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1 Introduction20

A tetrahedron is said to be nonobtuse, if all its six dihedral angles between faces are21

nonobtuse. Nonobtuse simplicial (triangular, tetrahedral, etc) finite elements play an im-22

portant role in the finite element analysis of boundary value problems, since they yield23

irreducible and diagonally dominant stiffness matrices for a sufficiently small discretiza-24

tion parameter and guarantee the validity of the discrete maximum principle when solving25

the Poisson and some other elliptic equations with various boundary conditions (see [3]).26

Note that just one obtuse simplex in a triangulation can completely destroy the discrete27

maximum principle [2]. In [4], we gave a global refinement algorithm which produces28

nonobtuse tetrahedra. However, various local refinements of simplicial meshes are often29

necessary to handle e.g. boundary or interior layers, large oscillations and singularities of30

the solution or its derivatives at interior interfaces, where one kind of media changes into31

another, or near some special edges, or points, see [8], and also for mesh adaptivity proce-32

dures. An algorithm for treating vertex (or point) singularities by nonobtuse tetrahedra33
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was first presented in [5], and later generalized in [1] to any space dimension. Edge and34

face singularities can also be treated by that algorithm if we select sufficiently many addi-35

tional nodes along edges or faces, respectively. In this note we present another algorithm36

for a face-to-face tetrahedral refinement around and towards an edge that produces only37

nonobtuse tetrahedra. The algorithm may have practical applications in solving partial38

differential equations by the finite element or finite volume methods in 3D.39

In Figure 1 we observe several kinds of nonobtuse tetrahedra, namely, the path-40

tetrahedron, the cube corner tetrahedron, and the regular tetrahedron. Notice that legs41

of right-triangular faces in the cases a) and b) are not necessarily of the same length. In42

Figure 1a) and 1b) these legs are mutually orthogonal. In Figure 1a) they form a path,43

whereas in Figure 1b) they pass through one vertex.44

a) b) c)

Figure 1: Examples of nonobtuse tetrahedra – a) path, b) cube corner, and c) regular.

Note that two well-known partitions of a cube into 5 and 6 tetrahedra (see Figure 2)45

are formed by nonobtuse tetrahedra from Figure 1.46

Figure 2: Two partitions of a cube into 5 and 6 nonobtuse tetrahedra. The left partition
consists of four cube corners and one regular tetrahedron, and the right partition consists
of six path tetrahedra.

2 The mesh refinement algorithm47

In this section we first recall (see [6]) the key idea and also illustrations (see Figures 3 and48

4) of the nonobtuse tetrahedral refinements towards a flat face of the 3D solution domain49

(or towards some interface inside of it). For this purpose we take two adjacent square50

prisms and denote their nodes as sketched in Figure 3, where also partitions of some faces51

are marked.52
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Figure 3: A sketch of a partition of two adjacent square prisms into nonobtuse tetrahedra
from Step A.

Step A: Let d = |B1B3| = |B3B5| denote the length of sides of the square faces of the53

considered two prisms, and let l1 = |A0B0| and l2 = |B0C0| be their thicknesses in the54

horizontal direction.55

First we partition the left square prism A1A3A5A7B1B3B5B7 of Figure 3 into four56

triangular prisms whose common edge is A0B0. Second we partition each triangular57

prism into four tetrahedra. For instance, the triangular prism A0A1A3B0B1B3 will be58

divided in the following way (see Figure 4):59

A0A1A3B0 (cube corner tetrahedron), A1B1B2B0 (path tetrahedron),60

A3B3B2B0 (path tetrahedron), and A1A3B0B2.61

The first three resulting tetrahedra are clearly nonobtuse. Further, we see that62

A1A3B0B2 is nonobtuse if and only if63

|B1B3| ≤ 2|A0B0|, i.e. l1 ≥
d

2
. (1)

The other three triangular prisms A0A3A5B0B3B5, A0A5A7B0B5B7, and A0A1A7B0B1B764

can be subdivided similarly.65
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Figure 4: Partition of a triangular prism A0A1A3B0B1B3 into four tetrahedra.

Next, we partition the right adjacent square prisms B1B3B5B7C1C3C5C7 of Figure 366

into eight triangular prisms whose common edge is B0C0. To this end we denote by D67

the midpoint of C0C1. Further, e.g., the triangular prism B0B1B2C0C1C2 will be divided68

into four tetrahedra like in the previous step:69
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B0B1B2C2 (cube corner tetrahedron), B0C0DC2 (path tetrahedron),70

B1C1DC2 (path tetrahedron), and B0B1DC2.71

The last tetrahedron is nonobtuse provided72

|B0B1| ≤ 2|B0C0|, i.e. l2 ≥
√
2d

4
. (2)

This condition is necessary and sufficient to guarantee a nonobtuse partition of the trian-73

gular prism B0B1B2C0C1C2 into four nonobtuse tetrahedra as described above.74

The other seven triangular prisms can be divided into nonobtuse tetrahedra similarly.75

In this way (i.e., under conditions (1) and (2)) we get a face-to-face nonobtuse partition of76

two adjacent square prisms. The left square prism of Figure 3 is thus conformly subdivided77

into 16 and the right prism into 32 nonobtuse tetrahedra.78

Step B: Now, in the construction of Step A, we take both prisms be of the thickness d

2
,79

i.e. l1 = l2 =
d

2
. Therefore, two square prisms in Figure 3 form a cube with edges of the80

length d.81

In Figure 5, we observe several principal refinement steps towards the chosen vertical82

edge in the upper right corner (view from the top). The advancing (according to arrows)83

blocks with the shown refinement of their upper faces are always treated as in Step A84

(with their “own” l1 = l2 =
d

2
). The problematic zone (marked by the question sign) and85

its refinement which provide the conformity with the “surroundings” will be discussed86

further. It is enough to consider a few first steps only (as in Figure 5), since the situation87

repeats up to scaling. In what follows, we always consider only the upper layer (of the88

width d) from the initial mesh, since the (possible) other layers (under it, each of the89

width d, too) can be treated similarly using symmetry argument.90

?

Figure 5: Several refinements towards the chosen vertical edge (marked by the bold dot,
view from the top). The problematic zone is marked by the question mark.

The zone marked by the question mark in Figure 5 is, in fact, made of two cubes (one91

above the other) of the size d

2
× d

2
× d

2
each. It is enough to show how to partition, conformly92

with the surroundings, the upper cube, since the lower cube can be partitioned using the93

mirror reflection via their common face. The method for this purpose is illustrated in94

Figures 6 and 7. First, in Figure 6 (left) we sketch those faces whose refinement stencils95

are dictated by previous constructions, and further, as illustrated in Figure 6 (right) we96

partition the cube into nonobtuse tetrahedra taking convex hulls of the center of the cube97

and the marked right triangles on the faces, besides the upper and lower right subcubes,98
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which we split in a special way (into 5 nonobtuse teterahedra each) as demonstrated in99

Figure 7.100

Figure 6: Refinement of one of the two cubes in the problematic zone, only forced “face
refinement” lines (due to the conformity requirements) are sketched on the left. Full “face
refinement” of the left cube (the bold dot is the center of the cube) is on the right.

Figure 7: Refinement of one of the two sub-cubes into 5 nonobtuse tetrahedra.

We notice that we can do infinitely many steps in the total above construction with the101

choice l1 = l2 = d

2
and the overall conformity of any resulting meshes, obviously moving102

towards the chosen edge, is guaranteed.103

3 Final remarks104

Remark 1 In real-life calculations we perform only a finite number of refinements. There-105

fore, we have to divide the “remaining” zone around the edge, whose position is illustrated106

by the black dot in Figure 5. Each subcube in that zone has to be divided so that it fits107

to the triangulation of the right face of the right cube from Figure 3. We could apply for108

this purpose e.g the division into 24 cube corner tetrahedra as sketched in Figure 8.109

Remark 2 Actually, the construction given in Figure 5 can be easily adapted to gener-110

ating nonobtuse local refinements e.g. inside 2d × 2d × 2d cube to one of its edges if we111

take precisely two layers in Figure 5 (left) and use the technique proposed in Figures 6112
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Figure 8: Partition of a cube into 24 cube corner tetrahedra. They are defined as the
convex hull of the centre of the cube and a particular triangle on the surface.

and 7 to conformly fill in the (not considered so far) area in the “left lower corner” of113

Figure 5.114

Remark 3 Notice that nonobtuse tetrahedral meshes (whose elements have nonobtuse115

triangular faces [2]) satisfy the maximum angle condition [7], which is one of popular116

sufficient conditions for convergence proofs in the finite element analysis.117
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