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Abstract. We study the possible regularization of collision solutions for one
centre problems with a weak singularity. In the case of logarithmic singulari-

ties, we consider the method of regularization via smoothing of the potential.

With this technique, we prove that the extended flow, where collision solu-
tions are replaced with transmission trajectories, is continuous, though not

differentiable, with respect to the initial data.

1. Introduction. In this paper we deal with dynamical systems associated with
conservative central forces which are singular at the origin. A classical solution does
not interact with the singularity of the force, i.e., it is a path u ∈ C2(T,R2 \ {0})
which fulfils the initial value problem

P :


ü = ∇V (|u|)

(u(0), u̇(0)) = (q0, p0) ∈ (R2 \ {0} × R2)
(1)

where V (x) ∈ C2(R+,R) is the potential of the force and T denotes the maximal
interval of existence. As well-known, the two-body problem with an interaction
potential V can be reduced to a system of this form where u(t) denotes the position
of one of the particle with respect to the centre of mass. Accordingly, we shall
term collision the configuration u(t) = 0. Since the force field diverges at u = 0,
collisions are among the main sources of non-completeness of the associated flow.
This work studies the possible extensions of the flow through the collision that make
it continuous with respect to the initial conditions. We are concerned with weak
singularities of the potential, namely logarithms.

The regularization of total and partial collisions in the N -body problem is a
very classical subject and, in the years, different strategies have been developed in
order to extend motions beyond the singularity [11, 10, 13, 12, 6, 15, 14, 16]. Very
roughly, these classical methods rely upon suitable changes of space-time variables
aimed at obtaining a smooth flow, possibly on an extended phase space; to this aim,
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the first step is to determine the asymptotic behavior of the collision solutions and
then the phase space is extended either by means of a double covering, or with the
attachment of a collision manifold.

In this paper we consider a further, non classical way of extending the flow, re-
lated to the technique of regularization via smoothing of the potential. Although
this method is amply adopted by the astrophysical community in dealing with the
singularities of the vector field associated to the N–body problem in the context of
numerical simulations [1, 5, 9], first De Giorgi [4] proposed to consider the smooth-
ing of the potential as a regularization technique and an exhaustive analysis, in case
of homogeneous potentials, was performed by Bellettini, Fusco, Gronchi in [3]. This
method consists in smoothing the singular potential and passing to the limit as the
smoothing parameter ε and the angular momentum tend to zero simultaneously but
in an independent manner (indeed we know that the only collision motions have
vanishing angular momentum). This involves an in-depth analysis about the ways
the smoothing of the potential coupled with the perturbation of initial conditions
lead to define a global solution of the singular problem. This technique, when suc-
cessful, has the advantage of being extremely robust with respect to the application
of existence techniques such as the direct method of the calculus of variation. Let
us mention that variational methods have been widely exploited in the recent liter-
ature in order to obtain selected symmetric trajectories for N -body problems with
Kepler potentials [7].

To begin with, we remove the singularity at x = 0 and we denote with Vε(x) the
smoothed function defined as

Vε(x) = V (
√
x2 + ε2) , ε > 0 .

Then we look at the regularized problem

P (ε) :


ü = ∇Vε(|u|)

(u(0), u̇(0)) = (q0, p0) ∈ R2 × R2 .
(2)

Unlike (1), the differential equation (2) is no longer singular, so the initial value
problem admits a global solution in C∞((−∞,+∞);R2) for every choice of the
datum (q0, p0), provided ∇V (x) is sublinear at infinity1. Since we focus on the
singularities due to collisions, we fix a ball B0(R̄) of radius R̄ centered at the
origin, where the collision is the only singularity that system (1) can develop and
we denote with S(V ) ⊂ R2 × R2 the set of initial conditions (q0, p0) leading to
collision for the system P with |q0| ≤ R̄. For every ν̄ ∈ S(V ) let uν̄(t) ∈ C2(T,R2)
be the collision solution where T denotes the maximal interval of existence such
that |uν̄(t)| ≤ R̄. Denoting with uε,ν(t) the solution of (2) with initial data ν, we
investigate the existence of the asymptotic limit of the paths uε,ν(t) as (ε, ν) →
(0, ν̄), its relationship with the collision solution uν̄(t) of the singular system P and
the continuity of the limit trajectory with respect to initial data. The definition of
regularization considered in [3] is the following.

Definition 1.1. Let V (x) be a singular potential. We say that the problem (1) is
weakly regularizable via smoothing of the potential in B0(R̄) if, for every ν̄ ∈ S(V ),

1Without any additional assumption on the behaviour of the potential V (x) far away from the
origin, a solution of system (1) might have singularities other than collisions: for instance solutions

could blow up in finite time.
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there exist two sequences (εk)k, (νk)k tending to 0 and ν̄ respectively, such that
there exists

lim
k→∞

uεk,νk = u0

and the flow

ũν(t) =

{
uν(t) ν 6∈ S(V )
u0(t) ν ∈ S(V )

is continuous with respect to ν.

In addition we say that

Definition 1.2. The singular one centre problem (1) is strongly regularizable via
smoothing of the potential if there exists R̄ such that for every ν̄ ∈ S(V ) there
exists

lim
(ε,ν)→(0,ν̄)

uε,ν = u0 (3)

and the flow

ũν(t) =

{
uν(t) ν 6∈ S(V )
u0(t) ν ∈ S(V )

is continuous with respect to ν.

In both the definitions we mean that the limit of the regularizing paths uε,ν(t)
and the continuity of the extended flow are held in the ball B0(R̄).

In [3] the authors prove that in the case of homogeneous potential of degree α,
V (x) = 1

|x|α , α > 0, the one-centre problem is weakly regularizable via smoothing

of the potential if and only if α > 2 or α is in the form

α = 2

(
1− 1

n

)
where n is a positive integer. On the other hand it is shown that the homogeneous
problem is never strongly regularizable via smoothing of the potential. Indeed, a
necessary condition in order to achieve the uniform limit (3) is that the apsidal angle
∆θl(u) of a solution of the system (1) has to converge to π

2 as the angular momentum
l tends to zero (see the definition of apsidal angle in the next section). This condition
is never satisfied by α-homogeneous potentials α > 0, since ∆θl(u) → π

2−α > π
2 as

l → 0 [3, 17]. Conversely, when the logarithmic potential is considered, it can
be proved [17] that the apsidal angle do indeed converge to π/2 as the angular
momentum vanishes. Then there is no obstruction and we could expect that the
limit (3) is attained. This fact suggests to extend the motion after a collision
by reflecting it about the origin. We will show that, in this way, not only for
the logarithmic potential, but for a larger class V∗ of potentials, the problem is
regularizable according to Definition 1.2.

The sets of potential functions we will consider in this paper are the following.

Definition 1.3 (The functions set V ). We define V the set of functions V (x) ∈
C∞(R+,R) with the properties:
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i. lim
x→0+

V (x) = +∞

there exists S > 0 such that for every x ∈ (0, S)

ii. V ′(x) < 0 , V ′′(x) > 0

iii. the function
V ′(x)

V ′′(x)
is decreasing with

respect to x

and

iv.
d

dx

(
V ′(x)

V ′′(x)

)
(0) < −1

2
.

The properties iii,iv guarantee the existence of a value T > 0 such that

V ′(x)

V ′′(x)
≤ −x

2
in (0,T) . (4)

Let us define
R̄ := min{T, S}. (5)

Definition 1.4 (The functions set V∗). We denote with V∗ the set of functions
V (x) ∈ V with the further property

v. lim
λ→0

V (λx)

V (λ)
= 1 for every x ≥ 1 uniformly in every compact K = [1,M ].

The set V includes potentials having homogeneous singularities and weaker. For
instance the logarithmic potential, V (x) = − log(x), as well as the homogeneous
potentials, V (x) = |x|−α, provided α ∈ (0, 1), belong to V. On the other hand con-
dition v. can be considered as a logarithmic type property or a zero-homogeneity
property: indeed it is never satisfied by homogeneous potentials, while the logarith-
mic potential is a prototype of all the functions satisfying condition v..

Our main goal is the following:

Main Theorem. For every V (x) ∈ V∗ the one centre problem is regularizable
according to Definition 1.2 where R̄ is given in (5).

In the particular case of logarithmic potential, V (x) = − log(x), one has R̄ =
+∞, therefore

Corollary 1. The logarithmic one central problem is globally regularizable via
smoothing of the potential according to Definition 1.2.

The paper is organized as follows. In Section 2 we follow the classical method
for dealing with central problem based on first integrals and we derive the set S(V )
of initial conditions leading to the collisions for the unperturbed system. Next, in
Section 3, given any collision solution u(t), we set the initial data ν̄ ∈ S(V ) and we
define the family of paths uε,ν(t). Section 4 contains the proof of the Main Theorem
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and the analysis of the regularity of the extended flow. The main part of the proof
consists in proving the existence of the limit of the path uε,ν(t) as (ε, ν) → (0, ν̄),
especially for what that concerns the angular part, Theorem 4.2. This is the most
delicate step, for the it involves the uniformity of the limit as (ε, ν)→ (0, ν̄), and it
allows to conclude the strong regularizability of the problem.

It results that the natural extension of the collision solution is the transmission
solution, see Definition 4.4, obtained by reflecting the motion through the collision.
The regularity of the extended flow is carried on in section 4.2: in Theorem 4.5 and
Theorem 4.7 the continuity of the Poincaré map and the continuity of the Poincaré
section with respect to initial data are achieved.

2. Preliminaries. For any choice of the potential function V (x) ∈ C2(R+,R) the
one centre problem (1) is a Hamiltonian system and it admits the two classical first
integrals of motion: the energy E and the angular momentum l:

E =
1

2
|u̇|2 − V (|u|), l = u̇ ∧ u .

The conservation of the angular momentum implies the motion is planar, therefore
we choose the horizontal plane as the orbital plane and, in the following, l is used
to denote the third component of the angular momentum, rather than the vector.
In polar coordinates (r, θ) the quantities E and l are expressed in the form

E =
1

2
ṙ2 +

1

2

l2

r2
− V (r) l = r2θ̇ . (6)

By means of the function

f(r) = 2r2(E + V (r)) (7)

the relation (6) reads as l2 = f(r)−(rṙ)2, hence a solution of system (1) with energy
E and angular momentum l exists only for those values of the radial coordinate r ≥ 0
satisfying f(r) ≥ l2.

Figure 1. (a-b) Apsidal values R± for two different potential func-
tions. (c) Representation of the apsidal angle ∆θ.

Depending on the behavior of the potential V (x), more than one intervals of
positive values of radial coordinate could fulfill the last relation. On the other
hand, since the purpose of this work is to study the collision solutions, we will
consider only the interval closest to the origin. Therefore, for any fixed value of the
energy E and angular momentum l, let us define the apsidal values R± of the orbit
as follows, see Figure 1(a-b)
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• R+, if it exists, the minimum positive value of r such that f(r) = l2 and
f ′(r) < 0, R+ = +∞ otherwise

• R−, if it exists, the minimum positive value of r < R+ such that f(r) = l2

and f ′(r) > 0, R− = 0 otherwise.

By definition, it descends that R− = 0 for collision solutions and R+ = +∞ for
unbounded orbits and, following the terminology adopted in celestial mechanics, we
sometimes refer to R+ and R− respectively as the apocentre and the pericentre of
the orbit. Moreover, when they are positive and finite, the apsidal values correspond
to the stationary points for the radial motion and, from (6), they are solutions of
equation r2(E + V (r)) = l2.

As it is well known [18], in case of non collision and bounded trajectories, the
radial coordinate r(t) oscillates periodically between its extremal values R+ and R−
while the angular coordinate θ(t) covers an angle equal to

∆θl(u) =

∫ R+

R−

1

r
√

2r2

l2 (E + V (r))− 1
dr (8)

between each singular oscillation of r(t). We term the angle ∆θl(u) the apsidal
angle, see figure 1(c).

The knowledge of the apsidal values R+ and R− and the value of the apsidal angle
is sufficient to determine the behavior of the solution since the whole trajectory is
obtained repeating symmetrically and periodically the part of path between a point
where r(t) is maximum and the following point where r(t) is minimal.

The definition of the apsidal angle extends in a natural way for unbounded and
collision solutions: in the first case the orbits is composed by a single oscillation
from infinity to the pericentral point and back to infinity and the apsidal angle
represents half of the angle covered by the particle during this journey, while, if the
orbit ends into a collision, the apsidal angle denotes the increment of the angular
coordinate between the apocentral point and the collision itself. The value of the
apsidal angle is obtained replacing in (8) R+ = +∞ in the former case and R− = 0
in the latter.

In order to characterize the set S(V ) of initial data leading to a collision we give
the following definition.

Definition 2.1. We say that a potential function V (x), singular in the origin, is of
weak type if

lim
x→0+

x2V (x) = 0 .

Otherwise we say that V (x) is a strong type potential.

A similar classification of singular potentials can be found in a work of Gordon
[8] where a potential V (x) is said to satisfy a strong force condition at a point x0 if
V (x) tends to infinity as x tends to x0 and also there exists a function U(x) with
infinitely deep wells at x0, such that

V (x) ≥ |∇U(x)|2

in a neighborhood of x0. We notice that, among the homogeneous potentials, the
set of potentials with the property to be of strong type and the ones satisfying the
Gordon’s strong force condition coincide. In particular, an α-homogeneous potential
is of weak type if and only if α ∈ (0, 2) and, in these cases, a collision occurs only
in zero angular momentum orbits [12], while if α ≥ 2 a collision solution exists also
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for non-zero values of the angular momentum [3, 12]. The next proposition extends
this result.

Proposition 1. If V (x) ∈ C2(R+,R) is a weak type potential, a solution u(t) of
the dynamical system ü = ∇V (|u|) ends into a collision if and only if the angular
momentum is zero.

Proof. Denote with E and l the energy and the angular momentum of the solution
u(t) and let f(r) as in (7). As mentioned before, a solution exists only for the
values of radial coordinate r satisfying l2 ≤ f(r). Suppose l = 0: since V (x) tends
to infinity as x goes to zero, for every value of E there exists a neighborhood of the
origin where E + V (r) > 0 then the solution presents a collision.

Conversely, since V (x) is a weak type potential, it follows that f(r) → 0 as
x → 0+ thus for every value of l 6= 0 there exist a neighborhood of the origin
where l2 > f(r). Hence the collision can not be attained on solutions with non zero
angular momentum.

Proposition 2. Every V (x) ∈ V is a weak type potential.

Proof. From relation (4), by integration, it follows the estimate

−V ′(ξ) ≤ C1

ξ2
, C1 > 0

for every ξ ∈ (0, T ). Therefore, again by integration, we infer

V (x) ≤ C1

x
+ C2 (9)

and we conclude

lim
x→0

x2V (x) = 0 .

From Proposition 1 and Proposition 2 we deduce that, for any choice of V (x) ∈ V,
a solution of the system (1) ends into a collision if and only if the angular momentum
is zero. Therefore the set S(V ) of initial conditions ν̄ = (q̄0, p̄0) that lead the
solutions into a singularity consists in those (q̄0, p̄0) satisfying l = |q̄0 ∧ p̄0| = 0.

3. Setting. For every fixed V (x) ∈ V let R̄ be the quantity defined in (5) and let
B0(R̄) be used to denote the ball of radius R̄ around the origin. It results that the
collision is the only source of singularity inside B0(R̄) for the dynamical system (1).
We also remind that the angular momentum l is zero for collision solution, hence
the collision orbit is a straight line joining some point in the plane with the origin.
As discussed in the introduction, given a collision solution ū(t) for the one central
problem, our intent is to define an extension beyond the collision.

To this aim, the first step consists in setting the initial conditions ν̄ = (q̄0, p̄0)
for the singular path ū(t): denoting with P the first positive solution of equation
f(r) = 0, P := +∞ if such value does not exists, we fix the initial data according
to the following alternative :
Case 1 P < R̄.

The collision solution ū(t) is bounded in a ball centered in the origin of radius
P < R̄ and P represents the maximal value of the radial coordinate, see Figure 2.
Without loss of generality, we can set the initial condition ν̄ of the collision solution
ū as

ν̄ = (q̄0, 0), |q̄0| = P . (10)
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Figure 2. Case 1: the collision solution ū(t) is within B0(R̄).

Case 2 P ≥ R̄
In this case the collision solution is not bounded in B0(R̄) and it could also be

unbounded. We focus our analysis only on the portion of path bounded by R̄ hence
we select as initial condition for ū(t) the couple

ν̄ = (q̄0, p̄0), |q̄0| = R̄, |p̄0|2 = 2(E + V (R̄)) (11)

where the initial velocity p̄0 is directed toward the center of attraction, see Figure
3.

Figure 3. Case 2: the collision solution ū(t) is not bounded in B0(R̄).

In both the cases, for ε > 0 let uε,ν(t) be the solution of system (2) leading from
an initial data ν = (q0, p0). We refer to uε,ν(t) as regularizing paths in order to
underline the purpose to define the extension for the singular solution ū(t) as the
limit of uε,ν(t) as (ε, ν) → (0, ν̄). The smoothing of the potential does not affect
the hamiltonian structure of the system, therefore the angular momentum l and
the energy Eε,ν = 1

2 |u̇ε,ν |
2−Vε(|uε,ν |) are conserved along the solution uε,ν(t). De-

composing the initial velocity p0 in terms of the parallel and orthogonal component
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with respect to q0,

p0 = v1 + v2 , v1 ‖ q0, v2 ⊥ q0

one has |v2|2 = l2

|q0|2 and Eε,ν = 1
2 |v1|2 + 1

2
l2

|q0|2 − Vε(|q0|). The condition ν → ν̄ is

equivalent to

q0 → q̄0, l→ 0, v1 → p̄0

that, coupled with the condition ε → 0, implies Eε,ν → E. It turns out that also
the apsidal values of the regularizing paths have to converge to the corresponding
ones of ū(t), indeed as (ε, ν) → (0, ν̄), the pericentre R− of the solution uε,ν(t)
tends to zero while the apocentre R+ is bounded by R̄ and tends to P in case 1,
while R+ > R̄ and possibly R+ = +∞ in case 2.

In the following sections we will deal with the existence and the property of the
limit for the paths uε,ν(t) as (ε, ν)→ (0, ν̄). As discussed in [3], the behavior of the
angular coordinate of the regularizing paths plays a fundamental role for the exis-
tence of the uniform limit of uε,ν(t) as (ε, ν)→ (0, ν̄) rather then for subsequences
(εk, νk) → (0, ν̄). For this reason and since we focus our analysis only inside the
ball B0(R̄), we extend the definition of the apsidal angle for the solution uε,ν(t) as
follows: in case 1 we denote with ∆θ(uε,ν) the apsidal angle of the path uε,ν(t) as
it is defined in (8),

∆θ(uε,ν) =

∫ R+

R−

l

r2ṙ
dr (12)

otherwise, in case 2, we denote with ∆θ(uε,ν) the angle covered by the path uε,ν(t)
between the point where uε,ν(t) enter in the ball B0(R̄) and the point of minimal
distance from the origin

∆θ(uε,ν) =

∫ R̄

R−

l

r2ṙ
dr . (13)

4. Proof of Main Theorem and property of the extended flow. The proof
of the Main Theorem is composed by two parts: first, in Section 4.1 we prove the
existence of the limit of the trajectories uε,ν(t) as (ε, ν)→ (0, ν̄) and we define the
extension of the singular solution, then in Section 4.2 we study the regularity of the
extended flow.

A necessary condition for the existence of the limit (3) is the existence of the
limit of the apsidal angle of the regularized solutions. Theorem 4.2 concerns the
asymptotic of ∆θ(uε,ν) as (ε, ν) → (0, ν̄): to this aim we first prove in Lemma 4.3
the L1 boundedness of the integrand in (12) and (13) then we apply the dominated
convergence theorem and pass to the limit under the integral sign. The boundedness
of the integrand is a consequence of a technical estimate stated in the Proposition
3 and it is attained for every potential V (x) ∈ V, while the existence of the limit
is a consequence of Proposition 4 based on the assumption v.. The result we
obtain suggest to define the extension u0(t) of the collision solution ū(t) beyond the
singularity as a transmission solution, Definition 4.4.

In order to gain the regularity of the extension, we analyse, in Theorems 4.5 and
Theorem 4.7, the continuity of the Poincaré map and the continuity of the Poincaré
section of the extended flow in the phase space.
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4.1. The existence of the uniform limit of uε,ν(t).

Proposition 3. Let V (x) ∈ V and R̄ as in (5). Then for every r̄ < R̄ there exists
an ε̄ such that ∀ε < ε̄ and for every 0 < y < r̄ it holds

F(y,r̄)(ε, x) :=
(r̄ + x)(
x
y − 1

) [(x
y

)2(
Vε(x)− Vε(r̄)
Vε(y)− Vε(r̄)

)
(r̄2 − y2)

(r̄2 − x2)
− 1

]
≥ r̄

for every y ≤ x ≤ r̄.

To prove the Proposition 3 we first show in the next Lemma that there exists
ε̄ > 0 such that for every ε < ε̄ the function F(y,r̄)(ε, x) > F(y,r̄)(0, x) for every

0 < y ≤ x ≤ r̄ < S , then we prove that F(y,r̄)(0, x) ≥ r̄ for every 0 < y ≤ x ≤ r̄ < R̄.

Lemma 4.1. Let V (x) be a function satisfying the properties i.-iii. in Definition
1.3. Then for every choice of 0 < y < r̄ < S there exists ε̄ > 0 such that ∀ε < ε̄
and ∀x ∈ (y, r̄) it holds

F(y,r̄)(ε, x) > F(y,r̄)(0, x) .

Proof. The statement follows from the inequality

Q(y,r̄)(ε, x) :=
Vε(x)− Vε(r̄)
Vε(y)− Vε(r̄)

≥ V (x)− V (r̄)

V (y)− V (r̄)

that, by means of straightforward calculations and reminding the definition of
smoothed potential Vε(·) = V (

√
(·)2 + ε2), is equivalent to

V (
√
y2 + ε2)− V (

√
x2 + ε2)

V (
√
x2 + ε2)− V (

√
r̄2 + ε2)

≤ V (y)− V (x)

V (x)− V (r̄)
.

For every s > 0 we define the function U(s) = V (
√
s). Obviously the function U(s)

inherits property i. and property ii. for every s ∈ (0, S2), while the relation

2
√
s
U ′′(s)

U ′(s)
=
V ′′(
√
s)

V ′(
√
s)
− 1

2
√
s

together with property iii. implies that the function
√
s
U ′′(s)

U ′(s)
is increasing for

every s ∈ (0, S2). In terms of the function U(s), it’s enough to prove that, for every
choice of 0 < y < r̄ < S2, there exists ε̄ > 0 such that ∀ε < ε̄ the relation

g(ε, x) :=
U(y + ε)− U(x+ ε)

U(x+ ε)− U(r̄ + ε)
≤ U(y)− U(x)

U(x)− U(r̄)
= g(0, x)

holds for all x ∈ (y, r̄). We infer this result showing that

dg

dε
(0, x) < 0 ∀ 0 < y < x < r̄ < S2 .

The sign of the derivative is given by the sign of the function

G(y,r̄)(x) := U ′(y)
(
U(x)−U(r̄)

)
+U(y)

(
U ′(r̄)−U ′(x)

)
+U ′(x)U(r̄)−U ′(r̄)U(x) .

Since G(y,r̄)(y) = G(y,r̄)(r̄) = 0 and G(y,r̄)(x) is continuous, there exists at least
one point x̄ ∈ (y, r̄) where G′(y,r̄)(x̄) = 0; the proof of the Lemma follows once we

prove the inequalities

G′(y,r̄)(x) < 0 ∀x ∈ (y, x̄) and G′(y,r̄)(x) > 0 ∀x ∈ (x̄, r̄) . (14)
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Let be N(x) the function

N(x) :=

√
xG′y,r̄(x)

U ′(x)(U(r̄)− U(y))
=
√
x
U ′′(x)

U ′(x)
+
√
x

(U ′(y)− U ′(r̄))
(U(r̄)− U(y))

.

N(x̄) = 0 and since
√
s
U ′′(s)

U ′(s)
is increasing for every s ∈ (0, S2) and the factor

(U ′(y)− U ′(r̄))
(U(r̄)− U(y))

is positive, we infer that N(x) is increasing in x. Thus N(x) < 0

for x < x̄ and N(x) > 0 otherwise and, since U ′(x)(U(r̄) − U(y)) > 0, inequalities
(14) hold.

Proof of Proposition 3.
We fix 0 < y < r̄ < R̄. For Lemma 4.1 there exists ε̄ > 0 such that for every
ε ∈ [0, ε̄] and for every x ∈ [y, r̄] it holds F(y,r̄)(ε, x) ≥ F(y,r̄)(0, x). Hence it’s
sufficient to prove

F(r̄,y)(x) :=
(r̄ + x)

(xy − 1)

[(
x

y

)2(
V (x)− V (r̄)

V (y)− V (r̄)

)
(r̄2 − y2)

(r̄2 − x2)
− 1

]
≥ r̄ .

Suppose for a moment that relation

V (x)− V (r̄)

V (y)− V (r̄)
≥
(
r̄ − x
r̄ − y

)
y

x
(15)

holds for every x ∈ (y, r̄). Replacing into F(r̄,y)(x) we obtain

F(r̄,y)(x) ≥ (r̄ + x)

(xy − 1)

[(
x

y

)
(r̄ + y)

(r̄ + x)
− 1

]
≥ r̄ .

In order to prove relation (15) we rewrite it as

(V (x)− V (r̄))

(r̄ − x)
x ≥ (V (y)− V (r̄))

(r̄ − y)
y ∀x ∈ (y, r̄) . (16)

For x = y the inequality is verified; moreover, denoting with N(x) the numerator
of the derivative

d

dx

(
(V (x)− V (r̄))

(r̄ − x)
x

)
=
x(r̄ − x)V ′(x) + r̄(V (x)− V (r̄))

(r̄ − x)2
(17)

one has N(r̄) = 0 and dN
dx (x) = (r̄ − x)

(
2V ′(x) + xV ′′(x)

)
. For (4), for every

x ∈ (0, R̄), dN
dx (x) ≤ 0, hence the derivative in (17) is positive and relation (16)

holds for every x ∈ (y, r̄).

Proposition 4. Let V (x) ∈ V∗. Then for every ρ > 1

lim
(δ,ε)→(0,0)

Vε(ρδ)

Vε(δ)
= 1 , δ, ε > 0 .

Proof. We rewrite the above limit in the form

lim
(δ,ε)→(0,0)

V
(√

δ2 + ε2

√
ρ2δ2+ε2

δ2+ε2

)
V (
√
δ2 + ε2)

.

Since ρ > 1, for every choice of positive values of ε and δ, it holds

1 ≤ ρ2δ2 + ε2

δ2 + ε2
≤ ρ2
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then, from Definition (1.4) of V∗, replacing λ and M with δ2 +ε2 and ρ respectively,
we infer the statement of the proposition.

According with the previous setting, as in Section 3, let V (x) ∈ V∗ and let ū(t)
be any collision solution of the system (1) with energy E, leading from the initial
condition ν̄ = (q̄0, p̄0) in the form (10) or (11) and, for every sufficiently small ε > 0,
let uε,ν(t) be the solution of the regularized system (2) with initial condition ν and
∆θ(uε,ν) as in (12), (13).

Theorem 4.2. There exists

lim
(ε,ν)→(0,ν̄)

∆θ(uε,ν)

and such limit is π
2 .

Proof. Reminding the definition of R̄ and R+, we define

β = min{R̄, R+}

therefore, for every uε,ν(t), regardless they are bounded or not by R̄, we write

∆θ(uε,ν) =

∫ β

R−

l

r2ṙ
dr .

In order to deal with the convergence of ∆θ(uε,ν) we first rewrite the integrand in
a different way. From the conservation of energy it follows

ṙ2 = 2(Eε,ν + Vε(r))−
l2

r2

thus, replacing the radial velocity and extracting the roots R− and β from the
denominator, we infer

∆θ(uε,ν) =

∫ β

R−

1

r
√

2r2

l2 (Eε,ν + Vε(r))− 1
dr

=

∫ β

R−

1

r
√

(r −R−)(β − r)

√
(r −R−)(β − r)

2r2

l2 (Eε,ν + Vε(r))− 1

By means of the change of variables ρ = r
R−

∆θ(uε,ν) =

∫ β
R−

1

1

ρ
√

(β − ρR−)(ρ− 1)

√√√√ (β − ρR−)(ρ− 1)
2R2

−ρ
2

l2

(
Eε,ν + Vε(ρR−)

)
− 1

dρ

=

∫ β
R−

1

1

ρ
√

(R̄− ρR−)(ρ− 1)

√
Kdρ

(18)

We proceed as follows: first, in the next Lemma, we exhibit an uniform bound
for the function K provided ε small enough is taken, then we apply the Lebesgue’s
theorem in order to obtain the limit of ∆θ(uε,ν) as (ε, ν) → (0, ν̄) and we’ll prove
that such limit exists if V (x) ∈ V∗.

Lemma 4.3. Let V (x) ∈ V, then for ε small enough the function K is bounded by
a constant in its domain.
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Proof. Replacing in K the relation Eε,ν = 1
2v

2 + 1
2
l2

β2 − Vε(β) we obtain

K =
(β − ρR−)(ρ− 1)

2R2
−ρ

2

l2

(
1
2v

2 + 1
2
l2

β2 − Vε(β) + Vε(ρR−)
)
− 1

.

We observe that v is the zero in case β = R+.
Subtracting the energy formula Eε,ν = 1

2 |u̇ε,l|
2 − Vε(uε,l) evaluated in R− from

the same evaluated in β, we infer

2R2
−

l2
=

1

(Vε(R−)− Vε(β) + 1
2v

2)

β2 −R2
−

β2

that, replaced into K, implies

K =
(β − ρR−)(ρ− 1)(

R2
−ρ

2

β2 − 1
)

+ ρ2

(
Vε(ρR−)−Vε(β)+

v21
2

Vε(R−)−Vε(β)+
v21
2

)
β2−R2

−
β2

.

We note that for every 0 < a < b, the function f(z) = a+z
b+z is increasing for

positive z. The condition ii. in Definition 1.3 implies that, for every small enough
ε, the function Vε(x) is decreasing with respect to x for every x < β. This yields
the relations Vε(β) < Vε(ρR−) < Vε(R−), thus replacing a = Vε(ρR−) − Vε(β),

b = Vε(R−)− Vε(β) and z =
v21
2 in f(z), it follows

Vε(ρR−)− Vε(β) + v2

2

Vε(R−)− Vε(β) + v2

2

>
Vε(ρR−)− Vε(β)

Vε(R−)− Vε(β)
∀ρ ∈

(
1,

β

R−

)
, ∀v2 .

Therefore

K<
β2

(β+ρR−)
ρ−1

(
ρ2
(
Vε(ρR−)−Vε(β)
Vε(R−)−Vε(β)

)
β2−R2

−
β2−R2

−ρ
2 − 1

)
and, by means of the substitutions x = ρR− and y = R−,

K <
β2

(R̄+x)
x
y−1

((
x
y

)2 (
Vε(x)−Vε(β)
Vε(y)−Vε(β)

)
β2−y2
β2−x2 − 1

) x ∈ (y, β) .

Finally, applying Proposition 3, we obtain the uniform bound

K < β ∀ρ ∈
(

1,
β

R−

)
. (19)

Continue the proof of Theorem 4.2.
The boundedness of the functions K1 and K2 and the formula∫ ξ

1

1

x
√

(x− 1)(1− x
ξ )
dx = π , ξ > 1 (20)

implies that the integral (18) is bounded by πβ.
In order to apply the Lebesgue dominated convergence theorem we need an

uniform bound of all the integrands, independently on the values of (ε, ν) in the
neighborhood of (0, ν̄).

The difficulties arise since the integrand functions are singular at the end-points
and, moreover, one of these is not fixed but it changes as (ε, ν) varies. To overcome
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these problems, we proceed splitting the integral into the sum of two integrals whose
integrand is singular in only one end-point. Precisely

∆θ(uε,ν) =

∫ β
R−

1

√
K

ρ
√

(β − ρR−)(ρ− 1)
dρ

=

∫ √
β
R−

1

√
K

ρ
√

(β − ρR−)(ρ− 1)
dρ+

∫ β
R−√
β
R−

√
K

ρ
√

(β − ρR−)(ρ− 1)
dρ

= I1 + I2

and

lim
(ε,ν)→(0,ν̄)

∆θ(uε,ν) = lim
(ε,ν)→(0,ν̄)

I1 + lim
(ε,ν)→(0,ν̄)

I2 .

First we calculate I2 and we check that it is infinitesimal as (ε, ν) → (0, ν̄): since
K is bounded, K ≤ β,

I2 =
1√
β

∫ β
R−√
β
R−

1

ρ
√

(1− ρR−
β )(ρ− 1)

√
Kdρ <

∫ β
R−√
β
R−

1

ρ
√

(1− ρR−
β )(ρ− 1)

dρ

hence, for (20),

I2 < π −
∫ √

β
R−

1

1

ρ
√

(1− ρR−
β )(ρ− 1)

dρ = π − 2 arctan

√ ρ− 1

1− ρR−
β

∣∣∣∣∣
√

β
R−

1

= 2

(
π

2
− arctan

√ √
β√
R−

)
= 2 arctan

√√
R−√
β
≈ 2 4

√
R−
β

where, in the last passage, the relation arctan(x) + arctan( 1
x ) = π

2 is used. Passing
to the limit, reminding that R− → 0 as (ε, ν)→ (0, ν̄), we infer

lim
(ε,ν)→(0,ν̄)

I2 = 0 .

It remains to prove the existence of the limit for I1. We define Fε,ν(ρ) : R+ → R+

the function

Fε,ν(ρ) :=
1

ρ
√

(ρ− 1)(β − ρR−)

√
K χ[

1,
√

β
R−

] .
Again, for (19), it follows that ∀ρ ∈ (1,+∞)

Fε,ν(ρ) <
1

ρ
√

(ρ− 1)
(
1− ρR−

β

)χ[
1,
√

β
R−

]

<
1

ρ

√
(ρ− 1)

(
1−

√
R−
β

)χ[
1,
√

β
R−

] < C

ρ
√
ρ− 1

where the constant C > 0 is independent on (ε, ν). Since all the functions Fε,ν(ρ)

are dominated by a function F̃ ∈ L1([1,∞]), by the Lebesgue theorem, we are
allowed to pass the pointwise limit of Fε,ν(ρ) as (ε, ν) → (0, ν̄) under the integral
sign and obtain the limit of I1.
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Using K in the form (4.1) we write

lim
(ε,ν)→(0,ν̄)

1

ρ
√

(ρ− 1)(β − ρR−)

√
Kχ[

1,
√

β
R−

] =

lim
(ε,ν)→(0,ν̄)

1

ρ

√√√√√ β2

(β2 −R2
−ρ

2)

(
ρ2

(
Vε(ρR−)−Vε(β)+ v2

2

)(
Vε(R−)−Vε(β)+ v2

2

) (β2−R2
−)

(β2−R2
−ρ

2)
− 1

)χ[
1,
√

β
R−

]

hence

Fε,ν(ρ) ∼ 1

ρ

√
1

ρ2 Vε(ρR−)
Vε(R−) − 1

as (ε, ν)→ (0, ν̄).

Therefore for every V (x) ∈ V∗, thank to Proposition (4), we infer

lim
(ε,ν)→(0,ν̄)

Fε,ν(ρ) =
1

ρ
√
ρ2 − 1

uniformly in ε and l. This yields

lim
(ε,ν)→(0,ν̄)

∆θ(uε,ν) = lim
(ε,ν)→(0,ν̄)

I1 =

∫ ∞
1

1

ρ
√
ρ2 − 1

dρ =
π

2
.

Remark 1. The contribution to the apsidal angle due to the portion of the orbit
far from the center of attraction is negligible as the angular momentum approaches
to zero.

More precisely, for any value C ∈ (R−, R+), the angle ∆Cθ(u) covered by the
orbit u(t) between the apocentre R+ and the point where |u(t)| = C, tends to zero
as the angular momentum vanishes. Indeed, following the same argument as before,

∆Cθ(u) =

∫ R+

C

1

r
√

2r2

l2 (Eε,ν + Vε(r))− 1
dr < 2 arctan

√
(R+ − C)R−
R+(C −R−)

→ 0

as l goes to zero. It follows that the pointwise limit of the sequence of trajectories
uε,ν(t) as (ε, ν) → (0, ν̄) is a straight line crossing the origin: this fact, together
with the limit value of the apsidal angle obtained in the previous theorem, suggests
to extend the collision solution ū(t) beyond the singularity replacing symmetrically
the solution itself forward the collision point in the same direction.

Definition 4.4. Let ū(t), t ∈ [0, T0), be a collision path, T0 the collision instant.
Define the transmission solution u0(t), t ∈ [0, 2T0] as{

u0(t) = ū(t) t ∈ [0, T0]
u0(t) = −ū(2T0 − t) t ∈ [T0, 2T0]

To complete the proof of the Main Theorem it remains to show that, for every
t ∈ [0, 2T0], the sequence {uε,ν(t)} pointwise converges to u0(t) as (ε, ν) → (0, ν̄)
and that the flow obtained replacing the collision solution ū with the transmission
solution u0 is continuous with respect to initial data.
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4.2. The regularity of the extended flow. We denote with F = {y = (x, v) ∈
R2×R2} the phase space of planar motion and we consider the initial value problems
defined on F equivalent to systems (1) and (2)

P (0) =


y′ = f(y)
x(0) = p ∈ R2\{0}
v(0) = q ∈ R2

, P (ε) =


y′ = fε(y)
x(0) = p ∈ R2

v(0) = q ∈ R2

where f(x, v) = (v,∇V (|x|)) and fε(x, v) = (v,∇Vε(|x|)).
For every initial data ȳ = (q̄0, p̄0), |q̄0| ≤ R̄, leading to collision for the system

P (0), let ȳ(t) = (x̄(t), v̄(t)) : [0, T0) → F be the corresponding singular solution
where T0 denote the collision time and |x̄(t)| ≤ R̄ for every t ∈ [0, T0). We extend
ȳ(t) according to the Definition 4.4 defining y0(t) = (x0(t), v0(t)) as

y0(t) = ȳ(t) t ∈ [0, T0)

y0(t) =

{
x0(t) = −x̄(2T0 − t)
v0(t) = v̄(2T0 − t)

t ∈ (T0, 2T0)

Let Φ0(y, t) : F ×R+ → F be used to indicate the extended flow related to system
P (0) and Φε(y, t) the flow associated to the system P (ε).

Moreover we denote with ΦT (y, ε) the Poincaré map defined as the solution at
time T of the system P (ε) with initial value y. The first result concerning the
regularity of the extension and that conclude the proof of the Main Theorem is the
continuity of the Poincaré map for T 6= T0, i.e.

lim
y→ȳ
ε→0

ΦT (y, ε) = ΦT (ȳ, 0) .

Remark 2. We can not expect the continuity of the Poincaré map in T0 because,
even if the configurations xT0

(y, ε) would converge to xT0
(ȳ, 0), the limit can not

be attained by the sequence vT0(y, ε), since vT0(ȳ, 0) is unbounded.

For those T < T0 no problem arises, indeed the above limit comes from the
classical theorem of continuity with respect to initial data of ordinary differential
equations. On the other hand, for T > T0 the continuity of the Poincaré map is
stated in the following theorem.

Theorem 4.5. Let V (x) ∈ V∗ and suppose ȳ = (q̄0, p̄0), |q̄0| ≤ R̄ be an initial
condition leading to collision for the system P (0) at time T0. Then

lim
y→ȳ
ε→0

ΦT (y, ε) = ΦT (ȳ, 0)

for every T > T0 such that v(T ) 6= 0 .

In the proof of Theorem 4.5 we will need the following classical Lemma.

Lemma 4.6. Let H(r, p) and H0(p) be real continuous functions with respect to a
set of parameters p, and suppose H be strictly increasing as function of r. Then for
every T the function r = r(T, p), implicit solution of equation

T = H0(p) +H
(
r(T, p), p

)
is continuous as function of p.
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Proof of Theorem 4.5
As usual we set (r, θ) the polar coordinates of the plane then a point y = (x, v) in
the phase space is replaced by

x = (r cos θ, r sin θ)

v = (ṙ cos θ − rθ̇ sin θ, ṙ sin θ + rθ̇ cos θ)

From the definition of ΦT (y, ε), it remains well defined the set of functions rT (y, ε),

θT (y, ε), ṙT (y, ε), θ̇T (y, ε) denoting, respectively, the values of the radial and angular
coordinate and their velocity at time T 6= T0 of a solution of the systems P (ε) and
P (0) with initial data y. The continuity of ΦT (y, ε) is equivalent to the continuity
of each one of the previous functions.

Let ȳ = (r̄, θ̄, ˙̄r, ˙̄θ) be an initial data in the phase space leading to collision with
nonzero initial velocity, ˙̄r < 0, and denote with Ē = 1

2
˙̄r2 − V (r̄) the energy of the

collision solution.
A point y ∈ F , y = (r0, θ0, ṙ0, θ̇0), tends to ȳ if it holds

|r0 − r̄| → 0 , |θ0 − θ̄| → 0 mod 2π

(E, l)→ (Ē, 0) .

To begin with, we show the continuity of the function rT (y, ε) as y → ȳ and ε→ 0.

The value of rT (y, ε) is governed by the equation ṙ =
√

2(E + Vε(r))− l2

r2 , thus

rT (y, ε) is a function of the initial position r0, the couple E, l and the parameter
ε. Define T0(E, l, r0, ε) as the time necessary to the solution r(y, t) to reach the
minimal value R− = R−(E, l), then

T =

∫ r0

R−

1√
2(E + Vε(ρ))− l2

ρ2

dρ+

∫ rT (y,ε)

R−

1√
2(E + Vε(ρ))− l2

ρ2

dρ

= T0(E, l, r0, ε) + T (rT (y, ε), E, l)

Claim The function T0 and T are continuous with respect to r0, E, l, ε.
Suppose for the moment that the claim is true, since the function T is strictly

increasing with respect to rT (y, ε), for Lemma (4.6), the function rT (y, ε) is contin-
uous with respect to the set of parameters E, l, r0, ε. Therefore

lim
y→ȳ
ε→0

rT (y, ε) = rT (ȳ, 0) .

The continuity of θT (y, ε) is equivalent to the continuity of ∆θT (y, ε) := θT (y, ε)−θ0.
By definition of transmission solution, it holds ∆θT (ȳ) = π, hence, for Theorem 4.2
and Remark 1, we gain

lim
y→ȳ
ε→0

θT (y, ε) = θT (ȳ, 0) .

The continuity of ṙT (y, ε) and θ̇T (y, ε) follows immediately by the continuity of
rT (y, ε) and relations

ṙT (y, ε) = 2

√
E + Vε(rT (y, ε))− 1

2

l2

rT (y, ε)2
, θ̇T (y, ε) =

l

rT (y, ε)2
.

Proof of the claim
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Denoting with p and p̄ the sets of parameters p = (E, l, r0, ε) and p̄ = (Ē, 0, r̄, 0),
we have to show that

lim
p→p̄
T0(p) = T0(p̄) .

We want to apply the dominated convergence theorem and pass the limit under the
integral sign in

lim
p→p̄

∫ r0

R−

1√
2(E + Vε(ρ))− l2

ρ2

dρ .

To this aim we first exhibit an L1 bound for the integrand function. We observe
that the only singularity for the integrand is in R− since | ˙̄r| and , by continuity, |ṙ|
are supposed to be positive. Given γ ∈ (R−, r0) we write∫ r0

R−

1√
2(E + Vε(ρ))− l2

ρ2

dρ

=

∫ γ

R−

1√
2(E + Vε(ρ))− l2

ρ2

dρ

︸ ︷︷ ︸
I

+

∫ r0

γ

1√
2(E + Vε(ρ))− l2

ρ2

dρ

︸ ︷︷ ︸
II

.

The second part II is easily bounded by a constant, while, for what that concerns
the first part, using the definition of energy, we rewrite I in the form

I =
1√

ṙ2
0 + l2

r20
− 2Vε(r0) + 2Vε(ρ)− l2

ρ2

=
1√

ṙ2
0 + l2

(
ρ2−r20
ρ2r20

)
+ 2
(
Vε(ρ)− Vε(r0)

) .
Again from the definition of energy, evaluated in r0 and in the pericentre R−, it
descends

l2 =

(
r2
0R

2
−

R2
− − r2

0

)(
2
(
Vε(r0)− Vε(R−)

)
− ṙ2

0

)
that, replaced in the integrand, produces

I =
1√

ṙ2
0

[
1− R2

−(r20−ρ2)

ρ2(r20−R2
−)

]
+

R2
−
ρ2

(
r20−ρ2
r20−R2

−

)
2
(
Vε(r0)− Vε(R−)

)
+ 2
(
Vε(ρ)− Vε(r0)

)
≤ 1√

2
(
Vε(ρ)− Vε(r0)

) 1√
1− R2

−
ρ2

(
r20−ρ2
r20−R2

−

)
Vε(R−)−Vε(r0)
Vε(ρ)−Vε(r0)

.

Proposition 3 and straightforward calculation yield the inequality

1−
R2
−
ρ2

(
r2
0 − ρ2

r2
0 −R2

−

)
Vε(R−)− Vε(r0)

Vε(ρ)− Vε(r0)
>
r0(ρ−R−)

ρ(r0 +R−)

provided ε small enough is chosen. It follows

I <
C√

ρ−R−
∈ L1(R−, γ) .

We now apply the Lebesgue theorem and we obtain

lim
p→p̄

∫ r0

R−

1√
2(E + Vε(ρ))− l2

ρ2

dρ =

∫ r̄

0

1√
2(Ē + V (ρ))

dρ
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Figure 4. Poincaré section

thus the function T0 and, for the same reason, the function T are continuous with
respect to the set of parameters p.

Let again ȳ be used to indicate an initial condition leading to collision for the
system P (0), T0 the collision instant and, for T > T0, denote y1 = Φ(ȳ, T ) according
to Definition 4.4 of extension of the collision solution. Given Σ an hyperplane in
the phase space passing through y1 and transversal to the flow, we show that, for
every initial data y near ȳ, there exists a time t = τ(y) when the trajectory Φ(y, t)
intersects the hyperplane Σ. As the data y changes, the trace S(y) = Φ

(
y, τ(y)

)
drawn on Σ is called the Poincaré section of the flow on Σ, see Figure 4. In the
next theorem we prove the continuity of the map τ(y) and the continuity of the
Poincaré section in a neighborhood of ȳ.

Theorem 4.7. Let V (x) ∈ V∗. Then there exists a δ > 0 and a continuous function
τ(y) defined in a δ-neighborhood of ȳ, Nδ(ȳ), such that τ(ȳ) = T and

Φ(y, τ(y)) ∈ Σ .

Moreover the Poincaré section is continuous in Nδ(ȳ).

Proof. Given a vector F in the phase space such that F ·f(y1) > 0, we consider the
hyperplane

Σ = {y : (y − y1) · F = 0} .
By definition of y1 it descends

(
Φ(ȳ, T )− y1

)
· F = 0 and, since

d

dt

(
Φ(ȳ, t)− y1

)
· F
∣∣∣
t=T

= f(y1) · F > 0 ,

there exists an ξ > 0 such that(
Φ(ȳ, T − ξ)− y1

)
· F < 0 and

(
Φ(ȳ, T + ξ)− y1

)
· F > 0 .

For Theorem (4.5) and for the sign permanence theorem it follows that there exists
a δ > 0 such that for every |ȳ − y| < δ(

Φ(y, T − ξ)− y1

)
· F < 0 and

(
Φ(y, T + ξ)− y1

)
· F > 0 .

For every fixed y the function (Φ(y, t)− y1) · F is increasing in t: indeed

d

dt

(
Φ(y, t)− y1

)
· F = f

(
Φ(y, t)

)
· F .
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Hence the continuity of the vector space f(y) out of collision points together with
the continuity of the orbit Φ(y, t) with respect to both the variables, implies that
f
(
Φ(y, t)

)
·F > 0. Therefore, for every y ∈ Nδ(ȳ), there exists a time τ(y) satisfying

Φ
(
y, τ(y)

)
∈ Σ and τ(ȳ) = T . In order to prove the continuity of τ(y) we define

H(y, τ) = (Φ(y, τ)− y1) · F
then τ(y) is the implicit solution of H(y, τ(y)) = 0. Since H is continuous in y
and it is continuous and increasing with respect to τ , for Lemma (4.6) the function
τ(y) is continuous. Moreover, for composition of continuous functions we infer the
continuity of the Poincaré section.

5. Variational property of the collision solutions. In this section we join a
variational approach that consists in seeking solutions of the system (1) as critical
points of the action functional

A(u) =

∫
T

L(u, u̇)dt

where

L(u, u̇) =
1

2
|u̇(t)|2 + V (|u(t)|)

is the lagrangian function associated to the equation of motion. This method is well
known in the literature and it has been extensively exploited in order to find periodic
solutions for theN -body problem, see for instance [2, 7, 8] and the references therein.
Besides the discussion about the existence of minimal paths of the action functional,
an interesting question is whether such minimal paths could have a collision in the
interior of their domain. In presence of Coulombic potential and in general of
homogeneous potential of weak type, it is known that the collision solutions have
finite action but are not minimal paths. If a potential with a weaker singularity is
considered, as like the logarithmic potential, one could expect that the contribution
of the potential is negligible by a variational point of view. The following theorem
shows that this is not the case, indeed, it is proved that, despite of the weakness
of the singularity, any collision path is not a minimum for the action functional
whenever a potential V (x) ∈ V∗ is chosen.

Theorem 5.1. For every V (x) ∈ V∗, let u0 : [−T, T ] → R2 be the extension of
a collision solution of system (1) according with the Definition 4.4 of transmission
solution. Then u0(t) is not a minimal path for the action functional A|Λ, where

Λ = {u(t) ∈ C([−T, T ],R2) : u̇ ∈ L2([−T, T ];R2), u(−T ) = u0(−T ), u(T ) = u0(T )}
denotes the set of paths joining the end points of u0.

Proof. Without loss of generality we suppose t = 0 be the collision instant. We
first prove that u0 has finite action. Since a collision solution has zero angular
momentum, the path u0(t) satisfies the energy integral E = 1

2 |u̇0|2 − V (|u0|) from
which we infer the asymptotic estimate

|u̇0|2 ∼ V (|u0|) (21)

as |u0| tends to zero. We write the action of u0(t) as

A(u0) = 2

∫ T

0

(
E + 2V (|u0(t)|)

)
dt ≤ C

∫ T

0

V (|u0(t)|) dt = C

∫ R

0

V (r)

ṙ
dr
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where r(t) = |u0(t)| and C is a positive constant. From (21) and (9) it follows
A(u0) < +∞.

In order to prove that u0(t) is not the minima for the action A among all the
paths in Λ, we perform a variation on the trajectory u0 that removes the collision
and makes the action decrease.

Let u1(t) = u0(t) + vδ(t) where vδ(t) is the standard variation

vδ(t) =

{
δ |t| < T1

(T−t)
(T1−T )δ T1 < |t| < T

directed orthogonally to u0(t).
Let us compute the difference ∆A = A(u0)−A(u1).

∆A =

∫ T

−T

(
L(u0, u̇0)− L(u1, u̇1)

)
dt

=

∫ T

−T

(
1

2
|u̇0|2 + V (|u0|)

)
−
(

1

2
|u̇1|2 + V (|u1|)

)
dt

=

∫ T

−T

1

2

(
|u̇0|2 − |u̇1|2

)
dt+

∫ T

−T
V (|u0|)− V (|u1|)dt = ∆K + ∆V .

We study separately the kinetic and the potential contribute. Since the variation
vδ is directed orthogonally to u0

|u̇1(t)|2 =

{ |u̇0(t)|2 |t| ≤ T1

|u̇0(t)|2 + δ2

(T−T1)2 T1 < |t| ≤ T

then

∆K = −2

∫ T

T1

1

2

δ2

(T − T1)2
dt = − δ2

(T − T1)
. (22)

We show that, for every δ small enough, the contribution of the potential part is
larger than the penalising contribution, due to the kinetic part.

∆V = 2

∫ T

0

V (|u0|)− V (|u1|) dt > 2

∫ T1

0

V (|u0|)− V (|u1|) dt

≥
∫ T1

0

V (|u0|)− V
(√

u2
0 + δ2

)
dt .

For every t fixed

V (|u0|)− V
(√

u2
0 + δ2

)
= −

∫ 1

0

d

dξ
V

(√
u2

0 + ξδ2

)
dξ

hence

∆V ≥ 2

∫ T1

0

∫ 1

0

−
V ′
(√

u2
0 + ξδ2

)
2
√
u2

0 + ξδ2
δ2 dξ dt = δ2

∫ T1

0

∫ 1

0

−
V ′
(√

u2
0 + ξδ2

)√
u2

0 + ξδ2
dξ dt

= δ2

∫ T1

0

fδ(t) dt = δ2Rδ .

For δ sufficiently small the functions fδ(t) are positive and by Fatou’s Lemma

lim
δ→0

∫ T1

0

∫ 1

0

−
V ′
(√

u2
0 + ξδ2

)√
u2

0 + ξδ2
dξ dt ≥

∫ T1

0

−V ′(|u0(t)|)
|u0(t)|

dt
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Since |u0(t)| is bounded, for a suitable positive constant C we write∫ T1

0

−V ′(|u0(t)|)
|u0(t)|

> C

∫ T1

0

−V ′(|u0(t)|) dt = C
(
ṙ(T1)− lim

t→0
ṙ(t)

)
= +∞ . (23)

The last relation holds because the function r(t) = |u0(t)| solves the differen-
tial equation r̈(t) = −V ′(r(t)), being the collision solution u0 a radial solution.
Combining (22), (23) and (23), for every small enough δ,

∆A = ∆K + ∆V = δ2
(
− 1

T − T1
+Rδ

)
> 0

then we conclude that u0 is not a minimum for A.
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