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Abstract We introduce a new numerical method to
simulate geophysical marine controlled source electro-
magnetic (CSEM) measurements for the case of 2D
structures and finite 3D sources of electromagnetic
(EM) excitation. The method of solution is based on
a spatial discretization that combines a 1D Fourier
transform with a 2D self-adaptive, goal-oriented, Ap-
Finite element method. It enables fast and accurate
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simulations for a variety of important, challenging and
practical cases of marine CSEM acquisition. Numerical
results confirm the high accuracy of the method as
well as some of the main physical properties of marine
CSEM measurements such as high measurement sen-
sitivity to oil-bearing layers in the subsurface. In our
model, numerical results indicate that measurements
could be affected by the finite oil-bearing layer by as
much as 10*% (relative difference). While the emphasis
of this paper is on EM simulations, the method can be
used to simulate different physical phenomena such as
seismic measurements.

Keywords Marine controlled source electromagnetics
(CSEM) - Fourier finite element method -
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1 Introduction

1.1 History and main principles of marine
CSEM measurements

Resistivity measurements have been used during the
last 80 years to quantify the spatial distribution of elec-
trical conductivity in hydrocarbon-bearing reservoirs.
Electrical conductivity is utilized to assess material
properties of the subsurface, and is routinely used by
oil-companies to estimate the volume of hydrocarbons
(oil and gas) existing in a reservoir.

Borehole resistivity measurements have been rou-
tinely acquired by oil-companies since 1927, when the
Schlumberger brothers recorded resistivity data for the
first time in Pechelbronn, France. However, marine
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CSEM measurements have only been used by oil com-
panies in the late 1990s and early 2000s, despite the
early academic research performed during the 1970s
and 1980s on the topic (see [4, 6, 9]).

Marine CSEM measurements utilize a transmitter
that is typically located a few meters (10-100 m) above
the sea-floor and is moved by a ship (see Fig. 1). This
transmitter operates at frequencies in the range of 0.25-
1.25Hz in order for EM waves to reach long distances.
Measurements are recorded by a set of receivers lo-
cated along the sea-floor at a distance of up to 20 km
from the source.

EM waves excited in marine CSEM travel through
different materials in the path from the transmitter
to the receivers. Since the media is lossy, EM waves

Fig. 1 Two views of a typical
marine CSEM acquisition
system composed of one
transmitter carried by a ship,
several receivers located at
the seafloor and several
subsurface layers. EM waves
are reflected by different
material interfaces with the
air and the subsurface layers
(see bottom panel)

diffuse most of their energy before arriving to the
receivers. In addition, EM waves are also reflected at
the interfaces between different materials (see Fig. 1,
bottom panel). The signal traveling through the sub-
surface is the one that is useful to study the presence,
location, and shape of hydrocarbon reservoirs. For that
purpose, there is a need to remove the direct signals
that travel trough the sea and the one reflected by the
sea-air interface. Due to the low electrical conductivity
of the air, the signal reflected by the air in a shallow
water environment may be several orders of magni-
tude larger than the one traveling through the subsur-
face, which increases the noise-to-signal ratio, thereby
increasing the difficulty of determining the presence
and location of hydrocarbons within the reservoir [33].
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For a more detailed physical interpretation of marine
CSEM measurements, see [34].

1.2 Simulations of marine CSEM measurements

To improve the interpretation of results obtained with
resistivity measurements, and thus, to better quantify
and determine existing subsurface materials and in-
crease hydrocarbon recovery, diverse methods have
been developed to perform numerical simulations (for
instance, [15, 17, 18, 22]) as well as to invert marine
CSEM measurements [1, 5, 12, 16, 21].

Despite the existing numerical work recently devel-
oped to simulate marine CSEM measurements, several
challenges need to be overcome to produce more
accurate simulations in a limited amount of time.
Specifically, the main numerical challenges are the fol-
lowing: (a) we need to consider in the same simulation
objects with very different geometries and sizes, includ-
ing small antennas and large subsurface layers, (b) we
need to consider full EM effects, since direct current
(DC) simulations at zero frequency do not provide
sufficient accuracy due to the large size of the com-
putational domain, (c¢) we need to consider electrically
anisotropic formations, since this feature is essential to
properly characterize reservoirs, (d) we need to find the
solution at the receiver antennas, which is typically 5-15
orders of magnitude smaller than the solution at the
transmitter antenna, and (e) we need to produce fast
simulations to enable inversion of the measurements
and/or a detailed numerical study of the simulation
environment.

1.3 Fourier hp-Finite Element Method

To overcome the above challenges, we propose the use
of a parallel Fourier 4p-Finite Element Method (FEM),
where £ indicates the element size, and p the poly-
nomial order of approximation, both varying locally
throughout the grid. Specifically, our method combines
a (1) 2D self-adaptive goal-oriented hp-FEM [7, 8,
26, 27], which provides the geometrical flexibility of a
FEM as well as high-accuracy simulations due to the
exponential convergence in terms of the problem size
vs. the error in the quantity of interest (solution at the
receiver antennas), with (1) a 1D Fourier method for
considering typical scenarios of marine CSEM prob-
lems consisting of 2D subsurface resistivity models and
3D finite-size EM sources. Thus, our method is suitable
for the simulation of objects with different scales (small
antennas and large layers), it performs simulations at
non-zero frequencies with possibly anisotropic forma-

tions (we solve full Maxwell’s equations), and it delivers
high-accuracy approximations of the solution at the
receiver antennas (quantity of interest). In addition,
the entire implementation of our numerical method
is compatible with the use of sequential and parallel
machines in order to secure maximum performance.

The main contribution of this paper is the proper
combination, extension, and application of a Fourier
hp-Finite-Element Method [25, 30] to obtain highly
accurate simulations of marine CSEM measurements.
In addition, we describe a parallel implementation and
compare various solvers of linear equations, we validate
the method employing analytical solutions for simple
marine CSEM scenarios, and illustrate via numerical
experimentation the main physical principles behind
marine CSEM measurements and the main features of
our simulation method.

The method described in this paper provides highly
accurate and reliable results within reasonable CPU
times as it enables a significant reduction of the compu-
tational complexity with respect to conventional sim-
ulators without sacrifice of accuracy. In addition, the
method is suitable for simulation of resistivity logging
measurements, inverse problems, as well as for mul-
tiphysics applications. Therefore, it aims to become a
widely used simulation strategy for problems arising in
the oil industry.

The paper is organized as follows: Section 2 describes
the mathematical formulation of our Fourier Finite
Element Method, which we describe in detail along
with the main implementation aspects on Section 3.
Section 4 illustrates the performance of the method,
including validation results and challenging simulations
of marine CSEM measurements. Section 5 is devoted
towards conclusions.

2 Formulation

In this section, we first introduce time-harmonic
Maxwell’s equations, and the corresponding modeling
of the sources and boundary conditions we utilize for
simulation of marine CSEM measurements. Then, we
describe the corresponding 3D variational formulation.
After taking a 1D Fourier transform, we derive a sim-
ple variational formulation under the assumption of
constant materials in the Fourier direction. We also
indicate the steps needed to obtain a 3D variational
formulation under more general material distributions.
Finally, we discuss the main differences between a
variational formulation in terms of electric field E and
magnetic field H.
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2.1 Time-harmonic Maxwell’s equations

Assuming a time-harmonic dependence of the form
e/, with w denoting angular frequency, Maxwell’s
equations in linear media can be written as

VxH = (o+ jwe)E+ Jimp Ampere’s Law,
VxE =—jopH—-M™  Faraday’s Law,
V.(€E) =p, Gauss’ Law of
Electricity, and
V-(uH) =0 Gauss’ Law of
Magnetism.

1

In the above equations, H and E denote the magnetic
and electric fields, respectively, real-valued tensors
€, i, and o stand for dielectric permittivity, magnetic
permeability, and electrical conductivity of the media,
respectively, p, denotes the electric charge distribution,
and J™P MI™P are representations for the prescribed,
impressed electric and magnetic current sources,
respectively.

For convenience, we introduce tensors ﬁ = —jou
and o =0 + jwe. We assume that det(poL) # 0, and
det(a) # 0.

2.1.1 Closure of the computational domain

A variety of BCs can be imposed on the boundary 92 of
a computational domain €2 such that the difference be-
tween the solution of such a problem and the solution of
the original problem defined over R? is small (see [11]).
For example, it is possible to use an infinite element
technique [3], a Perfectly Matched Layer (PML) [24], a
boundary element technique [10] or an absorbing BC.
However, it is customary in geophysical applications to
impose a homogeneous Dirichlet BC on the boundary
of a sufficiently large computational domain, since the
EM fields decay exponentially in the presence of lossy
media.

For simplicity, in the simulations presented below we
will follow the Dirichlet BC approach over a 2D cross-
section of the domain, that is, we will impose nxE = 0
on the boundary of the 2D cross-section I' = 9.
Specifically, we shall consider a domain of size 26 x
20 km. In the (third) spatial direction perpendicular
to the plane of Fig. 1 (bottom), we will consider the
original infinite domain and we will apply a Fourier
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transform method. We note that for the case of shallow
water, we need a very large computational domain in
the air layer or a more sophisticated BC (such as a
PML).

2.1.2 Source and receiver antennas

In this work we model antennas by prescribing an
impressed volume current J™ or M™P. Specifically,
we inject a constant horizontal electric current over a
small box corresponding to the volume occupied by the
electrode. Receivers measure the average electric (or
magnetic) field over a small box corresponding to the
volume occupied by the receiver. Notice that we do not
model sources/receivers as metallic objects, but rather
as small boxes with currents. We note that it is also
possible to model antennas by using the equivalence
principle to replace the original impressed volume cur-
rents with equivalent surface currents (see [13, 26] for
details).

2.2 E-variational formulation

In this subsection, we describe our method in terms of
the unknown electric field E. First, we define the L2-
inner product of two (possibly complex- and vector-
valued) functions f and g as:

(£ 820 = /Qf*ng, ()

where f* denotes the adjoint (conjugate transpose) of
function f.

By pre-multiplying both sides of Faraday’s law
by 1 1, multiplying the resulting equation by V xF,
where F € Hr(curl; Q) = {F € H(curl; 2) : mxF)|r =
0} is an arbitrary test function, integrating over the
domain Q C R? by parts, and applying Ampere’s law,
we arrive at the following variational formulation after
incorporating the Dirichlet BC over I' = 9Q:

Find E € Hr(curl; ) such that:

~(F. ¢E)
12 (Q) L? (Q)

imy 3
=<F’J p)LZ(Q) ®)

o—1
<VXF, n VXE>

VF € Hr(curl;2).
L*(Q)

ol .
(v xr i )
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2.2.1 Fourier transform

We define the unitary Fourier transform of a possibly
complex- and vector-valued function f(x;) with respect
to variable x; as follows:

Fr®) =FE®)(r) = f(x)e ™ dx; 4)

7l

The inverse Fourier transform is given by

1 .
f(xl) = E /R}—r(f)e’”“dr . (5)

Two important properties of the Fourier trans-
form are its linearity and its compatibility with
differentiation, namely if f(x,) is a differentiable func-
tion, then 7, () = jrF,(f). Defining operator V' :=

(Jr, 7% 7= ), we have for £ = (fi, fo, f3):

V'X(fi. fo. f3) = <§—i—g—2 g—i—irﬁ, f’fz—g—i) .
(6)

Thus, we obtain the following identities:

F(Vxt) =V x(F&)), and

Vx(fzpe’”‘) = (ersz) el (7

where function f,p = f;p (x5, x3) is independent of x;.
2.2.2 2.5D Fourier finite element formulation

In this subsection, we assume that material properties
(namely, ¢ and 1) are constant with respect to x;, and
domain €2 can be expressed as 2 = Q(xq, x2, x3) = R x
Q,p(x2, x3). Similarly, we assume I' = R x 'y p(x2, x3).
Using the definition of inverse Fourier transform with
respect to variable x;, we have:

1 o i
E(x), x2, x3) = «/T_JT/ Fr(E)(x2, x3)e/™dr . (8)

Employing a (mono-modal) test function of the form
F(xi, x2, x3) := ﬁfm (F)(x2, X3)€jr”‘x‘ (without the in-
tegration), we obtain:

<F, 8E>
L*(Q)
1 ) o 1 )
=——(F (F e”’""‘,a—/ F. (E e””x‘dr> .
m< Ym( ) \/?T R rn( ) n LZ(Q)

)

Understanding the above integral in the distributional
sense, and using the fact that

1 i ji W
— elm¥e=Imidx) = /278, ., (10)
27T ‘é mstn

where §,, ,, is the Kronecker’s delta function (equal to
1 if r,, = r, and 0 otherwise), we arrive at

(F.oE), = (7.0 7, ®) (11)
Similar expressions can be obtained for all terms of the
variational problem described by Eq. 3. Again, using
the definition of inverse Fourier transform and Egs. 6, 7
and 10, we obtain:

L2(Qap)

o1
<V xF,u V ><E>
LX()

o—1
= <V T, (F), i V" xF, (E>> ,
L2(Sp)

(F, Jimp) Q)= (7,00, 7, (Jimp)) and

L*(Qp)°

ol .
<V xF, n M‘mp>
L2Q)

o—1 .
= <V”" xF., ®,n F, (M'mp)> . (12)
L2@ap)

Thus, the variational problem (3) becomes

1 .
Find E=—— f F.(E)e™dr, where for each r € R:
V2w JR
F+(E) € Hr,, (curl’; 2,p) , and

o—1
<Vf><f,(F) R V’xf,(E)>
L*(p)

— <]:r(F) ) ‘;]:’(E)>L2<Qw)

= (FE), HI™) g,

o—1 .
+<V’xf,(F) 0 ]—",(M‘mp)>
L*(Q2p)
V 7 (F) € Hr,, (curl’; Qap) ,

(13)

where

Hr,, (curl’; Q,p)

= {F®) € H (curl’; Qyp) : axF(F) |r,, = 0},
H (curl’; Q5p)

= {F(F) € L*(Qp) : V' xF(F) € L*(Qp)} . (14)

Variational Formulation (13) is composed of a se-
quence of independent 2D problems, a so-called 2.5D
problem. The unknowns of each 2D problem are the
three components of the electric field. Each component
of the electric field depends upon two spatial vari-
ables, namely, x, and x3. To derive Formulation (13),
we have assumed that material properties (3 and ﬁ)
are constant with respect to variable x;. However, we
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remark that material properties may incorporate any
type of anisotropy. This is a typical requirement for the
simulation of marine CSEM measurements.

2.2.3 3D Fourier finite element formulation

For the case of general 3D materials, Eq. 11 and
subsequent formulas no longer hold, and it is neces-
sary to perform a Fourier transform of the material
coefficients. As a result, the final variational formula-
tion is expressed as a sequence of coupled 2D problems.
Specifically, each 2D problem couples with as many 2D
problems as terms are needed to describe exactly the
material coefficients in the Fourier transform.

2.3 H-variational formulation

To obtain a formulation in terms of magnetic field H
rather than in terms of electric field E, it is sufficient to
follow a similar approach to the one described in this
paper but by taking as the main equation the curl of
Faraday’s law rather than the curl of Ampere’s law.

In this work, we have implemented both formu-
lations for comparison purposes. We note that BCs
should be consistent in order to compare results ob-
tained with the E-formulation and the H-formulation.
Specifically, the Dirichlet BCs used with the E-
formulation in order to truncate the computational
domain become Neumann BCs for the case of the H-
formulation. Thus, the problem becomes singular (no
Dirichlet BC is present), and a Dirichlet node should
be introduced, as described in [7].

The simultaneous use of both E- and H-formulations
could be used for error analysis of the discretization
error or the truncation error if we use non-consistent
BC’s. A large discrepancy among both solutions indi-
cates a large error, although unfortunately, the opposite
is not true in general.

3 Method: a Fourier hp-Finite Element Method
To solve variational problem (13), we first approximate

the inverse Fourier transform of electric field E by the
following Fourier series:

M
V2rE(x)= / FoB)e™dr ~ 3" (ray1—r) F, (E)e/™
R

n=—M

Z Founyr(E)e /T (15)

n=—mM
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In the above approximations, we have selected an in-
tegration rule with all weights equal to 1, we have
truncated the infinite sum, and we have considered
a uniform distance between integration points. This
distance is determined by parameter 7. We note that
as M — oo, the number of terms and computational
cost needed to properly approximate the above Fourier
series expansion increases. It is also well-known that
Fourier series expansions are used to represent periodic
functions. Thus, a finite value of 7" can be physically
interpreted as the presence of infinite sources at dis-
tances 7,27, 3T, etc. from the original source along the
Fourier direction. These additional undesired sources
may decrease the accuracy of the solution for small 7.

To select a first approximation of T that can be later
adjusted based on the numerical results, we first assume
that the solution decays as (4rad’)~!, where d is the
distance from the source to the receiver. This formula
corresponds to the exact solution of a point source
operating at zero frequency in a homogeneous medium.
Under this assumption, we conclude that

Rel. Error (in %)

=100 -

n=00 1 1
n:z—oo |:4n0((nT)2 + d2)3/2j|  dnod?

4o d?
= 100
e ((nT/d)2 +1)7

n=o0

(16)

= (1+ (noc)z (1 + (ra)2)”?

where o = T'/d. Table 1 describes the behavior of the
above formula. We observe relative errors below 25%
and 10% for values of « equal to 2 (7 =2d) and
3 (T = 3d), respectively. An error level below 10%
is acceptable and corresponds to what it is consid-
ered an “accurate” solution in the context of marine
CSEM measurements (note that a relative difference
below 10% in Fig. 4 would be almost invisible to the
human eye).

After selecting T, we truncate the infinite series (15).
An approximation of the truncation error is numeri-
cally evaluated by computing two (or four) additional
terms in the Fourier series expansion.

Each term F,(E) of the infinite Fourier series ex-
pansion (15) is computed using a 2D self-adaptive,
goal-oriented, hp-FEM software that accurately sim-
ulates problems involving coupled H(curl)- and H'-
discretizations. For simplicity, we construct a unique
common hp-grid for all Fourier modes based on the
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Table 1 Relative error (in percentage) according to Eq. 16 due to the use of a non-zero value of « = T/d

Values of o 1 2 3 4 10 100 1.e3 l.e4
Rel. error (in %) 102 23 8 3.5 1.8 24e—1 2.4e—4 2.4e—7 2.4e—10

solution of the central Fourier mode. The goal-oriented
hp-FEM delivers exponential convergence rates in
terms of the error in the quantity of interest versus the
number of unknowns and CPU time. The outstanding
performance of the Ap-FEM for simulating diverse re-
sistivity logging measurements has been documented
in [25, 28, 29], and a similar performance is expected
to hold when simulating marine CSEM measurements.
A detailed description of the Ap-FE method and its
exponential convergence properties can be found in [7].
We refer to [26] for technical details on the goal-
oriented adaptive algorithm applied to simulation of
electrodynamic problems.

3.1 Solver of linear equations

The choice of an adequate solver of linear equations
is critical for the efficient simulation of marine CSEM
measurements. While iterative solvers are faster and
utilize less memory than direct solvers (see Table 2),
they also include a number of disadvantages. Namely,
when solving a problem with M > 1 right-hand sides
(as it occurs in inverse problems), the cost of itera-
tive solvers rapidly increases, while the cost of direct
solvers remains almost constant if M << N. In addi-
tion, convergence properties of iterative solvers are
highly dependent upon the condition number of the
matrix and the physics of the problem (e.g., specific
iterative solvers are needed for EM problems in order
to avoid spurious modes). In particular, an iterative
solver requires the implementation of smoothers spe-
cially designed to minimize the error of both the rota-
tional and gradient parts of the solution, c.f. [2, 14]. For
simplicity, and in order to avoid additional numerical
errors possibly introduced by the iterative solver, in this
paper we use a direct solver.

In the following, we compare the performance of
two well known direct solvers of linear equations when

Table 2 Scalability of direct vs. iterative solvers

applied to a marine CSEM problem: 1) the parallel
multi-frontal solver MUMPS (version 4.8.3) [20]; and
2) PARDISO [23]. Both solvers have been combined
with the ordering of the unknowns provided by METIS
(version 4.0) [19].

Figure 2 compares the performance—CPU time
(left panel) and random access memory (RAM) (right
panel)—of the sequential versions of PARDISO and
MUMPS using both the in-core and out-of-core ver-
sions of the solvers, when applied to the problem
described in Fig. 3. Results indicate that the out-of-
core version of PARDISO is not competitive (utilizes
roughly twice as more RAM and is twice slowest than
MUMPS out-of-core). Although the in-core version
of PARDISO is the fastest of all, in this work we
utilize the out-of-core version of MUMPS due to its
low memory requirements and the possibility of using
it in distributed memory parallel machines (PARDISO
only supports shared memory parallel machines). We
note that in Fig. 2 we could not solve the problem
with 3.2 million unknowns using PARDISO, because
the solver stopped with an error indicating the lack of
available RAM.

Different performance of direct solvers can be
due to implementation aspects and/or better ordering
of the unknowns. In the case of solvers PARDISO
and MUMPS, both solvers use the ordering of un-
knowns provided by METIS. Thus, it seems that in-core
PARDISO is able to handle zeros in a more efficient
way (reason why we observe less memory consump-
tion), while the out-of-core implementation is clearly
less efficient than the one performed by MUMPS.
Finally, we emphasize that due to the similar structure
of the stiffness matrix for the marine CSEM problems
considered in this paper, we have observed almost
identical results for various CSEM problems in terms of
performance of direct solvers, which we have omitted in
this paper to avoid repetition.

Scalability Direct solver (M right-hand sides)
CPU Time O(N?b) + O(NMb) LU fact. + Backward Subst.
Memory O(Nsb)

Iterative solver (M right-hand sides)
O(n2b) + O(MN b c) Preconditioner + Iter. Solution
O(ND)

N is the problem size, b is the (average) bandwidth of the matrix, ¢ is a constant that depends upon the condition number of the matrix
and the choice of preconditioner, # is the size of the preconditioner, s is a constant that depends upon the structure of the matrix, and

can be as large as N, and M is the number of right-hand sides
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Comparison of Direct Solvers (Time) Comparison of Direct Solvers (Memory)
500 ! T T ‘ :
—&— MUMPS (In—core) .2 || —@= MUMPS (In—core) f
- ® = MUMPS (Out-o—core) . 10000 _ g - MUMPS (Out—of—core)
=—&— PARDISO (In-core) n e’ —8— PARDISO (In-core) F
= B = PARDISO (Out-of-core) s = W = PARDISO (Out-of-core) PR
-
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E <
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o)
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15000 90000 540000 3200000 15000 90000 540000 3200000

Number of Unknowns

Fig. 2 CPU time (left panel) and memory (right panel) used
by different direct solvers (analysis and LU factorization) vs.
problem size when applied to a marine CSEM problem using

3.2 Parallel implementation

Finally, we implement a parallel distributed-memory
version of our hp-FEM to speedup computations and
minimize the CPU time and memory used per proces-
sor. Contrary to traditional parallelization strategies
based on domain-decomposition schemes (em e.g.,
[31]), in our implementation we store a copy of the
entire computational grid in all processors. Decision
about grid refinements is performed in parallel, while
actual refinements are executed in all processors si-
multaneously, making unnecessary the so-called grid-
reconciliation step intended to ensure the compatibility
of refinements occurring in different processors. Thus,
the complexity of the parallel version of the software is
drastically simplified with respect to more traditional
parallelization strategies, while the overhead associ-
ated with storing an entire copy of the 2D grid in all

Fig. 3 Marine CSEM
problem composed of: a an
air layer, b a 1,000-m thick 10° @-m

layer of sea-water with |
resistivity equal to 0.3 Q-m,

¢ a background material with
resistivity equal to 1 - m,

d a 100-m thick (infinite
lateral extend) oil-saturated
layer with resistivity equal to
100 -m., e a transmitter
(horizontal electric dipole)
and f ten equally spaced
receivers. Distance between
transmitter and receivers:
from 1,000 to 10,000 m

@ Springer

Number of Unknowns

a Fourier hp-Finite Element Method. Tests performed on a
computer equipped with 32 GB of RAM and using only one core
of the available 2 GHz dual-core processor

processors remains at a level below 10% of the total
memory and CPU time cost for a moderate number of
processors (below 200).

For the marine CSEM problems considered in this
paper, we observe an adequate performance up to
a moderate number of processors (16-64). Then, as
we further increase the number of processors, a more
rapid deterioration on the performance occurs due to
the overhead associated with our simple parallelization
strategy.

4 Numerical results

In this section, we first verify our results by comparing
them against a semi-analytical software for a typical but
simple marine CSEM model. Then, we perform more

z = 1000 m
z=0m

z = —1000 m
z=-—1100m
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challenging numerical simulations, which enables an
understanding of the main physical principles govern-
ing marine CSEM measurements. In all our models we
assume that the relative magnetic permeability py and
relative permittivity ¢ are equal to 1 over the entire
domain.

Without Oil, 0.25 Hz
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Fig.4 Amplitude of the electric field as a function of the horizon-
tal distance between transmitter and receivers. Different curves
indicate different numbers of Fourier modes: a one mode (dotted

4.1 Verification

As illustrated in Fig. 3, we consider a marine CSEM
problem composed of a 100m-thick (infinite extend)
oil-bearing layer in a background subsurface material,
a 1,000-m thick layer of water, a transmitter located

Without Oil, 1.25 Hz
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---1MODE
+ 5MODES
. © 9 MODES
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10000

pink), b five modes (blue °+), ¢ nine modes (black circles), and
d exact solution (red solid line). Operating frequencies: 0.25 Hz
(left panel) and 1.25 Hz (right panel)
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10° Q-m

x =2000 m

Fig. 5 Marine CSEM problem composed of: a an air layer, b a
1,000-m thick layer of sea-water with resistivity equal to 0.3 €2-m,
¢ a background material with anisotropic resistivity (1 €-m in
the horizontal direction and 3 ©-m in the vertical direction), d

50 m above the sea-floor, and ten equally spaced re-
ceivers located on the sea-floor at horizontal distances
varying from 1,000 to 10,000 m.

2000 m
— 2300 m
— 2500 m 4700 m
3150 m
- 5100 m
— 2800 m

Fig. 6 Final Ap-grid for our model problem, assuming a lateral
extent of the oil-saturated layer equal to 3,000 m, starting at a hor-
izontal distance of 2,000 m away from the transmitter, and ending
at 5,000 m away from the transmitter. Different panels corre-
spond to different receiver locations, since we have constructed
one optimal Ap-grid for each receiver location. Specifically, we
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z = 1000 m
z=0m

z = —1000 m
z=-—1100m

x = 5000 m

a 100-m thick (3,000-m lateral extend) oil-saturated layer with
resistivity equal to 100 ©-m., e a transmitter (horizontal electric
dipole) and f ten equally spaced receivers. Distance between
transmitter and receivers: from 1,000 to 10,000 m

Figure 4 displays the amplitude of the electric field
as a function of the horizontal distance between trans-
mitter and receivers for the model problem of Fig. 3

266

-3
- 2300 m

7000 m

10500 m

display three grids corresponding to three receivers located at
horizontal distances equal to 2,000 m (top-left), 5,000 m (top-
right), and 8,000 m (bottom) away from the transmitter. Different
colors indicate different polynomials orders of approximation,
ranging from p = 1to p =8
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(with and without the oil-saturated layer). The exact
solution for this problem has been computed using
the analytical software EM1D (authored by Professor
K.H. Lee, Lawrence Berkeley Labs, Personal Commu-
nication, 2007) [32]. Numerical and analytical results
coincide at both 0.25 and 1.25 Hz. Indeed, when using
only five Fourier modes, the numerical solution and
the exact solution already coincide for all practical
purposes.

From the physical point of view, we observe the ex-
pected behavior that the decay of the solution becomes
more pronounced as frequency increases. We also
observe in Fig. 4 (top panel) the influence of the water-
air interface in the response, which can be noticed at
distances above 7,000 and 5,000 m at 0.25 and 1.25 Hz,
respectively. In addition, results of Fig. 4 (bottom
panel) clearly indicate the presence of oil-bearing re-
sistive layer, because the intensity of the electric field

at the receivers is larger than for the model without the
oil-bearing layer (top panel).

4.2 Numerical simulations

Now, as described in Fig. 5, we consider a finite
oil-bearing layer embedded in a possibly anisotropic
formation.

In order to illustrate the optimal 2D grids that
are automatically generated by the self-adaptive goal-
oriented ip-FEM, we display in Fig. 6 the final ~p-grids
delivering an error in the quantity of interest below 1%
for the model problem described in Fig. 5 assuming a
formation with an isotropic resistivity equal to 1Q-m.
We emphasize that a 1% relative error in the quantity
of interest provides a highly accurate solution for the
case of marine CSEM problems, since EM fields suffer

Relative Error (in %)

— hp-adaptivity

3000 m

- 5000 m
-3100 m

Fig. 7 Top panel: Convergence history of 4-uniform, p-uniform,
goal-oriented h-adaptive, and goal-oriented hp-adaptive refine-
ments for the central Fourier mode. Bottom panel: Final goal-
oriented k- and hp-adaptive grids delivering 1% relative error in

10500 m - 2800 m

'=©- h—adaptivity
+=A h—uniform
=B p-uniform ]
YAl
o.. - T ~A
‘B,
i -
~a ]
R e,%
Q. -0 |
8000 27000 64000 125000

Number of Unknowns

10100 m

the solution at the receiver, which is located 7,000 m away from
the transmitter. Different colors indicate different polynomials
orders of approximation, ranging from p = 1to p =8
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large attenuation as they travel from the transmitter to
the receivers.

Our goal-oriented grid-refinement strategy is based
on minimizing the error of the solution at the re-
ceiver antennas by using the dual (adjoint) solution.
We observe in Fig. 6 that most A-refinements occur
around both the transmitter and receiver electrodes,
while most p-refinements take place in the subsurface.
These refinements are consistent with the physics of the
problem, since the solution is known to be smooth on
the subsurface, with the most abrupt variations occur-
ring around the transmitter and receivers electrodes.
We remark that since we only consider structured initial
hp-grids, there exist small elements used to reproduce
the geometry of sources and receivers that still remain
in the final hp-grid. However, we also observe new
elements arising from local Ap-refinements that are
needed in order to reduce the discretization error.

Figure 7 (top panel) describes the convergence his-
tory of A-uniform, p-uniform, goal-oriented /#-adaptive,
and goal-oriented hp-adaptive refinements for the cen-
tral Fourier mode when applied to the marine CSEM
problem described in Fig. 5 with the receiver located

3000 m
— 5000 m
—3100 m
3000 m
— 5000 m

- 3100 m

Fig. 8 Top panel: Vertical component of H for the direct (fop-
left panel) and dual (top-right) problems corresponding to the
marine CSEM problem described in Fig. 5 with the receiver
located 7,000 m away from the transmitter. Bottom panel: H;
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10500 m - 2800 m

7,000 m away from the transmitter and operating at
0.75 Hz. We observe a dramatically faster convergence
when using /p-adaptive finite element methods. The
corresponding final goal-oriented /- and hp-adaptive
grids delivering 1% relative error in the solution at the
receivers are displayed in Fig. 7 (bottom panel).

Figure 8 (top panel) describes the vertical compo-
nent of the magnetic field (H;) for the direct (top-left
panel) and dual (top-right) problems corresponding to
the marine CSEM problem described in Fig. 5 with the
receiver located 7,000 m away from the transmitter.
Figure 8 (bottom panel) describes H, of the direct
solution multiplied by H, of the dual solution, a quan-
tity used to determine the Jacobian matrix needed for
inversion.

Finally, Fig. 9 compares results for four different
models: (a) the model of Fig. 3 without the oil-bearing
layer, (b) the model of Fig. 3 (with an oil-bearing layer),
(c) the model of Fig. 5 without anisotropy, and (a) the
model of Fig. 5 (with anisotropy).

From the results shown in Fig. 9 we draw the fol-
lowing physical conclusions: First, it is essential to con-
sider the effect of anisotropy in the formation because

10100 m

10100 m

for the direct problem multiplied by H, for the dual problem,
which is a quantity used to compute the Jacobian matrix needed
for gradient-based inversion methods. All the above quantities
are displayed in logarithmic scale
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Fig. 9 Amplitude (fop panel) and phase (bottom panel) of the
electric field as a function of the horizontal distance between
transmitter and receivers. Different curves indicate different
models: a without oil (dotted pink), b with an infinite oil-bearing

measurements are highly affected by it. Second, mea-
surements obtained in the presence of an infinite oil-
bearing layer are quite different from those obtained in
a presence of a finite oil-bearing layer. Third, results are
sensitive to the presence of the finite oil-bearing layer,
and features such as its location and size can be derived
from the measurements.

Horizontal Distance between TX and RX (m)

layer (blue ’+’), ¢ with a oil-saturated finite layer (black circles),
and d with a finite oil-bearing layer in an anisotropic formation.
Operating frequencies: 0.25 Hz (left panel) and 1.25 Hz (right
panel)

The relative difference as we include the finite oil-
bearing layer with respect to measurements without an
oil-bearing layer are displayed in Fig. 10. These results
illustrate the dependance of the measurements with
respect to the finite extent oil-bearing layer. Large rela-
tive differences in the measurements are observed both
for the amplitude and the phase. The largest differences
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Fig. 10 Relative difference in (percentage) of the amplitude (left panel) and phase (right panel) of the results with a finite oil-bearing
layer with respect to the case without an oil-bearing layer. Different curves correspond to various frequencies, from 0.25 to 1.25 Hz

are localized around the location of the oil-bearing
layer.

All problems described in this Section have been
solved on a computer equipped with 32 GB of RAM
and using only one core of the available 2 GHz dual-
core processor. The amount of time needed for com-
putations never exceeded half an hour per receiver (in
most cases only a few minutes was sufficient). The high-
accuracy and limited computational resources used by
the method indicate its suitability for solving inverse
marine CSEM problems (perhaps using the parallel
version for the case of inverse problems).

5 Conclusion

We introduced a Fourier Ap-Finite Element formula-
tion for the simulation of marine CSEM measurements.
This formulation combines the use of higher-order
FEM with the use of small elements to efficiently
approximate singularities. The formulation was imple-
mented using efficient direct solvers of linear equa-
tions, a self-adaptive goal-oriented refinement strategy,
and a parallel implementation. This technology enables
highly accurate and efficient simulations of marine
CSEM measurements in a very limited CPU time.
Simulation results were verified using simple models
based on a typical CSEM acquisition system in order
to illustrate the accuracy of the method. We showed

@ Springer

numerically that very limited number of Fourier modes
(typically between five and nine) is enough to deliver
very accurate simulations.

Additional simulations were performed to study and
illustrate the main physical properties inherent to ma-
rine CSEM measurements. In particular, we showed
the need for modeling electrically anisotropic forma-
tions, and the ability of marine CSEM measurements
to detect finite oil-bearing layers.

Acknowledgements We are thankful to Dr. K.H. Lee, for pro-
viding us with EM1D, a software used for computing the exact
solution for our model marine CSEM problem.
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