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Abstract 

An implicit-explicit (IMEX) method is combined with some so-called 

Richardson extrapolation (RiEx) methods for the numerical solution of 

reaction-diffusion equations with pure Neumann boundary conditions. 

The results are applied to a model for determining the overpotential in a 

Proton Exchange Membrane (PEM) fuel cell. 

1  Introduction 

The numerical solution of advection-reaction-diffusion equations is a central problem in the 

numerical analysis. In practice, many important meteorological phenomena are modelled using 

reaction-diffusion equations (which are often supplemented with advection terms). Therefore, 
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the efficient numerical solution of these equations is of central importance. The numerical 

treatment of the boundary layer effect and the possibly stiff terms lead to challenging problems. 

The importance of this topic lies in the applicability of the corresponding models in the natural 

sciences including athmospheric modeling. 

A previously [2] presented implicit-explicit (IMEX) method of second order in space is 

supplemented with Richardson extrapolation methods (passive and active) in time. The new 

method is developed for the numerical solution of reaction-diffusion equations with pure 

Neumann boundary conditions in order to have a method of second order both in space and in 

time. Richardson extrapolation is a very efficient method to increase the accuracy of many 

numerical methods. It consists of applying a given numerical scheme with different 

discretization parameters (in our case different time steps) and combining the obtained results 

with properly chosen weights [11]. 

2  Motivation 

The method which we start from is stable under very mild conditions. If we can enhance also its 

time accuracy, we can have an efficient algorithm. In the athmosperic modeling it is particularly 

useful, since a fast method leading  to an up-to-date forecast needs relatively large time steps. 

At the same time, in real life situations we have to run the corresponding simulations over many 

time steps, so the stability of the method is of primary importance. 

To get a complex one-dimensional reaction-diffusion problem we cite here an interesting 

electrochemical model. Nowadays, electrical energy is the cleanest and most versatile energy 

that can be used in almost all fields of life. Due to the technical improvements, the utilization 

and the efficiency of producing electrical energy are increasingly growing.  

In this section we compute numerically the overpotential in PEM fuel cells. These kinds of 

fuel cells “burn” hydrogen fuel and oxygen to water, producing electrical energy at a high 

efficiency without air pollution. Their operation can be reversible: they can also convert 

electrical energy into chemical energy.  

The electro-chemical reactions take place at the anode and at the cathode on the boundary of 

two phases (solid and solution phase), while the charge neutrality is macroscopically preserved. 

Complex models [10] are needed to solve different phenomenological equations such as the 

Nernst-Planck equation for multiple mass transport, the Stefan-Maxwell equation for heat 

transfer, Ohm’s law for ionic migration and electron conductivity, and the equations of 

electrochemical kinetics. These models are usually solved by using only a single solver, e.g., 

Runge-Kutta, Newton or Crank-Nicholson methods. 

Subramanian et al. [9] developed a method to reduce the number of the governing equations of 

Li-ion battery simulation by using different mathematical techniques. The original problem 
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with a proper discretization has 4800 equations which can be reduced to 49, and finally the 

simulation time of the discharge curve can be cut to 85 ms. However, in this model the 

double-layer capacitance was not included.  

We focus here only on the evolution of the overpotential and we take into consideration both 

the inhomogeneity of the conducting media and the presence of the different phases in the cell. 

We perform the computations with realistic parameters. 

 

2.1  Physical laws: homogeneous and heterogeneous models 

In practice a consumer (some kind of electric device) is inserted into an electrical circuit, which 

is feeded by the fuel cell. We assume that the current in the outer circuit is known (    ) and we 

can control it. The aim of the following investigation is to calculate the corresponding voltage, 

which is called the cell potential. This gives also the electric energy provided by the fuel cell, 

which is very important in the course of evaluating the performance of a fuel cell.  

According to Kirchoff’s law, the cell potential       can be calculated by the following 

equation, see also [6]:  

 

                   
      

    

    
                 (1) 

 

where          denotes time. Here            V denotes the open circuit potential, 

which is present between the anode and cathode without the presence of any consumer.  

Considering the simplest form of Ohm’s law, the term 
    

    
      means the potential loss at 

the membrane, the thickness and conductivity of which are denoted by      and     , 

respectively. 

The calculation of the last quantity on the right-hand side     , which refers to the potential 

loss at the cathode, needs a detailed analysis. The interval       refers to the thickness of the 

cathode, where two phases are distinguished:  

• The solution phase, where the hydrogen ions are conducted according to the rate     . 

The potential and the current density in this phase are denoted by    and   , 

respectively.  

• In the solid phase of the cathode electrons are conducted according to the rate     . The 

potential and the current density here are denoted by    and   , respectively.  

All of these quantities could be allowed to depend on time and space corresponding to the given 

assumptions and the structure of the fuel cell and the time evolution of the process. 
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Using the defined quantities,    in (Hiba! A hivatkozási forrás nem található.) can be given as  

                       ,           (2) 

The quantity we investigate in the governing equations is the overpotential  

                         ,         ,           (3) 

In the calculation of the potentials, we choose the reference level to be at the left end of the 

solution phase, i.e., we define          . This is in a good accordance with the uniqueness 

of the solutions in the corresponding equations. As we will see, the governing equations depend 

only on the spatial derivatives of the potentials, such that the above assumption is necessary to 

determine both         and        . Then an immediate consequence of (2) and (3) is that 

 

                                (4) 

 

Applying Ohm’s law for both phases we obtain  

 
                         

                         
 (5) 

and the principle of electroneutrality gives  

                       (6) 

The conservation law for the currents (see [7]) results in the formula  

                                                      
 

  
         (7) 

Here, the function        gives the double-layer capacitance at the cathode side, and the last 

term yields the faradic current with      , the exchange current density at the cathode. For the 

notations of the material coefficients we refer to the Appendix. The function        refers 

to the kinetics of the oxygen reduction reaction here. This should be an increasing function with 

      .  

Remark 2.1 Among the several approaches for the sake of simplicity we apply linear kinetics 

and, accordingly, we use  

              (8) 

where      is a given bounded non-negative function. Other possible choices are the 

following, which are going to be used in the course of the analysis and the numerical 

experiments [5].  
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• Butler–Volmer kinetics: 

                             (9) 

• diffusion kinetics: 

             
          

                 
 

           

                 
   (10) 

where       is the limiting current, which in this equation is acting as a diffusion 

coefficient. This choice provides the most accurate model of the cathode reaction.  

In what follows the notation      stands for any of the above functions            .  

At the left end of the cathode only the protons can exit to the membrane and similarly, at the 

right end (at the current collector), only the electrons can leave the cathode. Therefore 

            and             such that using (3) we have the following boundary 

conditions  

                      
 

       
    ,                

                    
 

       
    ,                 (11) 

Although we have listed all physical principles and the governing equations here, the 

corresponding equations are not yet ready for the solution, since (7) contains also the unknown 

term        .  

 

2.2  Governing equations in the heterogeneous case 

In this section we will obtain an explicit equation for the overpotential        by eliminating 

the term         in (7) without assuming constant material and kinetic coefficients.  

The physical laws in (5), (6), (7) and (11) can be rewritten into a single reaction-diffusion 

equation of type (21) for the unknown function  : 
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        (12) 

For the corresponding initial-boundary value problem we use the initial value  

         ,            (13) 

and (12) is equipped with the Neumann type boundary conditions in (11).     □ 

  

Remark: We can express         as 

 

          
 

               
                         (14) 

and consequently, by the assumption           (see the explanation after (3)) we have  

            
         

                   
         

 

                   
        

 

 
 (15) 

Therefore, according to (4) we can give the potential loss    at the anode as  

                      

 

          
         

                   
         

 

                   
       

 

 
   (16) 

 

This completes the computation of the right-hand side of (Hiba! A hivatkozási forrás nem 

található.), and the desired quantity          can be given. 

  

Remark: According to the notations of the second section of this work we have that  

  
 

    
,   

        

         
 and                

  

   
   

 

  
        

 

    
   

    

         
      (17) 

 

2.3  Model problem 

For testing the method in the article, we investigate here a model problem. Based on real 

measurements we have  

           and          and accordingly, we define  

                        and                       (18) 

Consequently,  
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                 and 
    

         
      

   

    
. 

For simplicity, we did not incorporate time dependence yet, but our analysis extends also to the 

case of time dependent conductivity parameters. If the analytic solution of the governing 

equation (12) is  

        
  

 
       

    

    
     (19) 

we can verify that the equalities  

  
 

         
              

  

 

    

    
 

 
 

         
               

  

 
   

    

    
   (20) 

hold true such that          and          correspond to    and    in (21), where      

     
    

    
  . These show that the boundary conditions in (11) are satisfied.  

Using all parameters we can give        such that   in (19) is the solution of (12) with the 

boundary conditions in (11). 

It is justified to use the numerical method in Section 4 to approximate   since the 

Assumptions ,  and  are satisfied:  

• According to (17) and the choice of the linear kinetics,  

                 
 

  
   

which is bounded.  

• The coefficient functions   and   given in (17) are obviously positive.  

• The inequalities in Assumption  have been verified consecutively in the time steps 

during the simulations. These results are shown in Figure 1. One can see that using a 

reasonably accurate space discretization we can simulate the underlying process over 

sufficiently long time.  
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Figure 1: Number of steps   with step length     s until Assumption  is satisfied vs. 

the number   of the grid points on the interval     cm. 

3  Finite Difference Approximation 

We use the following reaction-diffusion equation as a protoype to investigate some finite 

difference approximation:  

 

                                                                      

                       

                                               

  (21) 

 

for the unknown function   on the interval             over the time domain      , 

where the coefficient functions                   , the reaction term                  

   and the fluxes          
       are given.  

For the numerical approximation we use a staggered grid:   is divided into   uniform 

subintervals of length   

  
     

 
 such that  

        
    

    
,           and  

  
 

 

      
 

   
,           

denote the midpoints and the endpoints of the subintervals, respectively as shown in the 

following figure:   
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For the time discretization we use the time step   
 

 
 and the notation        . 

We denote the vector of unknowns by  

       
    

      
  , 

where   
          . The values of the coefficient function   

           are defined in the 

midpoints of the subintervals,                 and           . Accordingly, we use the 

notations  

                                      
    

and  

           
                

                 
      

At the same time the values of the coefficient function  
  

 

 

           
 

  are computed at 

the end points of the subintervals,                 and           . 

 

4  The IMEX scheme 

We developed a finite difference scheme in [2]. To discuss the corresponding extrapolation 

method we summarize the notations and results in [2]. For the proof of the statements we refer 

to this work. We developed a finite difference scheme following the method of lines: the vector 

of unknowns at the      th time step is determined from that at the  th time step [2]. 

Using the notations in Section 3 we consider the following finite difference approximation of 

(21):  
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  (22) 

 

Under the following assumptions the consistency (of second order) and the convergence are 

proven in our previous work [2]  

Assumption 1             is bounded;              . 

Note that a similar assumption is usual in the literature, see, e.g., [3], [4]. 

Assumption 2  The coefficient functions p and q are nonnegative.  

Assumption 3  For all            the following inequalities hold true:  

  
  

  

  
  
  

 

  

  
 

  
  

 

  

  
   

 

  
    

 

  
  

  

  
  
  

 

  

  
 

    
  

 

  

  
     

 

    
     

Remark: The inequalities in assumption  are equivalent with  

    
      

          
 
   

 
    

  (23) 
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Lemma 4.1 The scheme (22) is consistent with the boundary value problem (21), and the 

corresponding order of consistency is           .  

To rewrite (22) into a more accessible form we introduce the notations for          :  

    
  

  
 

 

    
  and    

  
  

 

 

    
  with   

 

  
. 

With these we define the matrix  

  

 

 
 
 
 
 
 
  

  

  
  
  

  

  
  
 

 

  
  
    

   
     

    
    

    

    
 

  
  
  

    
    

 

 
 
 

   
 

 
     

 

 

  
  
 

 
 

      
      

 

 
  

  
  
 

 
 

     
 

  
  

  
  
 

 

 
 
 
 
 
 

 

 

 

and the vector  

     
 

 
  
    

 

  
 

  
          

 

                
 

 
  
   

  
 

 

  
 

  
         

  
 

 

         

 

  

The time stepping in (22) then can be given as  

           
                      (24) 

The following property of      is of central importance.  

 

Lemma 4.2  For all      and            we have      
   

 
  .  

Theorem 4.1 [2]  The finite difference method given by (22) converges to the solution of (21) 

and  

                    
                      . (25) 

Proof: The error of the solution in the consecutive time steps is defined as  

    
     

      
               . 
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The consistency of the scheme implies that  

                                              , 

where  

                      . (26) 

This together with (24) gives that  

           
                                    

or in an equivalent form  

                      
              

                                 . 

Therefore, using the result in Lemma , the Lagrange inequality and Assumption  we obtain  

                       
            (27) 

for all          . The consecutive application of (27) gives that  

                  
                   

                   

             
     
             

    
 
         

                  
  

 

 
 

such that according to (26) we obtain the estimate in the theorem.     □ 

 

 

Figure 2: Schematic comparison of the different Richardson extrapolation procedures: passive 

method (left) and active method (right) 
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5  Richardson extrapolation 

According to Theorem 3, the previously presented numerical scheme provides us 2nd order of 

consistency in space, but not in time. We apply the Richardson extrapolation as a powerful 

device to increase the accuracy of the numerical method in [2]. In general, it consists of the 

application of the given numerical scheme. In order to have a 2nd order scheme both in space 

and in time, the application of an other mathematical device is crucial. 

Richardson extrapolation is a powerful device to increase the accuracy of some numerical 

method. It consists in applying the given numerical scheme with different discretization 

parameters (in our case,    and     ) and combining the obtained numerical solutions by 

properly chosen weights. Namely, if   denotes the order of the chosen numerical method, 

  the numerical solution obtained by      and    that obtained by   , then the combined 

solution  

    
       

    
 

has an accuracy of order    . This method was first used by L. F. Richardson [8], who called 

it "the deferred approach to the limit". The Richardson extrapolation is especially widely used 

for time integration schemes, where, as a rule, the results obtained by two different time-step 

sizes are combined. 

The Richardson extrapolation can be implemented in two different ways when one attempts to 

increase the accuracy of a time integration method (see Figure 2), namely, passive and active 

Richardson extrapolations [11]. These two versions of the Richardson extrapolation are also 

described in [1], where they are called global and local Richardson extrapolations. The main 

difference between these two methods is that in the case of passive extrapolation the numerical 

solutions obtained with different step sizes are computed independently of the result of the 

extrapolation obtained at the previous time step, while in the active version the result of the 

extrapolation is used as initial condition in each time step. 

Remark 5.1 It is not difficult to see that if the passive device is applied and the underlying 

method has some qualitative properties, then the combined method also possesses this property. 

However, if the active device is used, then this is not valid anymore: any property of the 

underlying method does not imply the same property of the combined method. Therefore, the 

active Richardson extrapolation requires further investigation when a given numerical method 

is applied.  
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6  Numerical results 

We present some numerical results here corresponding to the model problem discussed in 

Section 2.3. The analytic and the numerical solution are compared at     in Figure 3 for a 

single parameter set.  

  

Figure 3: Analytic solution (19) of (12) (continuous line) and the numerical approximation 

(dashed line) obtained by the method in (22) with    ,      and        for the test 

problem in Section 2.3. The remaining parameters are given in the Appendix. 

We investigated the order of convergence in the      norm experimentally with respect to 

the spatial discretization. To this aim we consecutively refined the grid and the time step 

simultaneously such that the ratio 
 

  
 is kept at constant level. Accordingly, in the figures we 

only investigate the dependence of the      -norm error on the number 
 

 
 of the spatial grid 

points. The corresponding results are shown in Figure 4. The numerical results confirm our 

expectation in Section 4: we can fit accurately a line of slope -2 to the log-log data, which shows 

a second order convergence with respect to the spatial discretization parameter, see Figure 4. 

In Figure 5 we illustrated the order of the convergence of the numerical models obtained by 

the application of the two types of Richardson extrapolation (active and passive) methods. 

Comparing this result to Figure 4. (i.e. to the results obtained without Richardson extrapolation) 

one can easily see that the application of these methods led to lower approximation errors. 

Though in the case of active Richardson extrapolation, the convergence becomes second order 

only in the limit     . 
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Figure 4:      norm error in the numerical solution (obtained by the presented IMEX method) 

for the test problem in Section 2.3 vs. the spatial discretization parameter (left). Log-log plot of 

the error vs. the spatial discretization parameter and a fitted line with slope -2 (right). 
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Figure 5: Log-log plot of the      norm error vs. the spatial discretization parameter for the 

active Richardson extrapolation (left) and the passive Richardson extrapolation (right). 

7  Conclusions 

Our results have proven that the combination of the presented implicit-explicit method with 

some Richardson extrapolation methods can be a useful device for solving reaction-diffusion 

equations numerically. The numerical results in the previous section are also supporting our 

theoretical analysis. 
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8  Appendix 

 

 Symbol Description Unit 

  Specific interfacial area cm−1 

    Double-layer capacitance F/cm2 

      Cell potential V 

    Open circuit potential V 

  Faraday constant (96487) C/mol 

  Total cell current density A/cm2 

   Exchange current density at the cathode A/cm2 

  
  Exchange current density at the anode A/cm2 

   Solid phase current density at the cathode A/cm2 

   Solution phase current density at the cathode A/cm2 

   Faradaic current density A/cm3 

   Limiting current at the cathode A/cm2 

  Thickness of the cathode cm 

  Universal gas constant (8.3144) J/molK 

  Cell temperature K 

   Potential loss at the cathode V 

     Membrane thickness cm 

  Transfer coefficient in the cathode  

  
  Anodic transfer coefficient at the anode  

  
  Cathodic transfer coefficient at the anode  

  Overpotential at the cathode V 

   Overpotential at the anode V 

   Dimensionless Exchange current density  

   Solid phase potential V 

   Solution phase potential V 

     Effective solution phase conductivity S/cm 

     Effective solid phase conductivity S/cm 

     Membrane conductivity S/cm 
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