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Abstract. This paper is concerned with the problem of approximating a
homeomorphism by piecewise affine homeomorphisms. The main result is as
follows: every homeomorphism from a planar domain with a polygonal bound-
ary to R

2 that is globally Hölder continuous of exponent α ∈ (0, 1], and whose
inverse is also globally Hölder continuous of exponent α can be approximated in
the Hölder norm of exponent β by piecewise affine homeomorphisms, for some
β ∈ (0, α) that only depends on α. The proof is constructive. We adapt the
proof of simplicial approximation in the supremum norm, and measure the side
lengths and angles of the triangulation over which the approximating homeo-
morphism is piecewise affine. The approximation in the supremum norm, and
a control on the minimum angle and on the ratio between the maximum and
minimum side lengths of the triangulation suffice to obtain approximation in
the Hölder norm.

1. Introduction

This paper is concerned with the problem of approximating a homeomorphism
by piecewise affine homeomorphisms. As mentioned in Ball [3], this problem arises
naturally when one wants to approximate by finite elements the solution of a mini-
mization problem in Nonlinear elasticity. In that context, we are given a Lipschitz
domain Ω ⊂ Rn (typically, n ∈ {2, 3}) and a function h : Ω → Rn that minimizes
the elastic energy of a material, in a certain function space (typically, the Sobolev
space W 1,p for some 1 < p < ∞). In addition, in order for h to be physically
realistic, h must be orientation-preserving and one-to-one (so as to avoid interpen-
etration of matter; see [2]). Thus, every approximation of h should also enjoy these
two properties. It is also pointed out in [3] that this question has theoretical interest
too, since it would be a step towards generalizing Evans’ [8] result on the partial
regularity of minimizers for integrands satisfying a certain growth condition.

When the original homeomorphism h belongs to a Banach space X of functions
that includes piecewise affine functions, it is desirable to approximate h by a piece-
wise affine homeomorphism both in the supremum norm and in the norm of X .
In fact, the difficulty of proving approximation of homeomorphisms h by piecewise
affine ones depends on the dimension n, the differentiability properties of h, and the
norm in which this approximation is done. In the context of Nonlinear elasticity
explained above, ideally one assumes that n ∈ {2, 3}, the function h and its inverse
are in W 1,p, and looks for approximation in the W 1,p norm. Unfortunately, this is
still an open problem, as put forward by Ball [3].
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The only positive results in this direction that we are aware of deal with approx-
imation in the supremum norm. In dimension 1, the result that every homeomor-
phism can be approximated by a piecewise affine homeomorphism in the supremum
norm is trivial. The first proof in dimension 2 seems to be Radó’s [22] (see also
Moise [20] and Brown [7]). The result in dimension 3 is due to Moise [19] and Bing
[4]. For dimensions 5 and higher, the result for contractible spaces follows from
theorems of Connell [11], Bing [5], Kirby [16] and Kirby, Siebenmann and Wall [17]
(for a proof see, e.g., Rushing [23] or Luukkainen [18]). Finally, Donaldson and
Sullivan [13] proved that the result is false in dimension 4.

In this paper we consider the problem of approximation in the Hölder norm and
in dimension 2. Our main result reads as follows.

Theorem 1.1. Let Ω ⊂ R2 be a closed polygon. Let 0 < α ≤ 1. Let h ∈ Cα(Ω, R2)
be a homeomorphism such that h−1 ∈ Cα(h(Ω), R2). Then there exists 0 < β <
α, depending only on α, such that for each ε > 0 there exists a piecewise affine
homeomorphism f : Ω → R2 with ‖f − h‖β < ε.

Here Cα denotes the Banach space of globally Hölder continuous functions of
exponent α, with norm ‖ · ‖α.

We follow the proof of Moise [20], where approximation in the supremum norm is
proved, but there the construction is not explicit. In this paper we make an explicit
construction, measure the lengths and angles of the triangulation, and show that if
we have approximation in the supremum norm and a control on the angles of the
triangulation and on the ratio between the maximum and minimum side lengths of
the triangulation, then we have approximation in the Hölder norm. Interestingly,
when α = 1, the constructed triangulation is regular in the sense of Ciarlet [10].

We now describe the outline of this paper. Section 2 introduces the notations
and definitions that will be used throughout the paper. Section 3 describes the
plan of the proof of Theorem 1.1, and each of the remaining sections (4, 5, 6 and
7) is devoted to a specific step of the proof. Following the notation of Theorem
1.1, in Section 4 we show how to refine a given triangulation of Ω, and how to
construct a piecewise affine function over the skeleton of the refined triangulation
that approximates h in the supremum norm; we also measure the minimum and
maximum lengths of the triangulation. In Section 5 we extend an arbitrary home-
omorphism defined on the boundary of a triangle to a homeomorphism defined on
the whole triangle; we triangulate the original triangle and measure the lengths and
the angles of the triangulation. Section 6 constructs the piecewise affine homeo-
morphism f . The idea is as follows: we start with a fine regular triangulation of
Ω; then we add vertices in the skeleton and construct an approximating piecewise
affine homeomorphism g on the skeleton, using the result of Section 4; then we
extend this piecewise affine homeomorphism g on the skeleton to an approximating
piecewise affine homeomorphism f on the whole triangulation, using the result of
Section 5. The outcome of Section 6 is a piecewise affine homeomorphism f that
approximates h in the supremum norm, and we also estimate the lengths and angles
of the triangulation over which f is piecewise affine. In Section 7 we show general a
priori bounds in the Hölder norm of any piecewise affine function u, in terms of the
lengths and angles of the triangulation over which u is piecewise affine. Finally, we
show how these a priori bounds demonstrate that the piecewise homeomorphism f
constructed in Section 6 approximates h also in the Hölder norm, thus concluding
Theorem 1.1.
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2. Notations and definitions

Two key concepts are used in the construction of this paper: a complex and a
piecewise affine function. We assume no previous knowledge of complexes; rather,
they serve only as a useful notation. For us, a complex means what is usually
referred to as a Euclidean finite complex in R2 (see, for example, Chapter 0 of
Moise [20]). Specifically, a 1-dimensional complex is a non-empty set K such that:

• every element of K is either a closed segment in R2 or a singleton;
• {p} ∈ K if and only if p is an endpoint of a segment of K;
• if e, c are segments in K and e∩ c 6= ∅, then e∩ c has exactly one element,

which is an endpoint of both e and c.

A 2-dimensional complex is a non-empty set K such that:

• every element of K is either a triangle in R2, or a closed segment or a
singleton;

• {p} ∈ K if and only if p is an endpoint of a segment of K;
• a segment belongs to K if and only if it is a side of a triangle of K;
• if σ, τ are triangles in K and σ ∩ τ 6= ∅, then σ ∩ τ is either a singleton

whose only member is a vertex of both σ and τ , or a segment which is a
side of both σ and τ .

If K is an n-dimensional complex (for some n ∈ {1, 2}) then the set K0 is the set
formed by the singletons of K, the set K1 is the set formed by the segments of K,
and (if n = 2) K2 is the set formed by the triangles of K. Naturally, K = K0 ∪K1

for any 1-dimensional complex K, and K = K0 ∪ K1 ∪ K2 for any 2-dimensional
complex K. Of course, if K is a 2-dimensional complex then K0 ∪ K1 is a 1-
dimensional complex, sometimes called the skeleton of K.

Given a complex K, it is convenient to work with the set K̃0 defined as follows:
if K0 = {{p1}, . . . , {pn}} for some n ∈ N and some p1, . . . , pn ∈ R2 then K̃0 :=

{p1, . . . , pn}. And reciprocally, K̃0 defines K0 univocally. Of course,
⋃

K0 = K̃0.
If K is a 2-dimensional complex we call K a triangulation of

⋃
K.

In the previous paragraphs we have mentioned segments. Although the definition
should be known, we make it precise. Given two different points x, y in R2, we will
denote [x, y] the segment in R2 with endpoints x and y equipped with the total
order given by the bijection

[0, 1] → [x, y]
t 7→ x + t(y − x).

The set (x, y) equals [x, y] \ {x, y} and inherits the total order. The set xy equals
[x, y] as a set, but with no order structure.

Another key concept of this paper is the one of piecewise affine function. Let
K be a complex. A function f :

⋃
K → R2 is piecewise affine over K when f |σ

is affine for all σ ∈ K. Since every element of K is closed, this f is automatically
continuous. Now let I be a totally ordered set, and choose n ∈ N points

a1 < · · · < an

of I. A function f : [a1, an] → R2 is piecewise affine over {a1, . . . , an} when
f |[ai,ai+1] is affine for all 1 ≤ i ≤ n−1. Since [ai, ai+1] is closed for all 1 ≤ i ≤ n−1,
this f is automatically continuous.

Another elementary concept, which nevertheless deserves some care in the no-
tation, is that of polygon. Let n ≥ 3 be a natural number. Consider n points
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a1, . . . , an ∈ R2. We will say that a1 · · · an is a well-defined polygon if there exists
a homeomorphism f from the unit circle of R2 onto the set

(1) ana1 ∪
n−1⋃

k=1

akak+1

and there exist 0 ≤ t1 < · · · < tn < 2π such that f(cos ti, sin ti) = ai for all i ∈
{1, . . . , n}. In this case, a1 · · ·an equals the set (1) union the connected component
of the complement of (1). We will say that a1 · · · an is a well-defined n-gon when
it is a well-defined polygon and there do not exist b1, . . . , bn−1 ∈ R2 such that

ana1 ∪
n−1⋃

k=1

akak+1 = bn−1b1 ∪
n−2⋃

k=1

bkbk+1.

Of course, a 3-gon is called a triangle, and a 4-gon, a quadrilateral. A closed
polygon is a compact set in R2 that coincides with the closure of its interior, and
whose boundary is a finite union of Jordan curves, each of them is the boundary of
a well-defined polygon.

If A ⊂ R2 then
◦

A denotes the interior of A in the topology of R2, except if A is

a segment, in which case
◦

A denotes the set A minus its endpoints.
Balls follow the usual notation: B̄(a, r) is the closed ball centred at a ∈ R2 with

radius r > 0; and B(A, r) and B̄(A, r) are the open and closed neighbourhoods,
respectively, of A ⊂ R2 with radius r > 0. We will always use the Euclidean
distance.

Let Ω ⊂ R2 be compact. Let ‖ · ‖∞ denote the supremum norm on Ω. The
supremum norm on a subset S of Ω will be denoted by ‖·‖∞,S. For each 0 < α ≤ 1,
let | · |α denote the Hölder seminorm, and ‖ · ‖α the Hölder norm, both of exponent
α. The Banach space of globally Hölder continuous functions of exponent α from
Ω to R2 is denoted by Cα(Ω, R2).

3. Plan of the proof

In this section we describe the main lines of our construction of a piecewise affine
homeomorphism that approximates a given homeomorphism, in the conditions of
Theorem 1.1. We believe that this description may serve as a guide in order to
enjoy an easier reading of the rest of the paper.

We follow the construction due to Moise [20] in the two-dimensional case. It is
proved there that given a closed polygon Ω, a homeomorphism h ∈ C(Ω, R2), and
ε > 0, there exist a triangulation K of Ω, and a piecewise affine homeomorphism
f : Ω → R2 such that ‖h − f‖∞ ≤ ε. Extending Moise’s construction to other
functional spaces (for instance, Sobolev spaces W 1,p or Hölder spaces Cα) is a very
delicate issue, since in his construction there is no control at all on the gradient
of the approximation. Indeed, if we think in terms of the mathematical theory of
finite element approximation by piecewise affine functions in the Sobolev norm (see,
e.g., Ciarlet [10]), we find two major difficulties:

• In order to guarantee the injectivity of f , we cannot use nodal values; that
is to say, in general, f(a) 6= h(a) for every vertex a of the triangulation
K. This occurs in Moise’s construction too. The problem here is that if
we use nodal values then the orientation of the triangles may change and,
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hence, f will, in general, fail to be one-to-one. Of course, this problem
would dissapear if the original function h were a diffeomorphism.

• Except when α = 1, the triangulation that we construct is not regular in the
sense of Ciarlet (see, e.g., Ciarlet [10] or Zlámal [25]). In other words, for
every ε > 0 we construct a triangulation Kε of Ω, and, in our construction,
the minimum angle of the triangles of the triangulation Kε tends to zero as
ε tends to zero. It is very well-known that the regularity of a triangulation
(i.e., a positive lower bound independent of ε for the minimum angle) is
crucial in order to have approximation results.

Roughly speaking, what happens is that both the triangulation K and the ap-
proximation f have to adapt themselves to the target function h, if we want f to
be a homeomorphism. To circumvent these difficulties, in order to prove Theorem
1.1, we will follow Moise’s construction, but making everything completely explicit,
so that we can exactly estimate the norm ‖f − h‖β at the end. We have to use
fine analytical and geometrical arguments to prove Theorem 1.1, whereas Moise
just needed topological arguments to get his results; in fact, his construction is not
explicit.

Let α ∈ (0, 1] be the exponent of Hölder continuity of h, and α̃ ∈ (0, 1] the
exponent of Hölder continuity of h−1. In the statement of Theorem 1.1 we assumed
α = α̃; however, allowing α and α̃ to be different gains insight in the proof and
provides slightly better estimates.

We fix an initial triangulation M of Ω. The proof of Theorem 1.1 is structured
in the following four steps:

Step 1: Approximation in the skeleton. Consider the skeleton M1 of the tri-
angulation M . In this step we find a subdivision K1 of M1 and a piecewise
affine function f over the subdivision such that f is a homeomorphism on⋃

K1 =
⋃

M1 and

‖f − h‖S

M1,∞ ≤ ε.

Section 4 is devoted to the proof this step. It is important to remark that
the function f is not the piecewise affine interpolant of h (i.e., in general
f(a) 6= h(a) for a ∈ K0), although f(a) = h(a) for all a ∈ M0, i.e., for any
vertex a of the original triangulation M .

The construction of the subdivision is explicit, in the sense that we
estimate the length of the edges in K1 in terms of ε. Precisely, for each
e ∈ K1 the inequalities

B1ε
b1 ≤ |e| ≤ B2ε

b2

hold, where the exponents b1 ≥ b2 ≥ 1 depend only on α, α̃, and the con-
stants B1, B2 > 0 depend only on M , h and h−1. Constants and exponents
are calculated explicitly.

Step 2: Extension of a homeomorphism from the boundary of a triangle to
the whole triangle. For every triangle ∆ ⊂ R2 and every piecewise affine
homeomorphism f : ∂∆ → R2, there exists a piecewise affine homeomor-
phism f̃ : ∆ → R2 that extends f . The existence of such an extension is
known as the piecewise affine (or PL) Schoenflies Theorem. The proof in
Moise [20] is constructive, but of course there are no estimates on the trian-
gulation parameters, since they are not needed in that topological context.
Instead, we give a different constructive proof of the result, based on an
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idea borrowed from Gupta and Wenger [14], according to which we perturb
the triangle ∆ to get a well-defined convex w-gon, where w is the number
of vertices of the triangulation of ∂∆ over which f is piecewise affine. We
estimate all the parameters (side lengths and angles) of the constructed
triangulation of ∆. Section 5 is devoted to this step, and Theorem 5.1 is
the main result in this section.

Step 3: Construction of the triangulation. We put steps 1 and 2 together
in order to build the final triangulation and the piecewise affine homeo-
morphism. We proceed in the following way: we start with a regular and
sufficiently fine triangulation M . By step 1, we find a subdivision K1 of
M1 and a piecewise affine homeomorphism f on the subdivision. Now we
use step 2 to extend the homeomorphism f (initially defined only on the
skeleton of the triangulation) to the whole Ω; we do this by finding a tri-
angulation of each triangle of M . In this way, we get a new triangulation
K of Ω and an extension of f (denoted again by f) such that:
(1) K is the union of the triangulations of the triangles of M ;
(2) f is piecewise affine over the triangulation K;
(3) f is a homeomorphism (since it is a homeomorphism over each triangle

of M and on the skeleton of th triangulation).
This step is standard following Moise’s proof, again except for the esti-

mates of the triangulation parameters. Thus, we obtain a triangulation K
of Ω such that

• sinϕ ≥ A0ε
a0 , for all angles ϕ of all triangles of the triangulation K;

• A1ε
a1 ≤ |e| ≤ A2ε

a2 , for all sides e ∈ K1,
and ‖h − f‖∞ ≤ ε. The quantities A0, A1, A2, a0, a1, a2 are calculated
explicitly. The exponents a0, a1, a2 depend only on α, α̃, and they satisfy
a0 ≥ 0 and a1 ≥ a2 ≥ 1. The constants A0, A1, A2 > 0 depend also on h,
h−1 and Ω. Section 6 is devoted to this step, and Theorem 6.4 is the main
result in that section.

We would like to remark that everything that we have done up to now has
followed essentially the ideas of the classical proof, but with the important
difference that we estimate all the parameters of the triangulation in terms
of powers of ε. The arguments of the following step are new, and allow us
to extend the classical approximation result to Hölder spaces.

Step 4: From L∞ estimates to Cβ estimates. Section 7 is devoted to the
final step of obtaining approximation in the Hölder norm. Up to now, our
construction gives a triangulation K and a piecewise affine homeomorphism
f that approximates h in the supremum norm. In this step now we prove
that actually f approximates h in the Hölder norm Cβ ; this β depends
only on α, α̃. This is a consequence of the approximation on the supremum
norm and a control on the triangulation in terms of ε. We start using the
interpolation inequality

|u|β ≤ 2‖u‖1−β
α

∞ |u|
β
α
α ,

valid for any u ∈ Cα and 0 < β ≤ α ≤ 1. Using the previous step we obtain
that

|h − f |β ≤ 2ε1− β
α |h − f |

β
α
α ,
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so that we just need a priori bounds on the seminorm |h − f |α. Since in
the construction of f (steps 1, 2 and 3) no care has been taken in the
gradients, the fact that f is close to h in the Cα norm is not guaranteed at
all. Hence the only valid estimate of |h − f |α is the trivial one: |h− f |α ≤
|h|α + |f |α. Thus, we just need a priori bounds on |f |α. Here we see why
in our construction we cannot get approximation in the Cα norm. This
impossibility is not just because of the proof, but it is a general fact (see
the comments at the end of the paper).

The a priori bounds on |f |α are given in Propositions 7.4 and 7.5. In
Proposition 7.4 we estimate the Hölder seminorm of any piecewise affine
function u over the triangulation K in terms of the parameters of the tri-
angulation (and, ultimately, of ε) and the L∞ norm of u. In Proposition
7.5 we estimate the Cα seminorm of the interpolant over K of any Cα

function u, in terms of Cα norm of u, and of the parameters of the trian-
gulation (so, ultimately, in terms of ε). Now, using those estimates we get
|h− f |α ≤ Cεa4 , for some constant C > 0 depending on h, h−1 and Ω, and
some exponent a4 ≤ 0 depending only on α, α̃. As usual, both C and a4

are explicit. Consequently, for every 0 < β < α
1−a4

we have

|h − f |β ≤ Dε1− β
α (1−a4).

For some constant D > 0 depending on h, h−1 and Ω. The fact that
1 − β

α (1 − a4) is positive concludes the result.

We finish this section with some remarks about possible generalizations of The-
orem 1.1 to other function spaces.

Let X be a Banach space continuously included in C(Ω, R2) and such that X
contains all piecewise affine functions from Ω to R2. For example, X can be a
Sobolev space W 1,p with p > 2, or a space of uniformly continuous functions with
prescribed modulus of continuity. We believe that steps 1, 2 and 3 above can be
adapted with only minor modifications, in the context of the function space X .
Step 4 can also be adapted easily, but in this case we would obtain approximation
in the function space Y , where Y is an interpolation space between C(Ω, R2) (or
L∞(Ω, R2)) and X . This is the only reason why our construction does not work
for proving W 1,p approximation: because for all 1 ≤ p < q ≤ ∞, the space W 1,p

is not an interpolation space between L∞ and W 1,q. In contrast, we believe that
the construction of this paper can be easily adapted to get approximation in the
fractional Sobolev space W s,p, for some 0 < s < 1 and 2 < p ≤ ∞.

4. Approximation in the skeleton

In this section we approximate a given homeomorphism on a 1-dimensional com-
plex M by a homeomorphism piecewise affine over a refinement of M .

Since the proof of Theorem 4.3 below is long, we have decided first to explain
its main ideas, without proofs. This is done in the next paragraphs.

Let M be a 1-dimensional complex in R2. Let h :
⋃

M → R2 be a homeomor-
phism such that h and h−1 are Hölder continuous. In Section 6, M will be the
skeleton of a fine quasiuniform triangulation of Ω, and h will be the restriction
of the homeomorphism from Ω to R2 that we want to approximate, but in this
section we are only concerned with what happens in the skeleton. We start by
subdividing (refining) the 1-dimensional complex M in a uniform way to obtain a
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new 1-dimensional complex L such that diamh(e) ≤ ε/3 for all e ∈ L1. Thus, if we

define Nv := B̄(h(v), ε/3) for each v ∈ L̃0, then we show that

Nu ∩ Nv = ∅, u, v ∈ L̃0,

and moreover, if v ∈ L̃0 does not belong to e ∈ L1 then

Nv ∩ B̄(h(e),
ε

3
) = ∅.

Fix e ∈ L1, and choose one of the two possible orientations for e, so that e =
[inf e, sup e]. Accordingly, equip h(e) with the natural order given by e and the
bijection h. Let xe be the last point of the arc h(e) that lies on Ninf e, and ye the
first point that follows xe and lies on Nsup e. We proceed by finding a fine enough
uniform partition {we,0, . . . , we,Ne} of the segment [h−1(xe), h

−1(ye)], and define
ge : [h−1(xe), h

−1(ye)] → R2 as the piecewise affine function over {we,0, . . . , we,Ne}
that coincides with h in {we,0, . . . , we,Ne}. It may well happen that the intersection
of ge[h

−1(xe), h
−1(ye)] with Ninf e or Nsup e is not empty. To avoid this possibility,

which could yield the non-injectivity of the piecewise affine function that we are
constructing, we do the following: define pe as the last point of ge[h

−1(xe), h
−1(ye)]

that lies on Ninf e, and qe as the first point following pe that lies on Nsup e. Now
from the partition {we,0, . . . , we,Ne} we get the partition {ue,0, . . . , ue,me} of [pe, qe]
(for some me ≤ Ne) defined by

ue,0 = pe, ue,me = qe, {ue,0, . . . , ue,me} = [pe, qe] ∩ {we,0, . . . , we,Ne}.
As h is a homeomorphism, then the points ge(ue,0), . . . , ge(ue,me) are all different.

It is important to observe that the function g|[pe,qe] need not be injective, since a
loop may be formed because of the geometry of the arc h[pe, qe]. If this happens, we
just remove the loop (see Figure 1), and it is easy to show (Lemma 4.2) that there
exists a new injective piecewise affine function fe : [pe, qe] → R2 over a partition of
at most me + 1 elements such that

fe(pe) = ge(pe), fe(qe) = ge(qe), f [pe, qe] ⊂ ge[pe, qe].

It is important to remark that ge was obtained by using nodal values of the function
h, but this is no longer the case for fe; in other words, to ensure injectivity we have
to take values in the vertices that are not necessarily nodal values of h.

Finally, we define f :
⋃

M → R2 as the only piecewise affine function such that,
for each e ∈ L1,

f |[pe,qe] = fe,

f |[inf e,pe] is affine with f(inf e) = h(inf e), f(pe) = ge(pe),

f |[qe,sup e] is affine with f(qe) = ge(qe), f(sup e) = h(sup e).

Then, f is a homeomorphism, since it is injective on each [pe, qe] (for e ∈ L1), on
each [qe, sup e] ∪ [uc, pc] (for all e, c ∈ L1 such that sup e = inf e), and the interior
of the images of these sets do not intersect. Finally, ‖f − h‖S

M,∞ ≤ ε because for

every x ∈ ⋃M there exists e ∈ L1 such that

x ∈ e, f(x), h(x) ∈ B̄(h(e),
ε

3
) and diam B̄(h(e),

ε

3
) ≤ ε.

Since h and h−1 are Hölder continuous, we are able to estimate the length of
each side of the 1-dimensional complex over which f is piecewise affine, in terms of
a power of ε.
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This finishes the sketch of the proof of Theorem 4.3. The rest of the section is
devoted to a rigorous proof of it.

Let | · | be the Euclidean norm in R2. All the definitions based on the norm (such
as the balls and the Hölder norm) are referred to | · |.

Let Ω ⊂ R2 and α, α̃ ∈ (0, 1]. Let h ∈ Cα(Ω, R2) be a homeomorphism such

that |h|α ≤ H . Suppose h−1 ∈ Cα̃(h(Ω), R2) and |h|α̃ ≤ H̃ . Then the following
inequalities are immediate, and will be use throughout this paper without further
mention: for all X, Y ⊂ Ω,

(
dist(X, Y )

H̃

)1/α̃

≤ dist(h(X), h(Y )) ≤ H dist(X, Y )α,

(
diamX

H̃

)1/α̃

≤ diamh(X) ≤ H(diamX)α.

If α = α̃ = 1 and Ω has more than one element, then clearly HH̃ ≥ 1.
The following easy property will be useful in the proof of Theorem 4.3.

Lemma 4.1. Let Ω ⊂ R2 and α ∈ (0, 1]. Let h ∈ Cα(Ω, R2) and δ > 0. If a, b ∈ Ω
satisfy

|b − a| <

(
2δ

|h|α

)1/α

then [h(a), h(b)] ⊂ B(h[a, b], δ).

Proof. If 0 ≤ λ ≤ 1/2 then |λh(a)+ (1−λ)h(b)− h(b)| < δ, whereas if 1/2 ≤ λ ≤ 1
then |λh(a) + (1 − λ)h(b) − h(a)| < δ. This concludes the proof. �

The following lemma starts with a piecewise affine function f over a segment, and
constructs a piecewise affine homeomorphism that coincides with f at the endpoints
of the segment and whose image is contained in the image of f . It will be useful in
the proof of Theorem 4.3.

Lemma 4.2. Let n ≥ 1 be a natural number, and a0 6= an ∈ R2. Consider
a1, . . . , an−1 ∈ (a0, an) such that a1 < · · · < an−1 in the order of (a0, an). Let
f : [a0, an] → R2 be a piecewise affine function over {a0, . . . , an}. Then

(1) If the points f(a0), . . . , f(an) are different then there exist a natural number
m ≤ n, points b0, . . . , bm ∈ [a0, an] such that a0 = b0 < · · · < bm = an and
an injective function g : [a0, an] → R2 piecewise affine over {b0, . . . , bm}
such that g|{a0,an} = f |{a0,an} and g[a0, an] ⊂ f [a0, an].

(2) If f is injective then there exists an injective function g : [a0, an] → R2

piecewise affine over {b0, . . . , bn}, where

bi := a0 +
i

n
(an − a0), i = 0, . . . , n,

such that g|{a0,an} = f |{a0,an} and g[a0, an] = f [a0, an].

Proof. First we prove part 1 by induction on n. When n = 1, then f is injective
and we take m = n and g = f .

Suppose n ≥ 2. By the induction assumption applied to f |[a1,an], there exist a
natural number m1 ≤ n − 1, points b0, . . . , bm1

with a1 = b0 < · · · < bm1
= an,

and an injective function g1 : [a1, an] → R2 piecewise affine over {b0, . . . , bm1
}

such that g1|{a1,an} = f |{a1,an} and g1[a1, an] ⊂ f [a1, an]. Define g2 : [a0, an] →
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R2 as g2|[a0,a1) = f |[a0,a1) and g2|[a1,an] = g1|[a1,an]. Then g2 is piecewise affine
over {a0, a1, b1, . . . , bm1−1, an}; moreover, g2|{a0,an} = f |{a0,an} and g2[a0, an] ⊂
f [a0, an]. If g2 is injective then we are done.

Suppose g2 is not injective. Since g2 is injective in [a0, a1] and in [a1, an],

g2[a0, a1) ∩ g2[a1, an] 6= ∅.

Define

c0 := inf{x ∈ [a0, a1) : g2(x) ∈ g2[a1, an]}.

Since g2[a1, an] is closed, this c0 ∈ [a0, a1) satisfies g2(c0) ∈ g2[a1, an]. Moreover,
as g2 is injective in [a0, a1] and in [a1, an], there exists a unique c1 ∈ (a1, an] such
that g2(c0) = g2(c1). If a0 = c0 then the sets [a0, c0) and g2[a0, c0) are empty. By
definition of c0,

g2[a0, c0) ∩ g2[a1, an] = ∅,

and, hence, g2 is injective in [a0, c0)∪[c1, an]. The function g : [a0, an] → R2 defined
by

g(x) :=

{
g2(x), if x ∈ [a0, c0)
g2(|an − c1||an − c0|−1(x − c0) + c1), if x ∈ [c0, an].

satisfies the requirements of the statement. This proves part 1.
Now we prove part 2. For each k ∈ {1, . . . , n}, let hk : [bk−1, bk] → [ak−1, ak]

be the affine function such that hk(bk−1) = ak−1 and hk(bk) = ak. Define g :
[a0, an] → R2 as the only function that, for each k ∈ {1, . . . , n}, coincides with
f ◦hk in [bk−1, bk]. This g satisfies the requirements of the statement, which proves
part 2. �

The following is the main result of this section. Given a 1-dimensional com-
plex M and a homeomorphism h defined on

⋃
M , we construct a piecewise affine

homeomorphism over a refinement K of the complex M that approximates h in the
supremum norm. Its proof is based on the one of Theorem 2 of Chapter 6 of Moise
[20], but with the difference that we make an explicit construction, and estimate
the lengths of the elements of K1.

Theorem 4.3. Let M be a 1-dimensional complex in R2. Let θ ∈ (0, π/3] satisfy
that sin ϕ ≥ sin θ for all angles ϕ of all the triangles defined by M . Let α, α̃ ∈ (0, 1].
Let h ∈ Cα(

⋃
M, R2) be a homeomorphism such that h−1 ∈ Cα̃(h(

⋃
M), R2).

Then there exists a constant ε0 > 0, depending only on

min
e∈M1

|e|, |h|α, |h−1|α̃, α, α̃,

such that for each 0 < ε ≤ ε0 there exist a homeomorphism f :
⋃

M → R2 and a
1-dimensional complex K such that

⋃
K =

⋃
M, M0 ⊂ K0, ‖f − h‖∞ ≤ ε,

f is piecewise affine over K, coincides with h in M̃0, and

B1ε
b1 < |e| < B2ε

b2 , e ∈ K1,
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where

b1 := − 2

α
+

2

α2α̃
+

1

α3α̃2
,

b2 :=
1

α
,

B1 :=2−2− 2
αα̃− 1

α2α̃
− 1

α2α̃2 · 3 1
α− 2

α2α̃
− 1

α3α̃2 ·
[
1 − (sin θ)1/α̃

]2/α

· (sin θ)
1

αα̃ + 1

α2α̃2

· |h|−
1
α− 3

α2α̃
− 1

α3α̃2

α · |h−1|−
3

αα̃− 1

α2α̃2

α̃ if αα̃ < 1,

B1 :=
sin2 θ(1 − sin θ)

192|h|5α|h−1|4α̃
min

{
1 − sin θ,

sin2 θ

2|h|α|h−1|α̃

}
if α = α̃ = 1,

B2 :=3−1/α|h|−1/α
α .

(2)

Proof. Call H := |h|α and H̃ := |h−1|α̃. Let 0 < ε ≤ ε0, where ε0 is to be
determined later.

Fix e ∈ M1. Let ne be the only integer x satisfying

(3) |e|
( ε

3H

)−1/α

≤ x < |e|
( ε

3H

)−1/α

+ 1.

Choose one of the two affine bijections from [0, 1] onto e, and equip e with the total
order inherited from [0, 1] and given by that bijection. Now define

ve,i := inf e +
i

ne
(sup e − inf e), i = 0, . . . , ne.

If ε0 is small then

(4) ne ≥ 2.

Let L be the 1-dimensional complex defined by

L :=
{
{ve,i} : e ∈ M1, i = 0, . . . , ne

}

∪
{
[ve,i, ve,i+1] : e ∈ M1, i = 0, . . . , ne − 1

}
.

By (3), (4) and the geometry of the triangles defined by M ,

1

2

( ε

3H

)1/α

< |e| ≤
( ε

3H

)1/α

, e ∈ L1,(5)

|u − v| >
sin θ

2

( ε

3H

)1/α

, u 6= v ∈ L̃0,(6)

dist(v, e) >
sin θ

2

( ε

3H

)1/α

, v ∈ L̃0, e ∈ L1, v /∈ e.(7)

By (5), for each e ∈ L1,

(8) diamh(e) ≤ ε

3
, diam B̄(h(e),

ε

3
) = diamh(e) +

2ε

3
≤ ε.

Define

β :=
1

2

(
sin θ

2H̃

)1/α̃ ( ε

3H

) 1
αα̃

.

If ε0 is small and αα̃ < 1 then

(9) β ≤ ε/3;
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otherwise, if α = α̃ = 1 then HH̃ ≥ 1 and equation (9) holds as well, and takes the
form

sin θ

4HH̃
≤ 1.

For each v ∈ L̃0 define Nv := B̄(h(v), β). By (6), for all u 6= v ∈ L̃0,

|h(u) − h(v)| ≥
( |u − v|

H̃

)1/α̃

> 2β,

and, hence,

(10) Nu ∩ Nv = ∅.

Furthermore, if v ∈ L̃0 does not belong to e ∈ L1, by (7) we get

dist(h(v), h(e)) ≥
(

dist(v, e)

H̃

)1/α̃

> 2β

and, hence,

(11) Nv ∩ B̄(h(e), β) = ∅.

Let e ∈ L1. Equip h(e) with the total order inherited from e and given by the
bijection h. By (5),

|h(sup e) − h(inf e)| ≥
( |e|

H̃

)1/α̃

>

(
1

2H̃

)1/α̃ ( ε

3H

) 1
αα̃

> 2β.

Therefore, there exist xe ∈ ∂Ninf e ∩h(e) and ye ∈ ∂Nsup e ∩h([h−1(xe), sup e]). By
(10), xe < ye in the order of h(e). In addition, by (5),

(12) |h−1(ye) − h−1(xe)| < |e| ≤
( ε

3H

)1/α

and

(13) |h−1(ye) − h−1(xe)| ≥
( |ye − xe|

H

)1/α

≥
( |h(sup e) − h(inf e)| − 2β

H

)1/α

>




(
1

2H̃

)1/α̃ (
ε

3H

) 1
αα̃ − 2β

H




1/α

=

(
1 − (sin θ)1/α̃

H

)1/α (
1

2H̃

) 1
αα̃ ( ε

3H

) 1

α2α̃
.

Define Ae := h([h−1(xe), h
−1(ye)]). By the geometry of the triangles defined by M ,

for every e 6= c ∈ L1,

dist(Ae, Ac) ≥
(

1

H̃

)1/α̃ (
dist

(
[h−1(xe), h

−1(ye)], [h
−1(xc), h

−1(yc)]
))1/α̃

>

(
1

H̃

)1/α̃ (
sin θ min

{
min
d∈L1

| sup d − h−1(yd)|, min
d∈L1

|h−1(xd) − inf d|
})1/α̃

≥
(

1

H̃

)1/α̃
(

sin θ

[
1

H
min

{
min
d∈L1

|h(sup d) − yd|, min
d∈L1

|xd − h(inf d)|
}]1/α

)1/α̃

=

(
sin θ

H̃

)1/α̃(
β

H

) 1
αα̃

.

(14)
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Define

δ :=
1

2

(
sin θ

H̃

)1/α̃(
β

H

) 1
αα̃

=
1

2

(
sin θ

H̃

)1/α̃ (
1

2H

) 1
αα̃
(

sin θ

2H̃

) 1

αα̃2 ( ε

3H

) 1

α2α̃2

.

By (14),

(15) B̄(Ae, δ) ∩ B̄(Ac, δ) = ∅, e 6= c ∈ L1.

For the reader’s convenience, from now on in this proof we will write how the
estimates behave with ε > 0. Precisely, if a quantity ̺ has been defined, and a ∈ R,
when we write ̺ ∼ εa we mean that there exists a constant c > 0 depending only on
θ, H, H̃, α, α̃ such that ̺ = cεa. The constant c will have been calculated explicitly,
so that this notation is only a reminder. For example, we have already showed that

β ∼ ε
1

αα̃ , δ ∼ ε
1

α2α̃2 .

Thus, if ε0 is small and αα̃ < 1 then

(16) δ ≤ β;

otherwise, if α = α̃ = 1 then HH̃ ≥ 1 and equation (16) holds as well, and takes
the form

sin θ

2HH̃
≤ 1.

Let N be the only integer x satisfying

(17)
( ε

3H

)1/α
(

2δ

H

)−1/α

≤ x <
( ε

3H

)1/α
(

2δ

H

)−1/α

+ 1.

Note that
( ε

3H

)1/α
(

2δ

H

)−1/α

∼ ε
1
α− 1

α3α̃2 .

Thus, if ε0 is small and αα̃ < 1 then

(18)
( ε

3H

)1/α
(

2δ

H

)−1/α

> 1;

otherwise, if α = α̃ = 1 then HH̃ ≥ 1 and equation (18) holds as well, and takes
the form

2H2H̃2

sin2 θ
> 1.

Inequalities (17) and (18) show that

(19) N ≥ 2 and
1

N
>

1

2

( ε

3H

)−1/α
(

2δ

H

)1/α

.

Define

(20) we,k := h−1(xe) +
k

N
[h−1(ye) − h−1(xe)], e ∈ L1, k = 0, . . . , N.

Fix e ∈ L1 and k ∈ {0, . . . , N − 1}. By (12) and (17),

(21) |we,k+1 − we,k| <

(
2δ

H

)1/α

,
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By (19) and (13),

|we,k+1 − we,k| =
1

N
|h−1(ye) − h−1(xe)|

>
1

2

( ε

3H

)− 1
α + 1

α2α̃

(
2δ

H

)1/α(
1 − (sin θ)1/α̃

H

)1/α(
1

2H̃

) 1
αα̃

.

(22)

By Lemma 4.1 and (21),

(23) [h(we,k), h(we,k+1)] ⊂ B(h[we,k, we,k+1], δ).

Fix e ∈ L1. Define ge : [h−1(xe), h
−1(ye)] → R2 as the piecewise affine function

over {we,0, . . . , we,N} that coincides with h in {we,0, . . . , we,N}. Define

pe := sup
{
x ∈ [h−1(xe), h

−1(ye)] : ge(x) ∈ ∂Ninf e

}
,

qe := inf
{
x ∈ [pe, h

−1(ye)] : ge(x) ∈ ∂Nsup e

}
.

The point pe is well-defined since xe ∈ ∂Ninf e, and the point qe is also well-defined
since ye ∈ ∂Nsup e. Moreover, ge(pe) ∈ ∂Ninf e since ∂Ninf e is closed, and ge(qe) ∈
∂Nsup e since ∂Nsup e is closed. By (10), pe < qe in the order of e. Furthermore, by
definition of pe, qe and the continuity of ge,

(24) ge(x) /∈ Ninf e ∪ Nsup e, x ∈ (pe, qe).

In addition, by (23),

ge[pe, qe] ⊂ ge[h
−1(xe), h

−1(ye)] = ge

(
N−1⋃

k=0

[we,k, we,k+1]

)

=

N−1⋃

k=0

[h(we,k), h(we,k+1)] ⊂
N−1⋃

k=0

B(h[we,k, we,k+1], δ) = B(Ae, δ).

(25)

Let me ∈ N and ue,0, . . . , ue,me be such that

[pe, qe] ∩ {we,0, . . . , we,N} = {ue,0, . . . , ue,me}
and ue,0 < · · · < ue,me . Of course,

1 ≤ me ≤ N, ue,0 = pe, ue,me = qe.

By (24),

ge(ue,0) ∈ ∂Ninf e, ge(ue,me) ∈ ∂Nsup e,

ge(ue,k) = h(ue,k) /∈ ∂Ninf e ∪ ∂Nsup e, k = 1, . . . , me − 1.

This, (10) and the injectivity of h imply that the points ge(ue,0), . . . , ge(ue,me) are
different. Therefore, by Lemma 4.2 applied to ge|[pe,qe], there exist an injective

function fe : [pe, qe] → R2 and a natural number Me with

(26) 1 ≤ Me ≤ me ≤ N

such that

(27) fe(pe) = ge(pe), fe(qe) = ge(qe), fe[pe, qe] ⊂ ge[pe, qe],

and fe is piecewise affine over {be,0, . . . , be,Me}, where

be,k := pe +
k

Me
(qe − pe), k = 0, . . . , Me.
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ge(ue,2)

ge(ue,1)

ge(ue,4) = fe(be,3)
ge(ue,0) = fe(be,0) fe(be,1)

ge(ue,3) = fe(be,2)

Figure 1. ge[pe, qe] is represented by dashed lines; fe[pe, qe] is
represented by solid lines.

This construction is represented in Figure 1, in the particular case where me = 4
and Me = 3. Note also that by (5),
(28)

|ge(qe)− ge(pe)| ≥ |h(sup e)−h(inf e)|−2β >

(
1

2H̃

)1/α̃ ( ε

3H

) 1
αα̃
[
1 − (sin θ)1/α̃

]
.

In addition, by (12),

(29) |qe − pe| ≤ |h−1(ye) − h−1(xe)| <
( ε

3H

)1/α

.

Now we estimate |qe−pe| from below. The analysis of this estimate varies according
to whether α = α̃ = 1 or αα̃ < 1. Suppose, first, that α = α̃ = 1. We distinguish
three cases according to the relative position of the points pe and qe.

(1) pe, qe ∈ [we,j , we,j+1] for some 0 ≤ j ≤ N − 1.
(2) pe ∈ [we,j , we,j+1] and qe ∈ [we,k, we,k+1] for some 0 ≤ j, k ≤ N − 1 with

j + 1 < k.
(3) pe ∈ [we,k−1, we,k] and qe ∈ [we,k, we,k+1] for some 0 ≤ k ≤ N − 1.

Suppose Case 1. Then there exist numbers λ, µ such that 0 ≤ λ < µ ≤ 1 and

pe = (1 − λ)we,j + λwe,j+1, ge(pe) = (1 − λ)h(we,j) + λh(we,j+1),

qe = (1 − µ)we,j + µwe,j+1, ge(qe) = (1 − µ)h(we,j) + µh(we,j+1).
(30)

Then
(31)
|qe − pe| = (µ−λ)|we,j+1 −we,j |, |ge(qe)− ge(pe)| = (µ−λ)|h(we,j+1)− h(we,j)|.
By (21),

(32) |h(we,j+1) − h(we,j)| ≤ H |we,j+1 − we,j | < 2δ.

Therefore, by (28) and (32),
(33)

µ − λ =
|ge(qe) − ge(pe)|

|h(we,j+1) − h(we,j)|
>

(
1

2H̃

)( ε

3H

)
[1 − sin θ]

1

2δ
= 2HH̃

1 − sin θ

sin2 θ
.
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So inequalities (22) and (33) imply

(34) |qe − pe| >
(1 − sin θ)2

24H3H̃2
ε.

Suppose Case 2. Then, by (22),

|qe − pe| ≥ |we,k − we,j+1| ≥ |we,k − we,k−1| >
δ(1 − sin θ)

2H2H̃
.

Suppose Case 3. Then there exist λ, µ ∈ [0, 1] such that

pe = (1 − λ)we,k−1 + λwe,k, ge(pe) = (1 − λ)h(we,k−1) + λh(we,k),

qe = (1 − µ)we,k + µwe,k+1, ge(qe) = (1 − µ)h(we,k) + µh(we,k+1).
(35)

Then

|qe − pe| = |(1 − µ − λ)we,k + µwe,k+1 + (λ − 1)we,k−1|

= (1 + µ − λ)
|h−1(ye) − h−1(xe)|

N
.

(36)

On the other hand, by (21),

|ge(qe) − ge(pe)| = |(1 − λ)[h(we,k) − h(we,k−1)] + µ[h(we,k+1) − h(we,k)]|
≤ (1 − λ)H |we,k − we,k−1| + µH |we,k+1 − we,k| < 2(1 − λ + µ)δ.

(37)

Therefore, inequalities (37) and (28) show that

(38) 1 − λ + µ >
|ge(qe) − ge(pe)|

2δ
>

1

2H̃

ε

3H
(1 − sin θ)

1

2δ
= 2HH̃

1 − sin θ

sin2 θ
.

So inequalities (22) and (38) imply (34).
The analysis of the three cases above shows that when α = α̃ = 1 then

(39) |qe − pe| ≥
1 − sin θ

24H3H̃2
ε min{1 − sin θ,

sin2 θ

2HH̃
}.

Now we estimate |qe − pe| from below in the case αα̃ < 1. We distinguish the
same three cases as above.

Suppose Case 1. Then there exist numbers λ, µ such that 0 ≤ λ < µ ≤ 1 and
identities (30) and (31) hold. By (21),

(40) |h(we,j+1) − h(we,j)| ≤ H |we,j+1 − we,j |α < 2δ.

Therefore, by (28) and (40),

µ − λ =
|ge(qe) − ge(pe)|

|h(we,j+1) − h(we,j)|

>

(
1

2H̃

)1/α̃ ( ε

3H

) 1
αα̃
[
1 − (sin θ)1/α̃

] 1

2δ
∼ ε

1
αα̃− 1

α2α̃2 ,

which is a contradiction if ε0 is small, since this would imply µ − λ > 1.
Suppose Case 2. Then there exist λ, µ ∈ [0, 1] such that

ge(pe) = (1 − λ)h(we,j) + λh(we,j+1), ge(qe) = (1 − µ)h(we,k) + µh(we,k+1).
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By (21),

|ge(qe) − ge(pe)| ≤ H (|we,k − we,j |α + µ|we,k+1 − we,k|α + λ|we,j+1 − we,j |α)

≤ 2δ [(k − j)α + µ + λ] ≤ 2δ [(k − j)α + 2] .

(41)

Now define

γ1 :=

(
1

2H̃

)1/α̃ ( ε

3H

) 1
αα̃
[
1 − (sin θ)1/α̃

] 1

2δ
∼ ε

1
αα̃− 1

α2α̃2 ,

γ2 :=
1

2

( ε

3H

)− 1
α + 1

α2α̃

(
2δ

H

)1/α(
1 − (sin θ)1/α̃

H

)1/α(
1

2H̃

) 1
αα̃

∼ ε−
1
α + 1

α2α̃
+ 1

α3α̃2 .

Inequalities (41) and (28) show that

(42) (k − j)α + 2 ≥ |ge(qe) − ge(pe)|
2δ

≥ γ1.

Now, by (22)

(43) |qe − pe| ≥ |we,k − we,j+1| ≥ (k − j − 1)γ2.

As ε0 is small, then γ1 ≥ max{4,
(
2−1/α + 3−1/α

)−α} and, hence,

(44) γ1 − 2 ≥ γ1

2
and γ2

(γ1

2

)1/α

− γ2 ≥ γ2

(γ1

3

)1/α

.

In total, equations (42), (43) and (44) imply

(45) |qe − pe| ≥ γ2

(γ1

3

)1/α

.

Suppose Case 3. Then there exist λ, µ ∈ [0, 1] such that identities (35) and (36)
hold. On the other hand, by (21),

|ge(qe) − ge(pe)| = |(1 − λ)[h(we,k) − h(we,k−1)] + µ[h(we,k+1) − h(we,k)]|
≤ (1 − λ)H |we,k − we,k−1|α + µH |we,k+1 − we,k|α < 2(1 − λ + µ)δ.

(46)

Therefore, inequalities (46) and (28) show that

1 − λ + µ >
|ge(qe) − ge(pe)|

2δ
>

(
1

2H̃

)1/α̃( ε

3H

) 1
αα̃
[
1 − (sin θ)1/α̃

] 1

2δ
∼ ε

1
αα̃− 1

α2α̃2 ,

which is a contradiction if ε0 is small, since this would imply 1 − λ + µ > 2.
Define

τ :=





1
2

(
[1−(sin θ)1/α̃]2

3H2

)1/α (
1

2H̃

) 2
αα̃ ( ε

3H

)− 1
α + 2

α2α̃ if αα̃ < 1,

min
{

(1−sin θ)2

24H3H̃2
, sin2 θ(1−sin θ)

48H4H̃3

}
ε if α = α̃ = 1.

From the analysis of the three cases above, in particular from inequalities (39) and
(45), we conclude that, regardless of the value of α and α̃,

(47) |qe − pe| > τ, e ∈ L1.

Let K be the 1-dimensional complex whose set of vertices is

K̃0 =
{
be,k : e ∈ L1, k = 0, . . . , Me

}
∪ L̃0
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and whose set of edges is

K1 =
{
[be,k, be,k+1] : e ∈ L1, k = 0, . . . , Me − 1

}

∪
{
[inf e, be,0] : e ∈ L1

}
∪
{
[be,Me , sup e] : e ∈ L1

}
.

Let e ∈ M1. Then by (29), (26), (47) and (19),

τ

2

( ε

3H

)−1/α
(

2δ

H

)1/α

< |be,k+1 − be,k| <
( ε

3H

)1/α

,

e ∈ L1, k = 0, . . . , Me − 1.

(48)

Fix e ∈ L1. By (5),

(49) max{|be,0 − inf e|, | sup e − be,Me |} < |e| ≤
( ε

3H

)1/α

.

Moreover,

|be,0 − inf e| ≥ |h−1(xe) − inf e| ≥
(

xe − h(inf e)

H

)1/α

=

(
β

H

)1/α

,

| sup e − be,Me | ≥ | sup e − h−1(ye)| ≥
(

h(sup e) − ye

H

)1/α

=

(
β

H

)1/α

.

(50)

If ε0 is small and αα̃ < 1 then

(51) ε−
2
α + 2

α2α̃
+ 1

α3α̃2 ∼ τ

2

( ε

3H

)−1/α
(

2δ

H

)1/α

<

(
β

H

)1/α

∼ ε
1

α2α̃ ;

otherwise, if α = α̃ = 1 then HH̃ ≥ 1 and equation (51) holds as well, and takes
the form

(1 − sin θ) sin θ

16H3H̃3
min

{
1 − sin θ,

sin2 θ

2HH̃

}
< 1.

In total, by (48), (49), (50) and (51),

τ

2

( ε

3H

)−1/α
(

2δ

H

)1/α

< |e| <
( ε

3H

)1/α

, e ∈ K1.

Note that
τ

2

( ε

3H

)−1/α
(

2δ

H

)1/α

= B1ε
b1 ,

where B1 and b1 are defined in (2).
Define f :

⋃
M → R2 as the only function that, for each e ∈ L1,

f |[pe,qe] = fe,

f |[inf e,pe] is affine with f(inf e) = h(inf e), f(pe) = ge(pe),

f |[qe,sup e] is affine with f(qe) = ge(qe), f(sup e) = h(sup e).

Then f is piecewise affine over K. We now prove that f is a homeomorphism. Since
f is continuous and

⋃
M is compact, it suffices to show that f is injective. The

proof of the injectivity of f involves the consideration of several cases.
We have already seen that f is injective in [pe, qe] for each e ∈ L1, since so is fe.
Now consider e, c ∈ L1 such that sup e = inf c. Then f is piecewise affine over

{qe, sup e, pc},
f(qe) = ye, f(sup e) = h(sup e), f(pc) = xc, ye, xc ∈ ∂Nsup e, ye 6= xc;
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the last inequality is due to (25) and (15). Thanks to the geometry of the Euclidean
ball, this implies that f is injective in [qe, sup e] ∪ [inf c, pc].

By (27) and (25), for every e ∈ L1,

(52) f [pe, qe] = fe[pe, qe] ⊂ ge[pe, qe] ⊂ B(Ae, δ).

Therefore, (52) and (15) demonstrate that

f [pe, qe] ∩ f [pc, qc] = ∅, e 6= c ∈ L1.

If e, c ∈ L1 satisfy sup e = inf c then

(53) f([qe, sup e] ∪ [inf c, pc]) = [ge(qe), h(sup e)] ∪ [h(inf c), gc(pc)] ⊂ Nsup e.

Therefore, (10) demonstrates that

f([qe, sup e] ∪ [inf c, pc]) ∩ f([qe′ , sup e′] ∪ [inf c′, gc′(pc′)]) = ∅.

whenever e, c, e′, c′ ∈ L1 satisfy

sup e = inf c, sup e′ = inf c′, (e, c) 6= (e′, c′).

Suppose finally that there exist

e, c, d ∈ L1, x ∈ [qe, sup e] ∪ [inf c, pc], y ∈ [pd, qd]

such that f(x) = f(y) and sup e = inf c. By (53),

(54) f(x) ∈ Nsup e.

By (52) and (16),

(55) f(y) ∈ B(Ad, δ) ⊂ B̄(h(d), δ) ⊂ B̄(h(d), β).

Equations (11), (54) and (55) imply d ∈ {c, e}. If d = e then equations (24) and (10)
show that y = qe. If d = c then equations (24) and (10) show that y = pc. In either
case, d ∈ {c, e} implies y ∈ {qe, pc}. Since f is injective in [qe, sup e] ∪ [inf c, pc]
then x = y. This proves that f is a homeomorphism.

Finally, we prove that ‖f − h‖∞ ≤ ε. Take e ∈ L1 and suppose x ∈ [inf e, pe] ∪
[qe, sup e]. Then

f(x) ∈ [h(inf e), ge(pe)] ∪ [ge(qe), h(sup e)],

and, hence, by (9), dist(f(x), h(e)) ≤ β ≤ ε/3. Now suppose x ∈ [pe, qe]. By (52),

f(x) ∈ B(Ae, δ) ⊂ B(h(e), δ),

and, hence, by (16) and (9), dist(f(x), h(e)) < δ ≤ ε/3. Therefore, for each x ∈⋃
M there exists e ∈ L1 such that x ∈ e and, hence,

f(x), h(x) ∈ B̄(h(e), ε/3);

consequently, by (8), |f(x) − h(x)| ≤ ε. This concludes the proof. �
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5. Extension from the boundary to the whole triangle

In this section we construct a piecewise affine homeomorphism on a triangle
that extends a given piecewise affine homeomorphism defined on the boundary of
the triangle. The existence of such an extension is a consequence of the so-called
piecewise linear (or piecewise affine) Schoenflies theorem (e.g., Theorem III.1.C of
Bing [6]), but in this section we construct a triangulation explicitly and measure the
angles and the side lengths of that triangulation. The construction that we present
in this section is based on an idea by Gupta and Wenger [14] that we explain in
the following paragraphs.

Let ∆ be a triangle. Let h : ∂∆ → R2 be a piecewise affine homeomorphism
over a 1-dimensional complex M such that

⋃
M = ∂∆. Let a0, . . . , aw−1 ∈ R2

satisfy M̃0 = {a0, . . . , aw−1} and a0 · · ·aw−1 is a well-defined polygon, which in
fact coincides with ∆. Since h is a piecewise affine homeomorphism, then Q :=
h(a0) · · ·h(aw−1) is a well-defined polygon whose boundary coincides with h(∂∆).
Note that Q need not be a well-defined w-gon; indeed, this happens precisely when
h is piecewise affine over another 1-dimensional complex N such that CardN0 <
CardM0.

It may well happen that for some i, j, k ∈ {0, . . . , w − 1}, the triangle

h(ai)h(aj)h(ak)

is a well-defined triangle contained in Q, but aiajak is not a well-defined trian-
gle. This occurs precisely when the points ai, aj , ak are aligned. But a small
perturbation of the vertices of M solves this problem. Indeed, we can define
points b0, . . . , bw−1 ∈ R2 such that bi is close to ai for all i ∈ {0, . . . , w − 1}, and
∆′ := b0 · · · bw−1 is a well-defined w-gon that, in addition, is convex and contained
in the interior of ∆. Accordingly, we perturb the polygon Q, that is, we choose
points x0, . . . , xw−1 ∈ R2 such that xi is close to h(ai) for all i ∈ {0, . . . , w−1}, and
Q′ := x0 · · ·xw−1 is a well-defined w-gon. Now, if for some i, j, k ∈ {0, . . . , w − 1},
the triangle xixjxk is a well-defined triangle contained in Q′ then bibjbk is a well-
defined triangle triangle contained in ∆′; this is because ∆′ is a well-defined convex
w-gon. This property can be rephrased as: every triangulation in Q′ induces a
triangulation in ∆′ (these triangulations are sometimes called isomorphic). Next,
we triangulate Q′ without adding any extra vertex, that is to say, there exists a
triangulation of Q′ whose set of vertices is {b0, . . . , bw−1}; the existence of such a
triangulation is a well-known result. As explained before, this triangulation of Q′

induces a triangulation of ∆′.

Now we have to triangulate Q \
◦

Q′ in such a way that this triangulation induces

a triangulation in ∆ \
◦

∆′. But this is immediate if the perturbation of ∆ and
Q has been done in such a way that akak+1bk+1bk and h(ak)h(ak+1)xk+1xk are
well-defined convex quadrilaterals, for all k ∈ {0, . . . , w − 1} (here we have defined
aw = a0, bw = b0 and xw = x0).

In total, we have constructed a triangulation K of ∆ and a triangulation T of Q
with the following properties:

K̃0 = {a0, . . . , aw−1, b0, . . . , bw−1}, T̃ 0 = {h(a0), . . . , h(aw−1), x0, . . . , xw−1},
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and the bijection ̺ : K̃0 → T̃ 0 defined by ̺(ai) = h(ai) and ̺(bi) = xi for all

i ∈ {0, . . . , w − 1} satisfies that for a, b, c ∈ K̃0, we have

abc ∈ K2 if and only if ̺(a)̺(b)̺(c) ∈ T 2.

Therefore, the piecewise affine function f over K such that f(a) = ̺(a) for all

a ∈ K̃0 is a homeomorphism from ∆ onto Q that extends h. This finishes the
sketch of the construction.

The rest of the section consists in a detailed explicit description of this construc-
tion with estimates of all the lengths and angles of the triangulation K. We will
prove, thus, the following result.

Theorem 5.1. Let ∆ ⊂ R2 be a triangle. Let θ ∈ (0, π/3] be such that

(56) sin ϕ ≥ sin θ for all angles ϕ of the triangle ∆.

Let m1 and m2 be, respectively, a positive lower and an upper bound on the side
lengths of ∆. Let 0 < l1 ≤ l2. Let M be a 1-dimensional complex such that

⋃
M = ∂∆,

l1 ≤ |e| ≤ l2 for all e ∈ M1.(57)

Let h : ∂∆ → R2 be a homeomorphism that is piecewise affine over M .
Then there exist a triangulation K of ∆, and a homeomorphism f : ∆ → R2

piecewise affine over K such that

M ⊂ K, K̃0 ∩ ∂∆ = M̃0, {e ∈ K1 : e ⊂ ∂∆} = M1, f |∂∆ = h

sin ϕ ≥ C0l
c01

1 mc02

1 m−c04

2 (sin θ)c03 for all angles ϕ of all triangles in K2,

C1l
c11

1 mc12

1 m−c14

2 (sin θ)c13 ≤ |e| ≤ m2 for all e ∈ K1,

where

C0 :=
1

144
, c01 := 2, c02 := 2, c03 := 4, c04 := 4,

C1 :=
1

12
, c11 := 1, c12 := 1, c13 := 2, c14 := 1.

(58)

The rest of the section consists of the proof of Theorem 5.1.
Besides the notation of Theorem 5.1, in order to do the construction we need to

introduce more notation concerning ∆. Let 0 < u < v < w be natural numbers.
Let a0, au, av be the three vertices of ∆. Define aw := a0. Let A, B ∈ (0, π) be the
angles of ∆ at the vertices a0, au. Consider points

a0 < a1 < · · · < au−1 < au in the order of [a0, au],

au < au+1 < · · · < av−1 < av in the order of [au, av],

av < av+1 < · · · < aw−1 < aw in the order of [av, aw]

such that

M̃0 = {a0, . . . , aw−1}, M1 = {akak+1 : k ∈ {0, . . . , w − 1}} .

Define a−1 := aw−1. Let r and o denote the inradius and incentre, respectively, of
∆. Let h be a parameter to be chosen later such that 0 < h < r. Let C be the
circle of centre o and radius h.

We will use the following notation about segments, lines and angles. If a, b ∈ R2

are two different points, ab denotes the closed segment with endpoints a, b. It
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a4
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a9 = a0 a1
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b1 b2
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b4
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b0

o

a7

b7

b6

Figure 2. Points ak and bk for k ∈ {0, . . . , w − 1}.

means the same as [a, b], except that the set [a, b] is equipped with a total order.
The length of ab is denoted by |ab|. The straight line passing through a, b is denoted

by ab. If a, b, c ∈ R2 satisfy b /∈ {a, c}, then âbc denotes the non-oriented angle in

[0, π] with vertex in b defined by the segments ab and bc. Of course, âbc = ĉba.
In the construction of this section, it is important to recall the concepts of well-

defined polygon and n-gon introduced in Section 2. In particular, given a natural
number n ≥ 3 and n different points a1, . . . , an ∈ R2, we will say that a1 · · · an is a
well defined convex n-gon if it is a well defined n-gon and is convex as a set.

This section consist of two subsections. Following the notation of Theorem 5.1,
in Subsection 5.1 we construct the triangulation K and the homeomorphism f ,
whereas in Subsection 5.2 we estimate the side lengths and angles of K.

5.1. Construction. This subsection constructs the triangulation K and the home-
omorphism f described in Theorem 5.1.

For k ∈ {0, . . . , w − 1}, let bk be the only point of ako ∩ C; this is represented
in Figure 2, in the particular case when u = 3, v = 6 and w = 9. Now call
∆′ := b0 · · · bw−1.

Lemma 5.2. ∆′ is a well-defined convex w-gon contained in
◦

∆. For each k ∈
{0, . . . , w−1}, the quadrilateral Ck := akak+1bk+1bk is a well-defined convex quadri-
lateral.

Proof. The geometry of ∆ implies that the map Π : C → ∂∆ that sends a point
x ∈ C to the only point of

{o + t(x − o) : t > 0} ∩ ∂∆

is a homeomorphism. This implies that ∆′ is a well-defined polygon. In addition,
as any closed disc is strictly convex as a set, then ∆′ is a well-defined convex w-gon.
Therefore,

(59) ∆′ = co{b0, . . . , bw−1} ⊂ co C ⊂
◦

∆;
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h(a0)

h(a1)

h(a4)

h(a5)

x0

x7

h(a2)

h(a3)

x5

x6
h(a6)

h(a7) h(a8)

x1

x2

x3

x4

x8

Figure 3. Polygons Q and Q′.

here co denotes the convex hull of a set.
Let k ∈ {0, . . . , w − 1}. To check that Ck is a well-defined quadrilateral that is

convex, we show that for every two consecutive vertices a, b of Ck, the other two
lie on the same connected component of

R2 \ ab.

By (59), bk, bk+1 ∈
◦

∆, and, hence, both bk and bk+1 lie on the same connected
component of

R2 \ akak+1.

Let H ⊂ R2 be the open half space such that

∂H = akbk and ak+1 ∈ H.

Then Π(C ∩H) = ∂∆∩H and, hence, bk+1 ∈ H . Analogously, the two consecutive
vertices ak+1, bk+1 also enjoy the same property. Finally, we prove that property
for the consecutive vertices bk and bk+1. Since there is a side of ∆ containing ak

and ak+1, then the points bk, o, bk+1 are not aligned. This, together with the facts
that bk ∈ (ak, o) and bk+1 ∈ (ak+1, o) imply that ak and ak+1 belong to the same
connected component of

R2 \ bkbk+1.

This proves that Ck is a well-defined convex quadrilateral. �

As h is a homeomorphism piecewise affine over M , then h(∂∆) equals the bound-
ary of the polygon Q := h(a0) · · ·h(aw−1). The construction of Lemma 5.3 below
is represented in Figure 3, in the particular case when u = 3, v = 6 and w = 9.
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Lemma 5.3. There exist x0, . . . , xw−1 ∈ Q such that Q′ := x0 · · ·xw−1 is a well-

defined w-gon contained in
◦

Q and that for each k ∈ {0, . . . , w− 1} the quadrilateral
Qk := h(ak)h(ak+1)xk+1xk is a well-defined convex quadrilateral, contained in Q \
◦

Q′, and Q′ ∩
◦

Qk = ∅. Moreover, for each 0 ≤ j < k ≤ w − 1, the set Qj ∩ Qk is
either empty or a common side of Qj and Qk. Finally,

Q = Q′ ∪
w−1⋃

k=0

Qk.

Proof. For every k ∈ {0, . . . , w − 1}, let ek ∈ R2 be the unit vector such that

(60) h(ak)[h(ak) + ek] bisects ̂h(ak−1)h(ak)h(ak+1)

and such that h(ak) + tek ∈
◦

Q for every t > 0 sufficiently small.
Fix s > 0. For each k ∈ {0, . . . , w−1}, define tk > 0 and xk through the property

that

xk := h(ak) + tkek

satisfy dist(xk, h(ak)h(ak+1)) = s. Property (60) implies that in fact

dist(xk, h(ak)h(ak+1)) = dist(xk, h(ak−1)h(ak)) = s

and, hence, the lines

h(ak)h(ak+1) and xkxk+1 are parallel.

If s is small then, for each k ∈ {0, . . . , w − 1},

xk ∈
◦

Q and h(ak)xk ∩ h(ak+1)xk+1 = ∅;

this and the choice of ek imply that Qk is a well-defined quadrilateral, in fact, a

trapezium and hence convex. Moreover, if s is small then Qk ⊂ Q \
◦

Q′, and Q′

is a well-defined polygon contained in
◦

Q. Furthermore, if s is small then for each
0 ≤ j < k ≤ w − 1, the set Qj ∩ Qk is either empty or a common side of Qj and

Qk, and Q′ ∩
◦

Qk = ∅. If Q′ is a w-gon then we are done. If not, we can perturb
the vertices x0, . . . , xw−1 so that all properties of the statement are true, including
the fact that Q′ is a w-gon.

Finally, the equality Q = Q′ ∪⋃w−1
k=0 Qk is obvious from the construction. �

Choose any x0, . . . , xw−1 ∈
◦

Q satisfying the conditions of the statement of
Lemma 5.3. It is a well-known result (e.g., the proof of Lemma 3.3.2 in Dettman
[12]) that every polygon can be triangulated without adding extra vertices; there-

fore, there exists a triangulation N of Q′ such that Ñ0 = {x0, . . . , xw−1}. Define

̺ : {b0, . . . , bw−1} → Ñ0 through ̺(bk) = xk for all k ∈ {0, . . . , w − 1}. Now define
the 2-dimensional complex L as follows:

L̃0 := ̺−1(Ñ0),

L1 :=
{
ab : a, b ∈ L̃0, ̺(a)̺(b) ∈ N1

}
,

L2 :=
{
abc : a, b, c ∈ L̃0, ̺(a)̺(b)̺(c) ∈ N2

}
.
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The following lemma is based on an observation by Aronov, Seidel and Souvaine
[1], according to which every triangulation of an n-gon that does not add any extra
vertex induces a triangulation of any well-defined convex n-gon.

Lemma 5.4. L is a triangulation of ∆′ such that bkbk+1 ∈ L1 for all k ∈ {0, . . . , w−
1}.

Proof. Let σ ∈ L2. Then σ = abc for three different points a, b, c ∈ L̃0. Since, by
Lemma 5.2, ∆′ is a well-defined convex w-gon, then σ is a triangle contained in ∆′.
In particular,

⋃
L2 ⊂ ∆′.

We prove that the sides of any σ ∈ L2 belong to L1. Indeed, let σ ∈ L2. Then
σ = abc for some a, b, c ∈ L̃0 with ̺(a)̺(b)̺(c) ∈ N2. Since N is a complex then

̺(a)̺(b) ∈ N1, and, hence, ab ∈ L1. Analogously, bc, ca ∈ L1. Similarly, one proves

that the endpoints of any element of L1 belong to L̃0.
The last paragraph shows in particular that

⋃
L2 =

⋃
L =

⋃

σ∈L2

◦
σ ∪

⋃

e∈L1

◦
e ∪ L̃0.

We are going to prove that
⋃

L is open in ∆′; to do this, we show that every element
of

◦
σ (for σ ∈ L2 ),

◦
e (for e ∈ L1 ), L̃0

has a neighborhood N such that N ∩ ∆′ ⊂ ⋃
L. If x ∈ ◦

σ for some σ ∈ L2 then

there exists a neighbourhood N of x such that N ⊂ σ ⊂ ⋃
L. If x ∈ ◦

e for some
e ∈ L1 then there exist j 6= k ∈ {0, . . . , w − 1} such that e = bjbk and xjxk ∈ N1.
Suppose e is a side of ∆′; then j is congruent to k− 1 or k + 1 modulo w, and xjxk

is a side of Q′. As N is a triangulation of Q′ such that Ñ0 = {x0, . . . , xw−1}, there
exists i ∈ {0, . . . , w− 1} such that xjxkxi ∈ N2. Then bjbkbi ∈ L2 and there exists
a neighbourhood N of x such that N ∩∆′ ⊂ bjbkbi ⊂

⋃
L. Suppose e is not a side

of ∆′; then j is not congruent to k − 1 or k + 1 modulo w, and xjxk is not a side

of Q′. As N is a triangulation of Q′ such that Ñ0 = {x0, . . . , xw−1}, there exist
i 6= i′ ∈ {0, . . . , w − 1} such that xjxkxi, xjxkxi′ ∈ N2. Then bjbkbi, bjbkbi′ ∈ L2

and there exists a neighbourhood N of x such that N ⊂ bjbkbi ∪ bjbkbi′ ⊂ ⋃
L.

Finally, if x ∈ L̃0 define SN as the set of σ ∈ N2 such that ̺(x) ∈ σ, and SL as

the set of σ ∈ L2 such that σ = abc for some a, b, c ∈ L̃0 with ̺(a)̺(b)̺(c) ∈ SN .
Then there exists a neighbourhood N of x such that N ∩ ∆′ ⊂

⋃
SL ⊂

⋃
L. This

proves that
⋃

L is open in ∆′. Clearly,
⋃

L is closed as a finite union of closed
sets. Therefore,

⋃
L is non-empty, open and closed in the connected set ∆′, whence⋃

L = ∆′.
Now let e 6= c ∈ L1 satisfy e ∩ c 6= ∅. Without loss of generality, suppose that

e = b0bi and c = bjbk for some i, j, k ∈ {1, . . . , w− 1} with j < k. As e∩ c 6= ∅ and
∆′ is a well-defined convex w-gon, then j ≤ i. If j = i then e ∩ c ∈ L0. If j < i

then x0xi ∩ xjxk ∈
◦

Q′ with x0xi, xjxk ∈ N1, which contradicts the fact that N is

a triangulation of Q′ such that Ñ0 = {x0, . . . , xw−1}. Therefore, e ∩ c ∈ L0. Since

L̃0 = {b0, . . . , bw−1}, this is enough to prove that L is a complex.

Finally, since N is a triangulation of Q′ such that Ñ0 = {x0, . . . , xw−1}, for each
k ∈ {0, . . . , w− 1} there exists a triangle in N2 one of which sides is xkxk+1. Since

N is a triangulation, necessarily xkxk+1 ∈ N1. Therefore, bkbk+1 ∈ L1. �
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Figure 4. Construction of the triangulation K.

Define the 2-dimensional complex K as follows:

K0 := M0 ∪ L0, K1 := L1 ∪
w−1⋃

k=0

{akak+1, bkbk+1, akbk, akbk+1},

K2 := L2 ∪
w−1⋃

k=0

{akak+1bk+1, akbk+1bk}.

This complex K is represented in Figure 4, in the particular case when u = 3, v = 6
and w = 9.

Lemma 5.5. K is a triangulation of ∆.

Proof. By Lemmas 5.4 and 5.2,
⋃

L = ∆′ ⊂ ∆. Moreover, by construction and
Lemma 5.2, ak, bk ∈ ∆ ∪ ∆′ = ∆ for each k ∈ {0, . . . , w − 1}. As ∆ is convex then⋃

K2 ⊂ ∆. Now we note that, by Lemmas 5.4 and 5.2,

⋃
K = ∆′ ∪

w−1⋃

k=0

Ck =
◦

∆′ ∪
w−1⋃

k=0

[(ak, ak+1) ∪ (bk, bk+1) ∪ (ak, bk) ∪ {ak, bk}] .

We are going to prove that
⋃

K is open in ∆; to do this, we show that every element
of

◦

∆′, (ak, ak+1), (bk, bk+1), (ak, bk), {ak, bk},
(for k ∈ {0, . . . , w−1}) has a neighbourhood N such that N∩∆ ⊂

⋃
K. Indeed, the

following properties are easy to verify. If x ∈
◦

∆′ then there exists a neighbourhood
N of x such that N ⊂ ∆′ ⊂ ⋃

K. Let k ∈ {0, . . . , w − 1}. If x ∈ (ak, ak+1)
then there exists a neighbourhood N of x such that N ∩ ∆ ⊂ akak+1bk+1 ⊂ ⋃K.
If x ∈ (bk, bk+1) then there exists a neighbourhood N of x such that N ⊂ ∆′ ∪
akbk+1bk ⊂

⋃
K. If x ∈ (ak, bk) then there exists a neighbourhood N of x such

that N ⊂ ak−1akbk ∪ akbk+1bk ⊂ ⋃K. There exists a neighbourhood N of ak such
that N ∩ ∆ ⊂ ak−1akbk ∪ Ck ⊂ ⋃K. There exists a neighbourhood N of bk such
that N ⊂ Ck−1∪akbk+1bk∪∆′ ⊂

⋃
K. This proves that

⋃
K is open in ∆. Clearly,
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⋃
K is closed as a finite union of closed sets. Therefore, the non-empty set

⋃
K is

open and closed in the connected set ∆, which implies
⋃

K = ∆.
All elements of K2 are triangles. Indeed, by Lemma 5.4, every element of L2 is a

triangle. In addition, by Lemma 5.2, for each k ∈ {0, . . . , w − 1}, the quadrilateral
Ck is a well-defined convex quadrilateral, and, hence, akak+1bk+1 and akbk+1bk are
triangles whose union is Ck.

By Lemma 5.4 and the definition of K, the sides of any σ ∈ K2 belong to K1,
and the endpoints of any e ∈ K1 belong to K̃0.

Finally, let σ 6= τ ∈ K2 satisfy σ∩τ 6= ∅; we want to prove that σ∩τ ∈ K0∪K1.
If σ, τ ∈ L2 then, by Lemma 5.4, σ∩τ ∈ L0∪L1 ⊂ K0∪K1. Let j, k ∈ {0, . . . , w−1}.
If σ ∈ L2 and τ = akak+1bk+1 then σ ∩ τ = {bk+1} ∈ L0 ⊂ K0. If σ ∈ L2 and τ =
akbk+1bk then, by Lemma 5.4, σ∩τ ∈ {{bk}, {bk+1}, bkbk+1} ⊂ L0∪L1 ⊂ K0∪K1.
If σ = akak+1bk+1 and τ = ajaj+1bj+1 then σ ∩ τ ∈ {{ak}, {ak+1}} ⊂ M0 ⊂ K0.

If σ = akak+1bk+1 and τ = ajbj+1bj then σ ∩ τ ∈ {akbk+1, ak+1bk+1} ⊂ K1. If
σ = akbk+1bk and τ = ajbj+1bj then σ ∩ τ ∈ {{bk}, {bk+1}} ⊂ L0 ⊂ K0. This
completes the proof. �

By Lemma 5.5, there exists a unique continuous function f : ∆ → R2 piecewise
affine over K such that

f(ak) = h(ak), f(bk) = xk, k ∈ {0, . . . , w − 1}.

Lemma 5.6. f is a homeomorphism onto Q that coincides with h in ∂∆.

Proof. Since ∆ is compact and f is continuous, to prove that f is a homeomorphism
it suffices to show that f is injective. By Lemma 5.3 and the fact that h is a
homeomorphism,

(61) f is injective in K̃0.

Now we prove that f is injective in
⋃

K1. For each e ∈ K1 the function f |e is

affine and (by (61)) non constant, hence injective; in particular, f(
◦
e) equals the

interior of f(e). Let e 6= c ∈ K1. If e, c ∈ L1 then f(e), f(c) ∈ N1 and (by (61))

f(e) 6= f(c); since N is a complex then f(
◦
e) ∩ f(c) = ∅. If e ∈ L1 and c /∈ L1 then

by Lemma 5.3, f(
◦
e) ⊂

◦

Q′ and f(c) ∩
◦

Q′ = ∅; therefore, f(
◦
e) ∩ f(c) = ∅; similarly,

one proves f(e) ∩ f(
◦
c) = ∅. If e, c /∈ L1 then, by Lemma 5.3,

f(e) ∩ f(c) ∈ N0 ∪ {{h(a0)}, . . . , {h(aw−1)}, ∅}

and, hence, f(
◦
e) ∩ f(c) = ∅. As (61), this proves that f is injective in

⋃
K1.

Now we prove that f is injective in each σ ∈ K2. If σ ∈ L2 then σ = abc for
some a, b, c ∈ L̃0 such that f(σ) = ̺(a)̺(b)̺(c) ∈ N2; as N is a triangulation then
f(σ) is a triangle and, hence, f |σ is injective. If σ /∈ L2 then, by Lemma 5.3, f(σ)
is a triangle and, hence, f |σ is injective.

Now let σ 6= τ ∈ K2. To complete the proof of the injectivity of f we only

have to show f(
◦
σ) ∩ f(τ) = ∅. If σ, τ ∈ L2 then f(σ) 6= f(τ) ∈ N2; as N is

a triangulation then f(
◦
σ) ∩ f(τ) = ∅. If σ ∈ L2 and τ /∈ L2 then f(σ) ∈ N2,

hence f(σ) ⊂ Q′, and f(τ) ⊂ Qk for some k ∈ {0, . . . , w − 1}; by Lemma 5.3,

f(
◦
σ)∩ f(τ) = f(σ) ∩ f(

◦
τ) = ∅. If σ, τ /∈ L2 then, by Lemma 5.3, f(

◦
σ) ∩ f(τ) = ∅.

This completes the proof that f is a homeomorphism.
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Now, by Lemmas 5.5 and 5.3,

f(∆) =
⋃

σ∈K2

f(σ) =
⋃

σ∈L2

f(σ) ∪
w−1⋃

k=0

f(akak+1bk+1) ∪ f(akbk+1bk)

=
⋃

N2 ∪
w−1⋃

k=0

h(ak)h(ak+1)xk+1 ∪ h(ak)xk+1xk = Q′ ∪
w−1⋃

k=0

Qk = Q.

Finally, we note that

∂∆ =

w−1⋃

k=0

akak+1 =
⋃

M

and that both f |∂∆ and h are piecewise affine over M and coincide in M̃0. There-
fore, f coincides with h in ∂∆. �

5.2. Estimates. Our aim in this subsection is to give upper and lower bounds of

|e| for e ∈ K1,

and lower bounds of

sinϕ for all angles ϕ of all triangles in K2

in terms of l1, l2, θ, m1, m2. Of course, K is the complex constructed in Subsection
5.1, and we are following the notation of Theorem 5.1. In Subsection 5.1 we took
any h in (0, r), where r is the inradius of the triangle ∆. In this subsection we make
the choice

h :=
1

6
m1 sin θ.

The fact that this h is indeed less than r is proved in Lemma 5.7 below. With this
choice, we shall estimate the following lengths:

|akak+1|, |akbk|, |akbk+1|, k ∈ {0, . . . , w − 1},
|bibj |, i, j ∈ {0, . . . , w − 1}, i < j,

and the sine of the following angles:

̂akak+1bk+1, ̂ak+1bk+1ak, ̂bk+1akak+1, ̂akbk+1bk, ̂bk+1bkak, ̂bkakbk+1,

k ∈ {0, . . . , w − 1};
b̂ibjbk, i, j, k ∈ {0, . . . , w − 1}, i < k, j /∈ {i, k}.

Before doing that, we need some trigonometric inequalities and identities. The
following two are elementary:

sin x

2
≤ sin

x

2
, x ∈ [0, 2π],(62)

2 sin2 x = 1 − cos 2x, x ∈ R.(63)

In the following lemma we estimate the inradius of a triangle from below.

Lemma 5.7. Consider a triangle ∆ with inradius r, minimum side length m1, and
θ ∈ (0, π/3] satisfies (56). Then

r ≥ 1

3
m1 sin θ.
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Proof. Let |∆| denote the area of ∆, and s its semiperimeter. Then, by elementary
trigonometry, r = |∆|/s. Now let a ≤ b ≤ c be the three side lengths of the
triangle. By elementary geometry and (56), we have 2|∆| ≥ bc sin θ and 2s ≤ 2b+c.
Therefore,

r ≥ b

3
sin θ ≥ m1

3
sin θ,

as required. �

In the following Lemmas we estimate the lengths and angles of the triangulation
K constructed in Subsection 5.1.

Lemma 5.8. For all k ∈ {0, . . . , w − 1},
l1 ≤ |akak+1| ≤ l2.

Proof. This is immediate due to inequalities (57). �

Lemma 5.9. For all k ∈ {0, . . . , w − 1},
1

6
m1 sin θ ≤ |akbk| ≤ m2.

Proof. Fix k ∈ {0, . . . , w − 1}. As bk ∈ (ak, o) ∩ C, by the geometry of ∆,

|akbk| = |ako| − h ≥ r − h.

Lemma 5.7 concludes the first inequality of the statement. The second inequality
is obvious, since |akbk| ≤ diam∆ ≤ m2. �

Lemma 5.10. For all 0 ≤ i < j ≤ w − 1,

l1m1 sin2 θ

12m2
≤ |bibj| ≤

1

3
m1 sin θ.

Proof. For 0 ≤ i < j ≤ w − 1 we have bi, bj ∈ C and, hence, |bibj | ≤ diamC = 2h.
This proves the second inequality of the statement. Now, by the Law of Cosines
applied to the triangle biobj,

|bibj |2 = 2h2
(
1 − cos b̂iobj

)
.

This equality and the following one

(64) min
0≤i<j≤w−1

b̂iobj = min
0≤k≤w−1

̂bkobk+1

imply

(65) min
0≤i<j≤w−1

|bibj|2 = min
0≤k≤w−1

|bkbk+1|2 = 2h2 min
0≤k≤w−1

(
1 − cos ̂bkobk+1

)
.

Now let 0 ≤ k ≤ u − 1. As bk ∈ (ak, o) and bk+1 ∈ (ak+1, o) then ̂bkobk+1 =
̂akoak+1. By the Law of Sines applied to akoak+1,

sin ̂akoak+1 =
|akak+1|
|ak+1o|

sin ̂oakak+1,

but, thanks to the geometry of ∆, inequalities (56) and (62), and the facts that a0o

bisects âva0au, and auo bisects â0auav, we have

sin ̂oakak+1 ≥ min{sin ôa0au, sin ôaua0} = min{sin A

2
, sin

B

2
} ≥ sin

θ

2
≥ sin θ

2
.
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Since we have |akak+1| ≥ l1 and |ak+1o| ≤ m2, then, also by (62),

(66) sin ̂akoak+1 ≥ l1 sin θ

2m2
and sin

̂akoak+1

2
≥ l1 sin θ

4m2
;

this, together with (63), (65) and the symmetry of the argument, completes the
proof. �

Lemma 5.11. For all i, j, k ∈ {0, . . . , w − 1} with i < k and j /∈ {i, k},

sin b̂ibjbk ≥ l1 sin θ

4m2
.

Proof. Let k ∈ {0, . . . , w − 1}. By elementary plane geometry, for any x ∈ C \
{bk, bk+1},

̂bkxbk+1 =
1

2
̂bkobk+1.

As bk ∈ (ak, o) and bk+1 ∈ (ak+1, o) then ̂bkobk+1 = ̂akoak+1. Equations (64) and
(66) conclude the proof. �

Lemma 5.12. For all k ∈ {0, . . . , w − 1},
1

6
m1 sin θ ≤ |akbk+1| ≤ m2.

Proof. Let k ∈ {0, . . . , w−1}. Since bk+1 ∈ C and bk ∈ C∩(ak, o), by the geometry
of ∆ and Lemma 5.9,

|akbk+1| ≥ min
x∈C

|akx| = |akbk| ≥
1

6
m1 sin θ.

This shows the first inequality of the statement. The second inequality is obvious,
since diam∆ ≤ m2. �

Lemma 5.13. For all k ∈ {0, . . . , w − 1},

sin ̂akak+1bk+1 ≥ l1m1 sin2 θ

6l2m2
,(67)

sin ̂ak+1bk+1ak ≥ l21m1 sin2 θ

6l2m2
2

,

sin ̂bk+1akak+1 ≥ l1m
2
1 sin3 θ

36l2m2
2

.

Proof. Fix k ∈ {0, . . . , w − 1}. By the Law of Sines applied to akak+1o,

sin ̂akak+1o =
|ako|

|akak+1|
sin ̂akoak+1.

The estimates of (66), Lemmas 5.8 and 5.9, and the facts bk ∈ (ak, o) ∩ C and
bk+1 ∈ (ak+1, o) demonstrate (67).

By the Law of Sines applied to akak+1bk+1,

sin ̂ak+1bk+1ak =
|akak+1|
|akbk+1|

sin ̂akak+1bk+1,

sin ̂bk+1akak+1 =
|ak+1bk+1|
|akbk+1|

sin ̂akak+1bk+1.
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Inequality (67) and Lemmas 5.8, 5.12 and 5.9 show the second and third inequalities
of the statement. �

Lemma 5.14. For all k ∈ {0, . . . , w − 1},

sin ̂akbk+1bk ≥ l1m1 sin2 θ

12m2
2

,(68)

sin ̂bk+1bkak ≥ l1m
2
1 sin3 θ

72m3
2

,

sin ̂bkakbk+1 ≥ l21m
2
1 sin4 θ

144m4
2

.

Proof. Fix k ∈ {0, . . . , w − 1}. By the Law of Sines applied to akbk+1o,

sin ̂oakbk+1 =
|bk+1o|
|akbk+1|

sin ̂akobk+1.

The estimates of (66) and Lemma 5.12, and the facts bk ∈ (ak, o) and bk+1 ∈
(ak+1, o) ∩ C demonstrate (68).

By the Law of Sines applied to akbk+1bk,

sin ̂bk+1bkak =
|akbk+1|
|akbk|

sin ̂akbk+1bk, sin ̂bkakbk+1 =
|bkbk+1|
|akbk|

sin ̂akbk+1bk.

Inequality (68) and Lemmas 5.9, 5.12 and 5.10 demonstrate the second and third
inequalities of the statement. �

From Lemmas 5.8, 5.9, 5.10 and 5.12 we see that m2 is an upper bound for the
lengths of the segments in K1, and

l1m1 sin2 θ

12m2

is a lower bound for the lengths of the segments in K1. From Lemmas 5.11, 5.13
and 5.14 we see that

l21m
2
1 sin4 θ

144m4
2

is a lower bound for the sine of the angles of the triangles in K2. This finishes the
proof of Theorem 5.1.

6. Construction of the triangulation

In this section we construct the triangulation over which our approximating
homeomorphism f will be piecewise affine. The idea is to start with a fine triangu-
lation whose triangles are ‘almost equilateral and with about the same size’, in the
sense of Proposition 6.1 below. Then we refine the skeleton of that triangulation
using Theorem 4.3; we thus obtain a homeomorphism g piecewise affine over the
skeleton of a suitable triangulation that approximates our original homeomorphism
h. Finally, we extend g from the boundary of each triangle of the triangulation
to the whole triangle, using Theorem 5.1. The result will be a piecewise affine
homeomorphism f that approximates h in the supremum norm.

We will need the following result, a proof of which can be found in Shewchuk [24].
It says that every polygon admits triangulations as fine as we wish whose triangles
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are ‘almost equilateral and with about the same size’; in the finite element literature,
this is called a quasiuniform triangulation.

Proposition 6.1. Let Ω ⊂ R2 be a closed polygon. Then there exist ε0 > 0,

(69) θ ∈ (0, π/3], d ∈ (0, 1)

such that for all 0 < ε ≤ ε0 there exists a triangulation L of Ω satisfying

(70) sin ϕ ≥ sin θ for all angles ϕ of all triangles in L2,

and

dε ≤ |e| ≤ ε, e ∈ L1.

The following property is implicit in Moise [20] (proof of Theorem 3, Chapter
6); a proof of a more general result can be found in Paul [21] (Theorem 3.3 of Part
I).

Lemma 6.2. Let σ ⊂ R2 be a closed triangle. Let f, h : σ → R2 be homeomor-
phisms. Then

f(σ) ⊂ B̄ (h(σ), ‖f − h‖∞,∂σ) .

The following lemma will be useful to prove that our approximating piecewise
affine function is a in fact homeomorphism.

Lemma 6.3. Let σ1, σ2 ⊂ R2 be two closed triangles such that σ1 ∩ σ2 is empty,
or a side of both σ1 and σ2, or a vertex of both σ1 and σ2. Let f : σ1 ∪ σ2 → R2

be a function such that f |σ1
and f |σ2

are homeomorphisms, and f is injective in
∂σ1∪∂σ2. Suppose that for all vertices w1 of the triangle σ1 such that w1 /∈ σ2 one
has f(w1) /∈ f(σ2), and that for all vertices w2 of the triangle σ2 such that w2 /∈ σ1

one has f(w2) /∈ f(σ1). Then

f(
◦
σ1) ∩ f(σ2) = ∅.

Proof. Suppose f(
◦
σ1) ∩ f(σ2) 6= ∅; we shall reach a contradiction. So there exists

x ∈ ◦
σ1 such that f(x) ∈ f(σ2). In any of the three cases considered in the statement

(σ1 ∩σ2 is empty, or a side of both σ1 and σ2, or a vertex of both σ1 and σ2), there
exists a vertex w of σ1 such that w /∈ σ2; by assumption, f(w) /∈ f(σ2). Thanks to

the geometry of the triangle σ1, one has [x, w) ⊂ ◦
σ1. Define

t0 := sup {t ∈ [0, 1] : f(x + t(w − x)) ∈ f(σ2)} .

The number t0 is well defined since f(x) ∈ f(σ2). Moreover, f(x+t0(w−x)) ∈ f(σ2)

because f(σ2) is closed. As f(w) /∈ f(σ2) then t0 < 1 and, hence, x+t0(w−x) ∈ ◦
σ1.

Furthermore, by definition of supremum,

f(x + t(w − x)) /∈ f(σ2) for all t ∈ (t0, 1].

This proves that f(x + t0(w − x)) ∈ ∂f(σ2). Since f |σ2
is a homeomorphism, by

the invariance of domain Theorem, ∂f(σ2) = f(∂σ2). We have therefore proved

f(
◦
σ1) ∩ f(∂σ2) 6= ∅. Since f |σ1

is a homeomorphism, we have in fact

f(
◦
σ1) ∩ f(∂σ2 \ ∂σ1) 6= ∅.

So there exists y ∈ ∂σ2 \ ∂σ1 such that f(y) ∈ f(σ1). In any of the three cases
considered in the statement (σ1 ∩ σ2 is empty, or a side of both σ1 and σ2, or a
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vertex of both σ1 and σ2), we can find a vertex v of the triangle σ2 such that v /∈ σ1

and [y, v] ⊂ ∂σ2 \ ∂σ1. By assumption, f(v) /∈ f(σ1). Define

s0 := sup {s ∈ [0, 1] : f(y + s(v − y)) ∈ f(σ1)} .

The number s0 is well defined since f(y) ∈ f(σ1). Moreover, f(y+s0(v−y)) ∈ f(σ1)
because f(σ1) is closed. As f(v) /∈ f(σ1) then s0 < 1. Furthermore, by definition
of supremum,

f(y + s(v − y)) /∈ f(σ1) for all s ∈ (s0, 1].

This proves that f(y + s0(v − y)) ∈ ∂f(σ1). Since f |σ1
is a homeomorphism, by

the invariance of domain Theorem, ∂f(σ1) = f(∂σ1). We have therefore proved
f(∂σ1) ∩ f(∂σ2 \ ∂σ1) 6= ∅, and this is a contradiction with the fact that f is
injective in ∂σ1 ∪ ∂σ2. �

The following is the main result of this section. It constructs a piecewise lin-
ear homeomorphism that approximates a given homeomorphism in the supremum
norm. Its proof is based on the one by Moise [20] (Theorem 3 of Chapter 6) but
here we also estimate the side lengths and angles of the triangles of the constructed
triangulation.

Theorem 6.4. Let Ω ⊂ R2 be a closed polygon. Let α, α̃ ∈ (0, 1] and H, H̃ > 0.
Then there exists ε0 > 0 such that for all 0 < ε ≤ ε0 and for every homeomorphism
h ∈ Cα(Ω, R2) with |h|α ≤ H satisfying h−1 ∈ Cα̃(h(Ω), R2) and |h−1|α̃ ≤ H̃, there
exist a triangulation K of Ω, and a homeomorphism f : Ω → R2 piecewise affine
over K such that ‖f − h‖∞ ≤ ε,

sin ϕ ≥ A0ε
a0 for all angles ϕ of all triangles in K2,(71)

A1ε
a1 ≤ |e| ≤ A2ε

a2 for all e ∈ K1,(72)

where

A0 := C0 · Bc01

1 · d
b1c01

α̃ +c02 · (sin θ)
b1c01

α̃ +c03 · H̃−
b1c01

α̃ · (3H)−
b1c01

αα̃ −
c02
α +

c04
α ,

A1 := C1 · Bc11

1 · d
b1c11

α̃ +c12 · (sin θ)
b1c11

α̃ +c13 · H̃−
b1c11

αα̃ · (3H)−
b1c11

α̃ −
c12
α +

c14
α ,

A2 := (3H)−1/α,

a0 :=
b1c01

αα̃
+

c02

α
− c04

α
, a1 :=

b1c11

αα̃
+

c12

α
− c14

α
, a2 :=

1

α
,

(73)

(2), (69) and (58).

Proof. Let 0 < ε ≤ ε0, where ε0 is to be decided later. If ε0 is small, by Proposition
6.1, there exist (69) and a triangulation L of Ω such that

(74) d
( ε

3H

)1/α

≤ |e| ≤
( ε

3H

)1/α

, e ∈ L1,

and (70). By (74) and the geometry of the triangle,

(75) diamσ ≤
( ε

3H

)1/α

, diamh(σ) ≤ ε

3
, σ ∈ L2.

By (74), (70) and the geometry of the complex L,

(76) dist(v, σ) ≥ d sin θ
( ε

3H

)1/α

, v ∈ L̃0, σ ∈ L2, v /∈ σ.
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By (76), for all σ ∈ L2,

(77) dist(h(σ), h(L̃0 \ σ)) ≥
(

dist(σ, L̃0 \ σ)

H̃

)1/α̃

≥
(

d sin θ

H̃

)1/α̃ ( ε

3H

) 1
αα̃

.

Call

δ :=

(
d sin θ

H̃

)1/α̃ ( ε

3H

) 1
αα̃

.

If αα̃ < 1 and ε0 is small then

(78) δ ≤ ε

3
;

otherwise, if α = α̃ = 1 then HH̃ ≥ 1 and (78) as well.
By (78), (70) and Theorem 4.3, if ε0 is small, there exist a homeomorphism

g :
⋃

L1 → R2 and a 1-dimensional complex M such that

(79)
⋃

M =
⋃

L1, L0 ⊂ M0, ‖g − h‖∞,
S

M < δ,

g is piecewise affine over M , coincides with h in L̃0, and

(80) B1δ
b1 ≤ |e| ≤ B2δ

b2 , e ∈ M1,

where (2).

Let σ ∈ L2. Note that M̃0 ∩ σ ⊂ ∂σ. Thanks to Theorem 5.1 applied to the
triangle σ, the complex

{e ∈ M1 : e ⊂ ∂σ} ∪
{
{p} ∈ M0 : p ∈ σ

}

and the homeomorphism g|∂σ, there exist a triangulation Nσ of σ and a homeo-
morphism fσ : σ → R2 piecewise affine over Nσ that coincides with g in ∂σ such
that

Ñ0
σ ∩ ∂σ = M̃0 ∩ σ,

for all angles ϕ of all triangles in N2
σ we have

(81) sin ϕ ≥ C0

(
B1δ

b1
)c01

[
d
( ε

3H

)1/α
]c02

[( ε

3H

)1/α
]−c04

(sin θ)c03 ,

and for all e ∈ N1
σ we have

(82) C1

(
B1δ

b1
)c11

[
d
( ε

3H

)1/α
]c12

[( ε

3H

)1/α
]−c14

(sin θ)c13 ≤ |e| ≤
( ε

3H

)1/α

,

where (58). In inequalities (81) and (82) we have also applied (74), (70) and (80).
Define f : Ω → R2 as the only function that coincides with fσ for each σ ∈ L2.

Let K be the 2-dimensional complex defined by the condition

Ki =
⋃

σ∈L2

N i
σ, i = 0, 1, 2.

Then K is a triangulation of Ω, and f is piecewise affine over K. By construction
and (79), f coincides with g in

⋃
M =

⋃
L1 =

⋃
K1, and ‖f − h‖∞,

S

M < δ.
Therefore, by Lemma 6.2,

(83) f(σ) ⊂ B(h(σ), δ), σ ∈ L2.

Now, for each x ∈ Ω there exists σ ∈ L2 such that x ∈ σ and, hence,

f(x), h(x) ∈ B(h(σ), δ);
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consequently, by (75) and (78),

|f(x) − h(x)| < diamB(h(σ), δ) ≤ ε

3
+ 2δ ≤ ε.

This proves ‖f − h‖∞ < ε.
For each ∆ ∈ K2 there exists σ ∈ L2 such that ∆ ∈ N2

σ , and, hence, (81) holds
for all angles ϕ of ∆. Similarly, for each e ∈ K1 there exists σ ∈ L2 such that
e ∈ N1

σ , and, hence, (82) holds.
We now prove that f is a homeomorphism. Since f is continuous and Ω is

compact, it suffices to show that f is injective. We have already seen that f is
injective in

⋃
M (since so is g), and in σ for each σ ∈ L2 (since so is fσ). Now take

σ1 6= σ2 ∈ L2. As L is a complex, then σ1∩σ2 is empty, or a side of both σ1 and σ2,
or a vertex of both σ1 and σ2. Take a vertex w1 of σ1 such that w1 /∈ σ2. By (77)
and (83), we have f(w1) = g(w1) = h(w1) /∈ f(σ2). Analogously, all vertices w2 of

σ2 such that w2 /∈ σ1 satisfy f(w2) /∈ f(σ1). By Lemma 6.3, f(
◦
σ1) ∩ f(σ2) = ∅,

thus finishing the proof that f is a homeomorphism. �

Note that, when α = α̃ = 1, the coefficient a0 of (73) equals 0 (by (2) and
(58)) and hence, because of (71), the triangulation K constructed in Theorem 6.4
is regular in the sense of Ciarlet [10].

7. Estimates in the Hölder norm

Following the notation of Theorem 1.1, up to now (Theorem 6.4) we have con-
structed a piecewise affine homeomorphism f that approximates h in the supremum
norm. In this section we will see how the approximation in the supremum norm and
a control on the minimum and maximum side lengths and on the minimum angle of
the triangulation (as done in Theorem 6.4) will provide us with an approximation
in the Hölder norm.

This section consists of three subsections. In Subsection 7.1 we prove an elemen-
tary trigonometric inequality that will be useful for Subsection 7.2. In Subsection
7.2 we show a priori bounds in the Hölder norm of a piecewise affine function u in
terms of the minimum and maximum side lengths and of the minimum angle of the
triangulation over which u is piecewise affine. Subsection 7.3 uses all the results of
the paper to prove Theorem 1.1.

7.1. A trigonometric inequality. In this subsection we show an elementary
trigonometric inequality that will be used in Subsection 7.2. The following lemma
plays a similar role to the one that Theorem 3.1.3 of Ciarlet [10] does in the context
of proving approximation in the Sobolev norm for finite elements. We use the stan-
dard notation that all elements of R2 are regarded as column vectors; in particular,
given a, b ∈ R2, then (a, b) is the 2 × 2 matrix whose columns are a and b. The
norm ‖ ·‖ of a matrix is defined as the operator norm with respect to the Euclidean
norm in R2.

Lemma 7.1. Let p1, p2, p3 ∈ R2 be three affinely independent points. Then

‖(p1 − p3, p2 − p3)
−1‖ ≤ 1

sin p̂1p3p2

(
1

|p1 − p3|
+

1

|p2 − p3|

)
.
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Proof. Elementary matrix computations show that

∥∥(p1 − p3, p2 − p3)
−1
∥∥ ≤

∥∥(p1 − p3, p2 − p3)
−1
∥∥

2
=

‖(p1 − p3, p2 − p3)‖2

| det(p1 − p3, p2 − p3)|

≤ |p1 − p3| + |p2 − p3|
| det(p1 − p3, p2 − p3)|

,

where by definition ‖ · ‖2 is the Frobenius norm of a matrix, that is, the Euclidean
norm of a matrix regarded as a vector in R4. By elementary plane geometry,

| det(p1 − p3, p2 − p3)| = 2 area (p1p2p3) = |p1 − p3||p2 − p3| sin p̂1p3p2,

which concludes the proof. �

7.2. A priori bounds in the Hölder norm of piecewise affine functions. In
this subsection we prove two a priori bounds in the Hölder norm of piecewise affine
functions, in terms of the minimum and maximum side length and on the minimum
angle of the triangulation.

First we recall a standard geometric property of Lipschitz domains (see, e.g.,
Exercise 1.9 of Ciarlet [9]).

Lemma 7.2. Let Ω ⊂ R2 be the closure of a non-empty, open, bounded, connected
set with Lipschitz boundary. Then there exists a constant

(84) c(Ω) ≥ 1 depending only on Ω

such that for each x, y ∈ Ω there exist

(85) m ≥ 1 and q0, . . . , qm ∈ R2

satisfying

(86) q0 = x, qm = y,

m−1⋃

i=0

[qi, qi+1] ⊂ Ω,

m−1∑

i=0

|qi − qi+1| ≤ c(Ω)|x− y|.

We will also need the following standard and straightforward interpolation in-
equality between Hölder spaces.

Lemma 7.3. Let Ω ⊂ R2. Consider 0 < β ≤ α ≤ 1 and u ∈ Cα(Ω, R2). Then

|u|β ≤ 21− β
α ‖u‖1− β

α
∞ |u|

β
α
α .

We will use Lemma 7.3 in the following way. Following the notation of Theorem
6.4, we have proved that ‖f−h‖∞ is small. Therefore, by Lemma 7.3, to prove that
‖f − h‖β is small, we only have to show a priori bounds on |f − h|α. These bounds
will be calculated in Propositions 7.4 and 7.5. In fact, we will bound |f − h|α in
terms of a negative power of ε (recall from Theorem 6.4 that ‖f − h‖∞ ≤ ε), but
we will see in Subsection 7.3 that this suffices to obtain Theorem 1.1.

Proposition 7.4. Let Ω ⊂ R2 be a closed polygon. Consider real numbers

(87) 0 < α ≤ 1, 0 < A0, A1, A2, 0 ≤ a0, a1 ≥ a2.

Then there exist c3 > 0 such that for every ε > 0 and every u ∈ C(Ω, R2) piecewise
affine over any triangulation K of Ω satisfying (71) and (72), we have

(88) |u|α ≤ c3‖u‖∞εa3 ,

where

(89) a3 := −α(a0 + a1).
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Proof. Take σ ∈ K2 and x, y ∈ σ. Let p1, p2, p3 be the three vertices of the triangle
σ. It is easy to see that, when we define

(90)

(
λx

µx

)
= (p1−p3, p2−p3)

−1(x−p3),

(
λy

µy

)
= (p1−p3, p2−p3)

−1(y−p3),

then we have

x = λxp1 + µxp2 + (1 − λx − µx)p3,

y = λyp1 + µyp2 + (1 − λy − µy)p3;

consequently, since u|σ is affine,

u(x) = λxu(p1) + µxu(p2) + (1 − λx − µx)u(p3),

u(y) = λyu(p1) + µyu(p2) + (1 − λy − µy)u(p3).
(91)

By (90),

(92)

(
λx − λy

µx − µy

)
= (p1 − p3, p2 − p3)

−1(x − y).

From (91) and (92) we obtain

(93) u(x) − u(y) = (u(p1) − u(p3), u(p2) − u(p3)) (p1 − p3, p2 − p3)
−1(x − y).

Now we use Lemma 7.1 and inequalities (71), (72) to obtain

(94)
∥∥(p1 − p3, p2 − p3)

−1
∥∥ ≤ 2A−1

0 A−1
1 ε−a0−a1 .

Equations (93) and (94) show that

(95) |u(x) − u(y)| ≤ 4
√

2‖u‖∞A−1
0 A−1

1 ε−a0−a1 |x − y|.
Now let x, y ∈ Ω be arbitrary. By Lemma 7.2, there exist (84) and (85) such

that (86). For each i ∈ {0, . . . , m − 1} let mi ≥ 1 and qi,0, . . . , qi,mi ∈ R2 be such
that

qi,0 = qi, qi,mi = qi+1, [qi,j , qi,j+1] ⊂ σj for some σj ⊂ K2,

qi,0 < · · · < qi,mi in the order of [qi, qi+1].

Then, by (95),

|u(x) − u(y)| ≤
m−1∑

i=0

mi−1∑

j=0

|u(qi,j) − u(qi,j+1)|

≤ 4
√

2‖u‖∞A−1
0 A−1

1 ε−a0−a1

m−1∑

i=0

mi−1∑

j=0

|qi,j − qi,j+1|.

But now, by (86),

m−1∑

i=0

mi−1∑

j=0

|qi,j − qi,j+1| =

m−1∑

i=0

|qi − qi+1| ≤ c(Ω)|x − y|.

This proves |u|1 ≤ 4
√

2‖u‖∞A−1
0 A−1

1 c(Ω)ε−a0−a1 , and, hence, by Lemma 7.3,

|u|α ≤ 21−α‖u‖1−α
∞ |u|α1 ≤ 21+ 3

2
αA−α

0 A−α
1 c(Ω)α‖u‖∞ε−α(a0+a1).

This concludes the proof. �
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Proposition 7.5. Let Ω ⊂ R2 be a closed polygon. Let (87). Then there exist
c4 > 0 such that for every ε > 0, every triangulation K of Ω satisfying (71) and
(72), and every h ∈ Cα(Ω, R2), we have

(96) |Πh|α ≤ c4‖h‖αεa4 ,

where

(97) a4 := −α(a0 + a1 − αa2)

and Πh is the piecewise affine function over K that coincides with h in K̃0.

Proof. Take σ ∈ K2 and x, y ∈ σ. Let p1, p2, p3 be the three vertices of the triangle
σ. By (93),

(98) Πh(x) − Πh(y) = (h(p1) − h(p3), h(p2) − h(p3)) (p1 − p3, p2 − p3)
−1(x − y).

Now, thanks to (72),
(99)
‖(h(p1) − h(p3), h(p2) − h(p3))‖ ≤ |h|α (|p1 − p3|α + |p2 − p3|α) ≤ 2|h|αAα

2 εαa2 ;

on the other hand, by Lemma 7.1, (71) and (72),
(100)

‖(p1 − p3, p2 − p3)
−1‖ ≤ 1

sin p̂1p3p2

(
|p1 − p3|−1+ |p2 − p3|−1

)
≤ 2A−1

0 A−1
1 ε−a0−a1 .

In total, (98), (99) and (100) show that

(101) |Πh(x) − Πh(y)| ≤ 4|h|αA−1
0 A−1

1 Aα
2 ε−a0−a1+αa2 |x − y|.

Now, using Lemma 7.2 and (101), and arguing as in the proof of Proposition 7.4,
one can show easily that

(102) |Πh|1 ≤ 4|h|αA−1
0 A−1

1 Aα
2 c(Ω)ε−a0−a1+αa2 ,

where c(Ω) is the constant of Lemma 7.2. Now we use (102), Lemma 7.3 and the
obvious inequalities ‖Πh‖∞ ≤ ‖h‖∞ ≤ ‖h‖α and |h|α ≤ ‖h‖α to conclude that

|Πh|α ≤ 21+αA−α
0 A−α

1 Aα2

2 c(Ω)α‖h‖αεα(−a0−a1+αa2),

thus finishing the proof. �

7.3. Approximation in the Hölder norm. Up to now (Theorem 6.4) we have
constructed a piecewise affine homeomorphism f that approximates h in the supre-
mum norm. The a priori bounds found in Subsection 7.2 will provide us with an
approximation in the Hölder norm, thus proving Theorem 1.1.

Recall that the exponents a0, a1, a2, a3, a4 defined in (73), (89) and (97) satisfy

(103) 0 ≤ a0, 1 ≤ a2 ≤ a1, a4 ≤ 1 + a3 ≤ 0,

and that these inequalities are equalities if α = α̃ = 1.
Theorem 6.4, Propositions 7.4 and 7.5 and Lemma 7.3 provide a proof of the

main theorem of this paper, stated below.

Theorem 7.6. Let Ω ⊂ R2 be a closed polygon. Let 0 < α, α̃ ≤ 1 and let
h ∈ Cα(Ω, R2) be a homeomorphism with h−1 ∈ Cα̃(h(Ω), R2). Then there ex-
ist constants ε0, D > 0 depending only on

(104) Ω, ‖h‖α, |h−1|α̃, α, α̃
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such that for every

(105) 0 < ε ≤ ε0 and 0 < β <
α

1 − a4

(where a4 is defined through (97), (73), (58) and (2)) there exists a piecewise affine
homeomorphism f ∈ C(Ω, R2) such that

‖f − h‖∞ ≤ ε and |f − h|β ≤ Dε1− β
α (1−a4).

Proof. Take (105), where ε0 is to be chosen later. If ε0 is small, by Theorem 6.4,
there exist a triangulation K of Ω, and a homeomorphism f : Ω → R2 such that
(71), (72), f is piecewise affine over K, and

(106) ‖f − h‖∞ ≤ ε.

By Lemma 7.3, we have

(107) |f − h|β ≤ 21− β
α ‖f − h‖1− β

α
∞ |f − h|

β
α
α .

Now,

(108) |f − h|α ≤ |f − Πh|α + |Πh − h|α,

where Πh is the piecewise affine function over K that coincides with h in K̃0. If
ε0 is small, by Proposition 7.4 and Theorem 6.4, there exists a constant c3 > 0
depending only on (104) such that

|f − Πh|α ≤ c3‖f − Πh‖∞εa3 .

We now note that ‖f − Πh‖∞ ≤ ε; indeed, this is immediate, since f − Πh is a
piecewise affine function over K such that (thanks to (106)) |f(x)−Πh(x)| ≤ ε for

all x ∈ K̃0. Therefore,

(109) |f − Πh|α ≤ c3ε
1+a3 .

By Proposition 7.5 and Theorem 6.4 there exists a constant c4 ≥ 1 depending only
on (104) such that inequality (96) holds, and hence,

(110) |Πh − h|α ≤ |Πh|α + |h|α ≤ c4‖h‖αεa4 + ‖h‖α ≤ 2c4‖h‖αεa4 ,

since ε0 is small and (by (103)) a4 ≤ 0. In total, inequalities (106), (107), (108),
(109), (110) and (103) demonstrate that

|f − h|β ≤ 21− β
α (c3 + 2c4‖h‖α)

β
α ε1− β

α (1−a4).

This concludes the proof. �

Of course, Theorem 7.6 demonstrates Theorem 1.1.
We finish this paper with some comments about the optimality of Theorem 7.6.
Let 0 < α, α̃ ≤ 1. Let B(α, α̃) be the set of all 0 < β ≤ 1 with the following

property: For every closed polygon Ω, the set of piecewise affine homeomorphisms
from Ω to R2 is dense in the set

{
h ∈ Cα(Ω, R2) : h is a homeomorphism with h−1 ∈ Cα̃(h(Ω), R2)

}

in the ‖ · ‖β norm. Clearly, B(α, α̃) is an interval. What Theorem 7.6 asserts is
that B(α, α̃) is non-empty, and

supB(α, α̃) ≥ α

1 − a4
=

α4α̃3

3 + 6αα̃ − 6α2α̃2 − α3α̃3 − α4α̃3
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(the latter equality comes from (97), (73), (58) and (2)). An optimal version of the
result of Theorem 7.6 would be to calculate supB(α, α̃) and to ascertain whether
supB(α, α̃) belongs to B(α, α̃). For example, it is easy to show that

(111) α /∈ B(α, α̃), α < 1, α̃ ≤ 1.

Indeed, take 0 < α < 1, and let Ω be a closed polygon whose interior contains 0.
Define h : Ω → R2 by

h(x, y) = (|x|α sgnx, y), (x, y) ∈ Ω,

where sgn x stands for the sign of x ∈ R. Then h ∈ Cα(Ω, R2) is a homeomorphism,
and h−1 is Lipschitz continuous. However, h cannot be approximated by piecewise
affine homeomorphisms in the ‖ · ‖α norm. In fact, it is easy to see that h cannot
be approximated by Lipschitz continuous functions in the ‖ · ‖α norm (see, e.g.,
Kichenassamy [15], if necessary). Therefore, α /∈ B(α, 1), and this implies (111).

Note that Theorem 7.6 shows in particular that supB(1, 1) = 1, and the following
example shows that 1 /∈ B(1, 1). Define the absolutely continuous function f :
[0, 1] → R by f(0) = 0 and

f ′(x) = 2 + sin
1

x
, x ∈ (0, 1].

Define h : [0, 1]2 → R2 as h(x, y) := (f(x), y). Clearly, h is a Bilipschitz function,
and it can be easily seen that any continuous piecewise affine map g : [0, 1]2 → R2

satisfies |h − g|1 ≥ 1. This shows the optimality of Theorem 7.6 when α = α̃ = 1.
When αα̃ < 1, we believe that it is not optimal.
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