
Efficient rigorous numerics for high-dimensional

PDEs via one-dimensional estimates

Marcio Gameiro ∗ Jean-Philippe Lessard †

Abstract

Computing numerical approximations of solutions of high-dimensional PDEs is in-
evitably affected by the so-called curse of dimensionality. In order to address this
fundamental issue, we introduce a computational method that not only produces rig-
orous mathematical theorems regarding the correctness of the numerical output, but
also has the important property that most of the extra computational cost involved
in the proofs is not affected by the curse of dimensionality. The idea is to prove the
existence of solutions of high-dimensional nonlinear PDEs by verifying computationally
the hypotheses of a contraction mapping theorem and by bounding the nonlinearities
via one-dimensional estimates. It is demonstrated that with this new approach it is
dramatically cheaper to prove that the numerical output is correct than to recompute
at a finer resolution. This claim is illustrated in the context of a pattern formation
model defined on a three-dimensional spatial domain.

1 Introduction

Scientists using mathematical models to predict and understand phenomena in fields as
broad as physics and finance face the fact that realistic models often need to be defined
on high-dimensional spatial domains. For instance, partial differential equations (PDEs)
arising in fluids and material science are naturally defined on three-dimensional domains,
and mathematical finance models like the Black-Scholes equation can be defined on domains
of dimension as large as ten. These models are on the one hand more realistic than lower-
dimensional versions, but on the other hand have the disadvantage of being affected by the
so-called curse of dimensionality. In other words, given a fixed grid size, the number of
spatial discretization points required to realize that size increases exponentially as the di-
mension of the domain grows. As a result, and motivated by the increasingly important role
played by numerical simulations, scientists are constantly developing efficient algorithms
in order to reduce the computational cost involved in computing approximate solutions of
high-dimensional PDEs. However, when done at the frontiers of computability, it may be
very hard to verify the correctness of the numerical output. For instance, in the context of a
three-dimensional PDE, the standard approach of assessing the correctness of the numerical
result simply based upon its reproducibility at different levels of refinement may be imprac-
tical. More explicitly, suppose that a numerical method to solve a three-dimensional model
involves an algorithm of computational complexity n3 (e.g. computing the LU decomposi-
tion of an n × n matrix). Since the input of the algorithm is a discretization of a function

∗Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668,
13560-970, São Carlos, SP, Brazil (gameiro@icmc.usp.br).
†BCAM - Basque Center for Applied Mathematics, Bizkaia Technology Park, 48160, Derio, Bizkaia,

Spain (lessard@bcamath.org).

1

defined on a three-dimensional domain, its size is n = m3, where m represents the number
of points in the discretization in each dimension. An attempt to reproduce the result by
doubling the number of mesh points in each dimension would increase the computational
cost by a factor of 512, since then n = (2m)3 = 8m3 and n3 = 512m9. Using this standard
approach a one week numerical simulation could take about ten years to be verified. In
order to address this fundamental issue in the context of high-dimensional PDEs, we pro-
pose here a computational method that not only produces rigorous mathematical theorems
regarding the correctness of the numerical output, but also has the important property that
most of the extra computational cost involved in the proof is not affected by the curse of
dimensionality.

It is important to mention that several methods have been developed to address the
problem of the curse of dimensionality arising from computing solutions of high-dimensional
PDEs. We refer to [1] and the references therein for an extensive review of the methods.
Just to give a few examples, sparse tensor product approximations [2, 3] and tensor-product
wavelet bases [4] have been developed to compute solutions of parabolic and elliptic PDEs,
and the Monte Carlo method [5] is by now a standard tool used in computing numerical
solutions of high-dimensional PDEs arising in mathematical finance. However, to the best
of our knowledge, none of these novel approaches have been adapted to produce rigorous
computer-assisted proofs regarding the correctness of the numerical output.

One of the key ingredient of the proposed approach is to use a computer program with in-
terval arithmetic [6] to generate sharp one-dimensional analytic estimates (see Appendix A)
which are then used to produce high-dimensional estimates. The purpose of the high-
dimensional estimates is twofold. First, they are used to construct rigorous upper bounds
for the convolution terms involved in the nonlinearities of the PDE. Second, they are used
to estimate the truncation error terms introduced by computing on a finite dimensional ap-
proximation of the original problem. Furthermore, since these high-dimensional estimates
are solely based on product of one-dimensional estimates, their rigorous computer-assisted
construction does not increase in complexity as the dimension of the domain increases.

It is well known that evaluating nonlinearities of high-dimensional PDEs can be very
expensive. Efficient algorithms like the Fast Fourier Transform (FFT) (e.g. see [7] and
the references therein) have been successfully applied to speed up such computations, but
as mentioned earlier, when done at the frontier of computability, such algorithms can be
hard to apply (e.g. see Example 1.2). In order to address this difficulty, the present method
proposes using sharp analytic estimates to bound the nonlinearities as opposed to computing
them with FFT. As it is discussed in details in Section 2.2, with this new approach,

it is dramatically cheaper to prove that the numerical output
is correct than to recompute at a finer resolution.

Note that this result is similar in spirit to the result of [8], where it was demonstrated
that the computational cost of the so-called validated continuation method is less than twice
the cost of the standard continuation method alone. It is important to remark however
that only one-dimensional examples were presented in [8], and that the method there did
not include control of the floating point errors involved in the computations by means of
interval arithmetic, meaning that the cost comparison there is a result regarding non-rigorous
computations.

The method introduced in the present work is based on the rigorous continuation method
of [9], which has been developed to prove existence of equilibrium solutions of parameter

2

dependent PDEs of the form

ut = L(u, λ) +

p∑
n=2

qnu
n, (1)

in a rectangular domain Ω ⊂ Rd, where λ ∈ R is a parameter, L(·, λ) is a linear operator, and
qn = qn(λ) ∈ R are the coefficients of the polynomial nonlinearities. The main differences
with the work introduced in [9] and the present work are introduced at the end of this
section. It is demonstrated in [9] that under certain regularity conditions on the solutions,
finding equilibria of (1) is equivalent to finding solutions of

f(x, λ) = 0, (2)

for x = {xk}k∈Zd in a Banach space Xs of coefficients decaying algebraically at least as fast
as { 1

ωs
k
}k∈Zd , where {ωs

k}k∈Zd are weights with decay rate s. The map f := {fk}k∈Zd is

given component-wise by

fk(x, λ) := µk(λ)xk +

p∑
n=2

qn
∑

k1+···+kn=k

kj∈Zd

xk1 · · ·xkn , k ∈ Zd. (3)

At the parameter value λ = λ0, the rigorous continuation is based on a contraction map-
ping argument applied to a Newton-like operator T , which depends on an approximation
of the inverse of Df(x̄, λ0), where x̄ is a numerical approximation of a finite dimensional
Galerkin approximation of (2), for λ = λ0. The method focuses on efficiently determining
balls B(x̄, r) := x̄+B(r) centered at x̄ and of positive radius r in Xs on which T is a contrac-
tion mapping. In the end, the proof of existence of solutions of (2) is obtained by verifying a
finite number of polynomial inequalities, the so-called radii polynomials {pk(r)}k∈Zd , which
provide sufficient conditions to have that T : B(x̄, r)→ B(x̄, r) is a contraction.

Since the extra cost of the proof of the rigorous continuation method of [9] is the con-
struction of the coefficients of these polynomials, the strategy here is to reduce the cost
involved in their computation. In order to present this strategy, we briefly review the phi-
losophy and the ingredients involved in the construction of the radii polynomials. For more
details, we refer to [9]. The radii polynomials {pk(r)}k∈Zd are upper bounds satisfying∣∣∣[T (x̄)− x̄

]
k

∣∣∣+ sup
b,c∈B(r)

∣∣∣[DT (x̄+ b)c
]
k

∣∣∣− r

ωs
k

≤ pk(r), for every k ∈ Zd. (4)

Assuming that one can find a radius r > 0 such that pk(r) < 0 for all k ∈ Zd, then
by the Banach Fixed Point Theorem, the operator T has a unique fixed point within the
set B(x̄, r) ⊂ Xs. In order to avoid having to verify an infinite number of polynomial
inequalities, one can construct a polynomial p̃M (r), independent of k, such that

pk(r) = p̃M (r)
r

ωs
k

, for k 6∈ FM , (5)

where M = (M1, . . . ,Md) ∈ Nd is a computational parameter refered to as the verification
dimension and FM := {k ∈ Zd | |k| < M}, where k < M and |k| denote component-
wise inequalities and absolute values, respectively. Note that the verification dimension M
provides the size of the finite dimensional system on which the hypotheses of the contraction
mapping theorem will be verified. More explicitly, if N is the cardinality of FM , one
computes N finite radii polynomials {pk(r)}k∈FM

satisfying (4) and one tail radii polynomial
satisfying (5). To prove existence of steady states of the PDE (1), it is sufficient to verify
the hypotheses of the following Lemma.

3

Lemma 1.1. [9] Consider the finite radii polynomials {pk}k∈FM
satisfying (4) and the tail

radii polynomial p̃M satisfying (5). If there exists an r > 0 such that pk(r) < 0 for all
k ∈ FM and p̃M (r) < 0, then there exists a unique x̃ ∈ B(x̄, r) such that f(x̃, λ0) = 0.

Before proceeding further, it is worth mentioning that the idea of the radii polynomi-
als were introduced in [8] with the goal of providing, in the context of equilibria of one-
dimensional PDEs, an efficient means of determining a domain on which the contraction
mapping theorem is applicable. Since then, they have been extended to prove existence of
equilibria of high-dimensional PDEs [9, 10], of time periodic solutions of delay equations
[11, 12], of connecting orbits of ODEs [13], of time periodic solutions of PDEs [14] and of
fundamental matrix solutions arising in Floquet theory [15]. We refer to [16] for a more
general discussion of the radii polynomials.

Since the finite radii polynomials {pk}k∈FM
and the tail radii polynomial p̃M encode the

upper bounds (4), one has a certain freedom in how to construct them. There are however
two fundamental constraints to be satisfied in their construction. First, the verification
dimension M has to be chosen large enough so that the tail radii polynomial satisfies
p̃M (r) < 0 for some r > 0. Second, the finite radii polynomials have to be efficiently
constructed so that their evaluation is not too computationally expensive. In the way that
the radii polynomials are constructed in [9], these two constraints compete against each
other. Indeed, the nonlinearities of fk given by (3) are split as follows∑

k1+···+kn=k

kj∈Zd

xk1 · · ·xkn =
∑

k1+···+kn=k

kj∈FM

xk1 · · ·xkn +
∑

k1+···+kn=k

{k1,...,kn}6⊂FM

xk1 · · ·xkn , (6)

and the first finite sum is evaluated using the FFT algorithm while the second infinite sum
is bounded using analytic estimates. Since the dimension of the FFT computations is larger
than the verification dimension M , this approach is very expensive as the dimension d of
the spatial domain Ω increases. One of the reason comes from the aliasing errors that need
to be eliminated in order to get rigorous bounds using the FFT [17]. In order to make that
important point clear, we give an explicit example.

Example 1.2. Consider d = 3, M = (M,M,M) and a vector x = {xk}k∈FM
∈ R(2M−1)3 .

In order to compute a rigorous upper bound for the sum∑
k1+k2+k3=k

kj∈FM

xk1xk2xk3 (7)

using FFT, one needs to enlarge the vector x to control the aliasing error (e.g. see [17]).
Consider M∗ to be the smallest power of 2 such that M∗ ≥ 2δM − 1, where δ = 2 in this
case. Define M∗ = (M∗,M∗,M∗) and consider a new vector x̃ = {x̃k}k∈FM∗ ∈ R(M∗)3

such that

x̃k :=

{
xk, if k ∈ FM

0, if k ∈ FM∗ \ FM .

An upper bound for (7) can be obtained by computing the Fourier transform of x̃ ∈ R(M∗)3 .
This computational task can be done using the FFT algorithm, which is a powerful way to
compute high-dimensional convolutions (see [7]). However, in the case of three-dimensional
PDEs, this algorithm may be hard to apply, since the actual value of (M∗)3 can be very
large. For example, in [9], in order to prove existence of non trivial equilibria for the 3D
Cahn-Hilliard equation, the authors computed a cubic convolution of the form (7) with

4

M = 218, where M was chosen to be the smallest integer so that the tail radii polynomial
(5) could be successfully solved (see Figure 4 in [9]). In this case δ = 2 and then M∗ =
210 = 1024 ≥ 2δM − 1 = 871. Obtaining a rigorous upper bound for (7) therefore involved

computing a FFT of the vector x̃ ∈ R(M∗)3 ≈ R109

. This is a serious computational task.

Based on the previous example, we now underline three important differences between
the work of [9] and the present work. The first and most significant improvement is a strat-
egy to fight the curse of dimensionality involved in the computation of high-dimensional
convolution sums using the FFT. In the present work, a new construction of the poly-
nomials is presented where the nonlinearities of the form (7) are bounded by products of
one-dimensional estimates as opposed to using the FFT with large inputs. Second, we intro-
duce an explicit construction of the radii polynomials for general polynomials nonlinearities.
In [9], the explicit presentation was done only for cubic nonlinearities. Finally, since this
new approach depends heavily on sharp estimates, we improve significantly in Appendix A
the one-dimensional estimates presented in [9] (see Figure 7 for a comparison). In order
to demonstrate the sharpness of the new estimates in a simple context, we present in Sec-
tion 3.2 a result about the existence of several equilibria of the one-dimensional Allen-Cahn
equation. We refer to Figure 6 for a result which improves dramatically a result of [17].

The paper is organized as follows. In Section 2, the new proposed efficient rigorous nu-
merical method for PDEs via one-dimensional estimates is introduced. The section begins
by reviewing some recent methods that combine rigorous computations and efficient numer-
ics. In Section 2.1, the general formulae of the radii polynomials are introduced, where the
derivation and the justification is left out for later. In Section 2.2, an analysis of the compu-
tational cost involved in the evaluation of the radii polynomials is presented. In Section 3,
applications are presented. First, the method is applied in Section 3.1 to prove existence
(and local uniqueness) of several equilibrium solutions of a pattern formation model de-
fined on a three-dimensional domain, where it is demonstrated that it is about two hundred
times cheaper to prove that the numerical output is correct than to recompute at a finer
resolution. Second it is shown in Section 3.2 that the present method provides a significant
improvement over the method introduced in [17]. The mathematical justification of the radii
polynomials is finally presented in Section 4. The Appendix contains the derivation of the
one-dimensional convolution estimates, which are an improvement over the ones presented
in [9].

2 Efficient rigorous numerics via one-dimensional esti-
mates

Mathematicians are often inclined to emphasize the importance of rigorous mathematical
proofs and thus marginalize the computational cost of the verification methods. On the
other hand, scientists are often more interested in investigating numerically a wide variety
of models rather than answering a particular question about a specific problem. This is
a strong motivation to develop numerically efficient rigorous methods. In an attempt to
reduce the computational cost and hence make rigorous methods more amenable to large
scale computations, efficient algorithms from numerical analysis and scientific computing
have been recently incorporated within rigorous computations. For instance, in order to
study global solution curves of steady states, path-following algorithms have been used to
handle parameter dependent equations more efficiently [8, 18, 19, 20, 10, 21, 22]. Similarly, in
order to speed up the computations and to obtain rigorous bounds for the evaluation of the
nonlinearities of the PDEs, the fast Fourier transform (FFT) algorithm has been combined

5

with interval arithmetic [17, 23]. However, like many other numerical methods, the cost of
the rigorous computational techniques increases dramatically as the dimension of the spatial
domain of the PDE under study increases (e.g. see Example 1.2). Hence, one has to find
ways to decrease the number of variables used in the computations while still producing a
reliable rigorous numerical output. As mentioned earlier, the goal of the present work is
to address the curse of dimensionality in the context of the rigorous continuation method
for equilibria of higher-dimensional PDEs introduced in [9]. As mentioned in Section 1, the
extra computational cost required to prove the correctness of the numerical output of the
Newton method applied on a finite dimensional Galerkin projection is the construction of
the radii polynomials satisfying the hypotheses of Lemma 1.1. The general formulae of the
radii polynomials are now presented, while their derivation is done in Section 4.

2.1 General formulae for the radii polynomials

In order to perform the necessary computations one needs a finite dimensional approximation
to (2). Fix a computational parameter m = (m1, . . . ,md), which is referred as the Galerkin
projection dimension. Denote Fm := {k ∈ Zd | |k| < m}, where for k = (k1, . . . , kd) ∈ Zd

and |k| = (|k1|, . . . , |kd|). The m-dimensional Galerkin projection f (m) := {f (m)
k }k∈Fm ,

with f
(m)
k : Rm1···md × R→ Rm1···md is given by

f
(m)
k (xFm , λ) := fk((xFm , 0Im), λ) = µkck +

p∑
n=2

qn
∑

k1+···+kn=k

kj∈Fm

ck1 · · · ckn , (8)

where xFm := {xk}k∈Fm and xIm := {xk}k 6∈Fm denote, respectively, the finite part of size
m = (m1, . . . ,md) ∈ Nd and the corresponding infinite part of x = {xk}k∈Zd .

Assume that one computed a numerical zero for f (m) at a given parameter value λ0,
that is, x̄Fm such that f (m)(x̄Fm , λ0) ≈ 0. Let J−1

m be a numerical approximation for the
inverse of the Jacobian matrix Df (m)(x̄Fm , λ0), which is assumed to be invertible. Fix a
computational parameter M = (M1, . . . ,Md), which is referred as the verification dimen-
sion. More explicitly, the parameter M determines the size of the finite radii polynomials,
that is there are M1M2 · · ·Md finite radii polynomials. Recalling the value µk in (3), define

Yk :=

[
|J−1

m f (m)(x̄Fm , λ0)|
]
k
, if k ∈ Fm

|µ−1
k fk(x̄, λ0)|, if k ∈ FM \ Fm

0, if k 6∈ FM .

(9)

The one-dimensional weights

ωs
k :=

{
1, if k = 0

|k|s, if k 6= 0,

are used to define the d−dimensional weights

ωs
k :=

d∏
j=1

ω
sj
kj
> 0, (10)

where s = (s1, . . . , sd) is the decay rate. The d−dimensional weights are used to define the
norm

‖x‖s = sup
k∈Zd

ωs
k|xk|. (11)

6

Using (10), define ω−s := {1/ωs
k}k∈Zd , ω−sFm

:= {1/ωs
k}k∈Fm and

Z̃
(1)
k :=

[∣∣∣I − J−1
m Df (m)(x̄Fm , λ0)

∣∣∣ω−sFm

]
k
, (12)

where | · | denotes component-wise absolute value and I denotes the identity operator. Using

the definition of the one-dimensional estimates α
(n)
k given by (32) and (33) in Section A.2

we define the high-dimensional estimates by

α
(n)
k = α

(n)
k (s,M) :=

d∏
j=1

α
(n)
kj

(sj ,Mj) > 0. (13)

The usefulness of the estimates (13) is that convolution sums of the form (6) can be bounded

by terms of the form α
(n)
k /ωs

k, assuming that the vector x = {xk}k∈Zd in (6) decays to zero
at least as fast as 1/ωs

k. We refer to Figure 1 for an example of the geometrical interpretation
of the decay of the high-dimensional estimates (13).

0
10

20
30

40
50

60 0

20

40

600

1000

2000

3000

4000

5000

k1
k2

α
(3)
k1,k2

0
10

20
30

40
50

60 0
20

40
600

500

1000

1500

2000

2500

3000

3500

4000

k1
k2

α
(3)
k1,k2

0

20

40

60 0 10 20 30 40 50 60

0

2000

4000

6000

8000

10000

12000

14000

16000

α
(3)
k1,k2

k1
k2

0
10

20
30

40
50

60 0 10 20 30 40 50 60

0

2

4

6

8

10

x 104

α
(3)
k1,k2

k1

k2

Figure 1: The case d = 2: two dimensional estimates α
(3)
k = α

(3)
k1,k2

as product of one-
dimensional estimates for M = (50, 50) and s = (s, s). The cases s = 2 (top–left), s = 3
(top-right), s = 4 (bottom-left) and s = 5 (bottom-right) are depicted.

Using the definition of the one-dimensional estimates ε
(n)
k given by (36) in Section A.2

one defines another set of high-dimensional estimates by

ε
(n)
k = ε

(n)
k (s,M) :=

α
(n)
k

ωs
k

max
j=1,...,d

 ω
sj
kj

α
(n)
kj

(sj ,Mj)
ε

(n)
kj

(sj ,Mj)

 . (14)

Consider now a computational parameter

M̄ := (M̄1, . . . , M̄d), such that m ≤ M̄ ≤M , (15)

7

which is referred to as the FFT computation dimension. Using (13) and (14) we define

Z
(1)
k :=

p∑
n=2

n|qn|
(
|x̄|n−1 ∗ (ω−sIm

− ω−sIM̄
)
)
k

+

p∑
n=2

n|qn|‖x̄‖n−1
s ε

(n)
k , for k ∈ Fm

p∑
n=2

n|qn|
(
|x̄|n−1 ∗ ω−sFM̄

)
k

+

p∑
n=2

n|qn|‖x̄‖n−1
s ε

(n)
k , for k ∈ FM̄ \ Fm

p∑
n=2

n|qn|‖x̄‖n−1
s

α
(n)
k

ωs
k

, for k 6∈ FM̄

(16)
and for ` ∈ {1, . . . , p− 1}

Z
(`+1)
k :=

p∑
n=`+1

n|qn|
(
n− 1

`

)[(
|x̄|n−1−` ∗ (ω−sFM̄

)`+1
)
k

+ ‖x̄‖n−1−`
s (`+ 1)ε

(n)
k

]
, for k ∈ FM̄

p∑
n=`+1

n|qn|‖x̄‖n−1−`
s

(
n− 1

`

)
α

(n)
k

ωs
k

, for k 6∈ FM̄

(17)
where for the sake of simplicity of the presentation, we identify xFM̄

with (xFM̄
, 0IM̄), xIM̄

with (0FM̄
, xIM̄) and xFm with (xFm , 0Im), and we use the discrete convolution notation

(xn)k = (

n times︷ ︸︸ ︷
x ∗ · · · ∗ x)k =

∑
k1+···+kn=k

kj∈Zd

xk1 · · ·xkn .

Combining (12), (16) and (17), we define

Zk(r) :=

p−1∑
`=0

(∣∣J−1
m

∣∣Z(`+1)
Fm

)
k
r`+1 + Z̃

(1)
k r, for k ∈ Fm

p−1∑
`=0

|µ−1
k |Z

(`+1)
k r`+1, for k ∈ FM \ Fm.

(18)

Assume that we can find µ̃M , independent of k, such that

µ̃M ≤ |µk|, for all k 6∈ FM . (19)

As in [9], for M ∈ N, with M ≥ 6 and s ≥ 2 we define the one-dimensional asymptotic
estimate

α̃
(n)
M = α̃

(n)
M (s,M) := max

{
α

(n)
k (s,M) | k = 0, . . . ,M

}
,

which is used to define the high-dimensional asymptotic estimate

α̃
(n)
M = α̃

(n)
M (s,M) := max

j0=1,...,d

α(n)
Mj0

(sj0 ,Mj0)

d∏
j=1

j 6=j0

α̃
(n)
Mj

(sj ,Mj)

 . (20)

Define

Z̃M (r) :=
1

µ̃M

p−1∑
`=0

p∑
n=max{`+1,2}

n|qn|‖x̄‖n−1−`
s

(
n− 1

`

)
α̃

(n)
M r`. (21)

8

Definition 2.1. Recall the definition of Yk and Zk(r) given respectively in (9) and (18).
The finite radii polynomials {pk}k∈FM

are given by

pk(r) = Yk + Zk(r)− r

ωs
k

, for k ∈ FM . (22)

Recall Z̃M (r) given by (21). The tail radii polynomial is given defined by

p̃M (r) = Z̃M (r)− 1. (23)

2.2 Computational cost involved in computing the polynomials

The FFT computation dimension M̄ such that m ≤ M̄ ≤M is precisely the parameter that
governs the computational cost involved in the construction of the finite radii polynomials
defined in (22). More precisely, since the convolution sums in (16) and (17) are evaluated
using the FFT algorithm with inputs of size M̄ , the closer M̄ is to the Galerkin projection
dimension m, the more efficient the computation of the polynomials are. The smallest
possible “distance” between M̄ and m so that the hypotheses of Lemma 1.1 are satisfied is

determined by the sharpness of the estimates ε
(n)
k given by (14). Hence, the sharper the one-

dimensional estimates α
(n)
k and ε

(n)
k from Section A.2 are, the sharper the high-dimensional

estimates ε
(n)
k are, the smaller the FFT computation dimension M̄ is and therefore the more

efficient the computation of the finite radii polynomials are. This fundamental importance
of the one-dimensional estimates is the reason why we had to improve the estimates from
[9] and present a new improved version in Appendix A. We refer to Figure 7 for an explicit
and direct comparison.

It is also important to note that the construction of Z
(1)
k , . . . , Z

(d)
k in (16) and (17)

corresponding to the cases k 6∈ FM̄ is not affected by the curse of dimensionality, because

their computation only involves evaluating the estimates α
(n)
k , which are mere products of

the one-dimensional estimates α
(n)
k computed in Section A.2. Therefore, in case we can set

M̄ = m, we have that most of the extra computational cost involved in the proofs is not
affected by the curse of dimensionality. As a consequence, in Section 3.1, we demonstrate
that in the context of a three-dimensional PDE, we can set M̄ = m and it is about two
hundred times cheaper to prove that the numerical output is accurate than to recompute
at a finer resolution.

3 Applications

3.1 Cost comparison for Swift-Hohenberg in 3D

In this section we consider a pattern formation model defined on a three-dimensional spatial
domain and present a cost comparison between the numerical computation of the equilibria
and the verification method to prove that the numerical solution represents a true solution
of the PDE.

We consider the Swift-Hohenberg equation

ut = νu− (1 + ∆)2u− u3 (24)

with even periodic boundary conditions on a rectangular bounded domain Ω ⊂ R3, that
is, we are interested in periodic solutions that satisfies the symmetry conditions u(y, t) =
u(|y|, t), where |y| := (|y1|, |y3|, |y3|). Equation (24) describes the onset of Rayleigh-Bénard

9

convection, and is widely used as a model for pattern formation. The parameter ν > 0 is
the reduced Rayleigh number.

Notice that this equation was considered in [9], where computations in 3D could be
performed only for relatively small ranges of parameters due to high computational costs
for larger values of the parameter. Figure 2 shows the diagram of the computed solutions
of (24). Notice that the range of parameters presented in Figure 2 is much larger than the
one considered in [9]. A plot of the level surfaces of the last point on the branch in Figure 2
is presented in Figure 3.

10 20 30 40 50

2

4

6

8

10

ν

‖u
‖

Figure 2: Branch of equilibria for the Swift-Hohenberg equation in the 3D rectangle Ω =
[0, 2π] × [0, 2π/1.1] × [0, 2π/1.2]. For all the points on the plot the verification method
was successful in proving the existence of a unique equilibria of (24) near the numerically
computed solution. For the computations we used m = (m,m,m) and s = (2, 2, 2). The
projection dimension is m = 8 for the first point on the branch and it increases as needed
along the branch to m = 12 for the last point.

In Figure 4 and in Table 1, we show a cost comparison between the numerical com-
putation (Numerics) of the equilibria and the verification method (Verification). The
verification time measures the cost involved in computing the radii polynomials and verify-
ing the hypotheses of Lemma 1.1. In other words, it represents the extra computational cost
involved in performing a computer-assisted proof of existence and local uniqueness of equi-
libria of (24). The running times in the plot correspond to a single solution on the branch
of Figure 2 at ν = 7.4093499072734623, which corresponds to the fourth non trivial point
rigorously computed on the branch. We recomputed the same solution for several values of
m and ran the verification algorithm on that solution for each value of m. As we can see
from Figure 4 the cost of proving the existence of a solution near the numerical result is
comparable to the cost of computing the numerical solution itself. Hence it is dramatically
cheaper to prove the correctness of the output than to recompute the solution at a finer grid
resolution, since the computational cost increases dramatically with m. Let us give a more
quantitative description of that claim.

Consider the case m = 9 in Table 1. It took about 5.84624 seconds to compute a
numerical approximation of an equilibrium solution of (24). As mentioned in Section 1,
a standard approach of assessing the correctness of a numerical result is based upon its
reproducibility at a finer level of refinement. In that case, such a standard approach would

10

Figure 3: Level surfaces for the solution corresponding to the last point on the branch of
Figure 2, corresponding to ν = 53.824306721432478. This solution was computed using
m = (12, 12, 12) and the proof was performed using M = (58, 58, 58).

8 10 12 14 16 18
0

500

1000

1500

2000

2500

3000

3500

m

t

Numerics
Verification

Figure 4: Running times for the numerics and the verification method for a solution in
Figure 2. The horizontal axis represent the projection dimension m and the vertical axis
refers to the time in seconds needed for the computations. The times shown refer to the
same solution that was recomputed for several values of m. This demonstrates that it is
dramatically cheaper to verify the correctness of the solution than to recompute it with a
larger value of m.

11

require taking m = 18 to assess the correctness of the output, meaning that in the context
of computing equilibria of (24), the extra computational cost to verify the numerical output
would be 3084.07 seconds (see Table 1). On the other hand, the extra computational cost
of our new proposed rigorous verification method is 15.73299 seconds. This implies that
the ratio between the cost of the standard validating method versus our rigorous method
is 3084.07/15.73299 = 196.025676. Therefore, in the context of computing equilibrium
solutions of the PDE model (24) in 3D

it is about 200 times cheaper to prove that the numerical
output is correct than to recompute at a twice as fine resolution.

Note that while the above ratio (≈ 196) was computed with a Galerkin projection
dimension m = (m,m,m), where m = 9, we believe that this ratio should increase as
one increases m.

m Numerics Verification

8 1.78967 11.94395
9 5.84624 15.73299
11 37.8836 35.01097
14 323.518 317.60105
18 3084.07 2539.81061

Table 1: Running times in seconds.

3.2 A dramatic improvement for Allen-Cahn 1D

As mentioned in Section 1, in order to demonstrate the efficiency of the new proposed method
and the sharpness of the new estimates of Appendix A, we now present a comparison with
the rigorous computational method introduced in [17]. There, the construction of the radii
polynomials is done with different estimates. In particular, the method is applied to the
one-dimensional Allen-Cahn equation{

ut = ε2uxx + u− u3, in Ω = [0, 1]

ux = 0, on ∂Ω,
(25)

where λ = π2/ε2 is used as the continuation parameter. For (25) the Fourier basis {cos(kπx) |
k = 0, 1, 2, . . .} is used and then the solutions of (25) are represented using the expansion

u(x, t) = u0(t) + 2

∞∑
k=1

uk(t) cos(kπx).

So (25) takes the form

u̇k = µkuk −
∑

k1+k2+k3=k

uk1
uk2

uk3
, (26)

where µk = 1 − π2k2/λ are the eigenvalues of the linear operator in (25). The radii poly-
nomials introduced in Definition 2.1 were constructed in the context of (26) and several
equilibria of (25) were proved to exist by verifying the hypotheses of Lemma 1.1. In Fig-
ure 5, we present a comparison of the branches computed with the construction of [17] and

12

the branches computed using the new method introduced in this paper. Note that using
the present method, we did not encounter any failure for the method. This is a significant
improvement compare to the result of [17], where all computations eventually failed at fairly
small parameter values.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

‖u
‖

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ

‖u
‖

(1)

(2)

(3)

(4)

(5)

Figure 5: Branches from [17] (left) and the ones computed using the new method presented
in this paper (right).

Another improvement of the method can be seen by comparing the minimal Galerkin
projection dimension m that is required to verify the hypotheses of Lemma 1.1 using the
construction of the radii polynomials from [17] and the construction of the radii polynomials
done in this paper. Notice that using the present method, the finite dimensional Galerkin
projection can be taken 105 times smaller than in [17] while still producing a proof. This is
a dramatic improvement.

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

5

λ

m

(a)

0 500 1000 1500 2000
0

10

20

30

40

50

60

λ

m

(b)

Figure 6: The minimal required dimension of the Galerkin projection m as a function of the
continuation parameter λ along: (a) the black dotted branch of equilibria of Allen-Cahn
from Figure 5 (left) which was proved using the method from [17]; (b) the branch (3) of
equilibria of Allen-Cahn from Figure 5 (right) which was proved using the present method.

13

4 Justification of the formulae of the radii polynomials

In this section, we justify and describe the construction of the radii polynomials that are
defined in Section 2.1. The first ingredient in the construction of the radii polynomials is to
find a numerical zero for f (m) at a given parameter value λ0, that is, one finds x̄Fm such that
f (m)(x̄Fm , λ0) ≈ 0. Defining x̄ := (x̄Fm , 0Im) one expects that f(x̄, λ0) ≈ 0 provided x̄Fm

is computed using a sufficiently large Galerkin projection dimension m. This assumption
is mathematically justified by the fact that since equilibria of parabolic PDEs are solutions
which exist globally in time, the linear term L in (1) regularizes the solutions and hence
equilibria are very smooth (e.g. see [24]). This implies that the coefficients of the Fourier
expansion should decay very fast (exponentially) and so by increasing the dimension of the
Galerkin projection, one expects to approximate a true solution of the infinite dimensional
PDE.

Using the numerical solution x̄, the equation f(x, λ) = 0, where f is given component-
wise by (3), is now transformed into an equivalent fixed point problem for a Newton-like
operator about x̄. For this purpose, let J−1

m be a numerical approximation for the inverse
of the Jacobian matrix Df (m)(x̄Fm , λ0), which is assumed to be invertible. Recalling the
definition of the high-dimensional weights in (10), we define the Banach space

Xs = {x | ‖x‖s <∞} , (27)

consisting of sequences with algebraically decaying tails according to the rate s. The linear
operator J−1 on Xs is defined by

[
J−1(x)

]
k

:=

[
J−1
m (xFm)

]
k
, if k ∈ Fm

µ−1
k xk, if k 6∈ Fm.

Notice that J−1 is an approximation for the inverse of Df(x̄, λ0). Defining

T (x) := x− J−1f(x, λ0)

one can readily see that finding zeros of f is equivalent to finding fixed points of T (see [9]).
The idea is to uniquely enclose fixed points of T into closed balls B(x̄, r) in Xs centered
at x̄. One can easily check that the closed ball of radius r in Xs, centered at the origin, is
given by

B(r) := B(0, r) =
∏
k∈Zd

[
− r

ωs
k

,
r

ωs
k

]
.

The closed ball of radius r centered at x̄ is

B(x̄, r) = x̄+B(r).

As proved in Lemma 3.3 in [9], to show that T : B(x̄, r)→ B(x̄, r) is a contraction mapping
in Xs, one needs bounds Yk and Zk satisfying∣∣∣[T (x̄)− x̄

]
k

∣∣∣ ≤ Yk, for every k ∈ Zd. (28)

sup
b,c∈B(r)

∣∣∣[DT (x̄+ b)c
]
k

∣∣∣ ≤ Zk(r), for every k ∈ Zd. (29)

Recalling that the radii polynomials must satisfy (4), it is sufficient to compute Yk and
Zk satisfying (28) and (29) to construct them.

14

4.1 Computation of Yk

In order to compute the upper bounds Yk, it is important to note that, since x̄ is such
that x̄k = 0 for k 6∈ Fm, we have (x̄n)k = 0 for every n ≥ 1 and k ∈ Zd such that
kj ≥ n(mj − 1) + 1 for some 1 ≤ j ≤ d. Hence, choosing M such that Mj ≥ p(mj − 1) + 1
for all 1 ≤ j ≤ d, we have that fk(x̄, λ0) = 0 for every k ≥M . Therefore, since T (x̄)− x̄ =
−J−1f(x̄, λ0), we can define Y = {Yk}k∈Zd as

Yk :=

[
|J−1

m f (m)(x̄Fm , λ0)|
]
k
, if k ∈ Fm

|µ−1
k fk(x̄, λ0)|, if k ∈ FM \ Fm

0, if k 6∈ FM .

4.2 Computation of Zk

In order to compute Zk we denote J̃m := Df (m)(x̄Fm , λ0) and introduce the linear operator
on Xs [

J̃(x)
]
k

:=

[
J̃m(xFm)

]
k
, if k ∈ Fm

µkxk, if k 6∈ Fm,

which is an approximate inverse to J−1. Define ω−s := {1/ωs
k}k∈Zd and ω−sFm

:= {1/ωs
k}k∈Fm .

We write
DT (x̄+ b)c =

(
I − J−1J̃

)
c− J−1

(
Df(x̄+ b, λ0)− J̃

)
c, (30)

and notice that the first term on the right hand side of (30) is zero for k 6∈ Fm, and is very
small for k ∈ Fm admitting the following upper bound∣∣∣[(I − J−1J̃

)
c
]
k

∣∣∣ ≤ r [∣∣∣I − J−1
m Df (m)(x̄Fm , λ0)

∣∣∣ω−sFm

]
k

=: rZ̃
(1)
k ,

where | · | denotes component-wise absolute value. Notice that

[
Df(x̄+ b, λ0)c

]
k

= µkck +

p∑
n=2

nqn

n−1∑
`=0

(
n− 1

`

)(
x̄n−1−` ∗ b` ∗ c

)
k

and

[
J̃c
]
k

=

µkck +

p∑
n=2

nqn
(
x̄n−1 ∗ cFm

)
k
, for k ∈ Fm

µkck, for k 6∈ Fm.

Set b = ru and c = rv, with u, v ∈ B(1). Now, for the sake of simplicity of presentation, we
identify uFM̄

with (uFM̄
, 0IM̄) and uIM̄ with (0FM̄

, uIM̄), for u ∈ Xs. Hence, we have[(
Df(x̄+ b, λ0)− J̃

)
c
]
k

=

p∑
j=1

C
(j)
k rj ,

where

C
(1)
k :=

p∑
n=2

nqn
(
x̄n−1 ∗ vIm

)
k
, for k ∈ Fm

p∑
n=2

nqn
(
x̄n−1 ∗ v

)
k
, for k 6∈ Fm,

15

and for ` ∈ {1, . . . , p− 1},

C
(`+1)
k :=

p∑
n=`+1

nqn

(
n− 1

`

)(
x̄n−1−` ∗ u` ∗ v

)
k
, for ` = 1, . . . , p− 1.

Next upper bounds Z
(j)
k so that |C(j)

k | ≤ Z
(j)
k , for j = 1, . . . , p, are constructed. For the

cases k ∈ FM̄ , we split the sums involved in the C
(1)
k , . . . , C

(p)
k . Recalling that x̄kj = 0 for

kj 6∈ Fm we can write

C
(1)
k =

p∑
n=2

nqn
(
x̄n−1 ∗ (vIm − vIM̄)

)
k

+

p∑
n=2

nqn
(
x̄n−1 ∗ vIM̄

)
k
, for k ∈ Fm

p∑
n=2

nqn
(
x̄n−1 ∗ vFM̄

)
k

+

p∑
n=2

nqn
(
x̄n−1 ∗ vIM̄

)
k
, for k ∈ FM̄ \ Fm.

Now, for a given ` ∈ {1, . . . , p− 1} and k ∈ FM̄ , consider the splitting

C
(`+1)
k =

p∑
n=`+1

nqn

(
n− 1

`

)(
x̄n−1−` ∗ u`FM̄

∗ vFM̄

)
k

+

p∑
n=`+1

nqn

(
n− 1

`

)(
x̄n−1−` ∗

[
u` ∗ v − u`FM̄

∗ vFM̄

])
k
.

Hence, for general k ∈ Zd, one has the following component-wise upper bounds

C
(1)
k ≤

p∑
n=2

n|qn|
(
|x̄|n−1 ∗ (ω−sIm

− ω−sIM̄
)
)
k

+

p∑
n=2

n|qn|‖x̄‖n−1
s

(
(ω−s)n−1 ∗ ω−sIM̄

)
k
, for k ∈ Fm

p∑
n=2

n|qn|
(
|x̄|n−1 ∗ ω−sFM̄

)
k

+

p∑
n=2

n|qn|‖x̄‖n−1
s

(
(ω−s)n−1 ∗ ω−sIM̄

)
k
, for k ∈ FM̄ \ Fm

p∑
n=2

n|qn|‖x̄‖n−1
s

(
(ω−s)n

)
k
, for k 6∈ FM̄

and for ` ∈ {1, . . . , p− 1},

C
(`+1)
k ≤

p∑
n=`+1

n|qn|
(
n− 1

`

)(
|x̄|n−1−` ∗ (ω−sFM̄

)`+1
)
k

+

p∑
n=`+1

n|qn|‖x̄‖n−1−`
s

(
n− 1

`

)(
(ω−s)n−1−` ∗

[
(ω−s)`+1 − (ω−sFM̄

)`+1
])

k
, for k ∈ FM̄

p∑
n=`+1

n|qn|‖x̄‖n−1−`
s

(
n− 1

`

)(
(ω−s)n

)
k
, for k 6∈ FM̄ .

The fundamental step required to finalize the construction of the radii polynomials is
to find efficient ways to bound the nonlinear convolutions. This is precisely where the
sharp one-dimensional estimates presented in Appendix A become fundamental. Fix ` ∈

16

{0, . . . , p}, n ∈ {max{` + 1, 2}, . . . , p} and k ∈ FM̄ . Using the definition of the one-

dimensional estimates α
(n)
k from Section A.2 we define the high-dimensional estimates

α
(n)
k = α

(n)
k (s,M) :=

d∏
j=1

α
(n)
kj

(sj ,Mj).

Using the definition of the one-dimensional estimates ε
(n)
k given by (36) in Section A.2 we

define another set of high-dimensional estimates

ε
(n)
k = ε

(n)
k (s,M) :=

α
(n)
k

ωs
k

max
j=1,...,d

 ω
sj
kj

α
(n)
kj

(sj ,Mj)
ε

(n)
kj

(sj ,Mj)

 .

From Lemma 2.2 in [9], we have that((
ω−s

)n−1−` ∗
[(
ω−s

)`+1 −
(
ω−sFM̄

)`+1
])

k

=
∑

k1+···+kn=k

{k1,...,k`+1}6⊂FM̄

ω−s
k1 · · ·ω−skn ≤ (`+ 1)ε

(n)
k .

Similarly, given n ∈ {2, . . . , p} and k /∈ FM̄ , we can use the Lemma 2.1 from [9] to get that

(
(ω−s)n

)
k
≤ α

(n)
k

ωs
k

.

As defined in (16) and (17), letting

Z
(1)
k :=

p∑
n=2

n|qn|
(
|x̄|n−1 ∗ (ω−sIm

− ω−sIM̄
)
)
k

+

p∑
n=2

n|qn|‖x̄‖n−1
s ε

(n)
k , for k ∈ Fm

p∑
n=2

n|qn|
(
|x̄|n−1 ∗ ω−sFM̄

)
k

+

p∑
n=2

n|qn|‖x̄‖n−1
s ε

(n)
k , for k ∈ FM̄ \ Fm

p∑
n=2

n|qn|‖x̄‖n−1
s

α
(n)
k

ωs
k

, for k 6∈ FM̄

and, for ` ∈ {1, . . . , p− 1},

Z
(`+1)
k :=

p∑
n=`+1

n|qn|
(
n− 1

`

)[(
|x̄|n−1−` ∗ (ω−sFM̄

)`+1
)
k

+ ‖x̄‖n−1−`
s (`+ 1)ε

(n)
k

]
, for k ∈ FM̄

p∑
n=`+1

n|qn|‖x̄‖n−1−`
s

(
n− 1

`

)
α

(n)
k

ωs
k

, for k 6∈ FM̄ ,

we recall the definition of Zk(r) in (18) to obtain

sup
b,c∈B(r)

∣∣∣[DT (x̄+b)c
]
k

∣∣∣ ≤

Zk(r) =

p−1∑
`=0

(∣∣J−1
m

∣∣Z(`+1)
Fm

)
k
r`+1 + Z̃

(1)
k r, for k ∈ Fm

Zk(r) =

p−1∑
`=0

|µ−1
k |Z

(`+1)
k r`+1, for k ∈ FM \ Fm.

17

Now assume that we can find µ̃M , independent of k, such that

µ̃M ≤ |µk|, for all k 6∈ FM .

Then, for k 6∈ FM , we have

sup
b,c∈B(r)

∣∣∣[DT (x̄+ b)c
]
k

∣∣∣ ≤ p−1∑
`=0

|µ−1
k |Z

(`+1)
k r`+1

=

p−1∑
`=0

|µ−1
k |

p∑
n=max{`+1,2}

n|qn|‖x̄‖n−1−`
s

(
n− 1

`

)
α

(n)
k

ωs
k

r`+1

≤ r

ωs
k

Z̃M (r)

=
r

ωs
k

 1

µ̃M

p−1∑
`=0

p∑
n=max{`+1,2}

n|qn|‖x̄‖n−1−`
s

(
n− 1

`

)
α̃

(n)
M r`

 .
We now have all the bounds required to define the radii polynomials given by (22) and

(23).

A Appendix: sharper one-dimensional estimates

In this section some improvements of the one-dimensional estimates of [9] are introduced.
The reason for presenting these estimates is because the one-dimensional estimates need to
be as sharp as possible since they play a fundamental role in the construction of the radii
polynomials. Consider a decay rate s ≥ 2, a computational parameter M ≥ 6 and define,
for k ≥ 3,

γk = γk(s) := 2

[
k

k − 1

]s
+

[
4 ln(k − 2)

k
+
π2 − 6

3

] [
2

k
+

1

2

]s−2

. (31)

Lemma A.1. For s ≥ 2 and k ≥M ≥ 6 we have

k−1∑
k1=1

ωs
k

ωs
k1
ωs
k−k1

=

k−1∑
k1=1

ks

ks1(k − k1)s
≤ γk ≤ γM .

A.1 Sharper quadratic estimates

For k ∈ Z, we define α
(2)
k = α

(2)
k (s,M) by

α
(2)
k :=

1 + 2

M∑
k1=1

1

ω2s
k1

+
2

M2s−1(2s− 1)
, for k = 0

M∑
k1=1

2ωs
k

ωs
k1
ωs
k+k1

+
2ωs

k

(k +M + 1)sMs−1(s− 1)
+ 2 +

k−1∑
k1=1

ωs
k

ωs
k1
ωs
k−k1

, for 1 ≤ k ≤M − 1

2 + 2

M∑
k1=1

1

ωs
k1

+
2

Ms−1(s− 1)
+ γM , for k ≥M,

(32)

18

and for k < 0,

α
(2)
k := α

(2)
|k| .

Lemma A.2 (Quadratic estimates). Given s ≥ 2 and M ≥ 6. Then, for any k ∈ Z, we
have that ∑

k1+k2=k

kj∈Z

1

ωs
k1
ωs
k2

≤ α
(2)
k

ωs
k

.

Proof. For k = 0 we have

∑
k1+k2=0

kj∈Z

1

ωs
k1
ωs
k2

= 1 + 2

∞∑
k1=1

1

ω2s
k1

≤ 1 + 2

M∑
k1=1

1

ω2s
k1

+
2

M2s−1(2s− 1)
=
α

(2)
0

ωs
0

.

For 1 ≤ k ≤M − 1 we have

∑
k1+k2=k

kj∈Z

1

ωs
k1
ωs
k2

=
1

ωs
k

[
2

∞∑
k1=1

ωs
k

ωs
k1
ωs
k+k1

+
2

ωs
0

+

k−1∑
k1=1

ωs
k

ωs
k1
ωs
k−k1

]

≤ 1

ωs
k

[
M∑

k1=1

2ωs
k

ωs
k1
ωs
k+k1

+
2ωs

k

(k +M + 1)sMs−1(s− 1)
+ 2 +

k−1∑
k1=1

ωs
k

ωs
k1
ωs
k−k1

]

=
α

(2)
k

ωs
k

.

Finally, for k ≥M ,

∑
k1+k2=k

kj∈Z

1

ωs
k1
ωs
k2

=
1

ωs
k

[
2

∞∑
k1=1

ωs
k

ωs
k1
ωs
k+k1

+
2

ωs
0

+

k−1∑
k1=1

ωs
k

ωs
k1
ωs
k−k1

]

≤ 1

ωs
k

[
M∑

k1=1

2

ωs
k1

+
2

Ms−1(s− 1)
+ 2 + γM

]
=
α

(2)
k

ωs
k

.

In the two inequalities above we used integral estimates to bound the infinite sums.
Using these inequalities and the upper bound γk from Lemma A.1 we have the result. �

19

A.2 Shaper general estimates

We also define α
(n)
k = α

(n)
k (s,M), for n ≥ 3, by

α
(n)
k :=

α
(n−1)
0 + 2

M−1∑
k1=1

α
(n−1)
k1

ω2s
k1

+
2α

(n−1)
M

(M − 1)2s−1(2s− 1)
, for k = 0

M−k∑
k1=1

α
(n−1)
k+k1

ωs
k

ωs
k1
ωs
k+k1

+
α

(n−1)
M ωs

k

(M + 1)s(M − k)s−1(s− 1)
+

k−1∑
k1=1

α
(n−1)
k1

ωs
k

ωs
k1
ωs
k−k1

+

M∑
k1=1

α
(n−1)
k1

ωs
k

ωs
k1
ωs
k+k1

+
α

(n−1)
M ωs

k

(M + k + 1)sMs−1(s− 1)
+ α

(n−1)
k + α

(n−1)
0 ,

for 1 ≤ k ≤M − 1

α
(n−1)
M

M∑
k1=1

1

ωs
k1

+
2α

(n−1)
M

Ms−1(s− 1)
+ Σ∗

+

M∑
k1=1

α
(n−1)
k1

ωs
k1

+ α
(n−1)
M + α

(n−1)
0 , for k ≥M

(33)
and for k < 0,

α
(n)
k := α

(n)
|k| .

Lemma A.3 (General estimates). Given s ≥ 2 and M ≥ 6. Then, for any k ∈ Z, we
have that ∑

k1+···+kn=k

kj∈Z

1

ωs
k1
· · ·ωs

kn

≤ α
(n)
k

ωs
k

.

Proof. For k = 0 we have

∑
k1+···+kn=0

kj∈Z

1

ωs
k1
· · ·ωs

kn

≤ α
(n−1)
0 + 2

M−1∑
k1=1

α
(n−1)
k1

ω2s
k1

+
2α

(n−1)
M

(M − 1)2s−1(2s− 1)
=
α

(n)
0

ωs
0

.

For k > 0 we have

∑
k1+···+kn=k

kj∈Z

1

ωs
k1
· · ·ωs

kn

≤
∞∑

k1=1

[
1

ωs
k1

α
(n−1)
k+k1

ωs
k+k1

]
+

k−1∑
k1=1

[
1

ωs
k1

α
(n−1)
k−k1

ωs
k−k1

]
+

∞∑
k1=1

[
1

ωs
k+k1

α
(n−1)
k1

ωs
k1

]

+
1

ωs
0

α
(n−1)
k

ωs
k

+
1

ωs
k

α
(n−1)
0

ωs
0

.

Consider k ∈ {1, . . . ,M − 1}. Since α
(n−1)
k ≤ α(n−1)

M , for all k ≥M , we have

∞∑
k1=1

α
(n−1)
k+k1

ωs
k1
ωs
k+k1

≤ 1

ωs
k

[
M−k∑
k1=1

α
(n−1)
k+k1

ωs
k

ωs
k1
ωs
k+k1

+
α

(n−1)
M ωs

k

(M + 1)s(M − k)s−1(s− 1)

]
.

20

Similarly,

∞∑
k1=1

α
(n−1)
k1

ωs
k1
ωs
k+k1

≤ 1

ωs
k

[
M∑

k1=1

α
(n−1)
k1

ωs
k

ωs
k1
ωs
k+k1

+
α

(n−1)
M ωs

k

(M + k + 1)sMs−1(s− 1)

]
.

From the definition of α
(n)
k for k ∈ {1, . . . ,M − 1}, it follows that

∑
k1+···+kn=k

kj∈Z

1

ωs
k1
· · ·ωs

kn

≤ α
(n)
k

ωs
k

.

Consider now k ≥M , then

∞∑
k1=1

α
(n−1)
k+k1

ωs
k1
ωs
k+k1

≤ 1

ωs
k

[
α

(n−1)
M

M∑
k1=1

1

ωs
k1

+
α

(n−1)
M

Ms−1(s− 1)

]
.

Using Lemma A.1, we get that

k−1∑
k1=1

α
(n−1)
k1

ωs
k1
ωs
k−k1

=

M−1∑
k1=1

α
(n−1)
k1

ωs
k1
ωs
k−k1

+
1

ωs
k

k−1∑
k1=M

ωs
kα

(n−1)
k1

ωs
k1
ωs
k−k1

≤ 1

ωs
k

M−1∑
k1=1

α
(n−1)
k1

ωs
k1

(
1− k1

k

)s +
α

(n−1)
M

ωs
k

k−1∑
k1=M

ωs
k

ωs
k1
ωs
k−k1

≤ 1

ωs
k

[
M−1∑
k1=1

α
(n−1)
k1

ωs
k1

(
1− k1

M

)s + α
(n−1)
M

(
k−1∑
k1=1

ωs
k

ωs
k1
ωs
k−k1

−
M−1∑
k1=1

ωs
k

ωs
k1
ωs
k−k1

)]

≤ 1

ωs
k

[
M−1∑
k1=1

α
(n−1)
k1

Ms

ωs
k1

(
M − k1

)s + α
(n−1)
M

(
γM −

M−1∑
k1=1

1

ωs
k1

)]

=:
1

ωs
k

Σ∗a

Note that we can also (as defined in [9]) let

α̃
(n−1)
M = max

{
α

(n−1)
k (s,M) | k = 0, . . . ,M

}
,

and get that
k−1∑
k1=1

α
(n−1)
k1

ωs
k1
ωs
k−k1

≤ α̃
(n−1)
M

ωs
k

γM =:
1

ωs
k

Σ∗b .

Hence, defining
Σ∗ = min {Σ∗a,Σ∗b} , (34)

we have that
k−1∑
k1=1

α
(n−1)
k1

ωs
k1
ωs
k−k1

≤ 1

ωs
k

Σ∗. (35)

Also,
∞∑

k1=1

α
(n−1)
k1

ωs
k1
ωs
k+k1

≤ 1

ωs
k

[
M∑

k1=1

α
(n−1)
k1

ωs
k1

+
α

(n−1)
M

Ms−1(s− 1)

]
.

21

Combining the above inequalities, we get, for the case k ≥M ,

∑
k1+···+kn=k

kj∈Z

1

ωs
k1
· · ·ωs

kn

≤ 1

ωs
k

[
α

(n−1)
M

M∑
k1=1

1

ωs
k1

+
2α

(n−1)
M

Ms−1(s− 1)
+ Σ∗

+

M∑
k1=1

α
(n−1)
k1

ωs
k1

+ α
(n−1)
M + α

(n−1)
0

]
=
α

(n)
k

ωs
k

. �

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Figure 7: Comparison of the α
(3)
k (in red) defined in the present paper and the α

(3)
k (in blue)

presented in [9] with M = 200. The cases s = 2 (left) and s = 3 (right) are depicted.

A.3 New formulas for ε
(n)
k

Given s ≥ 2 and M ≥ M̄ ≥ 6 we define, for 0 ≤ k ≤ M̄ − 1,

ε
(n)
k = ε

(n)
k (s, M̄ ,M) :=

M−k∑
k1=M̄

α
(n−1)
k+k1

ωs
k1
ωs
k+k1

+

M+k∑
k1=M̄

α
(n−1)
k1−k

ωs
k1
ωs
k1−k

+
α

(n−1)
M

(M + 1)s(s− 1)

[
1

(M − k)s−1
+

1

(M + k)s−1

]
(36)

and for k < 0
ε

(n)
k (s, M̄ ,M) := ε

(n)
|k| (s, M̄ ,M).

Lemma A.4. Given s ≥ 2 and M ≥ M̄ ≥ 6, for n ≥ 3 and 0 ≤ |k| ≤ M̄ − 1 we have that∣∣∣∣∣∣∣∣
∑

k1+···+kn=k

max{|k1|,...,|k`|}≥M̄

c
(1)
k1
· · · c(n)

kn

∣∣∣∣∣∣∣∣ ≤ `
(

n∏
i=1

Ai

)
ε

(n)
k .

Proof. We have that ∑
k1+···+kn=k

max{|k1|,...,|k`|}≥M̄

1

ωs
k1
· · ·ωs

kn

≤ `
∑

k1+···+kn=k

|k1|≥M̄

1

ωs
k1
· · ·ωs

kn

,

and

22

∑
k1+···+kn=k

|k1|≥M̄

1

ωs
k1
· · ·ωs

kn

=

−M̄∑
k1=−∞

1

ωs
k1

∑
k2+···+kn=k−k1

1

ωs
k2
· · ·ωs

kn

+

∞∑
k1=M̄

1

ωs
k1

∑
k2+···+kn=k−k1

1

ωs
k2
· · ·ωs

kn

≤
∞∑

k1=M̄

[
α

(n−1)
k+k1

ωs
k1
ωs
k+k1

+
α

(n−1)
k1−k

ωs
k1
ωs
k1−k

]

≤
M−k∑
k1=M̄

α
(n−1)
k+k1

ωs
k1
ωs
k+k1

+ α
(n−1)
M

∞∑
k1=M−k+1

1

ωs
k1
ωs
k+k1

+

M+k∑
k1=M̄

α
(n−1)
k1−k

ωs
k1
ωs
k1−k

+ α
(n−1)
M

∞∑
k1=M+k+1

1

ωs
k1
ωs
k1−k

≤
M−k∑
k1=M̄

α
(n−1)
k+k1

ωs
k1
ωs
k+k1

+

M+k∑
k1=M̄

α
(n−1)
k1−k

ωs
k1
ωs
k1−k

+
α

(n−1)
M

(M + 1)s(s− 1)

[
1

(M − k)s−1
+

1

(M + k)s−1

]
.

The result then follows from the definition of ε
(n)
k . �

References

[1] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numer., 13:147–269,
2004.

[2] Christoph Schwab and Rob Stevenson. Adaptive wavelet algorithms for elliptic PDE’s
on product domains. Math. Comp., 77(261):71–92 (electronic), 2008.

[3] Tobias von Petersdorff and Christoph Schwab. Numerical solution of parabolic equa-
tions in high dimensions. M2AN Math. Model. Numer. Anal., 38(1):93–127, 2004.

[4] M. Griebel and S. Knapek. Optimized tensor-product approximation spaces. Constr.
Approx., 16(4):525–540, 2000.

[5] Paul Glasserman. Monte Carlo methods in financial engineering, volume 53 of Ap-
plications of Mathematics (New York). Springer-Verlag, New York, 2004. Stochastic
Modelling and Applied Probability.

[6] Ramon E. Moore. Interval analysis. Prentice-Hall Inc., Englewood Cliffs, N.J., 1966.

[7] Charles Van Loan. Computational frameworks for the fast Fourier transform, volume 10
of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1992.

[8] Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continuation
for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398–1424 (electronic), 2007.

[9] Marcio Gameiro and Jean-Philippe Lessard. Analytic estimates and rigorous continua-
tion for equilibria of higher-dimensional PDEs. J. Differential Equations, 249(9):2237–
2268, 2010.

23

[10] Marcio Gameiro and Jean-Philippe Lessard. Rigorous computation of smooth branches
of equilibria for the three-dimensional Cahn-Hilliard equation. Numer. Math.,
117(4):753–778, 2011.

[11] Jean-Philippe Lessard. Recent advances about the uniqueness of the slowly oscillating
periodic solutions of Wright’s equation. J. Differential Equations, 248(5):992–1016,
2010.

[12] Gabor Kiss and Jean-Philippe Lessard. Computational fixed point theory for differential
delay equations with multiple time lags. Submitted, 2010.

[13] Jan Bouwe van den Berg, Jean-Philippe Lessard, Jason Mireles James, and Konstantin
Mischaikow. Rigorous numerics for symmetric connecting orbits: even homoclinics of
the Gray-Scott equation. SIAM Journal on Mathematical Analysis, 2011.

[14] Marcio Gameiro and Jean-Philippe Lessard. Computational fixed point theory for time
periodic solutions of PDEs. In preparation.

[15] Roberto Castelli and Jean-Philippe Lessard. Rigorous numerics in Floquet theory:
computing stable and unstable bundles of periodic orbits. In preparation.

[16] Roberto Castelli, Marcio Gameiro, and Jean-Philippe Lessard. The radii polynomials:
a rigorous computational tool to study differential equations. In preparation.

[17] Marcio Gameiro, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated contin-
uation over large parameter ranges for equilibria of PDEs. Math. Comput. Simulation,
79(4):1368–1382, 2008.

[18] Jan Bouwe van den Berg, Jean-Philippe Lessard, and Konstantin Mischaikow. Global
smooth solution curves using rigorous branch following. Math. Comp., 79(271):1565–
1584, 2010.

[19] S. Day, Y. Hiraoka, K. Mischaikow, and T. Ogawa. Rigorous numerics for global
dynamics: a study of the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst., 4(1):1–
31 (electronic), 2005.

[20] Stanislaus Maier-Paape, Ulrich Miller, Konstantin Mischaikow, and Thomas Wanner.
Rigorous numerics for the Cahn-Hilliard equation on the unit square. Rev. Mat. Com-
plut., 21(2):351–426, 2008.

[21] Jan Bouwe van den Berg and Jean-Philippe Lessard. Chaotic braided solutions via
rigorous numerics: chaos in the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst.,
7(3):988–1031, 2008.

[22] Marcio Gameiro and Jean-Philippe Lessard. Existence of secondary bifurcations or
isolas for PDEs. Nonlinear Analysis: Theory, Methods and Applications, 2011.

[23] Yasuaki Hiraoka and Toshiyuki Ogawa. An efficient estimate based on FFT in topo-
logical verification method. J. Comput. Appl. Math., 199(2):238–244, 2007.

[24] Roger Temam. Infinite-dimensional dynamical systems in mechanics and physics, vol-
ume 68 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition,
1997.

24

