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Arithmetic Method of Double-Injection-Electrode
Model for Resistivity Measurement

Through Metal Casing
Qing Chen, David Pardo, Hong-bin Li, Fu-rong Wang, and Qi-zheng Ye

Abstract—Through-casing resistivity (TCR) measurement in-
struments such as Cased Hole Formation Resistivity are exten-
sively used for the dynamic monitoring of oil reservoirs during
the production phase in oil wells to evaluate the residual oil
distribution. However, two shortcomings still exist in the common
TCR model based on single-injection electrodes: The real value
of steel-casing resistance is difficult to acquire, and the effect
from mechanical tolerances of electrode scale is unpredictable.
This paper proposes an innovative model based on double-
injection electrodes. In this new model, all the required variables
can be measured simultaneously; furthermore, a compensating
arithmetic method is employed to obtain the real casing resistance.
Self-adaptive goal-oriented hp-finite-element simulations have
been performed to prove that the influence of mechanical toler-
ances of electrode scale can be reduced effectively. Therefore, the
TCR measurement accuracy is highly improved.

Index Terms—Arithmetic, electromagnetic analysis, geophysi-
cal measurements.

I. INTRODUCTION

DURING the last two decades, interest in electrical log-
ging through casing has grown considerably. The idea

of acquiring through-casing resistivity (TCR) measurements
was first proposed by Alpin in 1939 [1]. He said that, when
current is injected into a casing, the voltage differences on the
casing well are influenced by the formation resistivities. Thus,
by measuring the voltage differences, formation resistivities
can be inferred. His method was not implemented at that time
since existing logging instruments were not advanced enough
to measure correctly the weak voltage signals below 1 μV
obtained in TCR. As a result of inadequate technology, the
original patent by Alpin has laid dormant for over 30 years.
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Recent advances in weak-signal processing and measure-
ment technologies allowed Alpin’s method to be applied. The
report on the field test of the prototype of the tool [5] was
another important step in the development of the technology.
The vertical resolution of the measurement, effects caused by
the cement sheath, casing inhomogeneities, and finite length
of the casing have been studied by Schenkel (1990, 1994),
Kaufman (1990, 1993), Vail (1995), Tabarovsky (1994), Zinger
(1994), and Singer (1995, 1998) [2]–[10].

Based on Kaufman measurement mode, various attempts
have been made to build systems for logging formation resis-
tivity in boreholes with casing [11], [12]. Computing simula-
tion systems based on finite-element methods (FEMs) provide
enough engineering suggestions to the improvements of TCR
instruments [13]–[15]. Nowadays, resistivity logging samples
such as Cased Hole Formation Resistivity (Schlumberger) have
been applied successfully in production wells for the dynamic
monitoring of oil pools and the distribution of the residual oil.

There are still two major potential problems in the most pop-
ular resistivity measurement model based on single-injection
electrodes (SIEs).

1) The real value of steel casing is hard to achieve. The
theoretical calculation method lacks accuracy and can-
not compensate the influences of steel-casing corrosion
and temperature variation. The practical measurement
method provides the integral resistance of the parallel
steel casing and formation that cannot correctly reflect
the real value of casing, and the difference will deteriorate
with the formation capacitance increasing.

2) In order to protect the measurement accuracy of the
formation resistivity, the mechanical tolerances of the
electrode scale will be limited to a very small range,
which is difficult to carry out in practical operation. It is
still not certain that the error can be controlled below 5%
even if the mechanical tolerance is below 0.01%, because
the influence grade is sensitive to depth and the errors will
rapidly increase when the electrodes are located at the top
part of the steel casing.

An innovative model based on two electrodes is recom-
mended in this paper. The recommended model differs from
the SIE model in that an accessional current injection electrode
is used. An arithmetic method on how to obtain real casing
resistivity and eliminate the influences caused by electrode-
scale tolerances will be discussed.
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Fig. 1. SIE model.

II. SIE MODEL

In the view of the SIE model, the casing is assumed to be
a uniform and highly conductive steel pipe with an infinite
length, and the formation can be assumed to be a homogeneous
medium around the casing. The leakage current is perpendic-
ular to the casing. As shown in Fig. 1, the current is injected
into the casing from electrode A, and the formation apparent
resistivity around point D, namely, ρa, can be represented as

ρa = (Δz)2
UD

Δ2U
rc

Δ2U =UCD − UDE (1)

where rc is the casing resistance per meter, Δz is the length
unit of electrode scale, and UD, UCD, and UDE are the voltage
difference signals shown in Fig. 1. In fact, the computed result
ρa achieved from (1) is not the real resistivity of formation but
the formation resistance of the horizontal layer with thickness
Δz equal to 1 m. The conversion factor from ρa to the real
formation resistivity depends on the characteristic mechanical
parameters of the casing.

In order to get ρa, rc and (UCD − UDE) are indispensable
besides Δz and UD, which are easy to measure directly.

A. How to Calculate rc

There are two ways to calculate rc, which means the resis-
tance per meter of steel casing.

One is through the theoretical calculation method. Assuming
known values of ρc (steel-casing resistivity) and a and Δa
(radius of casing and the thickness of casing, respectively), rc

can be represented as

rc = ρc
1

2πaΔa
. (2)

The corrosion of steel casing may reduce Δa greatly. Moreover,
ρc is sensitive to temperature change, and a 100 ◦C temperature
variation will bring an excursion over 20% to ρc. Thus, the
calculated rc cannot reflect the real steel-casing resistance, and
the theoretical calculation method will inevitably produce great
error in resistivity measurement.

The other method is the practical measurement method that
is immune to steel-casing corrosion and temperature variation.

Fig. 2. rc measurement in the SIE model.

A connection method different from that in voltage signal, i.e.,
UD and Δ2U , measurement is applied, and then, the operation
program will get more complex, which will lower the logging
efficiency. As shown in Fig. 2, the current I is injected from
electrode A and collected at electrode B, and rc can be inferred
from the following:

rc =
UCD

IΔz
=

UDE

IΔz
. (3)

However, the result derived from (3) is not the real steel-
casing resistance per meter but the integrative resistance of steel
casing and formation in 1 m. Lower formation resistivity will
bring greater error.

B. Influence of Mechanical Tolerances

As shown in Fig. 1, the lengths lCD and lDE are required to
be absolutely equal in the SIE model. It is a fact that mechanical
tolerances are unavoidable in practical logging operations.

Assuming that

lCD = Δz − Δl

lDE = Δz + Δl (4)

the influences caused by mechanical tolerances Δl are esti-
mated in the following:

Δ2U =UCD − UDE = rcΔz(ICD − IDE) (5)

Δ2U ′ = Δ2U − rcΔl(ICD + IDE). (6)

From (5) and (6), we find that

e′ =
Δ2U ′ − Δ2U

Δ2U
= − Δl(ICD + IDE)

Δz(ICD − IDE)
. (7)

ICD means the average current flowing in casing lCD while IDE

means that in casing lDE. The sum of leakage currents from
point C to point E, which is equal to (ICD − IDE), is far less
than the current ICD (or IDE) flowing along the casing. Even if
the mechanical tolerance is limited to a level below 0.01%, that
means Δl/Δz is less than 10−4, it is not certain that the system
error e′ can be controlled below 5%.
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Fig. 3. DIE model.

III. DIE MODEL

As shown in Fig. 3, the double-injection-electrode (DIE)
model differs from that of SIE in that an additional current
injection electrode F is used and point D is assumed to be
the midpoint of lAF. The current is injected from electrodes
A and F alternately, and the injected currents are IA and IF ,
respectively. Setting point C as the origin of axis z, the leakage
currents are described as follows:

0∫
−l1

ΔiA(z) dz =K1IA

2Δz∫
0

ΔiA(z) dz =K2IA

l2∫
2Δz

ΔiA(z) dz =K3IA

0∫
−l1

ΔiF (z) dz =K1IF

2Δz∫
0

ΔiF (z) dz =K2IF

l2∫
2Δz

ΔiF (z) dz =K3IF

K1 + K2 + K3 = 1 (8)

where ΔiA(z) and ΔiF (z) are the leakage current distribution
functions, l1 is the distance from the top point of the casing to
the origin point, l2 is the distance from point C to the casing
bottom, and K1, K2, and K3 are positive constants.

A. Current Distribution Functions

Usually, the leakage current is considered flowing uniformly
into the formation in the SIE model. The leakage current Δi is
relative to depth, and the variation will get more obvious with
increasing formation conductance. It is easy to approximate the

current distribution with quadratic functions along the casing in
the DIE model

iA(z) = IA(a1z
2 + b1z + c1)

iF (z) = IF (a2z
2 + b2z + c2). (9)

The known conditions are

iA(0) = (K2 + K3)IA

iA(2Δz) = K3IA

iF (0) = −K1IF

iF (2Δz) = −(K1 + K2)IF . (10)

Coefficients a1 and a2 are supposed to be

−a1 = a2 = a∗ > 0. (11)

The solutions of (9) are

b1 =
−K2

2Δz
+ 2a∗Δz

c1 =K2 + K3

b2 =
−K2

2Δz
− 2a∗Δz

c2 = −K1. (12)

The flowing current along the casing varies with the second
power of z in the DIE model, while the leakage current is
considered uniform in the SIE model. Theoretically, the cur-
rent distribution functions would be expressed as higher order
functions in terms of z, if more electrodes are used and more
voltage differences are measured. Then, the logging system will
subsequently become more complex.

B. Solutions of rc, UD, and Δ2U

In the DIE model, an additional connection method for cas-
ing resistivity measurement, as shown in Fig. 3, is unnecessary,
and rc, UD, and Δ2U can be obtained at the same time, which
greatly improves the logging efficiency.

When the current IA is injected from electrode A, the relative
voltage differences are

UA−CD = rc

Δz∫
0

iA(z) dz

UA−DE = rc

2Δz∫
Δz

iA(z) dz

UA−CE = UA−CD + UA−DE

Δ2UA = UA−CD − UA−DE. (13)

Substituting (12) into (13)

UA−CE

rcIA
= −4

3
a∗(Δz)3 + (K2 + 2K3)Δz

Δ2UA

rcIA
=

K2Δz

2
. (14)
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UF−CE and ΔΔUF can be inferred in the same way as

UF−CE

rcIF
=

4
3
a∗(Δz)3 − (K2 + 2K1)Δz

Δ2UF

rcIF
=

K2Δz

2
(15)

where IF is the current injected from electrode F.
If K2 → 0, then

K2Δz

2
∼= 0

4
3
a∗(Δz)3 ∼= 0. (16)

Moreover, if K2 → 1, then

UA−DE
∼= 0

UF−CD
∼= 0

UA−CE = Δ2UA = UA−CD

UF−CE = − Δ2UF = UF−DE. (17)

Therefore, rc can be described as

rc =
Δ2UA + UA−CE

2IAΔz
+

Δ2UF − UF−CE

2IF Δz
. (18)

Δ2UA and Δ2UF provide the apparent compensations for the
real steel-casing resistance, through which the influence of the
parallel formation resistance is eliminated, particularly when
the formation resistance is low.

In the innovative DIE model, the other two important param-
eters UD and Δ2U presented in (1) are defined as

UD =
UA−CEUF−D − UF−CEUA−D

UA−CE − UF−CE

Δ2U =
UA−CEΔ2UF − UF−CEΔ2UA

UA−CE − UF−CE
. (19)

The selection of UA−CE and UA−CE as the coefficients to
compute UD and ΔΔU will be discussed in Section III-C.

The final formation resistivity is given as

ρa =
Δz

2

(
Δ2UA + UA−CE

IA
+

Δ2UF − UF−CE

IF

)

· UA−CEUF−D − UF−CEUA−D

UA−CEΔ2UF − UF−CEΔ2UA
. (20)

C. Error Estimation of Mechanical Tolerances

Equations (4)–(7) are used for references in the analysis on
the error caused by mechanical tolerance Δl in DIE model.

Supposing that the injected currents IA and IF are equal,
which can be realized easily in practical resistivity logging
operations

IA = IF = I (21)

the ratio rc/ρa is usually close to zero, and the leakage current
distribution is considered uniform

a1 = −a2 = −a∗ = 0. (22)

If lCD = lDE = Δz, then

Δ2U = rcI
K2Δz

2
(23)

and if lCD = Δz − Δl and lDE = Δz + Δl, then

Δ2U ∗ ≈ rcI
K2

2

[
Δz + 2Δl − (Δl)2

Δz

]
. (24)

Therefore

e∗ =
Δ2U ∗ − Δ2U

Δ2U
≈ 2

Δl

Δz
−

(
Δl

Δz

)2

. (25)

Comparing (7) with (25), an important conclusion is drawn:
The influence caused by mechanical tolerances in the innova-
tive DIE model is far less than that in the SIE model. It is proved
that the arithmetic presented in (19) approximately eliminates
the potential part of errors that is sensitive to mechanical
tolerances.

IV. SIMULATIONS

While most analytical methods cannot be applied to com-
plex geometries, a simulation of a TCR measurement tool
via numerical methods is rather challenging due to the high
electrical conductivity contrast and small thickness of casing
[13]–[15]. Here, we utilize a 2-D axially symmetric numerical
method based on a self-adaptive goal-oriented hp-FEM that
accurately simulates such logging measurements. This method
automatically constructs an optimal grid with varying element
sizes h and polynomial orders of approximation p throughout
the computational grid, and it produces high-accuracy solutions
that we employ to compare the performance of the SIE model
versus that of the DIE model.

A. SIE Model

As shown in Fig. 1, the current is injected from electrode A.
All the relative parameters are described as

h = 100 m

hD = 50 m

lAD = 1.5 m

lCD = Δz − Δl

lDE = Δz + Δl

Δz = 0.5 m

a = 0.1 m

Δa = 0.01 m. (26)

In the aforementioned equation, the following can be ob-
served: 1) h, a, and Δa are the length, radius, and thickness of
the casing; 2) hD is the distance from the ground to electrode D;
3) lAD, lCD, and lDE are the distances between A and D, C
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and D, and D and E, respectively; 4) Δz is the length unit
of electrode scale, and it is equal to 0.5 m; and 5) Δl is the
mechanical tolerance. The casing resistivity ρc, the borehole
resistivity ρb, and the formation resistivity ρa are assumed to
be 1 × 10−6, 1, and 1 Ω · m, respectively.

If there is no mechanical tolerance, Δl is equal to zero.
Setting the injected current IA as 100 A, the potentials at
electrodes A, C, D, and E can be calculated

UA = 69.2907533457684 V

UC = 1.141703407631423 V

UD = 1.137938173656035 V

UE = 1.134214302162464 V. (27)

Substituting all the parameters of (26) and (27) into (1) and
(2), the apparent formation resistivity will be obtained

ρ1 = 1.095 Ω · m (28)

which is close to the real value 1 Ω · m.
If there is 10% mechanical tolerance, Δl equals 0.05 m.

Setting the injected current IA as 100 A, the potentials at
electrodes A, C, D, and E can be calculated

UA = 69.2772263877734 V

UC = 1.141325424878497 V

UD = 1.137938585076513 V

UE = 1.133844591457561 V. (29)

Substituting all the parameters of (26) and (29) into (1) and
(2), the apparent formation resistivity will be obtained

ρ2 = −0.064 Ω · m. (30)

The simulations show that 10% mechanical tolerance may
bring serious measurement error to the SIE model.

B. DIE Model

As shown in Fig. 3, the current is injected now from elec-
trodes A and F alternatively.

If there is no mechanical tolerance, Δl is equal to zero.
Setting the injected current IA as 100 A, the potentials at
electrodes A, C, D, and E can be calculated

UA = 69.2907533457684 V

UA−C = 1.141703407631423 V

UA−D = 1.137938173656035 V

UA−E = 1.134214302162464 V. (31)

Setting the injected current IF as 100 A, the potentials at
electrodes F, C, D, and E can be calculated accordingly

UF−C = 1.134207994856528 V

UF−D = 1.137929547892143 V

UF−E = 1.141692463041506 V

UF = 69.2855133577332 V. (32)

Substituting all the parameters of (26), (31), and (32) into
(20), the apparent formation resistivity can be obtained

ρ3 = 1.036 Ω · m (33)

which is close to the real value 1 Ω · m.
If there is 10% mechanical tolerance, Δl is equal to 0.05 m.

Setting the injected currents IA and IF both as 100 A, the
potentials of electrodes A, C, D, E, and F can be calculated

UA = 69.2907533457684 V

UA−C = 114.1325424878497 V

UA−D = 113.7938585076513 V

UA−E = 113.3844591457561 V

UF−C = 113.4580214238326 V

UF−D = 113.7931466786438 V

UF−E = 114.2072964321923 V

UF = 69.2855133577332 V. (34)

Based on (20), the apparent formation resistivity can be
calculated

ρ4 = 1.046 Ω · m. (35)

The calculated results, i.e., ρ3 and ρ4, are very close to the
assumed real formation resistivity.

We conclude that even a 10% mechanical tolerance has very
little impact on the DIE logging model, while the SIE model is
very sensitive to the mechanical tolerances.

To show the robustness of the DIE method, we consider
again our previous models but with a new formation resistiv-
ity equal to 100 Ω · m and a new casing resistivity equal to
2.3 × 10−7 Ω · m. The relative apparent resistivities we obtain
for the SIE and DIE models are

114.444 Ω · m, Δl = 0 m; SIE method

109.500 Ω · m, Δl = 0 m; DIE method

− 5.619 Ω · m, Δl = 0.05 m; SIE method

110.595 Ω · m, Δl = 0.05 m; DIE method.

Again, we observe a superior accuracy of the DIE method
with respect to the SIE method.

V. CONCLUSION

An innovative model based on two electrodes has been
recommended in this paper. Numerical results obtained with
a self-adaptive goal-oriented hp-FEM have illustrated the per-
formance of the new DIE model. It was proved to have three
outstanding advantages over the SIE model.

1) All the relative parameters rc, UD, and Δ2U can be
achieved at the same time without changing the connec-
tion method.

2) A compensating arithmetic method is employed to reduce
the influence of parallel formation resistance in calculat-
ing casing resistance. It is proved that the compensation
has good performance whether the formation resistivity is
low or high.
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3) An arithmetic method is constructed to calculate the
differential voltage. The compensation arithmetic method
based on the DIE model is proved to greatly reduce the
errors caused by mechanical tolerances of electrode scale.
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