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Abstract

We investigate a class of stream surfaces that expand in time as much as possible. Given a vector field, we look for
seed curves that locally propagate in time in a stretch-maximizing manner, i.e., curves that infinitesimally expand most
progressively. We show that such a curve is generically unique at every point in an incompressible flow and offers
a very good initial guess for a stretch-maximizing stream surface. With the application of efficient fluid advection-
diffusion in mind, we optimize fluid injection towards optimal advection and show several examples on benchmark
datasets.
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1. Introduction

We investigate a special class of stream surfaces generated by seed curves that maximize a certain arc-length
energy. We aim at an efficient advection process where one typically requires to minimize the cost of injection while
speeding up (or maximizing) the advection effect. To achieve that, we focus on globally optimizing the geometric
advection of the injected seed curve since this is closely related to seed curves that expand in time with the maximum
stretching rate. The corresponding stream surface exhibits the maximum possible advection of the injected fluid [19].

Recent research in this area has been devoted to oil extraction from porous media by gas diffusion in both fractured
and unfractured reservoirs, see e.g. [17] and the references cited therein. The efficiency in terms of the time required
as well as the amount of solvent injected into a porous medium was studied in [30]. Another possible application of
our research points to efficient crop spraying [20], where the trajectory of an aircraft is optimized to maximize the
area covered by the sprayed pesticide.

With these applications in mind, we seek injection (or seed) curves [24] that propagate in time in the most pro-
gressive manner, by stretching their lengths as much as possible. For a steady state vector field, our goal is to find a
seed curve such that the corresponding stream surface facilitates efficient advection.

We extend previous work on stretch-minimizing stream surfaces [3] where a different special class of stream
surface was investigated. Those surfaces possess the property that their seed curves propagate in time such that their
arc-lengths are as constant as possible, and therefore help to detect parts of the domain where the given divergence-
free vector field acts not only in a volume-preserving but also in a length-preserving manner. In contrast, in this work,
we seek stream surfaces arising from seed curves that advect in time with the maximum stretching rate, see Fig. 1,
left.

Problem formulation. Given a vector field v in some domain Ω ⊂ R3, find a stream surface such that the seed curve
that defines it propagates in time such that its arc-length expands as much as possible.

We combine theoretical results and a practical algorithm for finding such surfaces. The main contributions of our
method are:

• We theoretically investigate families of seed curves based on a certain stretch-maximizing energy (Section 3).
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Figure 1: Left: Let p be a seed point in a vector field v. A stretch-minimizing curve γmin advects infinitesimally in v with a zero stretching rate,
while a stretch-maximizing curve γmax stretches with the maximum possible rate and consequently maximum local advection. Right: Differential
geometry of stream surfaces. The stream surface S(s, t) (dark blue) is generated by the seed curve γ(s) (red) by integrating it through v.
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Figure 2: The scalar function uJu> (transparent grey) is defined on the unit sphere (blue), and we seek its maximum (red); see (3). The stretch-
maximizing direction d is given by the eigenvector associated to the largest eigenvalue, λ1, of J+. The normalized eigenvectors are shown in yellow.
Generically, d is unique (left). In the case when λ1 = λ2, a one parameter family of stretch-maximizing directions exists (right).

• These candidate seed curves are used to initialize stream surfaces, which are subsequently globally optimized
(Section 4).

We provide implementation details of our method in Section 5. Our results are presented and discussed in Sec-
tion 6. We include standard benchmark datasets and we also validate our algorithm on an analytic vector field with
known stretch-maximizing stream surface solutions. The paper is concluded in Section 7.

2. Related work

Vector fields are widely used in geometry processing for object propagation and deformation [16, 32, 4]. For
example for deformation purposes, appropriate vector fields are iteratively sought-after such that an object under
consideration (curve, solid) preserves its certain measure (arc-length, volume). Visualization of vector fields is a very
active area; see [5, 21, 9, 10], and the survey paper [24] and the references cited therein. Among flow visualization
techniques, stream surfaces play an important role [31, 29, 27, 23, 11, 8].

Given a vector field, the main goal is to select a seed curve such that its stream surface captures well the charac-
teristic features of the field. While classical results like [18] admit user’s intervention to set seed curves in a trial-and-
error manner, recent research focuses on fully automatic stream surface seeding [11, 8, 3]. Our work belongs to this
category of automatic methods.

As shown in Fig. 1, our work on optimal advection can be seen as a modification of the concept of stretch-
minimizing stream surfaces [3]. Our framework differs from that of [3] in several aspects, which require a separate
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treatment as detailed below.
Our problem formulation is closely related to the concept of Lyapunov stability. In fact, the sought-after seed

curves could be seen as loci of points where the corresponding dynamical system (represented by the input vector
field) is as unstable as possible. This is formalized by the notion of Lyapunov exponents [25, 33]. In our approach,
we employ the local variant of the Lyapunov exponent [7].

3. Stretch-energy maximizing curves

Let v(p) be a steady differentiable vector field defined over a domain Ω ⊂ R3. Let J be the Jacobian matrix of
v(p), i.e., Ji j = ∂vi

∂p j
with p = (p1, p2, p3). Consider a regular seed curve γ(s) parametrized by arc-length, s ∈ [s0, s1],

that gives rise to a stream surface S(s, t) defined on [s0, s1] × [t0, t1], with S(s, 0) = γ(s); see Fig. 1, right. The partial
derivatives of S will be denoted Ss, Sst, etc.

The Taylor expansion of the arc-length of the timelines of S(s, t) with respect to t at t = 0 (which corresponds to
γ) is given by ∫ s1

s0

||Ss(s, t)|| ds = (s1 − s0) + ct + O(t2) (1)

for some c ∈ R. By definition (cf. Lemma 1 in [3]), c = C(0), where C(t) = ∂
∂t

∫ s1

s0
||Ss(s, t)|| ds. We have that

C(t) =

∫ s1

s0

∂

∂t
||Ss(s, t)|| ds =

∫ s1

s0

∂

∂t

√
〈Ss,Ss〉 ds =

∫ s1

s0

〈Ss,Sst〉
√
〈Ss,Ss〉

ds.

Since
√
〈Ss,Ss〉|t=0 ≡ 1 it follows that

c =

∫ s1

s0

〈Ss(s, t),Sst(s, t)〉 ds|t=0. (2)

Based on this, our aim is to identify curves γ in Ω for which c→ max.
Denoting u := γ̇(s) = Ss(s, 0), we have 〈Ss,Ss〉|t=0 ≡ 〈u,u〉 ≡ 1. Differentiation with respect to t, and requiring

that the arc-length of γ expands by the maximum possible factor, yields

〈Ss,Sst〉|t=0 ≡ uJu> → max, (3)

where u> denotes the transpose of u. A unit vector d that maximizes dJd> will be called stretch-maximizing. Note
that dJd> is then equal to the (largest) local Lyapunov exponent [7].

We denote stretch rate J+ := (J + J>)/2 and vorticity J− := (J − J>)/2 as the symmetric and antisymmetric parts
of J, respectively.

Since uJ−u> = 0 for any u, we are searching for curves γ that maximize uJ+u> at every s ∈ [s0, s1]. Assume
that the eigenvalues λ1, λ2, and λ3 of J+ satisfy λ1 > λ2 > λ3 in some neighborhood N of a point p ∈ Ω. Then the
stretch-maximizing vector d is, up to orientation, unique at all points in N and equal to the normalized eigenvector
associated to λ1. This implies that the curve γ, obtained by integrating d, passing through p is unique. Any such curve
will be called stretch-maximizing.

We remark that while in the setting of [3] also second order analysis was applied, i.e., the quadratic term in (1)
was considered as well, only first-order analysis can be used in our case as generically the solution space of stretch-
maximizing vectors d arising from our first order analysis is zero-dimensional. Therefore the integral seed curves that
arise from the first order analysis are weaker initial guesses for the optimization than those in [3], and yet our method
finds the exact solution as tested on an analytical example (see Section 6 and Fig. 11).

Note that λ > 0 corresponds to (infinitesimal) stretching, λ = 0 to no change, and λ < 0 to shrinking of arc-
length in the associated eigenvector direction; see Fig. 2. For our application, we require that λ1 > 0. While this
is not guaranteed for general vector fields (where one can even have λ1 < 0, in which case we stop integration),
incompressible vector fields satisfy λ1 + λ2 + λ3 = 0 and thus, unless J+ is singular (case of measure zero), fit our
framework well. Further, the stretch-maximizing vector may not be unique (Fig. 2, right). Nevertheless, this is again
a case of measure zero and can be easily dealt with.
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Figure 3: Evolution of the stretch energy ES of the stream surface S in time. As t grows, ES decreases. The seed curve γ is stretch-maximizing. By
construction, ES = 1 only for infinitesimally small surfaces (i.e., for t → 0); see (4) and (5).
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Figure 4: Seed curve ranking. Left: A voxel (black) is sampled by 33 seed points (yellow) and stretch-maximizing seed curves of a fixed length
are computed. The seed curves are ranked (and colored) according to ES; see (5). Middle and right: The worst (Emin

S ) and the best (Emax
S ) stream

surface found. Observe that while the stretching of the timelines is progressive only in the later stage of the propagation in the case of the worst
ranked stream surface (Emin

S ), the timelines of the best ranked stream surface (Emax
S ) stretch more uniformly in time.

To be able to classify the stretch-maximizing property of curves (and later also surfaces), we define the stretch
energy of the seed curve γ(s) = S(s, 0) as

E(γ) =
1

s1 − s0

∫ s1

s0

〈Ss(s, t),Sst(s, t)〉
λ1(s, t)

ds|t=0. (4)

Turning back to (1) and the definition of c, we see that the energy is well defined, i.e., E(γ) ≤ 1 and the value of 1 is
attained if γ is a stretch-maximizing (seed) curve.

4. Stream surfaces and optimization

We seek stream surfaces with timelines that expand with the maximum possible stretch rate. Our candidate seed
curves satisfy this condition at t = 0. However, our goal is to find stream surfaces whose generating seed curves
propagate globally in a stretch-maximizing manner. Therefore, we define the stretch energy of a stream surface S by

ES =
1

area(S)

∫ s1

s0

∫ t1

t0

〈Ss(s, t),Sst(s, t)〉
λ1(s, t)

dt ds. (5)

ES measures the relative stretching given by the deformation of the seed curve of S through the field by accumulating
the relative stretch energies of all timelines of S. Observe that ES ≤ 1 and the equality occurs when each of the
timelines of S is a stretch-maximizing curve, i.e., when E(S(s, t)) = 1 for every t ∈ [t0, t1]. The evolution of the stretch
energy ES of a surface emanating from a stretch-maximizing curve γ = S(s, 0) is shown in Fig. 3.

We use this energy to measure the stretching of stream surfaces. We subdivide the domain into voxels. Each voxel
is sampled, and initial stretch-maximizing seed curves are computed; see Fig. 4. Integration of the seed curves in the
vector field gives initial stream surfaces that are ranked according to (5). Neighborhoods of seed points with highest
ES are then sampled more densely.
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Figure 5: One cycle of our global optimization. (a) The initial stretch-maximizing seed curve γ0 (red) is integrated, resulting in the initial stream
surface S0, which is color-coded by the stretch energy E of (5). (b) S0 is, as a dense quad mesh (yellow), optimized according to (6); three outcomes
of Sopt

0 with fixed µ1 = 0.1 and varying µ2 are shown. (c) The timelines of the optimized (non-stream) surface are back-integrated to t = 0 (cyan
curve bundle) and the best L2 fit defines the new seed curve γ1 (red). (d) The new stream surface S1 emanating from γ1. Note that ES1 > ES0 .
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Figure 6: Algorithm overview.

Optimization. Candidate seed curves generate stream surfaces with relatively high stretch energies. However, their
effect is still only local, whilst we are interested in maximizing the stretch energy globally. This is achieved by
employing an optimization procedure; see Fig. 5.

Given a stream surface S, we want to maximize its stretch energy (5). We discretize S by sampling m points in
the s-direction (seed curve) and n points in the t-direction (time), resulting in a quad mesh Q with m × n vertices q0

i, j.
Denoting the vertices of the optimized surface by qi, j and setting di, j to the eigenvector of J+ that corresponds to its
maximum eigenvalue, the desired improvement is formulated as a non-linear least squares optimization problem with
the objective function

F(Q) = Fstretch(Q) + µ1F f air(Q) + µ2Fprox(Q) (6)

with three individual terms
Fstretch(Q) =

∑
i, j ‖(qi+1, j − qi, j) × di, j‖

2,

F f air(Q) =
∑

i, j ‖qi+1, j − 2qi, j + qi−1, j‖
2+

+‖qi, j+1 − 2qi, j + qi, j−1‖
2,

Fprox(Q) =
∑

i, j ‖qi, j − q0
i, j‖

2.

(7)

Fstretch reflects the stretch maximizing condition of (5), F f air is a fairness term that penalizes highly curved stream
surfaces, and Fprox is a proximity term, a regularizer that forces the vertices of the optimized mesh to stay near the
input mesh. The optimization problem was solved using the Gauss-Newton method for all the examples in the paper.

Experimentally, the weights were set to µ1 = 0.1, µ2 = 0.005. In particular, higher values of µ2 forced the quad-
mesh vertices to move from their initial position very little, which resulted in many optimization rounds with only
marginal improvement of F. On the other hand, tiny weights µ2 allowed the vertices to move considerably, which
resulted in a very incoherent bundle of back-integrated timelines, see Fig. 5(c), and consequently the optimization
failed. Both of these extreme cases are aimed to be avoided by setting an intermediate value for µ2. Another fact that
affects the optimization is the fineness of the surface discretization. However, in our experiments, this issue turned out
to be less influential than the choice of weights in (6), see also Fig. 5(b).

An overview of our framework is shown in Fig. 6.
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(a) (b)

Figure 7: Turbine data of [5]. (a) One time instant of the unsteady vector field generated by the Francis turbine with one sampling subdomain
(black) is shown. (b) A zoom-in on the subdomain with the initial seed points (yellow). Stretch-minimizing and stretch-maximizing stream surfaces
for this example are shown in Fig. 10.

(a)

ES = 0.53

γ(b)

γ

(c)

ES = 0.55

γ

Figure 8: Rayleigh-Bénard heat convection. The vector field used corresponds to one time instant of the unsteady vector field from [1]. (a) Four
best initial stretch maximizing surfaces in the second subdivision level. Each surface emanates from a stretch-maximizing curve (yellow), the
best candidate from the corresponding subdomain (smaller red boxes). (b) The second highest ranked surfaces according to (4) after applying our
optimization; see (6). (c) Two different views on the best stretch-maximizing surface.

5. Implementation

We now discuss important implementation aspects of the proposed framework for finding stretch-maximizing
surfaces.

Seed curve computation. Starting with a sampled seed point, the direction that maximizes (3) is computed (see Figs. 2
and 4) and integrated. We employed the classical fourth order Runge-Kutta method with constant step-size, which was
set to 1% of the domain’s diameter, i.e., diam(Ω)/100. This parameter was set experimentally and can be changed, as
well as other parameters discussed in the paragraphs below, using our graphical user interface.

In the non-generic cases when the stretch-maximizing direction is not unique (or in a non-incompressible vector
field), the seed curve integration continues by choosing the next tangent direction so that it minimally deviates from
the one in the previous integration step. This strategy is compatible with our goal of finding stretch-maximizing
surfaces.

Table 1: Default parameters and thresholds of our algorithm for a domain of unit diameter. In the ‘Curve tracing’ columns, ∆s is the tracing
stepsize, lmin is the minimum length of a candidate curve, and #nmax is the maximum number of tracing steps, both for t and s directions. In the
‘Adaptive sampling’ columns, #S is the number of subdivisions, δ is the percentage of the new subdomain relative to the old one, and b is the
percentage of the best candidate curves selected for the next iteration. In the last two columns, the optimization parameters include µ1 and µ2 (see
Eq. (6)).

Curve tracing Adaptive sampling Optimisation
∆s lmin #nmax #S δ b µ1 µ2

0.01 0.1 500 3 10% 5% 0.1 0.005
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Figure 9: Stretch minimizing vs. maximizing seed curves. (a) At a seed point p, two extremal seed curves are integrated: the second order stretch-
minimizing curve [3] and the stretch maximizing curve found by our approach. These curves propagate infinitesimally with no stretching (γmin) and
maximum possible stretching (γmax), respectively. Both seed curves are of the same arc-length; the corresponding stream surfaces are discretized
as quad meshes. (b,c) The stream surfaces are color-coded by the stretch energy (5).

Candidate seed curves. The interior of Ω is sampled and seed curves are computed. These are ranked by (5) and
regions with high values of ES are recursively sampled with higher density. That is, the neighborhoods of points
giving rise to good seed curves are taken as new subdomains. The diameter of the new domain is set to 10% of the
old one and the best 5% of seed points are taken as input for the next iteration. This sampling is repeated recursively
three times and the overall best 5% are taken as candidate curves. The length of the curves is set to diam(Ω)/10, but
this can be easily made application-dependent.

Seed curve optimization. One step of our optimization cycle is illustrated in Fig. 5. A candidate seed curve γ0 gives
rise to the stream surface S0, which is optimized into Sopt

0 according to (6). The timelines of Sopt
0 are back-integrated

to t = 0. As Sopt
0 is not, in general, a stream surface, this yields a family of space curves. The seed curve γ0 is replaced

by the least squares approximation [12] of this family. This process yields γ1 and its stream surface S1. If ES1 > ES0 ,
the process is repeated with γ0 ← γ1 as input. Otherwise, optimization is terminated. In our discrete setting, the
surface stretch energy (5) is computed at the vertices of the quad mesh and normalized by the mesh area.

Surface parameter domain. The parametric rectangle [s0, s1] and [t0, t1] is set as follows. In the s direction (along
seed curve/timelines), s̃ = s1 − s0 is set to diam(Ω)/10, but it is truncated in case integration reaches the boundary of
Ω. The time interval [t0, t1] directly maps to the desired resolution and number of time steps, and t̃ = t1 − t0 is also
set as a parameter. Again, integration is terminated at the boundary of Ω. In our implementation, the parameters s̃
and t̃ are constants in the optimization framework, but enable the user to control the desired length and time. In other
words, we seek the best stretch-maximizing surface that can be generated by a seed curve of a given length in a fixed
time.

Stream surface computation and discretization. To advect the seed curve, we again employed the classical fourth
order Runge-Kutta method with constant step-size. The surface integration terminates once the front timeline reaches
the domain boundary. The stream surfaces were discretized by m × n quad meshes, m and n being the number of
samples in s and t direction, respectively. The discretization was realized by uniform sampling of the parameter
domain [s0, s1] × [t0, t1]. The concrete values of m vary as they are computed independently for each seed curve. The
maximum value of n was by default set to 500, see also Table 2, but this value is smaller when the timeline integration
reaches the domain’s boundary (e.g., n = 461 in Fig. 10(d)). For the sake of simplicity, the quad mesh was kept in this
rectangular pattern. Alternatively, one could apply topology-aware techniques like [18, 27, 28, 14, 26, 22] to refine
the mesh, e.g., in the neighborhood of critical points. The parameters of our algorithm were set as shown in Table 1.

6. Results and discussion

Results obtained by our method are shown in Figs. 7 and 10 for the Francis turbine dataset (kindly provided by
Maik Schulze) and in Fig. 8 for Rayleigh-Bénard heat convection. Table 2 shows statistics for these two examples.
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(a) ES = 6.32 · 10−6 (b) ES = 9.28 · 10−6 (c) ES = 0.49 (d) ES = 0.46

Figure 10: A comparison between stretch-maximizing and stretch-minimizing stream surfaces on the Francis turbine dataset. Two best stretch-
minimizing stream surfaces (a,b) and two best stretch-maximizing stream surfaces (c,d) together with the values of the corresponding stretching
energies given by Eq. (11) in [3] and (5) in this paper, respectively.

Stretch-minimizing vs. stretch-maximizing seed curves. A comparison with [3] is made in Fig. 9. At a given seed
point p, the stretch-maximizing and the second order stretch-minimizing seed curves are computed and advected. In
addition, Fig. 10 shows a comparison between the two best stretch-minimizing and the two best stretch-maximizing
stream surfaces on the Francis turbine dataset.

We emphasize here that the first order analysis of stretch-minimizing directions gives rise to a one parameter
family of admissible directions (see Section 3.1 in [3]) and thus second-order analysis can be utilized in that case. In
contrast, the first order stretch-maximizing direction is, in general, unique, and therefore higher order analysis makes
no sense in our case. Fig. 9 shows the stream surfaces emanating from the stretch-minimizing and stretch-maximizing
seed curves. Note the significant difference in the area and the stretch energy of the two stream surfaces.

Validation against exact solution. We tested our algorithm on the analytic vector field v = [x, 2y − z2

2 , yz] over
Ω = [−1, 1]3, see Fig. 11. Since J+ = diag(1, 2, y), the stretch-maximizing direction is constant (y-axis) and the stretch-
maximizing seed curves are lines parallel to y. Thus, the (two-parameter family of) stretch-maximizing (ES ≡ 1)
surfaces are planar patches emanating from seed curves in the z = 0 plane. The exact solution was recovered by our
method within a very fine energy threshold, see Fig. 11(d,e).

Singular cases. The seed curve remains well-defined (and unique) as long as J+ is regular and the dominant eigen-
value is unique. In regions where λ1

.
= λ2, the stretch-maximizing direction becomes ill-posed (Fig. 2, right), and the

seed curve may exhibit sudden changes in its tangent direction, while in general it is smooth; see Fig. 12. In the case
when J+ is singular, the integration is terminated.

Unsteady flows and unstructured grids. We considered steady vector fields for the sake of simplicity. Conceptu-
ally, the generalization to unsteady flows is straightforward: one needs to sample the space-time domain. Another
simplification relates to the fact that the input vector fields were given over fine (voxelized) grids, which simplifies
the computation of velocities outside grid-points. An extension of the algorithm towards unstructured input is also
possible.

Table 2: A summary of our results. In the ‘Seed curves’ columns, #p is the number of initial sampled seed points and Eini
S is the stretch energy

(5) of the best candidate before optimization. In the ‘Optimization’ columns, #S is the number of surfaces processed and Eopt
S is the energy of the

best optimized stream surface. The last column lists total computation times in seconds (obtained on a double core CPU (2.67GHz) machine with
24GB RAM).

Seed curves Optimization Time
Fig. #p Eini

S #S Eopt
S (sec.)

8 300 0.47 83 0.55 565
10 (c,d) 216 0.44 62 0.49 405
10 (a,b) 216 3.17 · 10−4 54 6.32 · 10−6 385
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Ω

(a)

z E > 0.995

(b)

E > 0.998

(c) (d) (e)

1 − 10−4 1

Figure 11: Validation. (a) An analytic vector field (green) over Ω possesses exact stretch-maximizing surfaces in z = 0 plane (transparent). (b,c)
Seed points from a sub-domain (red) that induce seed curves (and consequently surfaces) satisfying fine energy thresholds. The best stretch-
maximizing surface computed by our algorithm (d) and its analytic counterpart (e); (rotated top view).

∆λ < 0.025

∆λ < 0.05

Figure 12: When ∆λ = |λ1 − λ2 | is small, the seed curve (red) may suddenly change direction, whereas it is smooth (provided that v is smooth)
otherwise (green).

Initialization and optimization strategy. The approach we took is common in geometry processing literature where
an optimal solution is sought-after in high-dimensional spaces (shape space) [34, 6, 2]. The concept is to detect parts
of the (typically huge) space, compute the initial solution, and optimize it by minimizing certain energy functional.

We use adaptive sampling with all pros and cons of this approach. The main advantage is that it is relatively
computationally cheap and it admits user’s intervention to continue the search if the result (expressed in term of stretch
energy) is not satisfactory. On the other hand, there is no guarantee that the optimal solution is found. Alternatively,
one could use the more sophisticated approach via scattered data fitting, see e.g. [13]. However, such an approach
does not provide optimality guarantees either and is computationally more demanding.

Divergence-free vs. general vector fields. We have restricted ourselves to divergence-free vector fields since these
fields guarantee the existence of a direction that stretches with a positive rate, i.e., seed curves locally expand. Of
course, the concept of the best stretch-maximizing direction can be considered for general vector fields as well. How-
ever, for example when the signature of J+ is (−,−,−, ), the ‘best’ direction reflects the minimum possible shrinking
rate, which is at odds with our application context of efficient advection.

Time-minimizing advection. Our approach seeks seed curves that globally expand as much as possible, but it ignores
the time needed for advection. It might be interesting to search for the most progressive advection within a time unit.
That is, to seek a seed curve that propagates also as fast as possible.

Stretch-maximizing surfaces and Lyapunov theory. In the context of dynamical systems, our problem seeks one-para-
meter families of initial values (seed curves) such that their solutions (determined in our case by the input vector
field) are, in Lyapunov sense, as unstable as possible (stretch-maximizing evolution). Our seed curves are integral
curves that correspond to the eigenvectors associated to the largest local Lyapunov exponents. As a promising avenue
for future research, it would be interesting to look at finite-time Lyapunov exponents [25, 15]. However, one would
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need to also investigate the influence of the selected time-interval on the obtained results, something we expect to be
considerably more expensive than our less global method given the complexity of the computation of the non-local
Lyapunov exponents. And as an additional challenge, non-local exponents do not directly provide a direction along
which to integrate to obtain ‘optimal’ seed curves.

7. Conclusion

We have investigated a family of stream surfaces that possess the property of maximum timeline expansion ad-
mitted by a given vector field. The surfaces are initialized by stretch-maximizing seed curves that always exist in
divergence-free vector fields and are generically unique. We illustrated our algorithm on several examples and vali-
dated it on a field with known solutions. We believe our analysis will serve not only as a visualization tool, but also
help in applications such as efficient fluid advection-diffusion and dissemination.
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globally optimal stream surfaces for flow visualization. Computer Graphics Forum, 33(3):1–10, 2014.

[30] JJ Trivedi and T Babadagli. Efficiency of diffusion controlled miscible displacement in fractured porous media. Transport in Porous Media,
71(3):379–394, 2008.

[31] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke surfaces: An interactive flow visualization technique inspired by real-world
flow experiments. IEEE Transactions on Visualization and Computer Graphics, 14(6):1396–1403, 2008.

[32] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field based shape deformations. ACM Trans. Graph., 25(3):1118–1125,
July 2006.

[33] Franz Waldner and Rainer Klages. Symmetric Jacobian for local Lyapunov exponents and Lyapunov stability analysis revisited. Chaos,
Solitons & Fractals, 45(3):325–340, 2012.

[34] Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J Mitra. Shape space exploration of constrained meshes. ACM Trans. Graph.,
30(6):124, 2011.

11


