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Abstract

We give a detailed analytical description of the global dynamics of a point mass moving
on a sphere under the action of a logarithmic potential. We perform a McGehee-type blow-up
in order to cope with the singularity of the potential when the point mass goes through the
singularity. In addition we investigate the rest-points of the flow, the invariant (stable and
unstable) manifolds and we give a complete dynamical description of the motion.
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Introduction

Topologically, two dimensional Riemann surfaces with constant (Gaussian) curvature K are clas-
sified into three categories: Euclidean spheres, S2 (K > 0); Euclidean planes, E2 (K = 0); and
hyperbolic planes H2 (K < 0). Among them, S2 and E2 are more familiar and come out very
often in practice. For example, the mechanics of thin fluid layers on S2 provides a global model of
a planetary atmosphere, and that on E2 is its local approximation.

In this paper we consider the one-center logarithmic potential problem on a sphere, that is the
dynamics of a point particle moving on a sphere under the action of a logarithmic central potential.
More formally, we choose a point Q ∈ S2 as the center of the potential, and we assume that at any
point x ∈ S2, x 6= Q the particle is subjected to one of the two following forces:

1. fgeo(P ) = k∇(− log(dS(P,Q)), where dS(P,Q) is the geodesic distance between the points P
and Q.

2. feuc(P ) = k∇(− log(d(P,Q)) where d(P,Q) is the euclidean distance between the points P
and Q.

The sign of the constant k determines whether the center Q is attracting or repelling.
Two are the main reasons for the choice of these potentials. First, they arise in different physical

scenarios: such as in models of astrodynamics, [ToTr97], [StFo03]; in the dynamics of a charged
particle in a cylindrically symmetric electric field [Hoo63] and in the mathematical theory of vortex
filaments of an ideal fluid [New01], [KePoVe03]. The second reason relies on the fact that the
logarithmic potential V (x) = − log(|x|) may be considered a sort of limit case for α → 0 of the
homogeneous potentials Vα = |x|−α. While the latter have been extensively studied by different
authors, the former has not been so deeply investigated. In particular one could be interested
to know if (and how) some features regarding, for instance, the regularization of collisions, the
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minimality properties of the solutions and their stability, may be extended from the homogeneous
to the logarithmic potential case. Results in this direction have been achieved for instance in
[Cas09], [BaFeTe08], [ToTr97].

In addition, we consider a sphere, rather than the classical two or three-dimensional Euclidean
space, as the configuration space. Our goal is to understand which aspects of the dynamics are
affected if the geometry of the underlying space changes, or, equally well, what survives of the planar
dynamics if one considers a curved manifold. The study of the motion of particles on curved space
is a classical problem. Here we only quote recent papers [DPR11, Dia12c, DiPe11, Dia11a, DPS08]
where, among others interesting features, the relative equilibria and homographic solutions of the
classical n-body potentials on curved manifolds have been investigated. For further references on
the subject the reader is referred to the references in those papers.

From a dynamical point of view the most interesting role, and the hardest obstacle for a full
understanding of the motion, is played by the presence of the singularity in the potential function.
Indeed, as it often happens in celestial mechanics, the singularities are the source of a complicated
dynamics. From the point of view of the analysis, the singularities represent a severe technical hurdle
to overcome and different techniques have been proposed to regularize the vector field, mainly for
the homogeneous potential case [LeC20], [McG74], [Eas71], [BeFuGr03], [Cas09] and [CaTe11].

This paper is inspired by the recent work [StFo03] that studies the planar motion of a point
mass subject to a logarithmic potential in an astrodynamic context. To overcome the singularity
of the vector field we adapt to our problem the celebrated McGehee transformation, a regularizing
change of variables currently popular in the field of Celestial Mechanics and first introduced in 1974
by McGehee [McG74] to solve the collisions in the collinear three-body problem.

The McGehee transformations consist of a polar type change of coordinates in the configuration
space, together with a suitable rescaling of the momentum. In this way the total collision is blown-
up into an invariant manifold called total collision manifold over which the flow extends smoothly.
Furthermore, each hypersurface of constant energy has this manifold as a boundary. By rescaling
time in a suitable way, it is possible to study qualitative properties of the solutions close to total
collision, obtaining a precise characterization of the singular solutions.

The McGehee transformations are usually applied to the case of homogeneous potentials but, as
shown in [StFo03] and as it will be manifest throughout this paper, with slight modifications they
give interesting results even in the presence of a logarithmic potential. In fact, although the lack
of homogeneity of the logarithmic nonlinearity breaks down some nice and useful properties of the
transformation, it is still possible to regularize the vector field and to carry out a detailed analytical
description of the rest points, of the invariant manifolds, and of the heteroclinics on the collision
manifold. The last are indeed the features that allow to extend the singular solutions beyond the
singularity so that the extended flow results continuous with respect to initial data.

Let us now formalize the problem, define the notations and summarize the results.

Figure 1: Mutual positions of the sphere (centered at the point C) and of the stereographic plane.
The point Q is the center of the logarithmic potential; Q′ is its antipodal point; V and V ′ are the
stereographic projections of, respectively Q and Q′. The point subject to the force is P , whose
stereographic projection is P̃ . The length of the dashed segment joining P and Q is the Euclidean
distance d(P,Q); the length of the solid arc is the geodetic distance dS(P,Q).

Denote with S the two-dimensional sphere of radius R and center C = (0, 0, R), namely

S := {(x, y, z) ∈ R
3 : x2 + y2 + (z −R)2 = R2}.
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where (x, y, z) are the Cartesian coordinates in R3 (Figure 1).
We use slightly non-standard angular coordinates φ and θ for the spherical surface: to any point

P ∈ S are associated the coordinates

• φ ∈ [0, 2π) the usual polar angle of the projection of P onto the plane z = 0;

• θ ∈ [0, π] the angle ÔCP , where O is the origin of the Cartesian reference frame.

For ease of language we shall call Q as the vortex point, the half-sphere centered around the
vortex point as the vortex half-sphere, and the complementary half-sphere antivortex half-sphere;
let us call vortex-parallel any circle on the sphere equidistant from Q and vortex-meridian any great
circle passing through Q. Moreover, we name Q′ the antipodal point, that is the point on the sphere
opposite to the vortex point.

In order to illustrate some basic results with the maximum clarity, for the moment we won’t
place the vortex point as in Figure 1, but at the north pole, i.e. Q = (0, 0, 2R), so that the
curves {θ = const} and {φ = const} respectively correspond to the vortex parallels and to the
vortex meridians. Of course, the dynamics is not affected by this choice, which is just a temporary
convenience. In this setting, the geodesic distance is simply dS(P,Q) = R(π − θ), yielding the
Hamiltonian

(1) Hgeo(θ, φ, pθ, pφ) =
1

2R2

(
1

sin2 θ
p2φ + p2θ

)
+

Γ

4π
log(R(π − θ)).

In the attractive case, Γ > 0, let us define h1 = Γ
4π log(π2R), h2 = Γ

4π log(πR). The analysis of
the energy shells to be performed in Lemma 4.1 will allow us to conclude that

• if h ≥ h2 then the motion is allowed everywhere on the sphere;

• if h < h2 the motion is allowed only in a sphere cap containing the vortex point whose
boundary is a vortex-parallel that lies on the vortex half-sphere for h < h1 or in the antivortex
half-sphere if h2 < h < h1.

Besides the energy h, it is easy to show that there exists a second conserved quantity, namely
the spherical angular-momentum, l. In Lemma 5.2 and Lemma 5.3 we show that

• A necessary condition in order to have a collision solution or to reach the antipodal point is
l = 0.

• Any vortex-parallel on the vortex half-sphere is the support of a periodic orbit.

• The vortex-meridians are flow-invariant.

Fig.2 depicts some of the solutions lying on vortex parallels and on vortex-meridians As a
consequence, collision with the vortex point is possible if and only if the particle moves along a
meridian. The main question that we address in the paper is whether it is possible to extend such
a trajectory beyond the singularity so that the extended flow admits a regularity of some sort. The
study of the heteroclinic connections between invariant manifolds in McGehee coordinates provides
a way to formulate a positive answer. Let us define the notion of collision-transmission solution:

Definition 1 Let (φV , θV ) be the coordinates of the vortex point and let γ(t) = (φ, θ)(t) : [0, Ts) →
S be a collision solution ending in the singularity at time Ts. We define as collision-transmission
trajectory the path γ̄ : [0, 2Ts] → S given by

γ̄(t) :=





γ(t), t ∈ [0, Ts)
(φV , θV ) t = Ts
(2φV − φ(2Ts − t), 2θV − θ(2Ts − t)) t ∈ (Ts, 2Ts]

Based on the previous definition, we prove that

Theorem 1 The flow obtained by extending the collision solutions with the collision-transmission
trajectory is continuous with respect to initial data anywhere out of the vortex and of the antipodal
points.
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Figure 2: Periodic orbits lying on the vortex-parallels and collision orbits lying on the vortex-
meridians.

The results for the problem with the Euclidean distance are almost completely analogous, with
a noteworthy increase of regularity at the antipodal point. Throughout the paper we will point out
any other difference that will occur.

Finally, let us observe that the problem we are dealing with is integrable. Regular trajectories
might be studied just with the Hamiltonian (1). Difficulties arise for the collision trajectories, or
those very close to them. In this case an approach based on McGehee-like transformations appears
to be the only possible way to attack the problem. This, in turn, requires a few words about the
location of the vortex point, and on the use of the stereographic projection. It appears natural
to place the vortex in correspondence to one of the poles of the coordinate system on the sphere
but this choice will make the singularity of the potential and the singularity of the kinetic energy
matrix to interfere with each other in such a way that the McGehee regularization could not be
performed. On the other hand, if we place the source of the potential away from the poles of the
coordinate system, then we (obviously) loose a cyclical coordinate, but this is a small price to pay
for the ability to perform the regularization in a relatively straightforward way. In addition, it turns
out that transformations of the McGehee type may be devised without too many difficulties for
equations which are written in Cartesian coordinates on a plane. Therefore, rather than attempting
to work directly onto the sphere, we felt it would be more easy (and more clear) first to project the
dynamics on a stereographic plane, and then to remove the singularities of the resulting equations.
We choose the stereographic projection just because we appreciate the possibility of using a single
map for the whole sphere except a point. Other choices would not change significantly the difficulty
of the problem. We are confident that this general scheme may be effective for many other singular
problems on more general manifolds.

The paper is organized as follows: first we recall some basic notions about the Hamiltonian
formulation of the co-geodesics flow on a general Riemannian manifold, then in Section 2 we restrict
to the case of the sphere and we formulate the equivalent co-geodesics flow through the stereographic
projection. In Section 3 we introduce the singular logarithmic potential and we write the equations
of motion. Section 4 deals with the in-deep study of the dynamical system: we regularize the
singularity of the potential with the modified McGehee technique, and we provide an analysis of
the flow on the collision and the zero velocity manifolds. Section 5 concerns the global dynamics
and we rephrase the results in terms of the original motion on the sphere with untransformed
coordinates.
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1 Preliminaries

Let (M, g) be a n-dimensional Riemannian manifold. We denote by D the associated Levi-Civita
connection and by D

dt the covariant derivative of a vector field along a smooth curve γ. Let I be an
interval of the real line and V be a smooth function defined on I ×M .

Definition 2 A perturbed geodesic abbreviated as p-geodesic is a smooth curve γ : I → M which
satisfies the differential equation

(2)
D

dt
γ′(t) +∇V (t, γ(t)) = 0

where ∇V denotes the gradient of V (t,−) with respect to the metric g.

Remark 1.1 From a dynamical viewpoint, the pair (g, V ) define a mechanical system on the man-
ifold M , with kinetic energy 1

2g(v, v) and time dependent potential energy V. Solutions of the dif-
ferential equation (2) correspond to trajectories of particles moving on the Riemannian manifold
in the presence of the potential V . If the potential vanishes we get trajectories of free particles
and hence geodesics on M . This motivates the suggestive name, “perturbed geodesics” in the case
∇V 6= 0. Moreover, if the potential V is time independent, modulo reparametrization, perturbed
geodesics become geodesics of the Jacobi metric associated to (g, V ): indeed the total energy

e =
1

2
g(γ(t))(γ′(t), γ′(t)) + V (γ(t))

is constant along any trajectory γ. Therefore, whenever V is bounded from above, the solutions of
(2) with energy e > supm∈M V (m) are just reparametrized geodesics for the metric [e− V ]g on M
with total energy equal to one [AbMa78].

Denoting by (q1, . . . , qn) a local system of coordinates on M , equation (2) reduces to

q̈i + Γijkq̇
j q̇k = −gij ∂V

∂qj
,

where, as usual, gij = (g)−1
ij , and Γijk are the Christoffel symbols.

Geodesic flow as Hamiltonian flow

The geodesic flow turns out to be a Hamiltonian flow of a special Hamiltonian vector field defined on
the cotangent bundle of the manifold. The Hamiltonian depends on the metric on the manifold and
it is a quadratic form consisting entirely of the kinetic term. The geodesic equation corresponds to
a second-order nonlinear ordinary differential system. Therefore, by suitably defining the momenta,
it can be re-written as first-order Hamiltonian system.

More explicitly, let us consider a local trivialization chart of the cotangent bundle T ∗M

T ∗M
∣∣∣
U

∼= U × R
n
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where U is an open subset of the manifold M , and the tangent space is of rank n. Let us denote
by (q1, q2, . . . , qn, p1, p2, . . . , pn) the local coordinates on T ∗M and introduce the Hamiltonian

(3) H : T ∗M → R : H(q,p) =
1

2
gij(q)pi pj .

The Hamilton-Jacobi equations of the geodesic equation with respect to the metric g can be written
as 




q̇i =
∂H

∂pi
= gij(q)pj

ṗi = −∂H
∂qi

= −1

2

∂gjk

∂qi
pj pk .

The second order geodesic equations are easily obtained by substitution of one into the other. The
flow determined by these equations is called the co-geodesic flow , while the flow induced by the first
equation on the tangent bundle is called geodesic flow. Thus, the geodesic lines are the projections
of integral curves of the geodesic flow onto the manifold M .

Being the Hamiltonian H time-independent, it is readily seen that it is constant along the
geodesics. Thus, the co-geodesic flow splits the cotangent bundle into level sets of constant energy

ME = {(q,p) ∈ T ∗M : H(q,p) = E},

for each energy E ≥ 0 , so that

T ∗M =
⋃

E≥0

ME .

Now let g,h be two Riemannian metrics on M in the same conformal class; namely there exists a
positive and smooth function λ = λ(q) of the coordinates such that

gij = λhij

or equivalently g = λ−1h. From the definition (3) it follows that a scaled co-geodesic Hamiltonian
function corresponds to a conformal change of the metric. In fact if Hg and Hh denote the Hamil-
tonian co-geodesic functions and if g,h are in the same conformal class then it immediately follows
by (3) that

Hg(q,p) = λHh(q,p).

As a consequence, Hamilton’s equations with respect to this two Hamiltonian functions are related
as follows

(4)





q̇ = ∂pHg = λ∂pHh +Hh∂pλ = λ∂pHh

ṗ = −∂qHg = −λ∂qHh −Hh∂qλ

where the last equality in the first equation comes by the fact that the function λ only depends
on q. In the following we consider a perturbed-geodesic flow on a sphere, thus it is worth to write
down explicitly the free geodesic flow when the manifold M is a surface of revolution in R3.

Let us denote with (x, y) the Cartesian coordinates of R2 and let us consider the function
ϕ : U ⊂ R2 → R3 given by ϕ(x, y) = (f(y) cosx, f(y) sinx, g(y))

U = {(x, y) ∈ R
2 : 0 ≤ x < 2π, y0 < y < y1},

where f and g are differentiable functions, with f ′(y)2+g′(y)2 6= 0 and f(y) 6= 0. Thus ϕ(x, y) is an
immersion and the image ϕ(U) is the surface generated by the rotation of the curve (0, f(y), g(y))
around the z axis.1 The induced Riemannian metric g = (gij) in the (x, y) coordinates is given by

g11 = f2 g12 = 0 g22 = (f ′)2 + (g′)2.

1Here we are considering the Euclidean space equipped with Cartesian coordinates whose axis are labeled as x, y, z
according to the ordering induced by the canonical orthonormal basis of R3.
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From (3), the Hamiltonian function associated to the geodesic flow is given by

H(x, y, px, py) =
1

2

(
1

f2
p2x +

1

f ′2 + g′2
p2y

)

and the co-geodesics flow reads as

(5)





ẋ =
1

f2
px

ẏ =
1

f ′2 + g′2
py

ṗx = 0

ṗy =

[
ff ′

f4
p2x +

f ′f ′′ + g′g′′

(f ′2 + g′2)2

]

or, equivalently, as 



ẍ+
2f f ′

f2
ẋ ẏ = 0

ÿ − f f ′

f ′2 + g′2
(ẋ)2 +

f ′f ′′ + g′g′′

f ′2 + g′2
(ẏ)2 = 0.

2 The stereographic projection of the sphere

Stereographic projection

The contents of this subsection are completely standard and the exposition is mainly devoted to fix
some notations. We have already introduced the sphere S

S := {(x, y, z) ∈ R
3 : x2 + y2 + (z −R)2 = R2}

and we call north pole and south pole the point N := (0, . . . , 0, 2R) ∈ S and its antipodal S :=
(0, . . . , 0, 0) ∈ S, respectively. Note that the sphere is tangent at the origin O to the plane {z = 0},
that we identify with R2 (Figure 1). Denote by πS the stereographic projection

πS : S \ {N} −→ R2

P 7−→ P̃ ,

defined by requiring that the three points N,P, P̃ are collinear. By a straightforward calculation it
follows that the map πS is given explicitly by

(6) πS(x, y, z) =
2R

2R− z
(x, y).

Using the angles φ and θ as previously defined, a generic point P = (x, y, z) on the sphere in these
coordinates has a local parameterization given by



x
y
z


 = R




sin θ cosφ
sin θ sinφ
1− cos θ


 = P (φ, θ).

Of course the map is a diffeomorphism of class C∞. In these coordinates the stereographic projection
πS is defined as:

R




sin θ cosφ
sin θ sinφ
1− cos θ


 7−→ 2R

1 + cos θ

[
sin θ cosφ
sin θ sinφ

]
.

We recall that ifM ⊂ R3 is a portion of a regular surface represented in Cartesian local coordinates
by the vector equation

P (u, v) := 0+ x(u, v) i+ y(u, v) j + z(u, v)k
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then dP = Pu du+ Pv dv for Pu = (xu, yu, zu) and Pv = (xv, yv, zv) and hence the metric is given
by ds2 = ‖dP ‖2. With the above parametrization of the sphere it follows that

Pθ = R (cos θ cosφ, cos θ sinφ, sin θ), Pφ = R(− sin θ sinφ, sin θ cosφ, 0).

Denoting by g and gS respectively the Riemannian metric on the sphere S and the metric on the
plane induced by the stereographic projection, we have

g := R2

[
sin2 θ 0

0 1

]
, gS :=

4

(1 + cos θ)2
g

As a consequence of the above calculation the following result holds.

Lemma 2.1 The manifolds (S, g) and (R2, gS) are in the same conformal class, where R2 denotes
the Alexandroff compactification of R2.

Co-geodesic flows

Let G and GS be the matrices corresponding to the inverse of g and gS respectively; thus we have

G = R−2

(
sin−2 θ 0

0 1

)
, and GS =

(1 + cos θ)2

4
G.

We denote by Ŝ = S \ {N,S}, the sphere minus the north and the south pole, and by T ∗Ŝ its

cotangent bundle. On Ŝ = S \ {N,S} the following Hamiltonian function is well-defined:

Hfree : T
∗Ŝ → R

(q;p) 7→ 1

2
〈Gp,p〉

where q := (φ, θ) are the positions and p := (pφ, pθ) are the momenta. With this choice the
Hamiltonian function is given by

Hfree(φ, θ; pφ, pθ) =
1

2R2

(
1

sin2 θ
p2φ + p2θ

)

and, as a particular case of (5), the co-geodesic flow on the sphere is given by

(7)





φ̇ =
1

R2 sin2 θ
pφ

θ̇ =
pθ
R2

ṗφ = 0

ṗθ =
cos θ

R2 sin3 θ
p2φ

.

The co-geodesic flow on the plane {z = 0} is equivalent to the above one through the stereographic
projection. Since the metrics g and gS are in the same conformal class, the new system is easily

derived using (4) with λ = (1+cos θ)2

4 .
However, on the plane we prefer to use the Cartesian coordinates (x, y) rather than the angular

coordinates (φ, θ). The latter are related to the former by the transformation

φ = arctan
(y
x

)
, θ = 2arctan

(√
x2 + y2

2R

)
.
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Hence, denoting by R2
s the plane endowed with the metric gS , the Hamiltonian function for the

co-geodesic flow on (R2, gS)

Kfree : T
∗
R

2
s → R : (q;p) 7→ 1

2
〈GS p,p〉

is explicitly given by
Kfree(x, y; px, py) = l(x, y) [a(x, y) p2x + p2y].

where q := (x, y) are the positions and p := (px, py) are the momenta and

(8) a(x, y) :=

[
4R2 + x2 + y2

4R
√
x2 + y2

]2
, l(x, y) :=

8R2

(4R2 + x2 + y2)2
.

In order to derive these expressions we used the identities

(9) sin θ =
4R
√
x2 + y2

4R2 + x2 + y2
, sinφ =

y√
x2 + y2

.

and
(1 + cos θ)2

8R2
=

8R2

(4R2 + x2 + y2)2
.

Note that a(x, y) corresponds to the term (sin θ)−2, while l(x, y) is just 1
2R2λ. To the Hamiltonian

Kfree is associated the Hamiltonian flow

(10)





ẋ = 2 (a l)(x, y) px

ẏ = 2l(x, y) py

ṗx = −[∂x(a l)p2x + (∂xl) p
2
y]

ṗy = −[∂y(a l)p2x + (∂yl) p
2
y]

where

(a l)(x, y) :=
1

2 (x2 + y2)
, ∂xl(x, y) = − 32R2x

(4R2 + x2 + y2)3
, ∂yl(x, y) = − 32R2y

(4R2 + x2 + y2)3
.

3 Position of the problem

We are now in the position to introduce a conservative force field on the sphere that perturbs, not
necessarily by small amounts, the dynamics of the free particle on the sphere. As already said in
the introduction, we are interested in the one center problem on the sphere, thus we introduce a
force field pointing towards (or outwards) a fixed point of the surface.

For the reasons discussed at the end of the introduction, we place the singularity of the potential
at the point Q = (0, R,R).

On S \ {Q} we define the

1. geodesic logarithmic potential as

Ugeo(P ) := − Γ

4π
log(dS(P,Q))

where dS(P,Q) is the geodesic distance between P and Q, that is the length of the shortest
arc of a great circle passing through the two points P and Q;

2. Euclidean logarithmic potential as

Ueuc(P ) := − Γ

4π
log(d(P,Q))

where d(P,Q) is the Euclidean distance between P and Q, that is the chord in R3 joining the
two points P and Q.
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Because the qualitative dynamics is mostly the same for the two cases, here we carefully analyze
the geodesic case and we point out from time to time the differences with the Euclidean case, if
any.

For any couple of points P1, P2 ∈ S ⊂ R3, the geodesic distance dS(P1, P2) is given by

(11) dS(P,Q) := R arccos
〈P1 − C,P2 − C〉

R2
,

where < ·, · > is the Euclidean scalar product in R3. Thus, in the (φ, θ)-coordinates, the geodesic
distance between any point P ∈ S and the vortex point Q is

dS(P,Q) = R arccos(sinφ sin θ).

We augment the free-motion Hamiltonian Hfree with the above potential function and we define

Hgeo : T
∗(Ŝ \ {Q}) → R

(12) Hgeo(φ, θ, pφ, pθ) := Hfree(φ, θ, pφ, pθ) +
Γ

4π
log(R arccos(sinφ sin θ)).

The last is the Hamiltonian that governs the motion of a particle constrained to move on a sphere
and subjected to the force field f(P ) = ∇Ugeo(P ): at any point P 6= Q the force points towards Q
if Γ > 0 or in the opposite direction otherwise, and it is proportional to the inverse of the distance
dS(P,Q).

On (R2, gS), using the relations (9), the distance dS(P,Q) becomes the function

(13) b(x, y) := R arccos

(
4Ry

4R2 + x2 + y2

)
= R arccos

(
1− x2 + (y − 2R)2

4R2 + x2 + y2

)

therefore we introduce the Hamiltonian

Kgeo : T
∗(R2

s \ {0, V }) → R

Kgeo(x, y, px, py) := Kfree(x, y, px, py) +
Γ

4π
log b(x, y) .

We observe that log b ∈ C (R2\{(0, 2R)}) and log b ∈ C 1(R2\{(0, 2R), (0,−2R)}): indeed the point
V = (0, 2R) is the stereographic projection of the vortex Q ∈ S, point of singularity of the potential,
while the point V ′ = (0,−2R) corresponds to the point Q′ on the sphere antipodal to the vortex
point. Here the potential is continuous but not differentiable, and this reflects the fact that in
the antipodal point the force field is not determined, being the geodesics arc joining Q′ to Q not
uniquely defined. In the following, anytime we refer to “the singularity” or to “the singular point”
of the system we mean the singularity placed in the vortex point V (or Q if seen on the sphere),
due to the logarithmic potential.

Hamilton’s equations associated to Kgeo can be written as follows:

(14)





ẋ = 2 (a l)(x, y) px

ẏ = 2l(x, y) py

ṗx = −[∂x(a l)p2x + (∂xl) p
2
y + Γ/(4π)b(x, y)−1 ∂xb(x, y)]

ṗy = −[∂y(a l)p2x + (∂yl) p
2
y + Γ/(4π)b(x, y)−1 ∂yb(x, y)]

.

For the Euclidean logarithmic potential the Hamiltonian is:

Heuc(φ, θ, pφ, pθ) := Hfree(φ, θ, pφ, pθ) +
Γ

8π
log(2R2(1− sin θ sinφ))

10



being 2R2(1 − sin θ sinφ) = ‖PQ‖2. Hamilton’s equations on the space (R2, gS) are still given by
(14), once the function b has been replaced by

beuc(x, y) :=

(
2R2[x2 + (y − 2R)2]

4R2 + x2 + y2

) 1
2

.

A remarkable difference between the geodesic and Euclidean case is that the function log beuc is
continuous and differentiable in the antipodal point V ′. Indeed it results ∇ log beuc(V

′) = 0 and this
agrees with the physical interpretation that the force field generated by Ueuc at the point P 6= Q is
proportional to the component of the chord PQ tangent to the sphere.

4 Energy hypersurfaces, regularization and flow

We begin the analysis of system (14) with the description of the topology of the constant-energy
hypersurfaces associated to Kgeo. For any h ∈ R the hypersurface of constant energy h is given by

(15)
Σ̃h := {(x, y, px, py) ∈ T ∗X : Kmech(x, y, px, py) = h}

=

{
(x, y, px, py) ∈ T ∗X : a(x, y) p2x + p2y =

1

l(x, y)

(
h− Γ/(4π) log(b(x, y))

)}
.

where X := R2\{0, V } denotes the configuration space and T ∗X the phase space (the cotangent
bundle over X). Since the function a(x, y) is strictly positive, for any value of h the motion is

−6 −4 −2 0 2 4 6
x

−15

−10

−5

0

5

10

15

y

h2

h1

Figure 3: Zero-level curves of the function Ẽh(x, y) in the geodesic case, for Γ = R = 1 and
h = log(nπ/10)/(4π), n = 0, . . . 10. For n = 10 the forbidden region is just the antipodal point at
(0,−2); for n = 0 the allowed region reduces to the vortex point at (0, 2). The euclidean case is
analogous, with shifted energy values.

allowed only in the region of the configuration space where the right hand side of the equation in
the definition of Σ̃h is positive (Fig.3). In the Lemma 4.1 below, the analysis is performed for Γ > 0:
changing the sign of Γ simply switches the allowed region with the forbidden region.

Lemma 4.1 For any fixed h let Ẽh : R2 → R be defined by:

(16) Ẽh(x, y) :=
(
h− Γ/(4π) log(b(x, y))

)
,

and let h1 = Γ
4π log(π2R), h2 = Γ

4π log(πR). Then

11



1. for every h > h2 the surface Ẽh(x, y) is positive for any (x, y) ∈ R2;

2. for any h ∈ (h1, h2) there exists a disk D1
h in the {y < 0} half-plane and containing the point

(0,−2R) such that Ẽh(x, y) is positive for each (x, y) ∈ R2\D1
h and negative otherwise;

3. for any h < h1 there exists a disk D2
h in the {y > 0} half-plane, containing the point (0, 2R),

such that Ẽh(x, y) is positive for all (x, y) ∈ D2
h and negative otherwise.

Proof. The logarithm and the arccos are monotone functions, therefore the level sets of Ẽh(x, y)

corresponds to the level sets of
x2 + (y − 2R)2

4R2 + x2 + y2
. For any δ ∈ [0, 2] the δ-level set is the circle Cδ

with equation

x2 + y2 − 4R

1− δ
y + 4R2 = 0 .

The result of the lemma follows from a straightforward analysis of Cδ and by computing the value
of Ẽh(x, y) in correspondence of δ = 2 and δ = 0. In particular Cδ collapses to the points (0, 2R)
and (0,−2R) respectively at δ = 0 and δ = 2 and degenerates to the x-axis for δ = 1. ✷

Remark 4.2 In case of the Euclidean potential the results of Lemma 4.1 hold with h1 = Γ
8π log(2R2)

and h2 = Γ
4π log(2R).

We now introduce the space and time coordinate transformations, analogous to those of McGe-
hee, that allow for the removal of the logarithmic singularity in the system (14). Let us define the
functions

(17)

{
ϕ1(r) := r e−1/r2

ϕ2(r) := 1/r.

Following the notation of [StFo03], we introduce the change of variables

(18)

{
x = ϕ1(r) s1
y = ϕ1(r) s2 + 2R

,

{
px = ϕ2(r) zx
py = ϕ2(r) zy

where s = (s1, s2) = (cosα, sinα) ∈ S1 is a point on the unit circle. In the new coordinates (r, α),
the functions a(x, y), l(x, y), a l(x, y) and b(x, y) introduced in (8) and (13) become

a(r, α) =

[
8R2 + 4Rϕ1(r)s2 + ϕ2

1

4R
√
ϕ2
1 + 4R2 + 4Rϕ1(r)s2

]2
, b(r, α) = R arccos

(
1− ϕ1(r)

2

8R2 + ϕ1(r)2 + 4Rϕ1(r) s2

)
,

l(r, α) =
8R2

(4R2 + ϕ2
1 + 4Rϕ1 s2)2

, and (a l)(r, α) =
1

2(4R2 + ϕ2
1 + 4Rϕ1 s2)

;

and the energy surfaces Σh can be written as

Σh =

{
(r, α, zx, zy) ∈ R

+ × S
1 × R

2 : a(r, α) z2x + z2y =
r2

l(r, α)

(
h− Γ/(4π) log(b(r, α)

)}
.

We also observe that

• limr→0+ a(r, α) = 1 uniformly with respect to α;

• limr→0+ b(r, α) = 0 uniformly with respect to α;

• limr→0+ l(r, α) = 1/(2R2) uniformly with respect to α.

By taking into account the definition of the functions ϕj , the right hand side of the equation
defining the level set Σh reduces to

Ê(h, r, s) :=
r2

l(r, s)

[
h− Γ

4π
log

(
R arccos

(
1− r2e−2/r2

8R2 + r2e−2/r2 + 4Rre−1/rs2

))]

As it was already implicit in Lemma 4.1, in the attractive case (Γ > 0) the vortex point V lies in
the allowed region of every energy level h and the value of Ẽh(x, y) diverges to infinity as (x, y) → V .
However, a first important consequence of this change of variables is that in the coordinates (r, s)
the kinetic energy remains bounded when a collision occurs. Indeed it holds

12



(a) (b) (c)

Figure 4: Graph of the function Ê in the three cases: (a) h > h2, (b) h1 ≤ h ≤ h2, (c) h < h1. The
intersection between the surface and the plane Ê = 0 is the zero-velocity manifold. The figure was
drawn using the geodetic distance. The euclidean case is qualitatively the same.

Lemma 4.3

(19) lim
r→0+

Ê(h, r, s) =
ΓR2

2π

Proof. By taking into account the asymptotic behavior of l(r, α) for r → 0, we get

lim
r→0+

Ê(h, r, s) = −2R2 Γ

4π
lim
r→0+

r log

(
R arccos

(
1− re−2/r

8R2

))

=
Γ

2π
lim
r→0+

r(2 + r)e−2/r

arccos

(
1− re−2/r

8R2

)√

1−
(
1− re−2/r

8R2

)2
.

(20)

The result follows by the fact that
√
1− (1− t)2 arccos(1− t) = 2t+ o(t). ✷

From now on, we shall only consider the attractive case. Thus we assume

Γ > 0.

The intersection between one (and hence every) energy hypersurface Σh with r = 0 is called
total collision manifold. In virtue of the limit (19), we may conclude that

• the total collision manifold does not depend on the fixed energy level h; otherwise stated it is
a boundary for every constant-energy surface;

• it is diffeomorphic to the two dimensional torus T := S1 × S1.

From the dynamical viewpoint an important role is played by the zero set of the function Ê:

Zh := {(r, α) ∈ X : Ê(h, r, α) = 0}.

In the following we refer to this set as the zero velocity manifold in Σh. Rephrasing the results of
Lemma 4.1 in terms of the new coordinates (r, α) it readily follows that Zh is empty in the first case
(h > h2) and non-empty otherwise. In the second case, (h1 ≤ h ≤ h2), the zero velocity manifold is
represented by a simple closed curve homeomorphic to a circle (or to a point in the limit h→ h2).
The motion is forbidden inside the region bounded by the curve. In the third case, the zero set
can be seen as the graph of a single-valued function α 7→ r(α) and the function Ê is positive for
0 < r < r(α) (Figure 4).
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Regularization and McGehee coordinates

We now rewrite the equations of motion (14) in the new system of coordinates r, α and z. In order
to preserve the continuity of the flow with respect to the initial data, we need to ensure that the
transformed system has an everywhere differentiable vector field. To this purpose we rescale the
time variable in terms of the distance from the singularity with the effect to exponentially decrease
the velocities near the singularity. As a result the collision solutions (which are singular in the old
coordinates) move along smooth orbits that asymptotically converge to the collision manifold.

Let us define dτ = ϕ2(r)ϕ
−1
1 (r) dt and use the notation

〈z, s(α)〉a := a(x, y)zx cosα+ zy sinα.

With the help of the identities

ϕ1(r)

ϕ′
1(r)

=
r3

r2 + 2
,

ϕ1(r)

ϕ2
2(r)

= r3 e−1/r2 ,
ϕ1(r)ϕ

′
2(r)

ϕ2(r)ϕ′
1(r)

= − r2

r2 + 2

the Hamiltonian equations in (14) become

(21)





dr

dτ
=

2r3

(2 + r2)
l(r, α) 〈z, s(α)〉a

dα

dτ
= 2l(r, α) (zy cosα− a(r, α)zx sinα)

dzx
dτ

= − re−1/r2 [(al)x(r, α)z
2
x + lx(r, α) z

2
y ]−

Γ

4π
r3 e−1/r2 bx(r, α)

b(r, α)
+

+2
r2

r2 + 2
l(r, α)〈z, s(α)〉a zx

dzy
dτ

= − re−1/r2 [(al)y(r, α)z
2
x + ly(r, α) z

2
y ]−

Γ

4π
r3 e−1/r2 by(r, α)

b(r, α)
+

+2
r2

r2 + 2
l(r, α)〈z, s(α)〉a zy

where the subscripts in (al)x(r, s), (al)y(r, s) (resp. bx(r, s), by(r, s)) denote the partial derivative
with respect to the old Cartesian variables. The derivative is then evaluated in the new coordinates
at the point (r, α). These equations are no longer singular at r = 0: in fact,




∂xb

b

∂yb

b


 (r, α) =

1

arccos

(
1− ϕ1(r)

2

C(r, α)

)√

1−
(
1− ϕ1(r)

2

C(r, α)

)2

C(r, α)2

·




8Rϕ1(r) cosα
(
ϕ1(r) sinα+ 2R

)

4R
(
ϕ2
1(r)(sin

2 α− cos2 α)− 4Rϕ1(r) sinα
)




(22)

where C(r, α) = 8R2 + ϕ2
1(r) + 4Rϕ1(r) sinα, and it follows

(23)




∂xb

b

∂yb

b


 (r, α) → ϕ−1

1

[
cosα
sinα

]
.

Thus the time change produces the effect to regularize the singularity. In addition the {r = 0}
manifold results to be invariant.

From a naive point of view, the study of the flow on the collision manifold could appear mean-
ingless, since the manifold is the image of just a singular point where the orbits cease to exists. In
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reality, the properties of the flow on such manifold yield information on the behavior of the orbits
close to the singularity.

In order to simplify the system (21), we introduce a further change of coordinates and time
rescaling. Using the energy relation

(24) a(r, α) z2x + z2y = Ê(h, r, α),

let us define ψ and σ such that

(25)





zx =

√
Ê(h, r, α)/a(r, α) cosψ,

zy =

√
Ê(h, r, α) sinψ

dτ =

√
Ê(h, r, α) dσ

Denote by A1(r, α, z), A2(r, α, z) the right hand side of, respectively, the third and fourth equation

in (21), so that
dzx
dτ

= A1,
dzy
dτ

= A2. Therefore, on any fixed-energy shell, the system given in (21)

reduces to

(26)





dr

dσ
=

2r3 Ê(h, r, α)

(2 + r2)
l(r, α)(

√
a(r, α) cosψ cosα + sinψ sinα)

dα

dσ
= 2 Ê(h, r, α) l(r, α)(sinψ cosα−

√
a(r, α) cosψ sinα)

dψ

dσ
= B(r, α, ψ)

where B is given by:

B(r, α, ψ) := −
√
a sinψA1 +

√
a sinψ cosψ

d

dτ




√
Ê

a


+A2 cosψ − d

dτ
(
√
Ê) sinψ cosψ.

Flow and invariant manifolds

Recalling that l is everywhere positive, the rest points of (26) correspond to solutions of the following
systems:

(27)





r = 0
f2(r, α, ψ) = 0
B(r, α, ψ) = 0

or





f1(r, α, ψ) = 0
f2(r, α, ψ) = 0
B(r, α, ψ) = 0

or

{
Ê(h, r, α) = 0
B(r, α, ψ) = 0

where

f1(r, α, ψ) :=
√
a cosψ cosα + sinψ sinα, f2(r, α, ψ) := sinψ cosα−

√
a cosψ sinα .

We immediately discard the second system as it does not allows any solution. In fact the first two
equations are incompatibles. We note that a → 1 for r → 0, thus the first system reduces to





r = 0
sin(ψ − α) = 0
B(r, α, ψ) = 0

whose solutions correspond to fixed points on the collision manifold. The existence of solutions of
the last system depends on the energy level h: if h ≥ h2 the zero set of Ê is empty and no solutions
exist. For h ≤ h2, solutions may exist.

Summarizing, any rest point either lies on the collision manifold or on the zero velocity manifold.
Let us first consider the collision manifold: the asymptotic analysis of the function B(r, α, ψ) on
the collision manifold (see Appendix A) gives

lim
r→0+

B(r, α, ψ) = 0.

It follows that
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Lemma 4.4 The equilibria of the vector field given in (26) lying on the total collision manifold
consists of two curves. In local coordinates (r, α, ψ) these curves are given by

(i) P1 ≡ (0, α, α);

(ii) P2 ≡ (0, α, π + α).

Proposition 4.5 For each α, the equilibrium points

(0, α, α) ∈ P1

and
(0, α, π + α) ∈ P2

are degenerate saddles.

1. dimWu(P1) = 1, dimW s(P1) = 1, dimW 0(P1) = 1.

2. dimWu(P2) = 1, dimW s(P2) = 1, dimW 0(P2) = 1.

Proof. The flow on the collision manifold is given by

(28)





dα

dσ
=

Γ

4π
sin(ψ − α)

dψ

dσ
= 0.

whose orbits are parallel to α-axis and flow from P2 to P1. The stability of the rest points is
determined by the eigenvalues of the Jacobian matrix of (26). It follows (see appendix A) that for
any point P1 ∈ P1 and P2 ∈ P2 the eigenvalues are

P1 ∈ P1 ⇒





λr = 0

λα = − Γ

4π
λψ = 0

, P2 ∈ P2 ⇒





λr = 0

λα =
Γ

4π
λψ = 0.

Figure 5: The collision manifold, the curves of rest points P1 (blue) and P2 (red), and the vector
field of equations (28).

The eigenvalues are coherent with the dynamics restricted on the collision manifold as given
by (28), where P1 is an attractor and P2 is a repeller (figure 5). However, the presence of null
eigenvalues implies that the linear approximation of the flow, taken alone, does not provide enough
information to determine the qualitative dynamics close to the equilibrium points. Since the flow in
the ψ direction is null (and in fact ψ can be regarded as the parameter which identifies an individual
rest point along the P1 and P2 curves), in order to determine the asymptotic behavior close to P1

and P2, it is enough investigate the dynamics restricted to the (r, α)-plane.

Definition 3 We shall say that the flow on the collision manifold is totally degenerate if the
unstable manifold of an equilibrium point P1 ∈ P1 , coincides with the stable manifold of some
equilibrium point P2 ∈ P2.
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d
im
W

s

d
im
W

u

d
im
W

0

At P1 1 1 1

At P2 1 1 1

Table 1: Dimensions of the invariant manifolds along the equilibrium curves P1 and P2

Lemma 4.6 The flow on the total collision manifold is totally degenerate. More precisely

(i) Wu(P1) ≡W s(P2);

(ii) Wu(P2) ≡W s(P1);

where P1 ∈ P1 and P2 ∈ P2 are chosen in such a way that the last coordinate of the two points
agrees.

Proof. The proof of this result follows by a straightforward integration of the equations of motion
on the total collision manifold r = 0. We omit the details and we refer to the equivalent proof of
Lemma 7.4 in [StFo03]. ✷

A direct consequence of the previous result is the following:

Corollary 4.7 (Existence of heteroclinic connections) There exists an heteroclinic connec-
tion between each equilibrium point P1 ∈ P1 and the point P2 ∈ P2 where P1,P2 are chosen in
such a way that they have the same projection on the first and third coordinate.

Proof. The proof of this result follows immediately by the previous result. By the fact that r = 0
and ψ is constant, it follows that the non equilibrium solutions are in the (α, ψ)-plane lines parallel
to the α-axis. Moreover each point of equilibrium on P1 is attracting while each equilibrium point
on P2 is repelling. ✷

Moving out of the collision manifold, the two lines P1 and P2 exhibit the opposite stability

character: indeed
dr

dσ
> 0 for ψ = α and

dr

dσ
< 0 when ψ = α + π, meaning that the system goes

into the collision along P2 and escape from the collision along P1.
Next we examine the restpoints and the flow on the zero velocity manifold. This is more easily

accomplished by looking at the system given in (21). Restpoints, in fact, are not changed by a time
scaling. Setting Ê = 0 in the energy relation (24), which implies zx = zy = 0, it follows that on the
zero velocity manifold the dynamical system (21) reduces to:

(29)





dr

dτ
= 0

dα

dτ
= 0

dzx
dτ

= − Γ

4π
r3 e−1/r2 bx(r, α)

b(r, α)

dzy
dτ

= − Γ

4π
r3e−1/r2 by(r, α)

b(r, α)
.

The restpoints on the zero velocity manifold (if any) correspond to the solutions of the equations:

bx(r, α)

b(r, α)
=

by(r, α)

b(r, α)
= 0.

An elementary calculation shows the following result.
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Lemma 4.8 In the case of Euclidean logarithmic potential, for h = h2 = Γ
4π log(2R) there exists

only one restpoint on the zero velocity manifolds at P := (r∗, 3π/2) for ϕ1(r∗) = 4R. For h 6= h2
there are no restpoints.

Rephrased on the sphere, the rest point corresponds to the equilibrium solution of the dynamical
system given by the initial data placed in the antipodal point with zero velocity.

As already noticed, in the case of the geodesic logarithmic potential the force field is not defined
in the antipodal point, being the potential not differentiable. Therefore in this case there are no
rest points on the zero velocity manifolds.

5 Global flow and dynamics on the sphere

It is now possible to bring back on the sphere the results found on the stereographic plane in the
previous sections.

The first concerns the flow around the singularity and the possible extension of the singular
trajectories. Recalling the definition of transmission solution, (Def. 1 ) we can now answer to the
main question and give the proof of Theorem 1.

Proof. of Theorem 1. It follows from the regularization of the flow performed in the previ-
ous section and from the existence of the heteroclinic connections anywhere on the total collision
manifolds of the regularized flow (Corollary 4.7). In particular, an orbit that reaches the collision
manifold from the (nonlinearly) stable manifold of P2, follows an heteroclinic orbit from P2 to P1,
and then leaves the collision manifold along the (nonlinearly) unstable manifold of P1, experiences
a phase shift of π in the α coordinate, while maintaining a constant value for the ψ coordinate.
It is straightforward to verify that, in terms of the angular coordinates (φ, θ) on the sphere this
corresponds to a collision-transmission trajectory, as defined in Definition 1 ✷

This result shows that, at least locally around the singularity, the dynamics is not affected by the
curvature of the space. Indeed the same notion of regularization of the flow for a single logarithmic
center on the plane has already been proved, among others, in [CaTe11] with a completely different
technique.

Remember that we placed the vortex at the point Q with coordinates (φ, θ) = (π/2, π/2) and
that in terms of the coordinates (φ, θ) the dynamics on the sphere is governed by the Hamiltonian
Hgeo, given in (12). Also recall the definition of vortex half-sphere, antivortex half-sphere, vortex-
parallel , vortex-meridian already given in the Introduction. In the attractive case, the results of
Lemma 4.1 can be rephrased as follows.

Theorem 5.1 If h ≥ h2 then the motion is allowed everywhere on the sphere. If h < h2 the motion
is allowed only in a sphere cap containing the vortex point whose boundary is a vortex-parallel that
lies on the vortex half-sphere for h < h1 or in the antivortex half-sphere if h2 < h < h1. Moreover
the zero velocity manifold consists in one of the vortex parallel when h < h2, it reduces to the
antipodal point when h = h2 and it is empty for h > h2.

In order to understand the global dynamics it is useful to show the existence of a second conserved
quantity, analogous to the angular momentum for planar dynamics. To this aim it is convenient
to move the vortex point at the north pole, i.e. Q = (0, 0, 2R) (or, equivalently, to redefine the
parameterization of the sphere). Obviously this does not change the dynamics. Note that the
curves {θ = const} and {φ = const} now respectively correspond to the vortex parallels and to the
vortex meridians.

In this setting, the geodesic distance is simply dS(P,Q) = R(π − θ), yielding the Hamiltonian

Hgeo(θ, φ, pθ, pφ) =
1

2R2

(
1

sin2 θ
p2φ + p2θ

)
+

Γ

4π
log(R(π − θ)).
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and the dynamical system

(30)





φ̇ =
1

R2 sin2 θ
pφ

θ̇ =
pθ
R2

ṗφ = 0

ṗθ =
cos θ

R2 sin3 θ
p2φ +

Γ

4π

1

π − θ

.

In the Euclidean case, we get

Heuc(θ, φ, pθ, pφ) =
1

2R2

(
1

sin2 θ
p2φ + p2θ

)
+

Γ

8π
log(2R2(1 + cos θ)).

Going to the Lagrangian formulation, we can write the Euler-Lagrange equations

d

dt
(R2φ̇ sin2 θ) = 0

R2θ̈ −R2 sin θ cos θφ̇2 +
Γ

4π

1

π − θ
= 0.

The first shows the existence of a conserved quantity, namely the spherical angular-momentum
l = R2 sin2 θφ̇. It follows that

Lemma 5.2 A necessary condition for a solution to either collide with the vortex or to reach the
antipodal point is l = 0.

Proof. Writing the energy relation in terms of (φ, θ, φ̇, θ̇) and substituting φ̇ = l
R2 sin2 θ

, it
follows that, for a given value of the spherical angular momentum l, a solution exists only for those
θ satisfying

2R2h sin2 θ − Γ

4π
R2 sin2 θ log(R(π − θ))− l2 ≥ 0

Since the vortex is placed at θ = π, and that the antipodal point is at θ = 0, it follows that if either
a collision occurs, or the antipodal point is reached, then l2 ≤ 0. ✷

Looking at the system (30), one can easily prove the existence of particular solutions as depicted
in Fig.2.

Lemma 5.3 (i) Any vortex-parallel on the vortex half-sphere is the support of a periodic orbit.

(ii) The vortex-meridians are flow-invariant.

Proof. For any θ ∈ (π2 , π) the curve

γθ(t) := (φ, θ, pφ, pθ)(t) =

(
φ0 + t

pφ

R2(sinθ)2
,θ,pφ, 0

)

with pφ
2 = − Γ

4π
R2 sin3 θ

(π−θ) cos θ is a solution of the system. Note that the previous relation can not be

satisfied if θ ∈ (0, π/2], which implies that only the vortex-parallel placed in the vortex half-sphere
are support of periodic orbits. Moreover the period of γθ(t) tends to zero as θ goes to π/2 or
π. This proves statement (i). Statement (ii) immediately follows by noting that any initial data
(φ, θ, pφ, pθ)(0) = (φ0, θ0, 0, p0θ) leads to an orbit traveling on the {φ = φ0} vortex meridian. ✷

The above discussion provides a complete picture of the global dynamics. Any solution with
non-zero angular momentum will never end up into the collision neither it will reach the antipodal
point. Otherwise, in case l = 0, the orbit is moving on the vortex-meridians and it will fall into
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the vortex point. By extending the singular trajectories as in Definition 1, it follows that collision-
transmission solutions behave in three different ways, depending on the energy level h: if h < h2,
after the ejection from the singularity, the particle reaches the zero velocity manifold, then it reverses
the motion, falls back into the vortex point and repeats the motion on the same vortex-meridian
but in the opposite direction. If h ≥ h2 the trajectory will reach the antipodal point. In the case
of the Euclidean logarithmic potential the dynamics is well defined even at the antipodal point,
which is a rest point. Then we have that that if h = h2 the ejection orbit is an heteroclinic orbit
between a point of P2 and the antipodal rest point (which is the only rest point on the zero-velocity
manifold). If h > h2, after the ejection, the orbits travels along a vortex meridian, passes through
the antipodal rest point, and continues the motion on the opposite meridian until it falls down
again into the singularity. Then it repeats periodically the same orbit.

A Useful limits

In this appendix we list some asymptotic limits of the functions appearing in the equation of motion
in McGeheee coordinates. They are useful to compute the spectrum of the eigenvalues associated
to the fixed points.

On the total collision manifold r = 0

All the limits below are computed with respect to r and are uniform with respect to the other
variables. For the function Ê, we have:

lim
r→0+

Ê(h, r, α) =
ΓR2

2π
lim
r→0+

∂r Ê(h, r, α) = 0 lim
r→0+

∂α̂E(h, r, α) = 0

For the functions a, b, we have

lim
r→0+

a(r, α) = 1, lim
r→0+

∂ra(r, α) = 0, lim
r→0+

∂αa(r, α) = 0

lim
r→0+

b(r, α) = 0, lim
r→0+

∂rb(r, α) = 0

For the functions ax, bx,ay, by, we have

lim
r→0+

ax(r, α) = 0 lim
r→0+

ay(r, α) = 0 lim
r→0+

∂rax(r, α) = 0

lim
r→0+

bx(r, α) = 0 lim
r→0+

by(r, α) = 0 lim
r→0+

∂rbx(r, α) = 0

lim
r→0+

r3 e−1/r2bx(r, α)

b(r, α)
= 0

lim
r→0+

∂αax(r, α) = 0 lim
r→0+

∂αay(r, α) = 0

lim
r→0+

∂αbx(r, α) = 0 lim
r→0+

∂αby(r, α) = 0

lim
r→0+

r3 e−1/r2∂αbx(r, α)

b(r, α)
= 0, lim

r→0+

r3 e−1/r2∂αby(r, α)

b(r, α)
= 0

lim
r→0+

r3 e−1/r2bx(r, α)∂αbx(r, α)

b2(r, α)
= 0, lim

r→0+

r3 e−1/r2by(r, α)∂αby(r, α)

b2(r, α)
= 0

For the functions zx, zy, we have:

lim
r→0+

zx(r, α, ψ) =

√
Γ

π
2R2 cosψ, lim

r→0+
zy(r, α, ψ) =

√
Γ

π
2R2 sinψ,

lim
r→0+

∂rzx(r, α, ψ) = 0, lim
r→0+

∂αzx(r, α, ψ) = 0,
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lim
r→0+

∂ψzx(r, α, ψ) = −
√

Γ

π
2R2 sinψ, lim

r→0+
∂ψzy(r, α, ψ) =

√
Γ

π
2R2 cosψ,

lim
r→0+

∂rzy(r, α, ψ) = 0, lim
r→0+

∂αzy(r, α, ψ) = 0.

As consequence of the above asymptotic behavior it follows that

lim
r→0+

A1(r, α, ψ) = 0, lim
r→0+

A2(r, α, ψ) = 0, lim
r→0+

B(r, α, ψ) = 0

lim
r→0+

∂αA1(r, α, ψ) = 0, lim
r→0+

∂αA2(r, α, ψ) = 0.

dr

dτ
= 0,

dα

dτ
=

√
Γ

2π

1

R
sin(ψ − α)

lim
r→0

d

dτ

√
Ê = 0.

Denoting by J := (Jij)i,j the variational matrix on the total collision manifold it follows that

J11 = 0, J12 = 0, J13 = 0, J32 = 0, J33 = 0.

J21 = 0, J22 = − Γ

2π
cos(ψ − α), J23 = −J22,

lim
r→0+

∂2ατa(r, α) = 0, lim
r→0+

∂2ατ Ê(h, r, α) = 0.

The limit involved in the computation of the term J31, in general may not exists. However at the
restpoints ψ = α or ψ = α+ π this limit actually exists and this implies that J31 = 0.
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