point (j1, j2)
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Figure 1. Graphic representation of the region |j1| + |j2 − R| ≤ 3. By hy-
pothesis, in the interior u vanishes and due to the construction of u its discrete
Laplacian at any point in the interior also vanishes. Due to the construction,
k = R − 3.

depends on the function at the points (j1±1, j2), (j1, j2±1) and (j1, j2), so graphically it depends
on the nearest neighbors of (j1, j2). In Figure 1 it is showed the region where u vanishes and it
is clear that if we pick a point such that u vanishes at that point, the sum of its four nearest
neighbors is zero, so the discrete Laplacian of u at that point vanishes, as we want.

For the rest of the points, since u is not zero, we define Vj = − ∆duj

uj
so that the equation is

satisfied and the potential V is bounded by a constant independent of R, since the ratios
uj±ek

uj

are bounded by a fixed constant when j /∈ {|j1| + |j2 − R| ≤ 2}.
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