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Abstract

The performance of the second order local approximate DtN boundary condition
suggested in [4] is investigated analytically when employed for solving high-frequency
exterior Helmholtz problems with elongated scatterers. This study is performed us-
ing a domain-based formulation and assuming the scatterer and the exterior artificial
boundary to be prolate spheroid. The analysis proves that, in the high frequency
regime, the reflected waves at the artificial boundary decay faster than 1/(ka)15/8,
where k is the wavenumber and a is the semi-major axis of this boundary. Nu-
merical results are presented to illustrate the accuracy and the efficiency of the
proposed absorbing boundary condition, and to provide guidelines for satisfactory
performance.

Key words: acoustic scattering problems, elliptic coordinates, prolate
spheroidal-shaped boundaries, absorbing boundary conditions, DtN operator.

1 Introduction

The development of efficient solution methodologies for solving scattering
problems is very important to many applications such as sonar, radar, medical
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imaging, geophysical exploration, non destructive testing, etc. This is a very
challenging problem because of two difficulties that one need to address: (a)
the discretization issue related to the wavenumber, especially in the high fre-
quency regime, and (b) the unboundness nature of the computational domain
(see, for example, the recent monograph [16] and the references therein) . In
this work, we focus on the second aspect of this problem and we consider one
of the basic problem in the scattering theory: the scattering of time-harmonic
acoustic waves by a bounded impenetrable obstacle [8]. The computation of
the corresponding acoustic scattered field when using finite element meth-
ods, requires first to reformulate this class of problems in a finite domain by
surrounding the scatterer by an artificial boundary. The main difficulty here
is the construction of a simple but reliable as well as cost-effective absorb-
ing boundary condition for representing the far-field behavior of the scattered
field on the prescribed artificial boundary. Various absorbing boundary con-
ditions have been suggested for over seventy years to address this challenging
and important issue, and the quest for efficient nonreflecting conditions is still
ongoing (see, for example, the latest review by Turkel in [24]).

Recently, a new class of absorbing boundary conditions called local approx-
imate DtN absorbing boundary conditions (DtN) has been proposed to be
applied on exterior artificial prolate spheroidal-shaped boundaries [4]. Unlike
the standard approximate local DtN boundary conditions that are restricted
to circular- or spherical-shaped boundaries (see [11],[12]), the proposed condi-
tions are applicable to exterior elliptical- or prolate spheroidal-shaped bound-
aries that are more suitable for surrounding elongated scatterers because they
yield to smaller computational domains. These absorbing boundary conditions
are designed to be exact for the first modes. They can be easily incorporated in
any finite element parallel code while preserving the local structure of the al-
gebraic system. Moreover, the analysis of the performance of these conditions
in the low frequency regime, when using an On-Surface radiation condition
formulation [15], revealed that these conditions are very accurate regardless
of the slenderness of the boundary [4],[23]. In addition, it has been demon-
strated that the second-order local DtN condition (DtN2) outperforms the
widely-used second-order absorbing boundary conditions (BGT2) [6] when ex-
pressed in prolate spheroidal coordinates [21],[22]. Note that the derivation of
the considered DtN2 boundary condition is slightly different then the absorb-
ing boundary condition proposed in [17]. Moreover, when the eccentricity of
the boundary tends to zero (e→ 0) our condition coincides with the standard
BGT2/DtN2 condition for spherical-shaped boundaries, as shown in [4],[23].

We propose to extend the investigation of the performance of the local approx-
imate DtN2 absorbing boundary condition to the case of the high-frequency
regime. The objective of this analytical study is to shed some light on the
potential of this new class of boundary conditions for solving efficiently high-
frequency acoustic scattering problems in the case of elongated scatterers, and
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to provide practical guidelines for avoiding excessive computational cost when
employed for practical applications. More specifically, we perform an analyti-
cal and a numerical investigation to assess the effect of the slenderness of the
exterior boundary as well as its distance from the scatterer on the accuracy
and the efficiency of the proposed absorbing boundary condition in the high-
frequency regime. We conduct this study using a domain-based formulation,
that is the artificial boundary is located at some distance from the surface of
the scatterer, since the OSRC approach is not adapted for such an analysis,
as previously observed in [2]. Such an analysis is conducted in the case of the
canonical boundary value problem, i.e. the scatterer is assumed to be prolate
spheroid. We must point out that considering the canonical boundary value
problem is a standard approach for assessing the performance of absorbing
boundary conditions [13],[21] and/or for improving their performance [21],[3].
This study is a first and important step to highlight the potential of the
proposed boundary condition for solving efficiently high-frequency acoustic
scattering problems in the case of elongated scatterers. Note that the numer-
ical investigation of the performance of this condition for arbitrarily-shaped
scatterers using other approaches such as finite element/finite difference-based
formulations will incur numerical errors due to the discretization scheme. In
the high-frequency regime, the range of our interest, these discretization errors
are not avoidable, and may even be very important. The use of an “overkilled”
mesh along with the use of the exterior boundary very far from the scatterer,
to compute a reliable reference solution may simply not be possible in the
high-frequency regime due to the prohibitive computational cost. Therefore,
it would be very difficult to distinguish between the errors due to the bound-
ary condition and the discretization scheme. Consequently it would be very
hard –if not impossible– to draw a meaningful conclusion on the performance
of the proposed boundary condition.

The remainder of this paper is as follows. In Section 2, we specify the nomen-
clature and assumptions, and formulate the considered three-dimensional acous-
tic scattering problem in a bounded domain using the local approximate DtN2
absorbing boundary condition proposed in [4]. The main results of this work
are established in Section 3. More specifically, we analyze the mathematical
properties of the solution of the canonical boundary value problem in the
high-frequency regime. We prove the existence and the uniqueness of the solu-
tion. This stability result ensures the well-posedness of the canonical boundary
value problem in the high-frequency regime regardless of the location and the
eccentricity values of the exterior boundary. The accuracy of the proposed
boundary is performed by analyzing the asymptotic behavior of the Fourier
coefficients of the solution. This analysis reveals that the reflected waves at the
artificial boundary decay faster than 1/(ka)15/8, where k is the wavenumber
and a is the semi-major axis of this boundary. This quasi-quadratic decay of
the reflected waves with respect to the wavenumber values ka, suggests that
the exterior boundary could be positioned at a very small distance from the
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surface of the scatterer, as illustrated by the numerical reported in this sec-
tion, to achieve an acceptable level of accuracy. This observation illustrates
the potential of the proposed boundary condition for reducing the size of the
computational domain for elongated scatterers. Concluding remarks are dis-
cussed in Section 4. The particular case of the absorbing boundary condition
BGT2 when employed on spherical-shaped exterior boundaries is discussed in
the Appendix.

2 Preliminaries

2.1 Nomenclature and assumption

Throughout this paper, we use the prolate spheroidal coordinates (ξ, ϕ, θ), re-
lated to the cartesian coordinates (x, y, z) by x = b sinϕ cos θ, y = b sinϕ sin θ,
and z = a cosϕ, where ϕ ∈ [0, π) and θ ∈ [0, 2π)i (see Fig.1). The parame-
ters a and b are the semi-major and the semi-minor axes respectively, and are
given by a = f cosh ξ and b = f sinh ξ where ξ is strictly positive and the real
number f is the interfocal distance (f =

√
a2 − b2).
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Fig. 1. The prolate spheroidal coordinates.

In addition, we adopt the following notations:

• k is a positive number representing the wavenumber.
• R(j)

mn (kf, cosh ξ) is the radial spheroidal wave function of the jth kind cor-
responding to the (mn)th(see p. 30 in [10]) where (m,n) ∈ N2 such that
n ≥ m.
• Smn (kf, cosϕ) is the angular spheroidal wave function corresponding to the

(mn)th mode (see p. 16 in [10]).
• Nmn is the normalization factor associated to Smn (kf, cosϕ). Nmn is given
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by (see Eq. (3.1.32) p. 22 in [10]):

Nmn =
∫ 1

−1
[Smn (kf, v)]2 dv (1)

• λmn is the prolate spheroidal eigenvalue (see p. 11 in [10]).
• Ω is a prolate spheroidal-shaped scatterer whose surface is denoted by Γ.

Ωe is the open complement in R3 of the domain Ω.

Fig. 2. A prolate spheroidal-shaped scatterer Ω.

• aΓ (resp. bΓ) represents the semi-major (resp. semi-minor) axis of the scat-
terer Ω. eΓ is the eccentricity
• Σ is an artificial boundary surrounding the scatterer Ω. Σ is assumed to be

a prolate-spheroid surface.

Fig. 3. Geometry of the bounded computational domain Ωb (left) with a two-dimen-
sional illustration in the xy-plane (right).

• aΣ (resp. bΣ) is the semi-major (resp. semi-minor) axis of the prolate spheroidal-
shaped domain whose surface is Σ. eΣ is its eccentricity.
• Ωb is a bounded computational domain whose interior (resp. exterior) bound-

ary is Γ (resp. Σ).
• ∆Σ is the Laplace Beltrami operator on Σ.
• For a function Fmn, we denote its restriction on Γ by:

Fmn|Γ = Fmn
(
eΓkaΓ, e

−1
Γ

)
(2)

5
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Similarly, the restriction of Fmn on Σ is denoted by:

Fmn|Σ = Fmn
(
eΣkaΣ, e

−1
Σ

)
(3)

• The partial derivative of the radial spheroidal wave function R(j)
mn with re-

spect to the variable ξ is denoted by R(j)′
mn, i.e.

R(j)′
mn =

∂R(j)
mn

∂ξ
; j =∈ N (4)

• rmn|Σ are complex numbers given by:

rmn|Σ =
R(3)′
mn|Σ

R
(3)
mn|Σ

(5)

• r(j)
mn|Σ

are complex numbers given by:

r(j)
mn|Σ

=



R(3)′
mn|Σ

R
(3)
mn|Σ

if j = 3

R(4)′
mn|Σ

R
(4)
mn|Σ

if j = 4

(6)

Note that it follows from (5) and (6) that r(3)
mn|Σ

= rmn|Σ
• ||.||2 is the euclidean norm.

2.2 The acoustic scattering problem

Recall that the direct acoustic scattering problem by a sound-soft scatterer Ω
can be formulated as follows [?]:

∆uscat + k2uscat = 0 in Ωe

uscat = −uinc on Γ

lim
||x||2→+∞

||x||2
[
∂uscat

∂||x||2
− ikuscat

]
= 0

(7)

where ∆ is the Laplace operator, uscat is the scattered field, and uinc is the
incident plane wave. Note that uinc can be expressed, in prolate spheroid co-
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ordinates, as an infinite series (see Eq. (7) p. 233 in [20]):

uinc =
+∞∑
m=0

+∞∑
n=m

dinc
mn u

(1)
mn (kf, cosh ξ, cosϕ) (8)

where the mnth Fourier mode u(j)
mn is given by:

u(j)
mn (kf, cosh ξ, cosϕ) = R(j)

mn (kf, cosh ξ)
Smn (kf, cosϕ)√

Nmn

cosmθ, for j ∈ N.

(9)
and the mnth Fourier coefficient dinc

mn is given by:

dinc
mn = 2εm

in√
Nmn

Smn (kf, cosϕ0) (10)

ϕ0 is the incident angle of the plane wave uinc, εm = (2− δ0m), and δ0m is the
Kronecker symbol.

Furthermore, the solution uscat of the exterior boundary value problem (7) ,
in the case where Ω is a prolate spheroidal-shaped scatterer (see Fig. 2), can
be expressed as an infinite series ( see Eq. (11.36) p. 422 in [7]):

uscat =
+∞∑
m=0

+∞∑
n=m

dscatmn u
(3)
mn (kf, cosh ξ, cosϕ) (11)

where the mnth Fourier outgoing mode u(3)
mn (kf, cosh ξ, cosϕ) is given by Eq.

(9), whereas the mnth Fourier coefficient dscat
mn is given by:

dscat
mn = −2εm

in√
Nmn

R(1)
mn|Γ

R
(3)
mn|Γ

Smn (eΓkaΓ, cosϕ0) (12)

Observe that it follows from substituting Eq.(10) into Eq.(12) that:

dscat
mn = −

R(1)
mn|Γ

R
(3)
mn|Γ

dinc
mn|Γ

(13)

Note that the Dirichlet boundary condition, characterizing sound-soft scatter-
ers, is used in the boundary value problem (7) for simplicity only. Analytical
expressions for other boundary conditions can be also derived [7].

2.3 Bounded domain-based formulation

The application of finite element techniques when solving numerically the
exterior boundary value problem (7) requires first to set it in a bounded do-

7
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main. This is achieved, in the nonreflecting boundary conditions context, by
surrounding the scatterer Ω with an artificial boundary Σ and prescribing
a so-called absorbing boundary condition. Consequently, when setting on Σ
the second-order local approximate DtN boundary condition suggested in [4],
the exterior acoustic scattering problem (7) is reformulated in the bounded
domain Ωb as follows:



∆uDtN + k2uDtN = 0 in Ωb

uDtN = −uinc on Γ

∂uDtN

∂n
=

1

aΣ

√
1− e2

Σ cos2 ϕ
TuDtN on Σ

(14)

where n is the outward normal to the exterior boundary Σ, and T is the
second-order local approximate DtN operator expressed in prolate spheroid
coordinates as follows [4]:

Tu =

√
1− e2

Σ(
λ01|Σ

− λ00|Σ

)
eΣ

{ [
λ01|Σ

r01|Σ
− λ00|Σ

r00|Σ

−
(
r00|Σ

− r01|Σ

)
(eΣkaΣ)2 cos2 ϕ

]
u

+
(
r00|Σ

− r01|Σ

)
∆Σu

}
(15)

Note that the field uDtN is an approximation of the scattered field uscat. We ana-
lyze the property of the approximate solution uDtN for the canonical boundary
value problem, that is we assume the scatterer Ω to be prolate spheroid (see
Fig.2). The computational domain Ωb is the exterior domain to Ω bounded
by the artificial boundary Σ, as depicted in Fig. 3. The goal of this analytical
study is to shed some light on the potential of the absorbing boundary con-
dition (15) for solving efficiently high frequency acoustic scattering problems,
and to provide practical guidelines for avoiding excessive computations.

3 Analytical study

We analyze the mathematical properties of the solution of the canonical bound-
ary value problem (14) in the high frequency. We also assess the efficiency of
the second-order local approximate DtN boundary condition given by Eq. (15).
Numerical results are presented for illustration.

8
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3.1 Existence and uniqueness of the approximate solution

We investigate in this section the well-posedness nature of the canonical bound-
ary value problem (14). We state a necessary and sufficient condition to ensure
the existence and the uniqueness of the solution uDtN, and illustrate numeri-
cally this study.

3.1.1 Mathematical results

The approximate scattered field uDtN can be expressed as an infinite series
of outgoing modes R(3)

mn (kf, cosh ξ)) and incoming modes R(4)
mn (kf, cosh ξ)).

More specifically, we have (see Eq. (16) p. 233 in [20]):

uDtN =
+∞∑
m=0

+∞∑
n=m

[
dDtN
mn u

(3)
mn (kf, cosh ξ, cosϕ) + τDtN

mn u
(4)
mn (kf, cosh ξ, cosϕ)

]
(16)

where u(j)
mn (kf, cosh ξ, cosϕ) are given by Eq. (9).

The incoming waves are the reflections of the scattered field due to the presence
of the artificial exterior boundary Σ. Note that in the case of a perfectly
nonreflecting boundary condition, the Fourier coefficients must satisfy τDtN

mn =
0 and dDtN

mn = dscat
mn for all (m,n) ∈ N2 such that n ≥ m. Therefore, the degree

of transparency of any absorbing boundary condition, and thus the level of
accuracy in the approximation as well as the computational cost, depend on
(a) the magnitude of the reflection coefficients |τDtN

mn | of the incoming waves,
and (b) the magnitude of the difference |dDtN

mn − dscat
mn |. These two quantities

become very small (resp. very large) as the intensity of the reflected waves at
the boundary Σ are negligible (resp. very important).

Next, we investigate the properties of these coefficients. We first define, for all
(m,n) ∈ N2 such that n ≥ m, the following wronskian-like expression:

W 3,4
mn(Γ,Σ) = R(3)

mn|Γ
Ψ(4)
mn|Σ

−R(4)
mn|Γ

Ψ(3)
mn|Σ

(17)

where

Ψ(j)
mn|Σ

= R(j)
mn|Σ

[
cmn|Σ + r(j)

mn|Σ

]
, for j = 3, 4. (18)

8

and

cmn|Σ =
r00|Σ

(
λ01|Σ

− λmn|Σ
)
− r01|Σ

(
λ00|Σ

− λmn|Σ
)

λ00|Σ
− λ01|Σ

(19)

9
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Observe that when Σ ≡ Γ, Eq. (17) is the standard wronskian between R(3)
mn|Γ

and R(4)
mn|Γ

.

The following result pertains to the existence and uniqueness of the Fourier
coefficients dDtN

mn and τDtN
mn .

Theorem 3.1 The approximate scattered field uDtN, solution of the boundary
value problem (14), exists and is unique if and only if

W 3,4
mn(Γ,Σ) 6= 0 ∀ (m,n) ∈ N2, n ≥ m (20)

Moreover, if condition (20) is satisfied, then the Fourier coefficients dDtN
mn and

τDtN
mn are given by: 

dDtN
mn =

Ψ(4)
mn|Σ

R(3)
mn|Γ

W 3,4
mn(Γ,Σ)

dscat
mn

τDtN
mn =

Ψ(3)
mn|Σ

R(3)
mn|Γ

W 3,4
mn(Γ,Σ)

dscat
mn

(21)

Proof of Theorem 3.1. First, we substitute the Fourier series representations
of both the approximate scattered field uDtN given by Eq.(16) and the incident
plane wave uinc given by Eq.(8) into the boundary conditions of the boundary
value problem (14). Consequently, for all (m,n) ∈ N2 such that n ≥ m, we
have: 

dDtN
mn R

(3)
mn|Γ

+ τDtN
mn R

(4)
mn|Γ

= −dinc
mnR

(1)
mn|Γ

on Γ

dDtN
mn Ψ(3)

mn|Σ
+ τDtN

mn Ψ(4)
mn|Σ

= 0 on Σ

(22)

The linear 2 × 2 system (22) is invertible if and only if the condition (20) is
satisfied, and we have: 

dDtN
mn = −

dinc
mnΨ(4)

mn|Σ
R(1)
mn|Γ

W 3,4
mn(Γ,Σ)

τDtN
mn =

dinc
mnΨ(3)

mn|Σ
R(1)
mn|Γ

W 3,4
mn(Γ,Σ)

(23)

We then conclude the proof of Theorem 3.1 by substituting Eq. (13) into Eq.
(23).

�
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Remark 3.2 Note that using Eqs. (17)-(19) for n = 0, 1, leads to:

Ψ
(3)
0n|Σ

= 0 and W 3,4
0n (Γ,Σ) = Ψ

(4)
0n|Σ

R
(3)
0n|Γ

Consequently, it follows from Theorem 3.1 that the Fourier coefficients corre-
sponding to the first two modes satisfy:

dDtN
0n = dscat

0n and τDtN
0n = 0 ; n = 0, 1 (24)

Hence, Theorem 3.1 states that the first two modes in the infinite series given
by Eq. (16) are the exact modes propagating towards the infinity and do not
reflect at the artificial boundary Σ. This result is not surprising since the
second-order local approximate DtN boundary condition given by Eq. (15) was
constructed to be exact for the first two modes [4].

Next, we analyze the properties of the W 3,4
mn(Γ,Σ) to determine when condi-

tion (20) is fullfilled. The result below describes the asymptotic behavior of
W 3,4
mn(Γ,Σ) as kaΓ →∞.

Proposition 3.3 For all (m,n) ∈ N2 such that n ≥ m, the wronskian-like
function W 3,4

mn(Γ,Σ) given by Eq.(17) satisfies:

W 3,4
mn(Γ,Σ) ∼ − 2 i eΣ

kaΓ

ei k(aΓ−aΣ) ; as kaΓ →∞ (25)

Proof of Proposition 3.3. First, we use Eqs.(17)-(19), and rewriteW 3,4
mn(Γ,Σ)

as follows:

W 3,4
mn(Γ,Σ) = R(3)

mn|Γ
R(4)
mn|Σ

r(4)
mn|Σ

−R(4)
mn|Γ

R(3)
mn|Σ

r(3)
mn|Σ

+ cmn
[
R(3)
mn|Γ

R(4)
mn|Σ

−R(4)
mn|Γ

R(3)
mn|Σ

] (26)

Next, we analyze the asymptotic behavior of each term in Eq. (26). Observe
that when kaΓ →∞, then necessarily kaΣ →∞.
We have (see Eqs. (21.9.4)-(21.9.5) p. 756 in [1]):

R(3)
mn|•
∼ R

(4)
mn|• ∼

1

ka•
ei(ka•− 1

2
(n+1)π) ; ka• → +∞ (27)

where the symbole • can be either Γ or Σ and the overline denotes the complex
conjugate.
From Eq. (6) and Eq. 4.1.16, p. 32 in [10] (or Eq. 80 p. 3647 in [21]) , we
deduce that for j = 3, 4:

r(j)
mn|Σ

∼ eΣkaΣ
h(j−2)′
n (kaΣ)

h
(j−2)
n (kaΣ)

; kaΣ → +∞ (28)

11
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where h(1)
n (resp. h(2)

n ) are the spherical Hankel functions of the first (resp.
second) kind of order n [1].
On the other hand (see Eq. 10. 1.1 p. 437 [1]), we have

h(j−2)′
n (z)

h
(j−2)
n (z)

=
H

(j−2)′
n+1/2(z)

H
(j−2)
n+1/2(z)

− 1

2z
; j = 3, 4 (29)

where H(1)
n (resp. H(2)

n ) are the Hankel functions of the first (resp. second)
kind of order n [1].
Then, using the asymptotic behavior of the Hankel functions (see [1]), it follows
from Eq.(28) and Eq.(29) that:

r(3)
mn|Σ

∼ r
(4)
mn|Σ

∼ eΣkaΣ

[
i− 1

kaΣ

− i
n(n+ 1)

2

1

(kaΣ)2

]
; kaΣ → +∞ (30)

Consequently, it follows from Eqs.(26)-Eq.(27) and Eq.(30) that:

W 3,4
mn(Γ,Σ) ∼ 2 i

[
=(R(3)

mn|Γ
R

(3)
mn|Σ

r
(3)
mn|Σ

) + cmn=(R(3)
mn|Γ

R
(3)
mn|Σ

)
]

; kaΓ → +∞
(31)

Next, we derive the asymptotic behavior of the coefficients cmn given by
Eq.(19) as kaΣ → +∞. To do this, we first recall the asymptotic behavior
of the prolate spheroidal eigenvalues λmn|Σ as kaΣ → +∞ (see Eq. 21.7.6 p.

754 in [1]):
λmn|Σ ∼ (2n− 2m+ 1) eΣkaΣ ; kaΣ → +∞ (32)

Hence, applying the asymptotic behavior given by Eq.(32) together with the
asymptotic behavior of r(3)

mn|Σ
for (m,n) = (0, 0), (0, 1) (see Eq. (30)), we de-

duce that:

cmn|Σ ∼ −eΣkaΣ

[
i− 1

kaΣ

+ i (m− n)
1

(kaΣ)2

]
; kaΣ → +∞ (33)

Finally, (25) results from substituting Eq.(27), Eq.(30), and Eq.(33) into Eq.(31).
This concludes the proof of Proposition 3.3.

�

Proposition 3.3 states that |W 3,4
mn(Γ,Σ)| ∼ 2 eΣ

kaΓ

6= 0 as kaΓ → ∞. Conse-

quently, it follows from Theorem 3.1 the following existence and uniqueness
result in the high frequency regime:

Corollary 3.4 The solution of the boundary value problem (14) exists and is
unique for large values of kaΓ.

12
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Remark 3.5 The result stated in Corollary 3.4 proves that the Fourier coeffi-
cients dDtN

mn and τDtN
mn always exist and are unique in the high frequency regime

regardless of the eccentricity values eΣ, and the location of the exterior bound-
ary Σ with respect to Γ. This remark shows that the position of the exterior
boundary Σ is important for the accuracy only.

The next result addresses the particular case of the first two modes since
the proposed absorbing boundary condition is, by construction, exact when
applied to them [4].

Proposition 3.6 The necessary and sufficient condition given by Eq.(20) is
always satisfied for the first two modes. Furthermore, we have:

W 3,4
0n (Γ,Σ) =

R
(3)
0nΓ

R
(3)
0nΣ

−2 i

eΣkaΣ(e−2
Σ − 1)

; for n = 0, 1 (34)

Proof of Proposition 3.6. First, we use Eq.(5) to rewrite the expression of
the coefficients c0n|Σ

(n = 0, 1) given by Eq. (19) as follows:

c0n|Σ
= −r0n|Σ

= −
R

(3)′
0n|Σ

R
(3)
0n|Σ

; for n = 0, 1 (35)

Then, for n = 0, 1, we substitute Eq.(6) and Eq.(35) into Eq.(26) and obtain:

W 3,4
0n (Γ,Σ) = R

(3)
0n|Γ

R
(4)′
0n|Σ
−R(4)

0n|Γ
R

(3)′
0n|Σ
−
R

(3)′
0n|Σ

R
(3)
0n|Σ

[
R

(3)
0n|Γ

R
(4)
0n|Σ
−R(4)

0n|Γ
R

(3)
0n|Σ

]

Thus,

W 3,4
0n (Γ,Σ) =

R
(3)
0n|Γ

R
(3)
0n|Σ

W 3,4
0n (Σ) ; n = 0, 1 (36)

where W 3,4
0n (Σ) is the Wronskian between R

(3)
0n|Γ

and R
(4)
0n|Γ

, that is:

W 3,4
0n (Σ) = R

(3)
0n|Σ

R
(4)′
0n|Σ
−R(4)

0n|Σ
R

(3)′
0n|Σ

; n = 0, 1

which can be rewritten, using the representation of R
(j)
0n|Σ

(j = 3, 4) in terms

of R
(l)
0n|Σ

(l = 1, 2)(see Eq. 4.1.18, p. 32 in [10]), as follows:

W 3,4
0n (Σ) = − 2 iW 1,2

0n (Σ) ; n = 0, 1 (37)

Moreover, we have (see Eq. 4.1.21, p. 32 in [10] or Appendix C in [23]):

13
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W 1,2
mn(Σ) =

1

eΣkaΣ(e−2
Σ − 1)

; ∀(m,n) ∈ N2 and n ≥ m (38)

Eq.(34) is then an immediate consequence of substituting Eq.(37) and Eq.(38)
into Eq.(36).

�

Remark 3.7 The result stated in Proposition 3.6 proves that the Fourier co-
efficients dDtN

mn and τDtN
mn corresponding to the first two modes, i. e. (m,n) =

(0, 0), (0, 1) exist and are unique independently of the slenderness and the posi-
tion of the artificial boundary Σ, as well on the frequency regime. This property
along with the observation made in Remark 3.2 allow to conclude, as expected,
that Eq. (24) always holds.

3.1.2 Numerical investigation of the stability condition given by Eq.(20)

Proposition 3.3 proves that the necessary and sufficient condition (20) in The-
orem 3.1 is satisfied for all modes but in the high frequency regime only,
whereas Proposition 3.6 states that, in the case of the first two modes, this
condition holds in all frequency band. Note that these two results are valid
with no restriction on the location of the artificial boundary Σ with respect
to the boundary Γ of the scatterer Ω.
The objective here is to investigate numerically the validity of condition (20)
in the low- and mid-frequency regime. More specifically, we have assumed
that the semi-major and semi-minor axes satisfy respectively aΣ = σ aΓ and
bΣ = σ bΓ. The positive real number σ, called the widening coefficient, sat-
isfies σ > 1. Such an assumption implies that the two boundaries have the
same eccentricity (eΣ = eΓ = e). Note that σ = 1 corresponds to the extreme
case scenario where Σ ≡ Γ, the OSRC formulation [15], [4]. We have ana-
lyzed the dependence of |W 3,4

mn(Γ,Σ)| with respect to the widening parameter
σ. The numerical results reported in [23] tend to indicate that condition (20)
holds for all modes and values of kaΓ with no restriction on the position of
Σ. For illustration purpose, we present here (see Figs.(4)-(5)) two sets of re-
sults obtained for two frequency values ka = 10 and 20, and ”very” elongated
boundaries eΣ = eΓ = 0.9. The results depicted in Figs. (4)-(5) correspond six
different modes ranging from the lowest mode (m,n) = (0, 0) to a higher mode
corresponding to (m,n) = (7, 7). The following observations are noteworthy:

• The necessary and sufficient condition (20) is clearly satisfied.
• These results suggest that the Wronskian-like function |W 3,4

mn(Γ,Σ)| is an
increasing function with respect to the widening parameter σ.
• The results depicted in Figs. (4)-(5), together with those reported in [23],

14
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suggest the following conjecture:

|W 3,4
mn(Γ,Σ)| ≥ 2

eΓkaΓ(e−2
Γ − 1)

; ∀(m,n) ∈ N2 and n ≥ m (39)

Note that the lower bound of Eq.(39) corresponds to twice the value of
|W 1,2

mn(Γ)| (see Eq. (38)). This conjecture can be easily established in the
case of the first two modes (see Eq. (34) in Proposition 3.6).
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Fig. 4. Sensitivity of the Wronskian-like function |W 3,4
mn(Γ,Σ)| given by Eq.(17) to

the widening coefficient σ =
aΣ

aΓ
. Case where eΓ = eΣ = 0.9 and kaΓ = 10.
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Fig. 5. Sensitivity of the Wronskian-like function |W 3,4
mn(Γ,Σ)| given by Eq.(17) to

the widening coefficient σ =
aΣ

aΓ
. Case where eΓ = eΣ = 0.9 and kaΓ = 20.

3.2 Accuracy of the approximate scattered field

Next, we assess analytically the accuracy performance of the proposed ap-
proximate boundary condition in the high frequency regime. We study the
asymptotic behavior of the Fourier coefficients of the solution of the canonical
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boundary value problem for high wavenumber values, and present numerical
results for illustration purposes. This analysis highlights the potential of the
proposed local approximate DtN2 absorbing boundary condition for solving
accurately acoustic scattering problems with elongated scatterers.

3.2.1 Mathematical results

We compare the approximate scattered field uDtN given by Eq. (16) to the
exact scattered field uscat given by Eq. (11) by analyzing the asymptotic be-
havior of the Fourier coefficients given by Eq. (21) as kaΓ →∞. The following
result analyzes the asymptotic behavior of the propagating Fourier coefficients
corresponding to the approximate scattered field uscat given by Eq. (11). Re-
call that the first two modes in the infinite series given by Eq. (16) are the
exact modes propagating towards the infinity and do not reflect at the arti-
ficial boundary Σ (see Eq. (24)). Therefore, the following analysis addresses
the case of the remaining modes. To do this, we introduce the following set

N =
{

(m,n) ∈ N2\{(0, 0), (0, 1)} such that n ≥ m
}

(40)

Proposition 3.8 For all (m,n) ∈ N , the propagating Fourier coefficients
dDtN
mn given by Eq.(21) satisfy:

dDtN
mn ∼ dscat

mn ; as kaΓ →∞ (41)

where dscat
mn are the Fourier coefficients corresponding to the exact scattered

field uscat (see Eqs. (11)-(12)).

Proof of Proposition 3.8. In order to obtain the asymptotic behavior of
the Fourier coefficients dDtN

mn given by Eq. (21), we first derive the asymptotic
behavior of the numerator Ψ(4)

mn|Σ
R(3)
mn|Γ

where Ψ(4)
mn|Σ

is given by Eq. (18). To

do this, we substitute into Eq. (18) the asymptotic behavior of (a) R(4)
mn|Σ

given

by Eq. (27), (b) r(4)
mn|Σ

given by Eq. (30), and (c) cmn|Σ given by Eq. (33). Then,

as kaΓ →∞, we obtain:

Ψ(4)
mn|Σ

R(3)
mn|Γ

∼ 1

kaΓ kaΣ

ei k(aΓ−aΣ)
[
−eΣkaΣ

(
i− 1

kaΣ

)
+ eΣkaΣ

(
−i− 1

kaΣ

)]
(42)

Proposition 3.8 is then an immediate consequence of substituting Eq. (25) (see
Proposition 3.3 ) and Eq. (42) into Eq. (21).

�

Remark 3.9 Proposition 3.8 indicates that
τDtN
mn

dscat
mn

→ 0 as kaΓ → ∞. This

suggests that, for large values of the wavenumber kaΓ, the propagating term

17
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of the approximate scattered field uDtN (see Eq. Eq. (11)) becomes a good ap-
proximation the exact scattered field uscat.

Next, we analyze the asymptotic behavior of the reflection Fourier coefficients
τDtN
mn given by Eq. (21). The following result compares asymptotically τDtN

mn to
the Fourier coefficients dscat

mn corresponding to the exact scattered field uscat.

Proposition 3.10 For all (m,n) ∈ N , the reflection Fourier coefficients τDtN
mn

given by Eq.(21) satisfy:

τDtN
mn ∼

(−1)n+1

2 (kaΣ)2

(
m− n+

n(n+ 1)

2

)
e2 i kaΣ dscat

mn ; as kaΓ →∞ (43)

where dscat
mn are the Fourier coefficients corresponding to the exact scattered

field uscat (see Eqs. (11)-(12)).

Proof of Proposition 3.10. In order to obtain the asymptotic behavior of
the Fourier coefficients τDtN

mn given by Eq. (21), we first derive the asymptotic
behavior of the numerator Ψ(3)

mn|Σ
R(3)
mn|Γ

where Ψ(3)
mn|Σ

is given by Eq. (18). To

do this, we substitute into we substitute into Eq. (18) the asymptotic behavior
of (a) R(3)

mn|Σ
given by Eq. (27), (b) r(3)

mn|Σ
given by Eq. (30), and (c) cmn|Σ given

by Eq. (33). Then, we obtain:

Ψ(3)
mn|Σ

R(3)
mn|Γ

∼ − i eΣ

kaΓ (kaΣ)2

(
m− n+

n(n+ 1)

2

)
ei (k(aΓ+aΣ)−(n+1)π) ; as kaΓ →∞

(44)
Next, we substitute (25) (see Proposition 3.3 ) and Eq. (44) into Eq. (21).
The, we obtain:

τDtN
mn ∼

1

2 (kaΣ)2

(
m− n+

n(n+ 1)

2

)
e2 i kaΣ e−i (n+1)π dscat

mn ; as kaΓ →∞

(45)
which concludes the proof of Proposition 3.10.

�

Remark 3.11 Proposition 3.10 suggests that, for large values of the wavenum-
ber kaΓ, the reflected waves in the approximate scattered field uDtN (see Eq.
Eq. (11)) become smaller (decay to zero) compared to the (propagating) exact
scattered field uscat.

The next result indicates the rate of decay of the reflection Fourier coefficients
τDtN
mn as kaΓ →∞.
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Theorem 3.12 For all (m,n) ∈ N , the reflection Fourier coefficients τDtN
mn

given by Eq.(21) satisfy:

∣∣∣τDtN
mn

∣∣∣ < 2κ

π1/4

(
n(n− 1)

2
+m

) (
eΓ aΓ

aΣ

)1/8 1

(kaΣ)15/8
; as kaΓ →∞

(46)
where the positive constant κ satisfies:

κ ≈ 1.086435 (47)

The proof of Theorem 3.12 is based on the following intermediate result that
provides an upper bound on the Fourier coefficients corresponding to the in-
cident plane wave uinc given by Eq. (8).

Lemma 3.13 For all (m,n) ∈ N , the Fourier coefficients dinc
mn given by Eq.

(10) satisfy:

|dinc
mn|Γ
| < 4κ

(√
eΓkaΓ

π

)1/4

; kaΓ → +∞ (48)

where the positive constant κ is given by Eq. (47).

Proof of Lemma 3.13. Recall that, as kaΓ → +∞, the asymptotic behavior
of the angular spheroidal wave function corresponding to the (mn)th mode is
given by (see Eq. (3.251) p. 243 in [18]):

Smn (eΓkaΓ, cosϕ0) ∼ (−1)m
(

4
√
eΓkaΓ

π

)1/4
1

(n−m)!

(
(n+m)!

2n+ 1

)1/2

. (1− cos2 ϕ0)
m/2

Dn−m

((
2
√
eΓkaΓ

)1/2
cosϕ0

) (49)

where Dn−m

((
2
√
eΓkaΓ

)1/2
cosϕ

)
are the parabolic cylinder functions [1].

These functions can be expressed in terms of the Hermite polynomials as
follows (see Eq. (19.3.1) p. 687 and Eq. (19.13.1) p. 691 in [1]):

Dn−m

((
2
√
eΓkaΓ

)1/2
cosϕ0

)
= 2(m−n)/2 Hn−m

(
(eΓkaΓ)1/4 cosϕ0

)

. exp(−
√
eΓkaΓ cos2 ϕ0

2
)

(50)

Moreover, the Hermite polynomials satisfy (see Eq. (22.14.17) p. 786 in [1]):

∣∣∣Hn−m
(
(eΓkaΓ)1/4 cosϕ0

)∣∣∣ < κ 2(n−m)/2
√

(n−m)! exp(

√
eΓkaΓ cos2 ϕ0

2
)

(51)
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In addition, we have (see Eq. 3.23 p. 237 in [18]) that:

Nmn =
2

2n+ 1

(n+m)!

(n−m)!
(52)

Therefore, Eq. (48) results from substituting Eqs. (49)-(52) into Eq. (10).

�

Proof of Theorem 3.12. It follows from Eq. (43) that

|τDtN
mn | ∼

1

2 (kaΣ)2

(
n(n− 1)

2
+m

)
|dscat
mn | ; as kaΓ →∞ (53)

On the other hand, we have (see Eq. (21.9.4) p. 756 in [1]):

R(1)
mn|Γ

∼ <(R(3)
mn|Γ

) ; kaΓ → +∞ (54)

where <(z) designates the real part of the complex number z.
Therefore, it follows from Eq. (13) and Eq. (54) that:

|dscat
mn | ∼

∣∣∣∣cos
(
kaΓ −

1

2
(n+ 1)π

)∣∣∣∣ |dinc
mn|Γ
| ; kaΓ → +∞ (55)

Eq. (46) results from substituting Eq. (48) and Eq. (55) into Eq. (53).

�

Remark 3.14 The following four observations are noteworthy:

i. Theorem 3.12 along with Proposition 3.8 prove that, as kaΓ →∞ uDtN, the
solution of the boundary value problem (14), tends to the exact scattered
field uscat, the solution of the acoustic scattering problem (7).

ii. Theorem 3.12 states that the Fourier coefficients corresponding to the re-

flected modes decay faster than
1

(kaΣ)15/8
. This quasi-quadratic decay of the

reflected waves, for large wavenumber values ka, tends to indicate that the
exterior boundary could be positioned at a very small distance from the sur-
face of the scatterer while delivering an acceptable level of accuracy on the
approximate scattered field uDtN. This observation is illustrated numerically
in the next paragraph (see Section 3.2.2).

iii. The proof of estimate (46) uses Taylor expansions and only one inequality
(see Eq. (51) in the proof of Lemma 3.13) which is an estimate on Hermite
polynomials (see Eq. (22.14.17) p. 786 in [1]). This proves that (46) is a
sharp estimate. Nevertheless, there are a some reflected modes that decay

much more faster than
1

(kaΣ)15/8
, as reported in [23]. More specifically, the
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modes unm such that n ∼ σka and m <<
σka

2e
decay exponentially as

ka→∞ (see Proposition B.2, Appendix B, in [23]) .
iv. In the particular case where both Γ and Σ are spherical-shaped boundaries,

the reflection Fourier coefficients τBGT2
n corresponding to the BGT2 condi-

tion, satisfy (see Theorem A.3 in Appendix A):

∣∣∣τBGT2
n

∣∣∣ < n(n+ 1)(2n+ 1)

4

1

(kR)2
; as ka→∞ (56)

which is slightly better than the asymptotic behavior of τDtN
mn in spite the

fact that the proposed DtN2 boundary condition coincides with BGT2 on
spherical-shaoed boundaries, as shown in [4],[23]. This result indicates that
we cannot interchange the limit as eΣ → 0 with the limit as kaΣ →∞.

3.2.2 Numerical investigation of the accuracy

We assess numerically the accuracy of the local approximate DtN2 boundary
condition given by Eq. (15) when applied in domain-based formulation for
solving the canonicalacoustic scattering problem given by (14).
Similarly to the previous numerical investigation (see Section 3.1.2), we per-
form this numerical investigation in the particular case where the two bound-
aries Γ and Σ are parallel. Hence, we assume that the semi-major and semi-
minor axes satisfy respectively aΣ = σ aΓ and bΣ = σ bΓ. The positive real
number σ, called the widening coefficient, satisfies σ ≥ 1. Recall that such an
assumption implies that the two boundaries have the same eccentricity, that
is eΣ = eΓ = e. We analyze the sensitivity of the accuracy to the value of σ,
that is the position of the exterior boundary Σ with respect to the boundary
Γ of the prolate spheroidal-shaped scatterer Ω. This is achieved by computing
the 2-norm of (a) the reflection Fourier coefficients τDtN

mn given by Eq. (21) as
a function of the distance between the interior boundary Γ and the artificial
boundary Σ , i.e.

σ −→
(

+∞∑
m=0

+∞∑
n=m

|τDtN
mn |2

)1/2

and (b) the relative error between the approximate solution uDtN given by Eq.
(16) and the scattered filed uscat given by Eq. (11) as a function of σ, i.e.

σ −→

(
+∞∑
m=0

+∞∑
n=m

(
|dappmn − dscatmn |2 + |τappmn |2

))1/2

(
+∞∑
m=0

+∞∑
n=m

|dscatmn |2
)1/2

The goal in part (a) is to measure the intensity of the reflected waves, and
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therefore to assess the level of transparency of the proposed boundary condi-
tion, whereas in part (b) we evaluate the accuracy as a function of the distance
between the two boundaries. We compare the performance of this condition
to the performance of the so-called BGT2 boundary condition designed in
spherical coordinates in [6] and expressed in prolate spheroid coordinates in
[21]. Note that the expression of Fourier coefficients dBGT2

mn and τBGT2
mn corre-

sponding to BGT2 condition can be found in [5] (see Eqs. (63)-(64), p. 34
in the INRIA technical report [5]). For illustration purpose, we present the
results of two sets of numerical experiments performed where we have set
ka = 10 and 20. These results have been obtained for two eccentricity values
eΣ = eΓ = 0.1 corresponding to a prolate spheroid ”close” to a sphere, and 0.9
corresponding to a ”very” elongated regular prolate-spheroid boundary. The

results depicted in Figs. (6)-(9) are obtained for an incident angle ϕ0 =
π

4
.

Note that the results for other incident directions are comparable [23]. The
following observation are noteworthy:

• Figs. (6)-(7) indicate that the proposed DtN2 boundary condition given by
Eq. (15) produces ”little” reflections, especially for large eccentricity val-
ues. More specifically, for large eccentricity values (e = 0.9), the 2-norm of
the reflection coefficients is already below 1% as soon as σ > 1.2, which
corresponds to a small computational domain Ωb. This result illustrate the
high level of transparency of the proposed DtN2 boundary condition when
applied on very elongated boundaries. On the other hand, for small eccen-
tricity values corresponding to boundaries close to sphere (e = 0.1), the
2-norm of the reflection coefficients remains of order 5% for all frequencies
even when the exterior boundary Σ is placed very far from the boundary Γ
of the scatterer Ω, i.e. for large values of σ.
• The results depicted Figs. (8)-(9) indicate that proposed DtN2 boundary

condition delivers the solution with a high level of accuracy. Indeed, for large
eccentricity values (e = 0.9), the relative error, in the 2-norm sense, is below
0.1% as soon as σ > 1.2, which corresponds to a small computational domain
Ωb. This observation suggests that the proposed DtN2 boundary condition
is very efficient when applied on very elongated boundaries. Observe that,
for small eccentricity values (e = 0.1), the DtN2 boundary condition retains
a good level of accuracy, the relative error is of order 1% when σ > 1.4
which corresponds to a relatively small computational domain.
• Figs. (6)-(9) show that the proposed DtN2 boundary condition given by Eq.

(15) outperforms the BGT2 boundary condition when expressed in prolate
spheroid coordinates in [21]. This superiority is more noticeable for small
eccentricity values which is surprising because when e→ 0 both conditions
tend to the same boundary condition.
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Fig. 6. Sensitivity of the reflection coefficients to the widening parameter σ for

ka = 10 and incident angle ϕ0 =
π

4
: DtN2 (plain), BGT2 (dashed).
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Fig. 7. Sensitivity of the reflection coefficients to the widening parameter σ for

ka = 20 and incident angle ϕ0 =
π

4
: DtN2 (plain), BGT2 (dashed).
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Fig. 8. Sensitivity of the relative error to the widening parameter σ for ka = 10 and

incident angle ϕ0 =
π

4
: DtN2 (plain), BGT2 (dashed).
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Fig. 9. Sensitivity of the relative error to the widening parameter σ for ka = 20 and

incident angle ϕ0 =
π

4
: DtN2 (plain), BGT2 (dashed).
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4 Conclusion

We have perfomed an analytical study of the performance of the local ap-
proximate DtN2 absorbing boundary condition designed for exterior artifi-
cial prolate spheroidal-shaped boundaries that is well-suitable for elongated
scatterers [4]. We have adopted a domain-based formulation to conduct this
analysis in the high frequency regime. The mathematical analysis of the ap-
proximate scattered field, i.e. the solution of the canonical boundary value
problem, proves that the DtN2 produces reflections at the exterior bound-
ary that decay faster than 1/(kaΓ)15/8, while the propagating waves tend to
the exact scattered field. The numerical investigation of the relative error for
the considered boundary value problem reveals that it is enough to set the
widening coefficient σ at about 1.2 to retain a level of accuracy less than 1%.
These two observations tend to indicate that, in practice, the use of the DtN2
boundary condition on a prolate spheroidal-shaped boundary surrounding the
smallest prolate spheroid that contains the considered elongated scatterer, in-
curs relatively small computation domain, in order to achieve an acceptable
level of accuracy when solving high frequency acoustic scattering porblems.
Recall that, in the low frequency regime, we have already demonstrated in [4]
that the proposed absorbing boundary condition retains a good level of accu-
racy regardless of the slenderness of the boundary. This result was established
using the OSRC formulation, which is an extreme case scenario since the use
of a domain-based formulation would be less “demanding” on the boundary
condition. Consequently, this study along with the previous one [4] illustrate
the potential of the proposed absorbing boundary condition for solving effi-
ciently acoustic scattering problems with elongated scatterers for all frequency
regime. Furthermore, as stated earlier in the Introduction section, this absorb-
ing boundary condition is exact for the first two modes, easy to implement
and parallelize, and it retains the local structure of the computational scheme.
These features make the proposed DtN2 boundary condition even more ap-
pealing.
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Appendix

A Performance of the BGT2/DtN2 for spherical-shaped bound-
aries: Analytical results

We consider in this section the limit case where the eccentricity e becomes 0,
that is, when the DtN2 boundary condition given by Eq.(15) coincides with
the local DtN2 boundary condition given in [12] (see also Eq. (11), p. 19 in
[13]). We recall that, unlike the two-dimensional case, the absorbing boundary
conditions BGT2 and DtN2 are identical when employed on a sphere (see
Proposition 3.2.1 p. 20 in [13]).

The goal of this study is to determine analytically the asymptotic behav-
ior of the the reflection coefficients corresponding to the acoustic reflected
waves produced by the BGT2/DtN2 boundary condition when employed on a
spherical-shaped exterior boundary. To do this, we consider throughout this
section the spherical coordinates (ξ, θ, ϕ) where r is the radius and θ, ϕ are the
two Euler angles satisfying x = r sin θ cosϕ, y = r sin θ sinϕ, and z = r cos θ.
We assume the sound-soft scatterer Ω to be a sphere of radius a, and the in-
cident plane wave uinc to be along the positive z-axis, i.e. uinc = ei k cos θ which
can be expanded as (see, for example, Eq. 2.1.17, p. 28 in [14] or Eq. 2.6.99,
p. 98 in [19]):

uinc =
+∞∑
m=0

dinc
n jn(kr)Pn(cos θ) (57)

where the nth Fourier coefficient dinc
n is given by:

dinc
n = in (2n+ 1) (58)

Note that jn is the n-order spherical Bessel function of the first kind (see Eq.
10.1.1, p. 437 in [1]) and Pn is the Legendre polynomial of order n (see Eq.
8.6.18, p. 334 in [1]). Observe that these polynomials satisfy (see, for example,
Eq. (70), p. 29 in [13] ):

d

dθ

(
sin θ

d(Pn(cos θ))

dθ

)
+ n(n+ 1) sin θ Pn(cos θ) = 0 (59)

It is well known (see, for example, Eq. (3.29), p. 52 in [8]) that the sound-soft
acoustic scattered field (the solution of the boundary value problem given by
Eq.(7)) can be expressed as follows

uscat =
+∞∑
m=0

dscat
n h(1)

n (kr)Pn(cos θ) (60)
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where the nth Fourier coefficient dscat
n is given by:

dscat
n = − in (2n+ 1)

jn(ka)

h
(1)
n (ka)

(61)

and h(1)
n is the n-order spherical Hankel function of the first kind (see Eq.

10.1.1, p. 437 in [1]).

Next, we consider the acoustic scattering problem formulated in a bounded
domain Ωb (see BVP(14)). As depicted in Fig.10, the bounded domain Ωb is
located outside the sphere of radius a, and inside the sphere of radius R, with
R ≥ a and Σ being surface of the outer sphere. Moreover, the second boundary
condition in BVP(14), the Robin-type boundary condition on Σ, is replaced
by the BGT2/DtN2 boundary condition (see, for example, Eq. (8), p. 19 in
[13]), that is:

∂u

∂r
=
(

ik − 1

R

)
u+

1

2R(1− ikR)
∆Σu (62)

where the Laplace-Beltrami operator ∆Σ is defined by;

∆Σu =
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂ϕ2
(63)

Fig. 10. Geometry of the bounded computational domain Ωb (left) with a two-di-
mensional illustration in the xy-plane (right).

Consequently, the solution of the resulting boundary value problem, uDtN2,
can be expanded as follows:

uBGT2 =
+∞∑
m=0

(
dBGT2
n h(1)

n (kr) + τBGT2
n h(2)

n (kr)
)
Pn(cos θ) (64)

where h(2)
n is the n-order spherical Hankel function of the second kind (see Eq.

10.1.1, p. 437 in [1]). Note that the outgoing/propagating modes are repre-
sented by h(1)

n (kr) and the incoming/reflected modes are characterized with
h(2)
n (kr).
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Next, we investigate analytically the asymptotic behavior of the reflection
Fourier coefficients τBGT2

n corresponding to the reflected waves as ka → ∞.
First, we introduce first for all n ∈ N, the following wronskian-like expression:

Wn(a,R) = h(1)
n (ka)ϕ(2)

n (kR)− h(2)
n (ka)ϕ(1)

n (kR) (65)

where
ϕ(j)
n (kR) = k h(j)

n

′

(kR)− γn h(j)
n (ka) ; j = 1, 2 (66)

and

γn = ik − 1

R
− n(n+ 1)

2R(1− ikR)
; j = 1, 2 (67)

Second, we state the necessary and sufficient condition for the existence and
the uniqueness of the solution uBGT2, and we give the explicit expression of
the corresponding Fourier coefficients.

Proposition A.1 The approximate scattered field uBGT2 given by Eq.(64) ex-
ists and is unique if and only if

Wn(a,R) 6= 0 ∀n ∈ N (68)

Moreover, if condition (68) is satisfied, then for all n ∈ N, the Fourier coeffi-
cients dBGT2

n and τBGT2
n are given by:

dBGT2
n = −ϕ

(2)
n (kR) jn(ka)

Wn(a,R)
dinc
n

τBGT2
n =

ϕ(1)
n (kR) jn(ka)

Wn(a,R)
dinc
n

(69)

Proof of Proposition A.1. It follows from Eq.(59), Eqs.(62)-(64), and Eq.(67)that:
dBGT2
n h(1)

n (ka) + τBGT2
n h(2)

n (ka) = −dinc
n jn(ka)

dBGT2
n k h(1)

n

′
(kR) + τBGT2

n k h(2)
n

′
(kR) = γn

(
dBGT2
n h(1)

n (kR) + τBGT2
n h(2)

n (kR)
)

(70)
We then conclude the proof by solving the 2× 2 linear system (70) and using
Eqs.(65)-(66).

�

Remark A.2 Observe that dBGT2
n = dscat

n and τBGT2
n = 0 for n = 0, 1, which is

expected since, by construction, the absorbing boundary condition BGT2/DtN2
is exact for the first two modes.
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Finally, we state the main result of this section. It describes the asymptotic
behavior of the reflection Fourier coefficients τBGT2

n (n ≥ 2), corresponding to
the reflected waves, as ka→∞.

Theorem A.3 For all n ≥ 2, the reflection Fourier coefficient τBGT2
n given

by Eq.(69) satisfies:

∣∣∣τBGT2
n

∣∣∣ < n(n+ 1)(2n+ 1)

4

1

(kR)2
; as ka→∞ (71)

The Proof of Theorem A.3 is based on the following intermediate result.

Lemma A.4 For all n ≥ 2, the wronskian-like expression Wn(a,R) given by
Eq. (65) satisfies:

Wn(a,R) ∼ 1

kaR

[
n(n+ 1)

k

(
1

a
− 1

R

)
− 2 i

]
ei k(a−R) ; as ka→∞ (72)

Proof of Lemma A.4. We know (see, for example, Eq. (82), p. 31 in [13])
that:

h(1)
n (kR) = h

(2)
n (kR) ∼ (−1)n

kR

(
n(n+ 1)

2kR
− i

)
ei (kR+nπ

2 ) ; as ka→∞

(73)
Hence, it follows from Eqs.(66)-(67), and Eq.(73) that:

ϕ(1)
n (kR) ∼ (−1)n

R

n(n+ 1)

2(kR)2

(
1 +−i

(n− 1)(n+ 2)

2kR

)
ei (kR+nπ

2 ) ; as ka→∞

(74)
and

ϕ(2)
n (kR) ∼ (−1)n

R

(
2− i

n(n+ 1)

kR

)
e−i (kR+nπ

2 ) ; as ka→∞ (75)

Therefore, the asymptotic behavior (72) results from substituting Eqs.(73)-
(75) into Eq.(65).

�

Remark A.5 Observe that Lemma A.4 proves that the necessary and suffi-
cient condition (68) is fullfilled in the high frequency regime. Hence, the bound-
ary value problem (14) admits a unique solution uBGT2 in the high frequency
regime regardless of the location of the artificial boundary Σ.
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Proof of Theorem A.3. Using (73), we deduce that:

jn(ka) = <(h(1)
n (ka)) ∼ (−1)n

ka

[
n(n+ 1)

2ka
cos

(
ka+ nπ

2

)
+ sin

(
ka+ nπ

2

)]
; as ka→∞

(76)

Then, estimate (71) given in Theorem A.3 is an immediate consequence of
substituting Eq. (74), Eq. (76), Eq. (58), and Eq. (72) into Eq. (69).

�
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