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István Faragó1,∗, Ferenc Izsák1,†Tamás Szabó3 and Ákos Kriston2,‡

February 10, 2012

1 Department of Applied Analysis and Computational Mathematics
2 Department of Physical Chemistry
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Abstract

An implicit-explicit (IMEX) method is developed for the numerical solution of reaction-diffusion
equations with pure Neumann boundary conditions. The corresponding method of lines scheme with
finite differences is analyzed: explicit conditions are given for its convergence in the ‖ · ‖∞ norm. The
results are applied to a model for determining the overpotential in a PEM fuel cell.

1 Introduction

The numerical solution of advection-reaction-diffusion equations is a central problem in the numerical
analysis. The numerical treatment of the boundary layer effect and the possibly stiff terms lead to
challenging problems. The importance of this topic lies in the applicability of the corresponding models
in the natural sciences.

A possible way to build an efficient numerical solution is to apply an implicit-explicit (IMEX) method
[2]. In such a procedure, the advection and diffusion terms are discretized implicitly in time and the
reaction terms explicitly.
In the most simple case one can apply a Θ method for the diffusion term, which is analyzed in details in
the classical paper [5].

∗The first author was supported by Hungarian National Research Fund OTKA No. K67819.
†The first, second and the third author was supported by the European Union and co-financed by the European Social

Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).
‡The Financial support of the National Office of Research and Technology (OMFB-00121-00123/2008) is acknowledged

by the authors.

1



The most popular approach is the construction of corresponding Runge-Kutta methods. A family of
such schemes is introduced in [1]. A corresponding rigorous convergence theory for reaction-diffusion
equations was developed in [6] based on the analysis in [3] and [4]. In the above results the reaction term
is assumed to have bounded derivative with respect to the unknown function. Note that IMEX methods
can also be used to prove existence-uniqueness results to a class of semilinear parabolic PDE’s [10].
We extend here the above results in the sense that we use a general elliptic operator with time and space
dependent coefficients and a staggered grid is utilized in order to enhance the the order of consistency:
Our approach guarantees a first order convergence in time and a second order in space. Note that using
diagonally implicit Runge-Kutta methods can ensure only a second order convergence with respect to the
time variable [12]. Also, the assumptions on the coefficients for the convergence are made explicit, which
can be easily verified.

As an interesting model problem we consider a one-dimensional model for the potential distribution of
a PEM fuel cell. We will have first to convert the conservation equations into a form of reaction-diffusion
equations and verify that the conditions in the corresponding analysis are satisfied. The computational
experiments confirm the applicability of our scheme and the theoretical results.

2 Preliminaries

We investigate the finite difference approximation of the reaction-diffusion equation











∂tu(t, x) = p(t, x)∂x(q(t, x)∂xu(t, x)) + F (t, x, u(t, x)), t ∈ (0, T ), x ∈ I

u(0, x) = u0(x), x ∈ I

∂xu(t, hl) = ul(t), ∂xu(t, hr) = ur(t), t ∈ (0, T ),

(1)

for the unknown function u on the interval I = (hl, hr) ⊂ R over the time domain [0, T ), where the
coefficient functions p, q ∈ C1([0, T ] × I), the reaction term F ∈ C1([0, T ] × I × R) and the fluxes
ul, ur ∈ C1[0, T ] are given.

For the numerical approximation we use a staggered grid: I is divided into n uniform subintervals of
length h = hr−hl

n
such that

hj := hl +
2j − 1

2|I|
, j = 1, 2, . . . , n and hj+ 1

2
:= hl +

j

|I|
, j = 0, 1, . . . , n

denote the midpoints and the endpoints of the subintervals, respectively as shown in the following figure:

h 1
2

h 3
2

h 5
2

h
n− 1

2
h

n+ 1
2

h1 h2 h3 hn−1 hn

0 1

· · ·

For the time discretization we use the time step τ = T
N

and the notation tk := τ · k.
We denote the vector of unknowns with

u
k = (uk

1 , uk
2 , . . . , uk

n),
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where uk
j ≈ u (tk, hj) and the values of the coefficient function pk

j = p (tk, hj) which are defined in the
midpoints of the subintervals, i.e., k = 0, 1, . . . , N and j = 1, 2, . . . n. Accordingly, we use the notations

u(k, ·) = (u(tk, h1), u(tk, h2), . . . , u(tk, hn))T

and
F (tk+1, h,uk) = (F (tk+1, h1, u

k
1), . . . , F (tk+1, hn, uk

n))T .

At the same time the values of the coefficient function qk
j+ 1

2

= q
(

tk, hj+ 1
2

)

are computed at the end

points of the subintervals, i.e., k = 0, 1, . . . , N and j = 0, 1, . . . , n.

3 The IMEX scheme and its convergence

We develop here a finite difference scheme following the method of lines: the vector of unknowns at the
k + 1th time step is determined from that in the kth time step.
Using the notations in Section 2 we consider the following finite difference approximation of (1):







































































u0
j = u0 (hj) , j = 1, 2, 3, . . . , n

u
k+1

j
−uk

j

τ
= 1

h
pk+1

j

(

qk+1

j+ 1
2

u
k+1

j+1
−u

k+1

j

h
− qk+1

j− 1
2

u
k+1

j
−u

k+1

j−1

h

)

+F (tk+1, hj , u
k
j ), k = 0, 1, . . . , N − 1, j = 2, 3, . . . , n − 1

u
k+1

1
−uk

1

τ
= 1

h
pk+1
1

(

qk+1
3
2

(

u
k+1

2
−u

k+1

1

h
+

3
23

u
k+1

2
− 2

23
u

k+1

1
− 1

23
u

k+1

3

h
− 1

23
ul(tk+1)

)

− qk+1
1
2

ul(tk+1)
)

+ F (tk+1, h1, u
k
1), k = 0, 1, . . . , N − 1

uk+1
n −uk

n

τ
= 1

h
pk+1

n

(

−qk+1

n− 1
2

(

uk+1
n −u

k+1

n−1

h
−

3
23

u
k+1

n−1
− 1

23
u

k+1

n−2
− 2

23
uk+1

n

h
− 1

23
ur(tk+1)

)

+ qk+1

n+ 1
2

ur(tk+1)
)

+ F (tk+1, hn, uk
n), k = 0, 1, . . . , N − 1

(2)

For the verification of the consistency order for the scheme (2) we will use the following

Assumption 1 ∂3F : R
3 → R is bounded; ∂3F ≤ Fmax ∈ R.

Note that a similar assumption is usual in the literature, see, e.g., [5], [6].

Lemma 3.1 The scheme (2) is consistent with the boundary value problem (1) and the corresponding
order of consistency is O(τ) + O(h2).

Proof: We obviously have that

qk+1

j+ 1
2

u(tk+1, hj+1) − u(tk+1, hj)

h

= qk+1

j+ 1
2

(

∂xu(tk+1, hj) +
h

2
∂xxu(tk+1, hj) +

h2

6
∂xxxu(tk+1, hj) + O(h3)

) (3)

and in the same way

qk+1

j− 1
2

u(tk+1, hj) − u(tk+1, hj−1)

h

= qk+1

j− 1
2

(

∂xu(tk+1, hj) −
h

2
∂xxu(tk+1, hj) +

h2

6
∂xxxu(tk+1, hj) + O(h3)

)

.

(4)
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The difference of (3) and (4) gives that

1

h

(

qk+1

j+ 1
2

u(tk+1, hj+1) − u(tk+1, hj)

h
− qk+1

j− 1
2

u(tk+1, hj) − u(tk+1, hj−1)

h

)

=
qk+1

j+ 1
2

− qk+1

j− 1
2

h
∂xu(tk, hj) +

qk+1

j+ 1
2

+ qk+1

j− 1
2

2
∂xxu(tk, hj)

+
h

6
(qk+1

j+ 1
2

− qk+1

j− 1
2

)∂xxxu(tk, hj) + O(h2)

= (∂xq(tk+1, hj) + O(h2))∂xu(tk, hj) + (q(tk+1, hj) + O(h2))∂xxu(tk, hj)

+
h

6
O(h)∂xxxu(tk, hj) + O(h2)

= ∂x(q(tk+1, hj)∂xu(tk, hj)) + O(h2)

(5)

for j = 2, 3, . . . , n− 1. Therefore, inserting the analytic solution of (1) at (tk+1, hj) into (2) results in the
approximation

u(tk+1, hj) − u(tk, hj)

τ
+ O(τ) = ∂tu(tk+1, hj) = pk+1

j ∂x(qk+1
j ∂xu(tk+1, xj)) + F (tk+1, xj , u(tk+1, xj))

=
1

h
pk+1

j

(

qk+1

j+ 1
2

u(tk+1, hj+1) − u(tk+1, hj)

h
− qk+1

j− 1
2

u(tk+1, hj) − u(tk+1, hj−1)

h

)

+ O(h2)

+ F (tk+1, hj , u(tk+1, hj)), k = 0, 1, . . . , N − 1, j = 2, 3, . . . , n − 1.
(6)

To approximate the last term we note that u(tk+1, hj)−u(tk, hj) = O(τ) and therefore, using Assumption
1 we easily get

F (tk+1, hj , u(tk+1, hj)) = F (tk+1, hj , u(tk, hj)) + ∂3F (tk+1, hj , u(tk, hj)) · O(τ) + O(τ2)

= F (tk+1, hj , u(tk, hj)) + O(τ).

Inserting this into (6) we obtain

u(tk+1, hj) − u(tk, hj)

τ
=

1

h
pk+1

j

(

qk+1

j+ 1
2

u(tk+1, hj+1) − u(tk+1, hj)

h
− qk+1

j− 1
2

u(tk+1, hj) − u(tk+1, hj−1)

h

)

+ F (tk+1, hj , u(tk, hj)) + O(h2) + O(τ), k = 0, 1, . . . , N − 1, j = 2, 3, . . . , n − 1.
(7)

We also have

qk+1
1
2

(ul(tk+1)) = qk+1
1
2

(

∂xu(tk+1, h 1
2
)
)

= qk+1
1
2

(

∂xu(tk+1, h1) −
h

2
∂xxu(tk+1, h1) +

h2

8
∂xxxu(tk+1, h1) + O(h3)

)

.
(8)

and the following equality:

1

h

(

3

23
u(tk+1, h2) −

2

23
u(tk+1, h1) −

1

23
u(tk+1, h3)

)

−
1

23
∂xu(tk+1, h 1

2
)

= −
h2

24
(∂xxxu(tk+1, h1) + O(h))

(9)
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which can be verified with a technical but straightforward computation. Using (3) with j = 1, (8), (9)
and following the principle of the derivation in (5) we obtain

qk+1
3
2

(

u(tk+1, h2) − u(tk+1, h1)

h
+

3

23
u2 −

2

23
u1 −

1

23
u3

h
−

1

23
ul(tk+1)

)

− qk+1
1
2

∂xu(tk+1, hl)

= qk+1
3
2

(

∂xu(tk+1, h1) −
h

2
∂xxu(tk+1, h1) +

h2

6
∂xxxu(tk+1, h1) + O(h3)

−
h2

24
(∂xxxu(tk+1, h1) + O(h))

)

− qk+1
1
2

(

∂xu(tk+1, h1) +
h

2
∂xxu(tk+1, h1) +

h2

8
∂xxxu(tk+1, h1) + O(h3)

)

= qk+1
3
2

(

∂xu(tk+1, h1) −
h

2
∂xxu(tk+1, h1) +

h2

8
∂xxxu(tk+1, h1) + O(h3)

)

− qk+1
1
2

(

∂xu(tk+1, h1) +
h

2
∂xxu(tk+1, h1) +

h2

8
∂xxxu(tk+1, h1) + O(h3)

)

= h · ∂x(q(tk+1, h1)∂xu(tk, h1)) + O(h3), k = 0, 1, . . . , N − 1.

(10)

Using that

1

h

(

3

23
u(tk+1, hn−1) −

2

23
u(tk+1, hn) −

1

23
u(tk+1, hn−2)

)

+
1

23
∂xu(tk+1, hn+ 1

2
)

=
h2

24
(∂xxxu(tk+1, h1) + O(h))

a similar derivation gives that

− qk+1

n− 1
2

(

uk+1
n − uk+1

n−1

h
−

3

23
uk+1

n−1 −
1

23
uk+1

n−2 −
2

23
uk+1

n

h
−

1

23
ur(tk+1)

)

+ qk+1

n+ 1
2

ur(tk+1)

= h · ∂x(q(tk+1, hn)∂xu(tk, hn)) + O(h3), k = 0, 1, . . . , N − 1.

(11)

Consequently, (7), (10) and (11) imply that the finite difference approximation in (2) is consistent with
the initial boundary value problem (1) and the order of the consistency is O(τ) +O(h2) as stated in the
lemma. ¤

To rewrite (2) into a more accessible form we introduce the notations for j = 1, 2, . . . , n:

rpk
j qk

j− 1
2

= ck
j and rpk

j qk
j+ 1

2

= dk
j with r =

τ

h2
.
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With these we define the matrix

Ak,h =



















1 + 25

23
dk
1 − 26

23
dk
1

1

23
dk
1 0 . . . 0

−ck
2 1 + ck

2 + dk
2 −dk

2 0 . . . 0
0 −ck

3 1 + ck
3 + dk

3 −dk
3 . . . 0

...
...

...
...

. . .
...

0 . . . 0 −ck
n−1 1 + ck

n−1 + dk
n−1 −dk

n−1

0 . . . 0 1

23
ck
n − 26

23
ck
n 1 + 25

23
ck
n



















and the vector

v
k = (

τ

h
pk
1(qk

3
2

·
1

23
· ul(tk) + qk

1
2

ul(tk)), 0, . . . , 0,−
τ

h
pk

n(qk
n− 1

2

·
1

23
· ur(tk) + qk

n+ 1
2

ur(tk))T .

The time stepping in (2) then can be given as

u
k = Ak+1,hu

k+1 − τF (t, h,uk) + v
k+1. (12)

For the forthcoming analysis we use two further assumptions:

Assumption 2 The coefficient functions p and q are nonnegative.

Assumption 3 For all k = 1, 2, . . . , N the following inequalities hold true:

sk
1 =

25

23
dk
1 −

1

23

dk
1

dk
2

−
1

23

dk
1ck

2

dk
2

> 0

sk
2 =

25

23
ck
n −

1

23

ck
n

ck
n−1

−
1

23

ck
ndk

n−1

ck
n−1

> 0

Remark: The inequalities in assumption 3 are equivalent with

25dk
2 > 1 + ck

2 ⇔ rp2(25q 5
2
− q 3

2
) > 1

25ck
n−1 > 1 + dk

n−1 ⇔ rpn−1(25qn− 1
2
− qn+ 1

2
) > 1

(13)

For the convergence proof we need to rewrite (2) in a more compact form. The following property of
Ak,h is of central importance.

Lemma 3.2 For all h > 0 and k = 0, 1, . . . , N we have ‖A−1

k,h‖∞ = 1.

Proof: One can easily verify that

Ak,h =















1 −λk
1 0 . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 . . . 0 1 0
0 . . . 0 −λk

2 1





























1 + s1 + λk
1 −s1 0 . . . 0

−ck
2 1 + ck

2 + dk
2 −dk

2 . . . 0
...

...
...

. . .
...

0 . . . −ck
n−1 1 + ck

n−1 + dk
n−1 −dk

n−1

0 . . . 0 −sk
2 1 + sk

2 + λk
2















,
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where λk
1 = 1

23

dk
1

dk
2

and λk
2 = 1

23

ck
n

ck
n−1

. Using Assumption 2 and Assumption 3 and the vector 1 =

(1, 1, . . . , 1)T , we obtain that the second matrix in the above product is an M matrix. Therefore, the
decomposition

A−1

k,h =















1 + s1 + λk
1 −s1 0 . . . 0

−ck
2 1 + ck

2 + dk
2 −dk

2 . . . 0
...

...
...

. . .
...

0 . . . −ck
n−1 1 + ck

n−1 + dk
n−1 −dk

n−1

0 . . . 0 −sk
2 1 + sk

2 + λk
2















−1 













1 λk
1 0 . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 . . . 0 1 0
0 . . . 0 λk

2 1















,

shows that A−1

k,h has positive entries. Since Ak,h1 = 1 we also have A−1

k,h1 = 1 which implies the statement
of the lemma. ¤

Theorem 3.1 The finite difference method given by (2) converges to the solution of (1) and

max
j∈{1,2,...,n}

‖uN
j − u(T, hj)‖ = O(τ) + O(h2). (14)

Proof: The error of the solution in the consecutive time steps is defined as

(ek
1 , ek

2 , . . . , ek
n) = e

k = u(k, ·) − uk.

The consistency of the scheme implies that

u(k, ·) = Ak+1,hu(k + 1, ·) − τF (t, h,u(k, ·)) + vk+1 −Rk,

where
‖Rk‖∞ = τ(O(τ) + O(h2)). (15)

This together with (12) gives that

e
k = Ak+1,he

k+1 − τ(F (t, h,uk) − F (t, h,u(k, ·))) + Rk

or in an equivalent form

u
k − u(k, ·) = e

k+1 = A−1

k+1,he
k + τA−1

k+1,h(F (t, h,uk) − F (t, h,u(k, ·))) + Rk+1.

Therefore, using the result in Lemma 3.2, the Lagrange inequality and Assumption 1 we obtain

‖ek+1‖∞ ≤ ‖ek‖∞ + τFmax‖e
k‖∞ + ‖Rk+1‖∞ (16)

for all k = 1, 2, . . . , N . The consecutive application of (16) gives that

‖eN‖∞ ≤ (1 + τFmax)
N−1‖R1‖∞ + (1 + τFmax)

N−2‖R2‖∞ + · · · + ‖RN‖∞

≤ N(1 + τFmax)
N max

j∈{1,2,...,N}
‖Rj‖∞ ≤ TeT ·Fmax

maxj∈{1,2,...,N} ‖R
j‖∞

τ

such that according to (15) we obtain the estimate in the theorem. ¤
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4 Application

In this section we investigate a real-life application: we compute numerically the overpotential in PEM
fuel cell. Fuel cells “burn” hydrogen fuel (H2) and oxygen (O2) to water, producing electrical energy at
a high efficiency without air pollution. Their operation can be reversible: they can also convert electrical
energy into chemical energy. These properties make them highly attractive.
The electro-chemical reactions take place at the anode and at the cathode on the boundary of two phases
(solid and solution phase), while the charge neutrality is macroscopically preserved.
Complex models [13] are needed to solve different phenomenological equations such as the Nernst-Planck
equation for multiple mass transport, the Stefan-Maxwell equation for heat transfer, Ohm’s law for ionic
migration and electron conductivity, and the equations of electrochemical kinetics. These models are
usually solved by using only a single numerical treatment, e.g., Runge-Kutta, Newton or Crank-Nicholson
methods.
Subramanian et al. [11] developed a method to reduce the number of the governing equations of Li-
ion battery simulation by using different mathematical techniques. The original problem with a proper
discretization has 4800 equations which can be reduced to 49, and finally the simulation time of the
discharge curve can be cut to 85 ms. However, in this model the double-layer capacitance was not
included.

We focus here only on the evolution of the overpotential and we take into consideration both the
inhomogeneity of the conducting media and the presence of the different phases in the cell. We perform
the computations with realistic parameters.

4.1 Physical laws: homogeneous and heterogeneous models

In practice a consumer (an electric device) is inserted into an electrical circuit, which is feeded by the
fuel cell. We assume that the current in the outer circuit is known and we can control it. The aim of the
following investigation is to calculate the corresponding voltage, which is called the cell potential. This
gives also the electric energy provided by the fuel cell, which is very important in the course of evaluating
the performance of a fuel cell.
According to Kirchoff’s law, the cell potential Ecell can be calculated by the following equation, see also
[8]:

Ecell(t) = EOC(t) − ηa(t) −
Wmem

κmem

I(t) − V ∗(t), (17)

where t ∈ (0, T ) denotes time. Here EOC ≈ 1.23V denotes the open circuit potential, which is present
between the anode and cathode without the presence of any consumer.

Considering the simplest form of Ohm’s law, the term
Wmem

κmem

I(t) means the potential loss at the

membrane, the thickness and conductivity of which are denoted by Wmem and κmem, respectively.
The calculation of the last quantity on the right-hand side (V ∗), which refers to the potential loss at the
cathode, needs a detailed analysis. The interval (0, L) refers to the thickness of the cathode, where two
phases are distinguished:

• The solution phase, where the hydrogen ions are conducted according to the rate κeff. The potential
and the current density in this phase are denoted by φ2 and i2, respectively.

• In the solid phase of the cathode electrons are conducted according to the rate σeff. The potential
and the current density here are denoted by φ1 and i1, respectively.

8



All of these quantities could be allowed to depend on time and space corresponding to the given assump-
tions and the structure of the fuel cell and the time evolution of the process.
Using the defined quantities, V ∗ in (17) can be given as

V ∗(t) = φ1(t, L) − φ2(t, 0), t ∈ (0, T ). (18)

The quantity we investigate in the governing equations is the overpotential

η(t, x) = φ1(t, x) − φ2(t, x) ≥ 0, x ∈ (0, L), t ∈ (0, T ). (19)

In the calculation of the potentials, we choose the reference level to be at the left end of the solution
phase, i.e., we define φ2(t, 0) = 0. This is in a good accordance with the uniqueness of the solutions in the
corresponding equations. As we will see, the governing equations depend only on the spatial derivatives
of the potentials, such that the above assumption is necessary to determine both φ2(t, x) and η(t, x).
Then an immediate consequence of (18) and (19) is that

V ∗(t) = φ1(t, L) = η(t, L) + φ2(t, L). (20)

Applying Ohm’s law for both phases we obtain

i1(t, x) = −σeff(x)∂xφ1(t, x),

i2(t, x) = −κeff(x)∂xφ2(t, x),
(21)

and the principle of the electroneutrality gives

−∂xi1(t, x) = ∂xi2(t, x). (22)

The conservation law for the currents (see [9]) results in the formula

∂x(κeff(x)∂xφ2(t, x)) = −a(x)Cdl(x)∂tη(t, x) − a(x)i0(x)g

(

α
F

RT
η(t, x)

)

. (23)

Here, the function Cdl(x) gives the double-layer capacitance at the cathode side, and the last term yields
the faradic current with i0(x), the exchange current density at the cathode. For the notations of the
material coefficients we refer to the Appendix. The function g : R → R refers to the kinetics of the
oxygen reduction reaction here. This should be an increasing function with g(0) = 0.

Remark 4.1 Among the several approaches for the sake of simplicity we apply linear kinetics and, ac-
cordingly, we use

gL(u) = c(x)u, (24)

where c(x) is a given bounded non-negative function. Other possible choices are the following, which are
going to be used in the course of the analysis and the numerical experiments [7].

• Butler–Volmer kinetics:

gBV(u) = c(x)(exp(u) − exp(−u)). (25)
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• diffusion kinetics:

gD(u) = jD(x)

(

c(x)exp(u)

c(x)exp(u) + jD(x)
−

c(x)exp(−u)

c(x)exp(−u) + jD(x)

)

, (26)

where jD(x) is the limiting current, which in this equation is acting as a diffusion coefficient. This
choice provides the most accurate model of the cathode reaction.

In what follows the notation g(u) stands for any of the above functions (gL, gBV, gD).

At the left end of the cathode only the protons can exit to the membrane and similarly, at the right
end (at the current collector), only the electrons can leave the cathode. Therefore ∂xφ1(t, 0) = 0 and
∂xφ2(t, L) = 0 such that using (19) we have the following boundary conditions

∂xη(t, 0) = −∂xφ2(t, 0) = −
1

κeff(0)
I(t), t ∈ (0, tmax),

∂xη(t, L) = ∂xφ1(t, L) =
1

σeff(L)
I(t), t ∈ (0, tmax).

(27)

Although we have listed all physical principles and the governing equations here, the corresponding
equations are not yet ready for the solution, since (23) contains also the unknown term φ2(t, x).

4.2 Governing equations in the heterogeneous case

In this section we will obtain an explicit equation for the overpotential η(t, x) by eliminating the term
φ2(t, x) in (23) without assuming constant material and kinetic coefficients. This generalizes the result
in

Lemma 4.1 The physical laws in (21), (22), (23) and (27) can be rewritten into a single reaction diffu-
sion equation of type (1) for the unknown function η.

Proof: For simplicity, in the derivation we denote the variables t and x only for the unknown functions
φ2 and η, whenever also the coefficient functions a, i0, Cdl, κeff and σeff depend on (t, x) and I depends
on t with t ∈ (0, tmax) and x ∈ (0, L).

Using (21) and taking the derivative of (22) we obtain that

∂x(σeff∂xφ1) = −∂xi1 = ∂xi2 = −∂x(κeff∂xφ2), (28)

which, together with the definition (19) of η(t, x) gives

∂x(σeff∂xφ2 + κeff∂xφ2)

= ∂x(σeff∂xφ2) − ∂x(σeff∂xφ1) = −∂x(σeff∂xη).
(29)

Since the two derivatives in (29) are equal, we obtain

(κeff + σeff)∂xφ2(t, x)

= −σeff∂xη(t, x) + (κeff + σeff)∂xφ2(t, 0) + σeff∂xη(t, 0)

= −σeff∂xη(t, x) + κeff∂xφ2(t, 0) = −σeff∂xη(t, x),

(30)
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where in the second line the boundary conditions (27) have been used twice. Using (29) and (30), we
rewrite the left-hand side of equation (23) as

∂x(κeff∂xφ2) = ∂x

(

κeff

κeff + σeff

κeff∂xφ2 +
κeff

κeff + σeff

σeff∂xφ2

)

= ∂x

(

κeff

κeff + σeff

)

(κeff∂xφ2 + σeff∂xφ2)

+
κeff

κeff + σeff

∂x(κeff∂xφ2 + σeff∂xφ2)

= −∂x

(

κeff

κeff + σeff

)

(σeff∂xη − I) −
κeff

κeff + σeff

∂x(σeff∂xη).

(31)

Substituting (31) into the left-hand side of (23), results in the explicit equation

aCdl∂tη(t, x) = ∂x

(

κeff

κeff + σeff

)

(−I(t) + σeff∂xη(t, x))

+
κeff

κeff + σeff

∂x(σeff∂xη(t, x)) − ai0g

(

α
F

RT
η(t, x)

)

= ∂x

[

κeffσeff

κeff + σeff

∂xη(t, x)

]

− ∂x

(

κeff

κeff + σeff

)

I(t)

− ai0g

(

α
F

RT
η(t, x)

)

(32)

for the unknown function η. For the corresponding initial-boundary value problem we use the initial
value

η(0, x) = 0, x ∈ (0, L), (33)

and (32) is equipped with the Neumann type boundary conditions in (27). ¤

Remark: Based on (30), we can express φ2(t, x) as

∂xφ2(t, x) =
1

κeff(x) + σeff(x)
(I(t) − σeff(x)∂xη(t, x)), (34)

and consequently, by the assumption φ2(t, 0) = 0 (see the explanation after (19)) we have

φ2(t, x) =

∫ x

0

(

−
σeff(t, s)

κeff(t, s) + σeff(t, s)
∂sη(t, s) +

1

κeff(t, s) + σeff(t, s)
I(t)

)

ds. (35)

Therefore, according to (20) we can give the potential loss V ∗ at the anode as

V ∗(t) = η(t, L) + φ2(t, L)

= η(t, L) +

∫ L

0

−
σeff(t, s)

κeff(t, s) + σeff(t, s)
∂sη(t, s) +

1

κeff(t, s) + σeff(t, s)
I(t) ds.

(36)

This completes the computation of the right-hand side of (17), and the desired quantity Ecell(t) can be
given.
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Remark: According to Lemma 4.1 we have that

p =
1

aCdl

, q =
κeffσeff

κeff + σeff

and F (t, x, η(t, x)) = −
i0
Cdl

g

(

α
F

RT
η(t, x)

)

−
1

aCdl

∂x

(

κeff

κeff + σeff

)

I(t)

(37)

4.3 Model problem

For testing the method in the article, we investigate here a model problem. Based on real measurements
we have κeff ≈ 0.002 and σeff ≈ 1.8 and accordingly, we define

κeff(t, x) = 0.002 − 0.001x and σeff(t, x) = 1.8 + 0.001x. (38)

Consequently,

κeff + σeff = 1.801 and
κeff

σeff + κeff

(t, x) =
2 − x

1801
.

For the simplicity, we did not incorporate time dependence yet, but our analysis extends also to the case
of time dependent conductivity parameters. If the analytic solution of the governing equation (32) is

η(t, x) =
t2

4
·

(

1 + (x −
1801

1803
)2

)

, (39)

we can verify that the equalities

−
1

κeff(t, 0)
I(t) = ∂xη(t, 0) =

t2

2

1801

1803

1

σeff(t, 1)
I(t) = ∂xη(t, 1) = −

t2

2

(

1 −
1801

1803

) (40)

hold true such that ∂xη(t, 0) and ∂xη(t, 1) corresponds to ul and ur in (1), where I(t) = 10−3 · 1801

1803
t2.

These show that the boundary conditions in (27) are satisfied.
Using all parameters we can give Cdl(x) such that η in (39) is the solution of (32) with the boundary
conditions in (27).

It is justified to use the numerical method in Section 3 to approximate u since the Assumptions 1, 2
and 3 are satisfied:

• According to (37) and the choice of the linear kinetics,

∂3F (t, x, u) = c(x)α
F

RT
,

which is bounded.

• The coefficient functions p and q given in (37) are obviously positive.

• The inequalities in Assumption 3 have been verified consecutively in the time steps during the
simulations. These results are shown in Figure 1. One can see that using a reasonably accurate
space discretization we can simulate underlying process over sufficiently long time.
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Figure 1: Number of steps N with step length τ = 1 s until Assumption 3 is satisfied vs. the number n
of the grid points on the interval I = 1 cm.

4.4 Numerical results

We present some numerical results here corresponding to the model problem discussed in Section 4.3.
The analytic and the numerical solution are compared at T = 1 in Fig. 2 for a single parameter set.
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Figure 2: Analytic solution (39) of (32) (continuous line) and the numerical approximation (dashed line)
using the method in (2) with T = 1, N = 25 and τ = 0.01 for the test problem in Section 4.3. The
remaining parameters are given in the Appendix.

We investigated the order of convergence in the ‖ ·‖∞ norm experimentally with respect to the spatial
discretization. For this we have consecutively refined the grid and the time step simultaneously such that
the ratio τ

h2 is kept at constant level. Accordingly, in the figures we only investigate the dependence of
the ‖ · ‖∞-norm error on the number 1

h
of the spatial grid points. The corresponding results are shown in

Figure The numerical results confirm our expectation in Section 3: we can fit accurately a line of slope
-2 to the log-log data, which shows a second order convergence with respect to the spatial discretization
parameter, see Fig. 3.
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Figure 3: ‖ · ‖∞ norm error in the numerical solution for the test problem in Section 4.3 vs. the spatial
discretization parameter (left side). Log-log plot of the error vs. the spatial discretization parameter and
a fitted line with slope -2 (left side).
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5 Appendix

Symbol Description Unit

a Specific interfacial area cm−1

Cdl Double-layer capacitance F/cm2

Ecell Cell potential V
EOC Open circuit potential V
F Faraday constant (96487) C/mol
I Total cell current density A/cm2

i0 Exchange current density at the cathode A/cm2

ia0 Exchange current density at the anode A/cm2

i1 Solid phase current density at the cathode A/cm2

i2 Solution phase current density at the cathode A/cm2

if Faradaic current density A/cm3

jD Limiting current at the cathode A/cm2

L Thickness of the cathode cm
R Universal gas constant (8.3144) J/molK
T Cell temperature K
V ∗ Potential loss at the cathode V
Wmem Membrane thickness cm
α Transfer coefficient in the cathode
αa

a Anodic transfer coefficient at the anode
αa

c Cathodic transfer coefficient at the anode
η Overpotential at the cathode V
ηa Overpotential at the anode V
ν2 Dimensionless Exchange current density
φ1 Solid phase potential V
φ2 Solution phase potential V
κeff Effective solution phase conductivity S/cm
σeff Effective solid phase conductivity S/cm
σmem Membrane conductivity S/cm
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