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Two-particle dispersion is investigated in the context of the Anomalous Di�usion. Two
di�erent modelling approaches related to time-subordination are considered and uni�ed in
the framework of self-similar stochastic processes. By assuming a single-particle fractional
Brownian motion and the two-particle correlation function decreasing in time with a
power law, the particle relative separation density is computed for the cases with time-
subordination directed by a unilateral M -Wright density and by an extremal Lévy stable
density. Looking for advisable mathematical properties (for instance, the stationarity of
the increments), the corresponding self-similar stochastic processes are represented in
terms of fractional Brownian motions with stochastic variance, whose pro�le is modelled
by using the M -Wright density or the Lévy stable density.
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1. Introduction

Di�usion phenomena occur in many natural systems and they are investigated
in several disciplines. In particular, to study di�usion is important to compute
the statistics of a tracer concentration �eld θ(x, t). In fact, let p(x; t|y, t0) be the
probability density function (PDF) of �nding a particle in x at time t knowing
that it was in y at time t0 and let S(y, t0) be the initial tracer source, then it
is well-known that for the single-particle di�usion the mean value of the tracer
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concentration �eld 〈θ〉 is

〈θ(x, t)〉=
∫

p(x; t|y, t0)S(y, t0) dy dt0 , t0 ≤ t , (1.1)

and for the two-particle di�usion the two-point covariance is

〈θ(x1, t1)θ(x2, t2)〉=
∫

p(x1, x2; t1, t2|y1, y2, t01, t02)

×S(y1, t01)S(y2, t02) dy1dy2 dt01dt02 , t01 ≤ t1 , t02 ≤ t2 . (1.2)

Studying two-particle separation is of paramount importance in applied
sciences because it is related to the local �uctuations of the concentration �eld
θ′ = θ − 〈θ〉, whose variance, i.e.,

〈θ′2(x, t)〉= 〈θ2(x, t)〉 − 〈θ(x, t)〉2 , (1.3)

is strongly relevant for what concerns, for example, the overcoming of a safe
concentration threshold in industrial accidents (Nielsen et al., 2002) or the
segregation coe�cient in non-premixed reacting mixtures (Komori et al., 1991).

In the formula of the concentration �uctuation variance (1.3), 〈θ2(x, t)〉 is
obtained from (1.2) by setting x1 = x2 = x and t1 = t2 = t, then it emerges to
be established by the backward di�usion of two particles with very close initial
positions, in the limit x1 = x2 = x, at the instant t1 = t2 = t and the separation
is estimated at t01 = t02 = t0 < t (Sawford, 2001). Hereinafter the dependence on
the initial condition of the PDFs will be dropped because initial particle positions
are assumed to be coincident and stated equal to 0.

From (1.2) it follows that di�usion di�erences generate di�erent quantitative
results, which are important in the applied problems connected to concentration
�uctuations. Di�usive processes are generally classi�ed as normal when particle
displacement variance grows linearly in time and otherwise classi�ed as
anomalous. Moreover, normal di�usion is associated also to the Gaussian PDF
for particle displacement and, by using the stochastic process terminology,
normal di�usion is also called Brownian motion (Bm). A Gaussian anomalous
di�usion can be obtained from normal di�usion by assuming a di�usion coe�cient
dependent on time. This can lead, for instance, to a Gaussian process like
the fractional Brownian motion (fBm) that generalizes the standard Brownian
motion.

Anomalous di�usion appears in several di�erent �elds and Fractional Calculus
emerged to be a powerful tool to manage memory e�ects and long range
dependence (Baleanu et al., 2012). Recently, fractional systems have been
investigated in their dynamic evolution by Lyapunov exponent analysis (Li et al.,
2010) as well as to encode memory in nuclear magnetic resonance phenomena
(Magin et al., 2009; Bhalekar et al., 2011).

Anomalous di�usion is named fast di�usion, when the variance of the particle
spreading grows according to a power law with exponent greater than 1, and slow
di�usion, when such exponent is lower than 1.

In this paper, two-particle di�usion is analyzed in the context of Anomalous
Di�usion.

A physical idea useful to model anomalous di�usion is related to time-
subordination of the Gaussian process. The resulting PDF is no longer Gaussian
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and the particle displacement variance grows no longer linearly in time. In
this paper two modelling approaches of anomalous di�usion based on time-
subordination are discussed and uni�ed into the framework of self-similar
stochastic processes by showing that the resulting one-time PDFs share the same
integral representation. The two time-subordination mechanisms are the parent-
directing process (Feller, 1971) and the product of two independent random
variables (Mainardi et al., 2003, 2006).

The paper is organized as follows. In Section 2, the two time-subordination
mechanisms, namely the parent-directing process and the product of random
variables, are introduced and uni�ed in the context of self-similar stochastic
processes. In Section 3, two-particle anomalous di�usion is studied by assuming
a fractional Brownian motion for single-particle trajectory and a correlation
function decreasing in time with a power law. In Section 4, the resulting integral
representations of the one-time PDFs are evaluated and the representations in
terms of H-function and by series are given together with their asymptotic
behaviours. In Section 5, a class of stochastic processes are chosen to model the
two-particle anomalous di�usion corresponding to the derived PDFs. In Section
6, conclusions are discussed.

2. Two time-subordination mechanisms and their uni�cation
for self-similar stochastic processes

(a)The parent-directing subordination process

At the microscopic level, time-subordination is de�ned as a process X(t) =
Y (T (t)) that is obtained by randomizing the time clock of a stochastic process
Y (τ) using a new clock τ = T (t), where T (t) is a random process with non-negative
increments, see e.g. (Feller, 1971).

The resulting process Y (T (t)) is said to be subordinated to Y (τ), which is
called the parent process, and is directed by T (t), which is called the directing
process. The time variable τ is often referred to as the operational time. The
process t = t(τ), inverse of τ = T (t), is called the leading process and it plays
a fundamental role in the parametric approach, introduced by Goren�o and
Mainardi (2011, 2012), to simulate fractional di�usion processes. Even if the
parent process Y (τ) is Markovian, the resulting subordinated process X(t) is in
general non-Markovian and the non-local memory e�ects are due to the random
time process τ = T (t) and to its evolution, which is in general non-local in time.

At the macroscopic-level, i.e., in terms of the particle PDF, the time-
subordination is embodied by the following integral formula

p(x; t) =
∫∞
0
G(x; τ) ϕ(τ ; t) dτ , (2.1)

where G(x; τ) is the PDF (of x evolving in τ) of the parent process, and ϕ(τ, t) is
the PDF (of τ evolving in t) of the directing process.
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(b) Independent random variables product and the time-subordination integral

It is well-known that the PDF of the product of two independent random
variables is given by the Mellin convolution1 of the two corresponding PDFs
(Mainardi et al., 2003, 2006). Let Z1 and Z2 be two real independent random
variables whose PDFs are p1(z1) and p2(z2), respectively, with z1 ∈R and z2 ∈R+.
Then, the joint PDF is p(z1, z2) = p1(z1)p2(z2). Let Z be the random variable
obtained by the product of Z1 and Zγ

2 , i.e.,

Z = Z1 Zγ
2 , (2.2)

so that z = z1z
γ
2 , then, carrying out the variable transformations z1 = z/ξγ and

z2 = ξ, it follows that p(z, τ)dzdξ = p1(z/ξγ)p1(τ)Jdzdξ, where J = 1/ξγ is the
Jacobian of the transformation. Integrating in dξ, the PDF of Z emerges to be

p(z) =
∫∞
0

p1

(
z

ξγ

)
p2(ξ)

dξ

ξγ
. (2.3)

By applying the changes of variable z = xt−γω and ξ = τt−ω, the typical time-
subordination integral (2.1) is recovered from (2.3) by setting

1
tγω

p
( x

tγω

)
= p(x; t) ,

1
τγ

p1

( x

τγ

)
= G(x; τ) ,

1
tω

p2

( τ

tω

)
= ϕ(τ ; t) . (2.4)

(c)Uni�cation of time-subordination mechanisms for
self-similar stochastic processes

A process W (t), t≥ 0, is a self-similar process with self-similarity exponent
H (Hurst exponent) if, for all a > 0, the processes W (at) and aHW (t) have the
same �nite-dimensional distributions.

If the parameter a is turned into a random variable, by setting Y (τ) = W (τ)
and T (t) = at, according to de�nitions given in �2(a), so that X(t) = Y (T (t)) =
W (at), and by setting Z = Z1Z

γ
2 = aHW (t), according to de�nitions given in

�2(b), it is recovered a time-subordination where the parent process is a self-
similar process and the operational time is simply a line with stochastic slope.

Then, in the case described above, both mechanisms, i.e., explicit time-
subordination with a stochastic operational time and product of random variables,
can be seen as equivalent in the context of subordinated processes.

1 The Mellin transform pair ψ(r)
M←→ψ∗(s), with r ∈R+ and s∈C, is de�ned by

ψ∗(s) =

∫∞
0

ψ(r) rs−1 dr , ψ(r) =
1

2πi

∫σ+i∞

σ−i∞
ψ∗(s)r−s ds , σ= Re(s) . (N1)

The transformed function ψ∗(s) exists if the integral

∫∞
0

|ψ(r)|rs−1 dr is bounded and this

constraint is met in the vertical strip a< σ= Re(s)< b, where the boundary values a and b follow
from the analytic structure of ψ(r) provided that |ψ(r)| ≤Mr−a when r→ 0+ and |ψ(r)| ≤Mr−b

when r→+∞. The Mellin convolution integral corresponds to the pair

ψ(r) =

∫∞
0

f

„
r

ξ

«
g(ξ)

dξ

ξ

M←→ f∗(s)g∗(s) =ψ∗(s) . (N2)
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(d)The M-Wright and Lévy directing processes

Two noteworthy examples of PDFs for anomalous di�usion are obtained,
despite the e�ective microscopic stochastic formulation, by subordination-type
integral (2.1) ot (2.3) of the Markovian Bm, with PDF

G(x; t) =
1√
4πt

exp
{
−x2

4t

}
, (2.5)

and variance 〈x2〉= 2t, by selecting as PDF of the directing process either a
unilateral M -Wright function, as introduced in the so-called generalized grey
Brownian motion (ggBm) (Mura, 2008; Mura and Pagnini, 2008; Mura and
Mainardi, 2009), named also Erdélyi�Kober fractional di�usion (Pagnini, 2012;
Pagnini et al., 2012), or an extremal Lévy stable density, as considered in
(Mainardi et al., 2001). In fact, in the former case, for 0 < β ≤ 1 and 0 < α < 2, it
holds (Pagnini, 2012)

pM (x; t) =
∫∞
0

1√
4πτ

exp
{
−x2

4τ

}
Mβ

( τ

tα

) dτ

tα

=
1

tα/2

∫∞
0

1√
4πξ

exp

{
−(xt−α/2)2

4ξ

}
Mβ(ξ) dξ

=
1

2 tα/2
Mβ/2

(
|x|
tα/2

)
, (2.6)

which includes as special cases the fBm for β = 1, the grey Brownian motion, in
the sense of Schneider (1990, 1992), for 0 < α = β < 1, and the Bm for α = β = 1
(Mainardi et al., 2010). In the latter case, for 0 < α≤ 2, we have (Mainardi et al.,
2003, 2006)

pL(x; t) =
∫∞
0

1√
4πτ

exp
{
−x2

4τ

}
L
−α/2
α/2

( τ

t2/α

) dτ

t2/α

=
1

t1/α

∫∞
0

1√
4πξ

exp

{
−(xt−1/α)2

4ξ

}
L
−α/2
α/2 (ξ) dξ

=
1

t1/α
L0

α

( x

t1/α

)
. (2.7)

The function Mν (with 0 < ν ≤ 1) is the so-called M -Wright function, also named
Mainardi function, and Lθ

α is the Lévy stable density of order α∈ 0, 2] and
asymmetry parameter |θ| ≤min{α, 2− α}, which is symmetric for θ = 0 and one-
sided on the positive semi-axis for θ =−α (0 < α < 1). These functions can be
de�ned respectively by their Mellin transform pairs (N1) as, see Eq. (6.1) in
(Mainardi et al., 2003),

Mν(r)
M←→ Γ[1 + (s− 1)]

Γ[1 + ν(s− 1)]
, 0 < ν < 1 , 0 < r <∞ , (2.8)
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and, see Eq. (5.1) in (Mainardi et al., 2003),

Lθ
α(r) M←→ 1

α

Γ
(
−s− 1

α

)
Γ(1 + (s− 1))

Γ(1 + ρ(s− 1))Γ(−ρ(s− 1))
, ρ =

α− θ

2α
, 0 < r <∞ . (2.9)

It is reminded here that the symmetric M -Wright function and the Lévy stable
density provide the Green functions of the time-fractional and the space-fractional
di�usion equations, respectively (Mainardi et al., 2001).

3. Two-particle anomalous di�usion

The problem of two-particle di�usion can be restated taking into account the
single-particle motion and the relative separation between the particles. In
terms of PDF it means p(x1, x2; t) dx1 dx2 = p(x, δr; t) dx dδr, after the change
of variable x1 = x and x2 = x− δr.

However, following turbulent dispersion literature (Durbin, 1980; Thomson,
1990), the problem of two-particle di�usion can be analyzed in terms of the
particle separation δr = x1 − x2 and of the centre-of-mass position xCM = (x1 +
x2)/2 that, for mathematically convenience (i.e., the Jacobian of the variable
trasformation is equal to 1), are transformed into: ∆ = (x1 − x2)/

√
2 and Σ =

(x1 + x2)/
√

2.
Since the two particles are identical, it holds 〈x2

1〉= 〈x2
2〉= σ2 and in general

their motion is correlated 〈x1x2〉= σ2ρ, then the joint Gaussian PDF is

G(x1, x2; t) =
1

2πσ2
√

1− ρ2
exp

{
−x2

1 − 2ρx1x2 + x2
2

2σ2(1− ρ2)

}

=
1√

2πσ2(1− ρ)
exp

{
− ∆2

2σ2(1− ρ)

}
×

1√
2πσ2(1 + ρ)

exp
{
− Σ2

2σ2(1 + ρ)

}
= G(∆,Σ; t) , (3.1)

so that G(∆,Σ; t) = G(∆; t)G(Σ; t) and the following three normalization
conditions hold:

∫
G(x1, x2; t) dx1dx2 = 1,

∫
G(∆; t) d∆ = 1 and

∫
G(Σ; t) dΣ = 1.

From (3.1) it follows that 〈∆2〉= σ2(1− ρ) and 〈Σ2〉= σ2(1 + ρ).
Assuming that, before the Einstein regime, i.e., σ2 = 2 t for t� 1, the

trajectories x1 and x2 follows a fBm, then the same holds for x, and assuming
also that the correlation function decreases in time according to a power law then σ2 ' 2 tq , t� 1 , 0 < q < 2 ,

σ2 ' 2 t , t� 1 ,
,

 ρ' 1− tζ , t� 1 , ζ ≥ 0 ,

ρ' 0 , t� 1 .
(3.2)
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What concerns the particle separation type variable ∆ it holds 〈∆2〉= σ2(1− ρ)' 2 tµ , t� 1 , µ = q + ζ > 0 ,

〈∆2〉= σ2(1− ρ)' 2 t , t� 1 .
(3.3)

It is worth noting to remark that the regime established for t� 1 in (3.3) is
a generalization of that in the most common Ornstein�Uhlenbeck process, i.e.,
the combination of the ballistic regime σ2 ' t2 with the exponential correlation
function ρ = e−t ' 1− t so that σ2(1− ρ)' t3.

On the other side, for what concerns the center-of-mass type
variable Σ, it emerges that in the considered context its variance is

〈Σ2〉= σ2(1 + ρ)' 4 tµ
(

1
tζ
− 1

2

)
, when t� 1, and 〈Σ2〉= 2 t, when t� 1,

so that the simple power law scaling when t� 1 is lost.
Hence, in the range t� 1, it results that, according to the notation introduced

at the beginning of the section, i.e., x = x1, Σ and ∆ = δr/
√

2, it holds

G(x; t) = Gq(x; t) =
1√
4πtq

exp
{
− x2

4 tq

}
, (3.4)

and

G(Σ; t) = Gµ,ζ(Σ; t) =
1√

2π〈Σ2〉
exp

{
− Σ2

2 〈Σ2〉

}
, 〈Σ2〉 ' 4 tµ

(
1
tζ
− 1

2

)
, (3.5)

G(∆; t) = Gµ(∆; t) =
1√
4πtµ

exp
{
−∆2

4 tµ

}
. (3.6)

However, since the center-of-mass motion is a single-point trajectory then, in
agreement with the assumed single-particle trajectory for x1 and x2, it is governed

by the fBm and its time-dependent di�usion coe�cient is DΣ(t) =
1
2

d〈Σ2〉
dt

,

but the two-point trajectory ∆ can have long range correlation and show an
anomalous di�usion. Then, hereinafter, the analysis is performed solely for ∆ =
δr/
√

2 = (x1 − x2)/
√

2. Such non-local memory e�ects can be modelled by the
subordination integral (2.1) and, in this framework, the PDF of particle relative
separation emerges to be determined by

p(∆; t) =
∫∞
0
Gµ(∆; τ) ϕ(τ ; t) dτ . (3.7)

Finally, adopting the same directing processes of formulae (2.6) and (2.7),
the resulting PDFs for the two-particle anomalous di�usion emerge to be, with
0 < β ≤ 1 and 0 < α < 2,

PM (∆; t) =
∫∞
0

1√
4πτµ

exp
{
− ∆2

4 τµ

}
Mβ

( τ

tα

) dτ

tα

=
1

tµα/2

∫∞
0

1√
4πξµ

exp

{
−(∆t−µα/2)2

4 ξµ

}
Mβ(ξ) dξ , (3.8)
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and

PL(∆; t) =
∫∞
0

1√
4πτµ

exp
{
− ∆2

4 τµ

}
L
−α/2
α/2

( τ

t2/α

) dτ

t2/α

=
1

tµ/α

∫∞
0

1√
4πξµ

exp

{
−(∆t−µ/α)2

4 ξµ

}
L
−α/2
α/2 (ξ) dξ . (3.9)

Clearly if anomalous di�usion is assumed also for the single-particle trajectory
x, the analysis follows from the present one by setting µ = q. Moreover it is
important to highlight here also that, if the single-particle trajectory is assumed
to be Gaussian, i.e., q = 1, then in the anomalous di�usion framework the PDF
of x is given by (2.6) or (2.7) depending on the selected directing process.

4. Evaluation, representations and asymptotic behaviour of the PM

and of the PL PDFs

(a)The PM PDF

What concerns the determination of the PM PDF de�ned in (3.8), by applying
the Mellin transform (N1) to the �rst line of (3.8) and the change of variable
∆2 = 4τµξ, the RHS becomes

1
2

2s−1

√
π

∫∞
0

e−ξξs/2−1 dξ

∫∞
0

Mβ

( τ

tα

)
τµ(s−1)/2 dτ

tα
. (4.1)

Then, by the change of variable τ = tαz and reminding the Gamma function

de�nition, i.e., Γ(s) =
∫∞
0

e−ξξs−1 dξ, expression (4.1) turns into

tαµ(s−1)/2

2
2s−1

√
π

Γ
(s

2

) ∫∞
0

Mβ(z) zµ(s−1)/2 dz . (4.2)

To conclude, by the Gamma function property Γ(s)Γ(s + 1/2) = 21−2s√π Γ(s)
and the Mellin transform pair for the M-Wright function (2.8), after the Mellin
inverse transformation (N1), the Mellin�Barnes integral representation of the PM

PDF is

PM (∆; t) =
1

2tαµ/2

1
2πi

∫
L

Γ(s) Γ
(
1− µ

2
+

µ

2
s
)

Γ
(

1
2

+
s

2

)
Γ

(
1− βµ

2
+

βµ

2
s

) (
∆

tαµ/2

)−s

ds ,

(4.3)
where L is the contour path encircling the poles of Γ(s) and those of Γ(1− µ/2 +
µs/2).
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In terms of H-function (see Appendix), when |∆/tαµ/2| → 0, the density PM

is

PM (∆; t) =
1

2tαµ/2
H2,0

2,2

 ∆
tαµ/2

∣∣∣∣∣∣
−;

(
1
2 , 1

2

)
,
(
1− β µ

2 , β µ
2

)
(0, 1) ,

(
1− µ

2 , µ
2

)
;−

 , (4.4)

and, by applying the residue theorem, the series representation of (4.3) is

PM (∆; t) =
1

2tαµ/2


∞∑

k=0

(−1)k

k!
Γ

(
1− µ

2 −
µ
2 k

)
Γ

(
1
2 −

k
2

)
Γ

(
1− βµ

2 −
βµ
2 k

) (
∆

tαµ/2

)k

+

2
µ

(
∆

tαµ/2

)2/µ−1 ∞∑
k=0

(−1)k

k!

Γ
(
1− 2

µ −
2
µk

)
Γ

(
1− 1

µ −
k
µ

)
Γ (1− β − βk)

(
∆

tαµ/2

)2k/µ
 . (4.5)

The asymptotic behaviour for |∆/tαµ/2| →+∞ can be computed by formula
(A.3) and it emerges to be of exponential type as follows

PM (∆; t)' 1
2 tαµ/2

O

{(
∆

tαµ/2

)−Ω/(1+Ω)
}

exp

{
−Θ

(
∆

2 tαµ/2

)2/(1+Ω)
}

,

(4.6)
where

Ω = µ(1− β) , Θ = (1 + Ω) (βµ)−Ω/(1+Ω) βµ/(1+Ω) .

(b)The PL PDF

The determination of the PL PDF de�ned in (3.9) is analog to the
determination of the PDF PM . Actually, by applying the Mellin transform (N1)
to the �rst line of (3.9) and after the change of variable ∆2 = 4τµξ, the RHS
becomes

1
2

2s−1

√
π

∫∞
0

e−ξξs/2−1 dξ

∫∞
0

L
−α/2
α/2

( τ

t2/α

)
τµ(s−1)/2 dτ

t2/α
. (4.7)

Then, by the change of variable τ = t2/αz and using the Gamma function
de�nition, expression (4.7) becomes

tµ(s−1)/α

2
2s−1

√
π

Γ
(s

2

) ∫∞
0

L
−α/2
α/2 (z) zµ(s−1)/2 dz . (4.8)

To conclude, by the Gamma function property Γ(s)Γ(s + 1/2) = 21−2s√π Γ(s)
and the Mellin transform pair for the Lévy stable density (2.9), after the Mellin
inverse transformation (N1), the Mellin�Barnes integral representation of the PDF
PL is

PL(∆; t) =
1

αtµ/α

1
2πi

∫
L

Γ(s) Γ
(µ

α
− µ

α
s
)

Γ
(µ

2
− µ

2
s
)

Γ
(

1
2

+
s

2

) (
∆

tµ/α

)−s

ds , (4.9)

where L is the contour path encircling the poles of Γ(s).
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In terms of H-function (see Appendix), it holds

PL(∆; t) =
1

αtµ/α
H1,1

2,2

 ∆
tµ/α

∣∣∣∣∣∣
(
1− µ

α , µ
α

)
;
(

1
2 , 1

2

)
(0, 1) ;

(
1− µ

2 , µ
2

)
 ,

∣∣∣∣ ∆
tµ/α

∣∣∣∣→ 0 , (4.10)

and

PL(∆; t) =
1

αtµ/α
H1,1

2,2

 tµ/α

∆

∣∣∣∣∣∣
(1, 1);

(µ
2 , µ

2

)
(µ

α , µ
α

)
;
(

1
2 , 1

2

)
 ,

∣∣∣∣ ∆
tµ/α

∣∣∣∣→+∞ . (4.11)

Then, by applying the residue theorem, the corresponding series
representations of (4.9) are

pM (∆; t) =
1

αtµ/α

∞∑
k=0

(−1)k

k!

Γ
(µ

α
+

µ

α
k
)

Γ
(µ

2
+

µ

2
k
)

Γ
(

1
2
− k

2

) (
∆

tµ/α

)k

, (4.12)

when |∆/tµ/α| → 0, and

PL(∆; t) =
1

µtµ/α

∞∑
k=0

(−1)k

k!

Γ
(

1 +
α

µ
k

)
Γ

(
1 +

α

2µ
k

)
Γ

(
−α

2
k
) (

∆
tµ/α

)−αk/µ−1

, (4.13)

when |∆/tµ/α| →+∞.

5. H-sssi processes for two-particle anomalous di�usion

In order to choose a class of stochastic processes to model two-particle anomalous
di�usion with PDFs according to (3.8) and (3.9), the same approach introduced
by Mura (2008) (see also Mura and Pagnini, 2008; Mura and Mainardi, 2009) to
characterize the so-called generalized grey Brownian motion (ggBm) is adopted.

The ggBm is a class of H-sssi processes, where sssi means self-similar with
stationary increments, that generalize Gaussian processes (which are recovered as
a special case) and de�ned by only the autocovariance structure. This property
can be easily deduced by noting that the ggBm can be represented by a process√

Λβ Xα(t), t≥ 0, where Xα(t) is a Gaussian stochastic process and Λβ is a
suitable chosen independent non-negative random variable.

In fact, let Bα,β(t), t≥ 0, be a ggBm, then

Bα,β(t) =
d √

Λβ Xα(t) , t≥ 0 , 0 < α < 2 , 0 < β ≤ 1 , (5.1)

where the symbol =
d
denotes the equality of the �nite-dimensional distribution,

the stochastic process Xα(t) is a standard fBm with Hurst exponent α/2 and Λβ

is an independent non-negative random variable with PDF Mβ(τ), τ ≥ 0.
Representation (5.1) can be backwardly obtained from subordination

de�nition given in �2(b). In fact, from comparing (2.3) and (2.4) with (2.6) it
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follows that Z = Xt−α/2 and, since Z = Z1Z
γ
2 , it holds X = Z1t

α/2Zγ
2 , where

γ = 1/2, the variable Z1 is Gaussian and Z2 is distributed according to Mβ .

Finally, representation (5.1) is recovered with X = Bα,β(t), Xα = Z1t
α/2 and

Λβ = Z2.
It is worth noting to highlight here that representation (5.1) permits to solve

a number of questions, in particularly those related to the distribution properties
of Bα,β(t), because they can be reduced to questions concerning the fBm Xα(t)
that, since Xα(t) is a Gaussian process, has been largely studied in literature.

For instance, the Hölder continuity of the Bα,β(t) trajectories follows
immediately from those of Xα(t), i.e.,

E(|Xα(t)−Xα(s)|h) = ch|t− s|hα/2 . (5.2)

Moreover, representation (5.1) highlights the stationary increment property of the
ggBm, and it emerges to be suitable for path simulations.

With the same backward-derivation method described to obtain representation
(5.1) from (2.3) plus (2.4) and (2.6), the symmetric Lévy process governed by (2.7)
follows to be represented by

Lα(t) =
d
√

`α/2 X2/α(t) , t≥ 0 , 0 < α < 2 , 0 < β ≤ 1 , (5.3)

where the stochastic process X2/α(t) is a standard fBm with Hurst exponent 1/α

and `α/2 is an independent non-negative random variable with PDF L
−α/2
α/2 (τ),

τ ≥ 0.
Finally, for the two-particle anomalous di�usion, the self-similar stochastic

processes representations are straighfordwarly obtained. In fact, comparing (2.3)
plus (2.4) and (3.8) it follows that

Bα,β,µ(t) =
d
(Λβ)µ/2 Xµα(t) , t≥ 0 , 0 < α < 2 , 0 < β ≤ 1 , µ > 0 , (5.4)

where the stochastic process Xµα(t) is a standard fBm with Hurst exponent µα/2
and Λβ is an independent non-negative random variable with PDF Mβ(τ), τ ≥ 0.

Comparing (2.3) plus (2.4) and (3.9) it follows that

Lα,µ(t) =
d
(`α/2)

µ/2 X2µ/α(t) , t≥ 0 , 0 < α < 2 , 0 < β ≤ 1 , µ > 0 , (5.5)

where the stochastic process X2µ/α(t) is a standard fBm with Hurst exponent µ/α

and `α/2 is an independent non-negative random variable with PDF L
−α/2
α/2 (τ),

τ ≥ 0.

6. Conclusions

In the present paper two-particle dispersion is investigated in the context of
the Anomalous Di�usion. Two-particle di�usion is important for the statistical
analysis of �uctuations of a tracer concentration �eld. Since anomalous di�usion
can be modelled by time-subordination of Gaussian stochastic processes, here it
is shown that, in the framework of self-similar stochastic processes, two di�erent
subordination modelling approaches, namely the parent-directing process and the
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product of random variables, can be uni�ed because they give the same integral
formula for the resulting PDF.

By assuming a single-particle fBm and the particle correlation function
decreasing in time with a power law, the centre-of-mass trajectory follows to
be a fBm, too, whose variance has no longer a simple power law scaling because
of the two-particle correlation. Furthermore, the two-particle separation PDF is
computed for the cases with time-subordination directed by the M -Wright density
and by the Lévy stable density. The resulting PDFs are evaluated and represented
by the Mellin�Barnes integral, in terms of H-function and by series. Moreover, also
the asymptotic behaviours are shown. In particular, in the case with operational
time driven by the M -Wright density the PDF asymptotically decreases with a
stretched exponential law while in the case driven by the Lévy stable density the
PDF asymptotically decreases with a power law.

In order to choose a class of stochastic processes with PDFs according to
those previously established, the same method introduced for the derivation of
the ggBm is adopted. In analogy with the ggBm, this class of stochastic processes
emerges to be determined by the product of a Gaussian process with an opportune
Hurst exponent, i.e., an opportune fBm, and an independent random variable
distributed according to the M -Wright density or the Lévy stable density. Then
the processes belonging to such class are referred to as H-sssi and de�ned by only
the autocovariance structure.

The determination of the master equation of this class of H-sssi processes and
satis�ed by the evaluated PDFs will be the issue of future developments of the
present research.
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Appendix

The H-function is de�ned by means of a Mellin�Barnes type integral as follows
(Mathai et al., 2010)

Hm,n
p,q

[
z

∣∣∣∣ (a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

]
=

1
2πi

∫
L

h(s) z−s ds , (A.1)

with

h(s) =

∏m
j=1 Γ(bj + Bjs)

∏n
i=1 Γ(1− ai −Ais)∏q

j=m+1 Γ(1− bj −Bjs)
∏p

i=n+1 Γ(ai + Ais)
, (A.2)

where an empty product is always interpreted as unity, {m , n , p , q} ∈N0 with
1≤m≤ q and 0≤ n≤ p, {Ai , Bj} ∈R+ and {ai , bj} ∈R, or C, with i = 1, . . . , p
and j = 1, . . . q such that Ai(bj + k) 6= Bj(ai − `− 1) with k and `∈N0, i =
1, . . . , n and j = 1, . . . ,m. The poles of the integrand in (A.1) are assumed to
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be simple. The integration path L encircles all the poles of Γ(bj + Bjs) with
j = 1, . . . ,m.

The H-function is an analytic function of z and exists for all z 6= 0 when q≥ 1
and µ > 0 or for 0 < |z|< ∆ when q≥ 1 and µ = 0 where

µ =
q∑

j=1

Bj −
p∑

i=1

Ai , ∆ =

{
p∏

i=1

A−Ai
i

}
q∏

j=1

B
Bj

j

 .

For other existence conditions see (Mathai et al., 2010).
The asymptotic expansion for |z| →∞ is obtained by integration around the

poles of Γ(1− ai −Ais) with i = 1, . . . , n. Actually this is similar to exchange
s→−s and then passing from the series of powers of z to a series of powers of
1/z, from which the asymptotic expansion follows.

In the particular case with n = 0 the asymptotic behaviour for z→+∞ is of
exponential type and determined for real z by the formula

Hm,0
p,q (z)'O

(
z[Re(ω)+1/2]/µ

)
exp

{
µ cos

(
ζπ

µ

) ( z

∆

)1/µ
}

, (A.3)

where

ω =
q∑

j=1

bj −
p∑

i=1

ai +
p− q

2
, ζ =

m∑
j=1

Bj −
p∑

i=n+1

Aj .
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