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Abstract. We compute the large-body and the small-particle Gamma-limit of a family of en-
ergies for nematic elastomers. We work under the assumption of small deformations (linearized
kinematics) and consider both compressible and incompressible materials. In the large-body asymp-
totics, even if we describe the local orientation of the liquid crystal molecules according to the model
of perfect order (Frank theory), we prove that we obtain a fully biaxial nematic texture (that of the
de Gennes theory) as a by-product of the relaxation phenomenon connected to Gamma-convergence.
In the case of small particles, we show that formation of new microstructure is not possible, and we
describe the map of minimizers of the Gamma-limit as the phase diagram of the mechanical model.
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1. Introduction. Studying the microstructure of complex materials is one of
the most interesting problems in modern applied mathematics and statistical me-
chanics. A paradigmatic case is represented by nematic liquid crystal elastomers
(LCESs), a class of materials which associate a liquid crystalline texture composed of
rigid rod-like molecules (nematic mesogens) with an elastic medium. To sketch the
internal organization of this material, we recall that the backbone of the elastomer
is constituted by long polymeric chains which are cross-linked to a substrate. Then
rod-like molecules of a nematic liquid crystal are linked to the chains. As a result,
the topology of the mesogens is fixed and a mechanical deformation can reorient lo-
cally the nematic molecules and modify the optical properties of the elastomer. Their
interesting properties stem from the interaction between liquid crystalline order and
the elastic response of the chains. A very relevant phenomenon observed in nematic
elastomers is the large spontaneous deformation accompanying a temperature-induced
phase transformation from the isotropic to the nematic state. This deformation can
reach 400% with respect to the reference configuration. Moreover, LCEs can deform
and bend under UV-light excitation or in the presence of electric or magnetic fields.
These properties make them extremely interesting for applications in bioengineering
and robotics (e.g., artificial muscles and crystalline).

This paper is part of a series of articles concerning the analysis of functionals for
LCEs in the scenario of the linearized elasticity. Our main reference on the mathe-
matical theory of elasticity is [10]. We refer to [15], [28], and [29] for a physical and
mathematical introduction to liquid crystals and liquid crystal elastomers. The gen-
eral approach to modeling the nematic mesogens is to define an order tensor [15], [28].
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In brief, the information on the orientation and the degree of order of the nematic
molecules is encoded in the eigenvectors and in the eigenvalues of the symmetric ma-
trix Q, a state variable which can be defined in three different ways according to the
three available models of de Gennes, Ericksen, and Frank. Though the geometrically
linear theory has some obvious limitations, it is a very valuable conceptual tool in
the study of phase transforming materials. In particular, it lends itself more easily to
the exploration of model extensions such as, for example, accounting for the presence
of electric or magnetic fields (see [8]) and including curvature elasticity terms typical
of liquid crystals by simply adding new terms in the governing energy. Furthermore,
the linear theory is simpler in many respects and, importantly, the resulting energy
landscapes have an easier geometric structure (see also [7] and [9]). Therefore, rigor-
ous mathematical results such as, for example, the explicit construction of the relaxed
energies are more complete, leading to a great insight into the energetically optimal
states of the material.

Denoting by F the gradient of the displacement, a possible expression for the
energy density describing nematic elastomers is [8]

T 2
(11) Freel @ F) = () 5|+ S my2
The order tensor Q can be taken either in Qp,., or Qu, or Qp (respectively, the
set of Frank, Ericksen, and de Gennes order tensors). The relationship between this
expression and the one proposed in the Cambridge group [29] within the framework
of finite elasticity is discussed in [1] and [20]. The sets Qp, C Qu C Qp are defined
in section 1.1. Here we recall that the theory of de Gennes [15] allows us to describe
both the degree of nematic order (including biaxiality) and the average direction
of the molecules. In particular, the convex and compact set Qp contains biaxial
matrices and, among them, the null element. A simplified theory can be obtained by
ruling out biaxiality from the available states of order, in which case we obtain the
Ericksen model of uniaxial tensors [21]. A further simplification consists in considering
the order of the system as frozen, so that the only unknown parameter describing
nematic mesogens is their local orientation. This is the model of perfect order, or
the Frank model [23]. It is noticeable that both Qp and Qp, are nonconvex sets,
and that Qp contains the null tensor, while O, does not. Therefore, in the case in
which we take Q € Qp, in (1.1) a state with biaxial or zero Q cannot be induced
mechanically, while if Q € Qy, the isotropic state (i.e., Q = 0) is reachable. On
the other hand, if Q € Qp, we can obtain all the biaxial states, including again
Q=0.

The considerations above pertain to the microscopic description of order in ne-
matic elastomers. In fact, in stretching experiments of sufficiently large samples, loss
of local order and isotropy can be observed even on a macroscopic scale. The for-
mer is the formation of stripe-domains, and the second is blurring near the clamps.
These phenomena can be described by the analysis of the large-body Gamma-limit
of functionals defined in the scenario of the Frank tensor. More precisely, all of
these material instabilities are modeled by low energy minimizing sequences for func-
tionals defined over nonclosed sets of functions. On the other hand, if we apply
a deformation to a very small sample of nematic elastomers, we observe a uniform
orientation of the mesogens. In this case, formation of microstructure seems to be
ruled out.

This paper concerns the asymptotic analysis of minima and minimizers of the
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integral functional for incompressible nematic elastomers:

[ (F19QF + @ V) o

Q

(12) (Q,u)— on H(Q, Ox) x HL(Q,R?),divu = 0,
+o0 otherwise in L?(Q, M3*3) x H(Q,R3),

where u is the mechanical displacement, 2 is a suitable domain in R?, and X is a label
which stands either for Fr, or U, or B, according to the available models of order
tensors. The parameter ¢ is proportional to the ratio between the curvature constant
of the liquid crystal and the characteristic length of the specimen. In brief, in the
large-body limit € tends to zero, while in the small-particle limit € tends to infinity.
We compute exactly the two variational limits of (1.2) as ¢ — 0 and as € — oo in
the sense of Gamma-convergence with respect to suitable topologies. Our main result
(Theorem 3) is the computation of the large-body Gamma-limit in all three cases (i.e.,
when X stands for either F'r, or U, or B), which is

mec(Q,Vu)dr on L*(Q, Qp) x HY(Q,R3),divu =0,
(1'3) (Q,u) s /Qf (Q ) ( B) ( )
+00 otherwise in L?(Q, M3*3) x H1(Q,R3).

This result is straightforward in the case in which we set X = B in (1.2), since
the limit energy reduces in fact to the integral of the density fi,ec, and there is no
penalization for the gradient of the order tensor. A very interesting fact is that the
energy appearing in (1.3) is the Gamma-limit of (1.2) even if we assume X = Fr (or
X = U), that is, if we model the crystal according to the Frank (or the uniaxial)
order tensor theory. Therefore, a biaxial texture can be obtained effectively thanks to
the formation of microstructure, even though biaxiality is excluded at the microscopic
level. We anticipate that this Gamma-convergence result is based on the fact that the
subset of Frank tensors L?(Q, Qr,) is not weakly closed, and that its closed convex
hull coincides with L?(€2, Qp). The physical consequences of this result are deep and
are discussed in the rest of the article. Furthermore, in the converse regime, namely,
the small-particle asymptotics, we show that the Gamma-limit of (1.2) reduces to the
integral of f,e. defined over the set of constant order tensors, that is,

) s / fmee(Q,Vu)dzr on {H' (9, Qx),Const} x H(Q,R3),divu = 0,
Q
+00 otherwise in L2(2, M3*3) x H(Q,R3).

(Q,u

The rest of the paper is organized as follows. In the remaining subsections of the
introduction we present the form of the energy functional and its rescaling. Section
2 is devoted to the analysis of large bodies. For the reader’s convenience, the proof
of the Gamma-convergence is subdivided into two main parts, the first one (section
2.1) concerning the relaxation (i.e., the computation of the lower semicontinuous en-
velope) of the mechanical energy, and the second one (section 2.2) containing the
Gamma-limit argument. Then in section 2.3 we compute some special equilibrium
solutions and compare the Gamma-convergence results of this paper with the relax-
ation of another model [7] which was introduced to describe microstructure formation
in nematic elastomers. Finally, section 3 contains the analysis for small particles. All
the Gamma-convergence results are obtained also for models of compressible materi-
als (in other words, if we remove the constraint on the divergence of u) and in the
presence of slightly different boundary conditions, in order to describe a variety of
physical problems.
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1.1. Preliminaries.

Notation. We gather here the main symbols and the notation used throughout
the paper. Let N and R denote the set of natural and real numbers, respectively. For
any integer n, R™ is the space of n-dimensional vectors with canonical basis {i;}, =
1,...,n, with origin O = (0,...,0) and M"*™ the space of square real matrices.
The determinant, the trace, and the transpose of the matrix F in M"™*"™ are denoted
by detF, trF, FT, respectively. We endow M"™*" with the usual inner product
F: M := tr(FMT) = >ij FijM;j. Here M;;, Fy; are the cartesian components
of M and F. The identity in M™*™ is denoted by I. Focusing on the case n =
3, we label with M{*®, M2x3  and MJ)> the subspaces of traceless, symmetric,
and traceless and symmetric (deviatoric) matrices, respectively. We introduce the
projections E : M?*3 — M2x3  defined as E(F) := (F + F")/2, and Eo : M**? —

Mg:y?’m, defined as Eo(F) := E(F) — ((tr F)/3)I. In this definition we can consider
the trace of E(F) as well, since tr F = tr E(F). This fact will be widely used in what
follows. If we introduce F** := (F — FT)/2, we obtain the well-known decomposition
F = Eo(F) + F** + @I. We denote by C: M2x3 s M2 the fourth-order tensor
of linearized isotropic elasticity, given as C(A) = 2uA + Ar (A)IVA € M3X3 | with

sym>
positive g and A (Lamé constants).

Definitions and properties of the sets Qp, Qu, Qr,-. We define the set of
biaxial (de Gennes) tensors

10 0p={QeM: Q=0 —5 < Ain(Q) < Ae(@ < 5},

where Apin (Q) and Apq.(Q) denote the smallest and largest eigenvalue of the matrix
Q. We prove that Qp is convex. To this end, we recall that Q +— A,;,(Q) is a concave
and continuous function, and Q — A2 (Q) is a convex and continuous function [25,
section 5.1, Theorem 3.1.1]. Hence, if we take Q1,Q2 € Qp and any v € [0, 1], we
have

(15) /\min (VQl + (1 - V)QQ) Z VAmin (Ql) + (1 - V)/\min (QZ) Z _1/37

and, analogously, Anaa (I/Ql + (1= I/)Qg) < 2/3. This also guarantees that Qp is
closed and bounded. Then we introduce the set of uniaxial (Ericksen) tensors, namely,
the one obtained when the de Gennes order tensors are constrained to be uniaxial,
i.e., when two eigenvalues coincide,

Wl N

(16) QU = {Q S Mg;jg . tI‘Q - 0, —% S Amm(Q) S /\mar(Q) S )
)\maz(Q) = _ZAmin(Q) or Amin(c))) = _2Amar(Q)}

The last case is that of the Frank model, namely, the one using as nematic state vari-
able only the eigenframe of Q, which is constrained to have eigenvalues 2/3, —1/3, —1/3
and which ranges in the set

2 1
17)  Qpy = {Q €MD rQ =0, Anaa(Q) = 3. Amin(Q) = —5}.
Notice that since tr Q = 0, this suffices to describe the spectrum of Q. It follows
by definition that Qp, C Qu C Qp and, importantly, Oy and Qp, are closed and

nonconvex sets. Moreover, Qp coincides with the convex envelope of Qp, and Qp (7,
Remarks 3 and 4].
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1.1.1. Functional setting. Let ) be an open and bounded subset of R". We
adopt the notation C*(Q), C*(,R™), C*(Q,M"*"), with k¥ € NU {0, 400}, for the
spaces of functions with continuous derivatives up to order k and C*(Q), C*(Q,R"),
Ck(Q,M™*") for the spaces of continuous functions with compact support in Q. Let-
ting p € [1,400), we introduce LP(Q2), the space of measurable functions u :  — R
such that [, |u[Pdz < +o0, and moreover LP(Q,R") and LP(€2, M"*"), respectively,
the spaces of vectors or matrices with components in LP(§2). The space L (§2, M"*"™)
is that of matrices with essentially bounded components. Then HP() is the space
of scalar-valued LP-functions whose gradient is in LP(2,R"), and H'P(Q,R"),
HYP(Q,M"™ ") are the spaces of vector-valued and matrix-valued LP-functions whose
gradient has LP-integrable components. They are endowed with the usual norms and,
if p = 2, we simply write H' instead of H'*2. The space H}(2) is defined as the closure
of C2°(Q) in the topology of H(Q) (analogously for H!(Q,R") and H}(Q, M"*")).
If Q is a domain with Lipschitz boundary, we label with H%D (©,R™) the subspace
of Hl-functions which vanish in the sense of traces (see [10, Theorem 6.1-7]) on I'p,
where I'p is a subset of 90 with positive surface measure. Moreover, let Z be a
compact set in M"™*™. We introduce the subsets

(1.8) LA, 2) :={Z € L*(Q,M"*") : Z(z) € Z a.e. in Q},

(1.9) HY(Q,2):={Z ¢ H'(Q,M**3) : Z(x) € Z a.e. in Q}.

Focusing on the case n = 3, Q) is the reference domain occupied by a three-dimensional
body. We denote by (z1, 22, 23) the cartesian components of the point z in . The
system is described by the displacement u :  — R? and the order tensor Q :  — Qx,
where X stands for either F'r, or U, or B (this notation will be used throughout
the paper). In particular, if we replace Z with Qx in (1.8) and (1.9), we obtain
the subsets of order tensors L%(), Qx) and H'(Q, Qx). It is straightforward to
prove that L%(Q, Qp,), L?(Q, Qu), and L?*(, Qp) are closed in the strong topology
of L2(Q,M3*3). To this end, we can take a strongly convergent sequence {Qy} C
L?(9, Qx) and extract a subsequence {Q j} which converges pointwise. Since Apin
and A4, are continuous functions, the claim is proved. Moreover, LZ(Q7 Qp) is closed
also in the sense of the weak topology by convexity (Hahn-Banach theorem [6]). On
the other hand, the sets L?(Q, Qp,) and L%(f2, Qy) are not weakly closed, and one
can prove (see Remark 2 in section 2) that L?(), Qp) coincides with the (closed)
convex envelope of L2(2, Qr,) (and of L?(Q2, Q).

1.1.2. Gamma-convergence and relaxation. In this article we are mainly
interested in Gamma-convergence and relaxation of functionals with respect to the
product of the weak topology of L? with the weak topology of H', and with respect
to the product of the strong topology of L? with the weak topology of H!. Here, as a
paradigm, we define the Gamma-convergence and the relaxation in the weak topology
of H'. Our general references are [4], [14]. We present the sequential characterization
of the Gamma-convergence (this is equivalent to the abstract topological one since
all the functionals defined in this paper satisfy a uniform coercivity condition [14,
Chapter 8]).

DEFINITION 1. Let {F} be a sequence of functionals defined on H'(,R3). We
define for any u € H*(Q, R?)

I-liminf F (u) = inf{lim inf Fy(uz), 0, — u},
h—~+o00 h—4o0

I-lim sup Fp, (u) = inf{lim sup 7 (us), up — u}.

h—+oco h—+oco
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If we have
I-lim inf 7 (u) = I'-lim sup F (),

—too h—+00

then the common value is said to be the T'-limy_ o0 Fp(u).
DEFINITION 2. Let F be a functional defined on H'(Q,R3). We define the
relazation of F with respect to the weak topology of H'(Q,R3):

(1.10)  F =sup{G : G is H (Q,R?) weakly lower semicontinuous, G < F}.

For the reader’s convenience, we recall a useful property of the Gamma-convergence
which will be applied in section 2.

PROPOSITION 1. Let {Fn} be an increasing sequence of functionals defined on
HY(Q,R3), and let F), be the relaxation of Fy,. Then for every u € HY(Q,R3) there
erists

I- lim Fyp(u)=T- lim Fp(u) =sup Fu(u).
plim, Fn(w) =1, lim Fa(u) = sup Fi(u)

1.1.3. Gathering of technical propositions. We present some preliminary
results which are applied in the rest of the paper.

Korn’s inequalities [10, Theorems 6.3-3 and 6.3-4]. Let 2 be an open,
bounded, connected subset of R with Lipschitz boundary. Let z € H!(Q,R3). Then
there exists a positive constant K7 = K1(Q) such that

(L11) IVl < Kil@) (232,00 + (V)20 p0005) )

Now let z € H%D (£2,R3). Then there exists a positive constant Ko = K5(£2) such that

(112) V20132 g m050) < Ka() (IE(V2)] 32 055))-

The following proposition, which is due to Bogovskil (see [24, Theorem 3.1]), has
an important role in order to treat the case of incompressible elastomers.

PROPOSITION 2. Consider N> n > 2 and p € (1,00). Let Q be an open, bounded,
connected subset of R™ with Lipschitz boundary. Assumez € H}P(Q,R"™). Then there
erists at least one solution to the problem

w € HIP(Q,R"),
(1.13) divw = divz,
HWHHl,p(Q’Rn) S C(Q, n,p)”diVZHLp(Q).

In the rest of the paragraph, let 2 C R? with N > d > 2 be a (nonempty) open,
bounded, and connected set with Lipschitz boundary, and let € M?*? be a compact
and convex set.

PROPOSITION 3. Let Q € L?(Q,K). Then there exists a sequence {Qr} C
L2(Q,K) of piecewise-constant matrices such that Q — Q strongly in L?(Q, M*?)
as k — +o0.

Proof. We recall that a function Q is said to be piecewise-constant if there exists
a partition of Q) consisting of a finite number m of open and pairwise disjoint sets Q7
such that

Q:GquN,

Jj=1
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where |[N| = 0 and Q’ := Q]q; is constant. We can take a sequence {Zj} C
L2 (2, M?*?) of piecewise-constant matrices such that Zz — Q strongly in L?(£2, M?*4)
(this is a standard approximation result; see, for instance, the construction in the
proof of [16, Proposition 2.2] and the references cited therein). Then, if we define
Qy. : 7°(Zy) for any k, we obtain the new sequence {Qy} C L%*(Q,K) of piecewise-
constant tensors, which proves the claim. a

In what follows we assume d = 3.

LEMMA 1. For any Q € L?(2, Q) there exists {Qr} C HY(Q, Qp,) such that

Q. — Q in L*(Q,M3**3) as k — +o0.

Proof. Tt is easy to show that any Q € L?*(Q, Qr,) can be written in the form
Q =n®n— I with n € L*(Q,S?). By the spectral theorem it is possible to set Q
in diagonal form

2 1 1
(1.14) Q=§n®n—§m®m—§p®P,

where {n, m, p} is an orthonormal frame. Since two of the eigenvalues of Q coincide,
(1.14) is equivalent to

2 1 1
Q:§n®n—§(1—n®n): (n@n—gl).

Now, for any given n € L?(,S?), there exists a sequence
n, — nin L*(Q,R?) as k — 4oo

with {n,} C H'(Q,S?) (see [16, Assertion 1, pages 109-110, with ms = 1]). Let us
define

1
Qi :=np®ng — gI.

Every tensor field Qy belongs to H!($, Q) by an elementary property of the product
of essentially bounded H!-functions. Then it is sufficient to verify that ny®n; — n®n
in L2(Q, M3*3):

/|nk®nk—n®n|2d$:/|nk®nk—nk®n+nk®n—n®n|2da@
Q Q
Sal/ |nk||nk—n|2d$+a2/ In|[n; — n|*dz 20,
Q Q

where a1, as are suitable positive constants. 0

Remark 1. The lemma above proves that any Frank tensor in L?*(€, Q,) can be
approximated in the strong topology by a sequence of oriented Frank tensors in the
sense of [2].

Properties of the distance. Given any matrix F € M3*3 and a positive number
v, we introduce Q := 792 (E(F) /) = sn7 27 (E(F)), the projection of the symmetric
part of F/~ onto the subset Qp. By definition Q is the element of minimum distance
from the set Qp, and it follows that

(1.15) dist*(E(F),vQp) = Juin |E(F) — Q[ = |E(F) — yQJ*.
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The projection is defined uniquely by the convexity and compactness of Qp. More-
over, the map F ~ 7722 (E(F)) is Lipschitz-continuous in the space of matrices.

With some abuse of notation, given any tensor field F € L2(Q, M3*3), we define
with Q(x) = WLz(Q’QB)(E(F)/v)(x) = %WL2(QWQB)(IE(F))(;U) the projection of the
symmetric part of F/v onto L?(2, Qp). Again, the projection is defined uniquely
because L%(f2, Qp) is a convex, closed, and bounded subset of L?(Q2, M3*3), and it
follows that F s &’ (2725) (E(F)) is a Lipschitz-continuous map in the L2(£2, M*3)
metric. We have

. . 2
dZSt%2 (E(F), L2 (Q, 'YQB)) = QELIgl(lflll,QB)H]E(F) - 7Q||L2(Q,M3X3)

- /Q E(F)(z) — vQ(x)| de.

The relation between 7722 (.) and WLz(QWQB)(-) is shown in the next elementary
proposition, which we do not prove.
PROPOSITION 4. Given any F € L?(2,M3*3), then

(1.16) (x2*(2198)(F)) (2) = 7797 (F(x))

for a.e. x €.
A consequence of Proposition 4 is that

(1.17) dists» (E(F), L*(,79g)) :/QdistQ(IE(F(x)),A/QB)dx.

1.2. The mechanical model. According to [8], we describe the equilibrium
configurations of a system of nematic elastomers as the minimizers of the energy
functional

2
(1.18) FHQu; B) = /B(%wqﬁ’ + Fneel Q. V) ),

where B is the region occupied by the material (an open, bounded, and connected
set in R? with Lipschitz boundary). Each of the summands in (1.18) can be regarded
as a penalty term that enforces a certain feature of the observed behavior of nematic
elastomers. The term %2|VQ|2 is typical in the literature on liquid crystals and is
introduced in order to penalize spatial variations of Q. The material parameter &2 is
called the curvature constant, and the corresponding energy contribution is called the
curvature energy. Expressions for the curvature energy more general than that used
here are possible. All the results of this paper are still valid if we replace %2|VQ|2
with the more general expression

L4 Lo L3
(1-19) 7Q0¢57’7Q0¢57’Y + TQaB,ﬁQa%v?QaﬁﬂQa%ﬁv

where L;, 1 = 1,2,3, are the elastic constants and Qugs,y is the o5 Cartesian compo-
nent of the first derivative of Q with respect to z (o, 8,7 = 1,2,3). Summation over
repeated indices is understood. The constants L; satisfy some constraints (see [26]) in
order to make (1.19) a positive definite expression of the first-order derivatives of Q,
and the choice L1 = k2, Ly = 0, L3 = 0 well satisfies the constraints. The mechanical
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energy density fi,ec is a positive function which describes the coupling between strain
and order in nematic elastomers in the form

1 A
(1:20) finee( Q. F) 1= 5 C(E(F) ~1Q) : (E(F) ~1Q) = ulE(F) — QP + 5 (1 F)?,
Q € Qx,F € M**3, where X stands for either Fr, or U, or B.

Here 1 and A are the positive Lamé constants of linearized isotropic elasticity, and - is
another positive and dimensionless constant. Accepting (1.20) has nontrivial physical
consequences. In view of (1.20), the mechanical energy vanishes if and only if the
order tensor can reproduce the mechanical strain (Q = %IE(F))7 and when Q differs
from %E(F), there is a finite penalization for any value of Q within the admissible set
Ox. In particular, in Frank’s scenario the main effect of the coupling between liquid
crystalline order and elasticity is the possibility of reorienting the molecules through
applied forces or imposed displacements, while in the more general scenario of de
Gennes and Ericksen, also the degree of order may be affected by mechanical means
(see also [11], [12], [13], [17], [18], [19]). Since Qp is compact, there exist Cy, Cs, and
Cj5 positive constants such that

(1.21) =C1 4 Co|E(F)|?> < fimee(Q,F) < C3(1 + |E(F)|*) VQe€ Qx ,F € M**3,

where X stands for either Fr, or U, or B. Furthermore, experimental observations
show that nematic elastomers are nearly incompressible (the bulk modulus is orders of
magnitude larger than the shear modulus). The classical way to model such materials
in linearized elasticity is to restrict the admissible deformation gradients to the class
of traceless matrices or, equivalently, to introduce a constraint on the divergence of
the displacement.

The investigation of the equilibrium configurations of a system of nematic elas-
tomers, namely, the solution to the problem

(1.22) minimize F*(Q,u;B), with Q € H'(B, Qx) and u € H!(B,R?),divu = 0,

where 2 is an assigned (and nonzero) constant and X stands for either F'r, or U, or B,

is the subject of [8, Theorem 2.2]. Briefly, existence of minimizers is guaranteed by the
boundedness of minimizing sequences and the weak sequential lower semicontinuity of
(Q,u) — F*(-,; B) with respect to the product of the weak topology of H!(B, M?3*3)
with the weak topology of H'(B,R3). It is important to note that, in [8], all the
material and the physical parameters of the system are assumed to be constant.

According to experimental observations, in very small specimens of a nematic gel
the nematic molecules tend to be uniformly aligned to some common direction, while
in sufficiently large samples they can form fine domain structures. To understand how
the energy terms in (1.18) are affected by a volume rescaling, consider a domain B C
R3 of volume A3, where A € (0,00) and let Qx € HY(B, Qp,) and uy € HL(B,R3?).
Set  := (1/A)B and define Q : Q + Qx, u: Q+— R3 by

Q(%Z) = Qa(2), Au(%z) = up(2), 2 € B.

Obviously,  is an open, bounded, connected subset of R3 with Lipschitz boundary
and unit volume, Q € H(€2, Qx), and u € H}(Q,R3). Hence, it follows that

i K . _ TkK/A . _ 5—2
(123) (57" (QumaiB) = F (Q,u,Q)_/Q(2A2|VQ|2+fmec(Q,Vu))d;v,
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and, if we set €2 := k?/2A%, we obtain the integral expression presented in the in-
troduction. In what follows, we analyze the effect of the variation of the size of the
domain by studying the minimizers for the reference configuration €2 in the two rel-
evant limits as the scale parameter A approaches the ends of its range by means of
Gamma-convergence.

2. Large bodies: Asymptotics. We discuss the asymptotic behavior of large
samples of nematic elastomers by computing the Gamma-limit of the functional

/Q(EQIVQIQ + fnee(Q, V) ) da

Fxe(Qu) = on H'(Q, Qx) x HY(Q,R?),divu = 0,
+o0 otherwise in L?(2, M3*3) x H(Q,R3),

where X stands for either F'r, or U, or B as € — 0 in the topology

(2.1) o := weak-L2(Q, M?*3) x weak-H' (0, R?).

For convenience, we adopt the shortened notation

(2.2) Qr,uy 2> Q,u  as k — +oo,

which stands for

(2.3) u, —uin HY(Q,R?),  Qp— Qin L%(Q,M**?) as k — 4.

We recall that the Gamma-convergence in the weak topology of H!(Q,R3) is equiv-
alent to the Gamma-convergence in the strong topology of L2(£2,R?) because the
functional bounds the L?-norm of the gradient of u by (1.21) and Korn’s inequality
(1.11). Analogously, since L?(2, Qp) is contained in a closed and bounded ball of
L2(92,M3*3), then the weak topology over L?(€2, Qx) is metrizable [14, Chapter 8].
If we define

/ fmee(Q,Vu)dz on L*(Q, Qx) x HY(Q,R3),divu =0,
]:X,mec(Qau) = Q
+o0 otherwise in L?(Q, M3*3) x H(Q,R3),

where X stands for either F'r, or U, or B, we claim that Fx . Gamma-converges to
the relaxation of Fx mec. Therefore, it is natural to split the proof into two main
parts, the first one (section 2.1) in which we compute the relaxation of Fx mec, and
the second part (section 2.2) containing the Gamma-convergence theorem.

2.1. Relaxation. According to well-known techniques in the calculus of varia-
tions [14], [22], in order to relax Fx mec we can exhibit a suitable recovery sequence
for any (Q,u) € L2(Q, M**3) x H'(Q, R?). Unfortunately, the presence of constraints
on the components of the order tensor Q € Qx and, in particular, on the divergence
of u, makes the construction of such a sequence a nontrivial problem. In our par-
ticular case, however, an argument due to Braides [5] and largely employed also in
[7] is sufficient to compute the relaxation of Fx mec. Indeed, it is possible to show
that the relaxation of the incompressible models coincides with the Gamma-limit of
a sequence of relaxed energies for compressible elastomers as the bulk modulus tends
to +00. According to this technique, in what follows, we introduce the functionals
for compressible elastomers and compute their relaxation (Theorem 1). In this case
we do not have to take into account any additional constraint on the divergence of u,
and an explicit construction of the recovery sequence turns out to be possible. Then
we apply the result for compressible elastomers in order to compute the relaxation of
Fx mec (Theorem 2).
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2.1.1. The case of compressible elastomers.
THEOREM 1. Let Q C R3 be an open, bounded, and connected set with Lipschitz
boundary. Assume fmec as in (1.20) and define

/ Fmee(Q, Vu)dx on L*(Q, Qx) x H(Q,R?),
Q

(24)  Fx me(Q,u):=

+o0 otherwise in L*(Q, M3*3) x H(Q,R?),
where X stands for either F'r, or U, or B. Then the relazation of Fx mec in the sense
of o (see (2.1)) is F mec-

Proof. In the case in which we set X = B in (2.4) there is nothing to prove
because Fp me. is weakly lower semicontinuous by convexity. In the case X = U
the result follows immediately by an abstract argument which we postpone to section
2.2.1. Here we show the complete construction for the case X = Fr. Recalling that
L3(Q, Qpr) C L?(Q2,Qp), we have Frymec > Fpmee and, by relaxing both sides,
Fanec > FB mec. Then observe that the converse inequality

(25) Fanec < FB,mec

is trivial if Q ¢ L%*(Q, Qp). Hence, in what follows we can prove (2.5) under the
assumption that (Q,u) € L%(Q, Qp) x H(Q,R3) by splitting the proof into three
steps. In Step 1, we discuss the relaxation in the case in which the tensor field Q
is constant by constructing a recovery sequence {Q,,u,}. In Step 2, we prove that
(2.5) holds in the case of piecewise-constant biaxial tensor fields. Lastly, in Step 3,
we extend the proof of Step 2 to any L2-biaxial tensor field.

Step 1, Q(z) constant. Assume u € H'(,R?) and Q : Q — Qp and constant.
For every open set U C €, we provide a sequence {Q,,u,} C L3(Q, Qp,) x HY(Q,R?)
such that

(2.6) Q. — Qin L*(UM**?), w, — uin H (U,R?) as n — +oo,

with support(u,, —u) CC U and such that

(2.7) limsup/ fmec(Qn,Vun)de/fmec(Q,Vu)dx—i—o(l).
U U

n—-+oo

Denoting by xu(z) the function which is identically equal to 1 in U and identically
equal to 0 in its complementary, we can write Q(z) = Q xu(z) with Q € Qp. With
some abuse of notation, in what follows, we do not make any distinction between Q
and Q. By the spectral theorem there exists a rotation R € SO(3) such that the
diagonal form of Q (denoted by Qp) reads

Qp =RTQR =

o o e
o ot O
o O o

with a < b < ¢, a+b+c = 0. We can now start the construction of a weakly convergent
sequence of matrices {F,,} whose symmetric part yields the sequence {Q,,} and which
is itself strictly related to the sequence of gradients {Vu,}. To this end, we need to
define a tensor field H over a bounded set and to extend it by periodicity in R?® (we

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/24/20 to 150.241.212.149. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

T-LIMITS FOR LARGE BODIES AND SMALL PARTICLES 2365

IF? F F} Gy Gy [eX Gy 3
i3 .

G G o ¢ (GZ G Go Gy G G

i1 . . .

G, G, G, |GGG G _G

Fy F3 FY G, G, G, Gy Gy

Fic. 1. Geometry of the oscillating sequence Fy, in the case a # —1/3. The first panel depicts
the case n = 1, and the second panel the case n = 2. The tangent of { has absolute value equal to
1/T. Here R =1.

address the interested readers to [22, section 2.2.2] as a general reference). Suppose
for a moment that a # —1/3. Let

c+1/3
2.8
(28) a+1/3
and define D := (=T,T) x (—1,1) x (=1,1). Note that D can be written as the union

of the subregions Fi, Fy, F3, and Fy (see Figure 1) defined below:

1 1
F = {(3}1,3}2,$3) : _Tml < $3<—T(ZIJ1 —T),O <x3 < 1,—T <r < T,—l < $2<1},

F3 = {$1,ZII2,ZII3 ;(xl—T)<x3§%xl,—1<$3<0,—T<x1<T,—1<a:2<1},
F} :{2131,{132,2133 x3<—%x1,0§x3<1,—T<a}1SO,—1<x2<1},

FY :{2131,{132,2133 %(xl—T)§x3,0§x3<1,O<x1 <T,—1<x2<1},

F; :{2131,2132,{133 x3>Ta:1,—1<x3<0,—T<a:1<0,—1<x2<1},

1
Fil = {($1,$2,$3) tx3 < T(xl —T),—]. <r3<0,0< <T,—1<z23< 1},
Fy:=F,UF), Fy:=F,UF/

Then let G : D — M3*3 defined as G(z) :=
constant matrices

G;,i = 1,2,3,4, where ; are the

a 0 2G4 a 0 2Gq.

G1 = _2Ga,b b _2Gb7c y G2 = 2Ga,b b 2Gb,c s
0 0 c 0 0 c
a 0 —2G4. a 0 —2G,.

Gj3 = —2Gap b 2Gh. , Gy = 2Gap b —2Gyp. ,
0 0 c 0 0 c

with

/ 1/ 1 / 1/ 1 / 1 1
= CL+§ b+§, Ga,c-— CL+§ C+§, Gb)c.— b+§ C+§

Suppose now that a = —1/3. In this case we denote by D the open cube in R3, that
is, D:=(—1,1) x (=1,1) x (—=1,1), and we note that D can be written as the union
of the regions F5 and Fy (see Figure 2 (left)) defined below:

(210) Fy = {(ﬁl,ﬁg,x:;) eD:0<x3< 1}, Fy = {($1,$2,$3) eD:—-1<x3< 0}
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FiG. 2. Left: Geometry of the oscillating sequence Fy, in the case a = —1/3. The first panel
depicts the case n = 1 and the second panel the case n = 2. Here R = 1. Right: Sketch of the
construction of the sequence {un}, case a = c =0.

Then let G : D — M3*3 defined as G(x) := G;,i = 5,6, where

_% 0 0 —% 0 0
(2.11) Gs = 0 b —2Gp. |, Gg .= 0 b 2Gh. |,
0 O c 0 O c

and with Gy . defined in (2.9). Having defined G for any value of the parameter a, a
straightforward computation shows that the symmetric part of G ranges in Qp, since

1 12
2.12 trum (E(G; :{——,——,—}, i—1,....6.
(2.12) spectrum (E(G;)) 3733 i 6
Now, let H(z) := RGRT, and let H(z) be the extension of H(z) in R3 by periodicity.
Define

F,(z):=H(nzi,nze,nx3), neN
It is easy to show that
(2.13) F,(z) > Q in L®(U,M**3) as n — +oc.

To prove (2.13) it is sufficient to observe that the coefficients of the diagonal matrix Qp
can be obtained either as a convex combination of the matrices G; withi=1,...,4
with coefficients equal to 1/4 if a # —1/3 or as a convex combination of the matrices
G; with ¢ = 5,6 with coefficients equal to 1/2 if @ = —1/3. As anticipated, the
construction presented above has a double purpose. On the one hand, by (2.12) and
(2.13), we can define the new sequence {Q,} := {E(F,)} C L*(Q2, Qp,) such that

(2.14) Q. (z) = Q in L>®(U,M3**3) as n — 400.

On the other hand, we are able to construct the sequence of vectors {f,,} such that
f, = VF,, and yielding, with a few more changes, the desired sequence {u,}. To this
end, we define the vector g : D — R? such that Vg = G and extend it by periodicity
in R3. Suppose for a moment that a # —1/3 and let

gz(x) on ‘Fia 121737
(2.15) g@) =4 gle) on F, i—2.4,
g/(x) on F!, i=2.4,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



T-LIMITS FOR LARGE BODIES AND SMALL PARTICLES 2367

where
axy —|—2Ga’c xs, axry — 2Ga,c$37
gi(z) i =( —2Gapx1+bwa—2Gycx3, gs3(x):=< —2Gepz1+bxa+2Gh 3,
cxrs, CT3,
axi + 2Gg,c 3, ax; —2Gg,c T3,
gh(z) =< 2Gapx1 +bxa+2Ghcxs,  gy(x) =14 2Gqpx1 +bre — 2Gy 3,
cxs, CT3,
axr, + 2Ga,c x3, axry — 2Ga,c €3,
gh(z) =< 2Gup(x1 — 2T) + bxo + 2Gy cw3, g (x) =< 2G.p(x1 —2T) + bag — 2Gy o3,

Downloaded 11/24/20 to 150.241.212.149. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

cxs, CcXI3.

Then, in the case a = —1/3, let

gs(x) on Fj,
2.16 x) =
(2.16) g() { go(r) on Fg,
where
_% Ty, _% X1,
gs(x) := ¢ bxa—2Gycx3, ge(x) = bas+2Gh 23,
crs, CXI3.

Now, let us define g as the extension of g(z) in R? by periodicity, f(z) := Rg(R”x)
and

1
f,(x) = Ef(nxl,nxg,nxg), n e N.

It is straightforward to prove that g,f, and f,, are Lipschitz-continuous functions
(in this regard, observe that G(x) satisfies the Legendre-Hadamard condition [27]).
Moreover, we note that Vf, = F,, and that {f,} converges to (Qz) uniformly on
compact sets as n — oo. Finally, in order to fulfill the condition

support(u,, —u) CC U,
we modify slightly the construction above. For any positive ¢ define the compact set!

(2.17) K :={x €U :dist(x,U°) < e}.

Let 8(x) € C°(U) be a scalar test function with support K’ := {x € U : dist(z,U°) <
£/2}, such that f(z) =1 on K and 0 < 0(z) <1 (see also Figure 2 (right)) and let

(2.18) u,(z) == u(z) +v6(z)(f.(z) — Q).
By construction, it follows that u,, — u in H*(U,R?) and supp(u,, —u) CC U.

LK is nonempty provided, of course, that ¢ is not too large. In what follows we implicitly assume
€ such that K is nonempty.
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We are in a position to prove that the sequence {Q,,u,} C L%(Q, Qp,) x H*(Q,R3)
defined in (2.14) and (2.18) yields (2.7). Observe that, since Q,, ranges in Qp, for
any n € N, then Fpy mec(Qn, u,) < 400 and we can write

(219) / fmec(Qnavun)dx = / fmec(Qnavun)df + fmec(Qnavun)d/x'
U K U\K

Consider the first summand on the right-hand side of (2.19). Recalling that trF,, =
tr Q, = trQ = 0, we have

[ fnecl@uVus o, = 9Q)ds = [ {uhr@, - E(Vw - Q. + 0P
K K
+% (tr (Vu+~F, —7Q — an))2}da: - /K(ME(Vu) 1|’ + %(div u)Q)da:.

We turn to the second summand on the right-hand side of (2.19). In view of the
growth condition in (1.21), we can write (in what follows the constants may change
from line to line while we maintain the same name)

(220) fmec (Qna Vu + 70(Fn - Q) + V(VH ® (f” - Q:I:)T))dZII
U\K

< [ Const{1+[E(VWP +42|Qu — QF ++*VOP[£, — Quf* }da.
U\K

Recalling that V@ is bounded and that f,,(x) converges uniformly to (Q z), if we take
the limit in (2.19), we have

(2.21) limsup/ Fmee(Qn, Vuy, )dz < hmsup/ fmec(Qn,Vun)dx+Const%
U K

n—-+oo n——+o0o

:/ fmec(Qavu)dx"‘CODSti,
K m

where m € N (the role of the natural number m will be clear in the next paragraph).
Since fiec 1S nonnegative we can enlarge K to U,

n—-+oo

(2.22)  limsup / Frnee(Qn, Van)dz < / fmec(Q,Vu)da:+Const%.
U U

Noticing that the constant is independent of ¢, in what follows we simply write =

instead of Const.=. In the next paragraph we show that the result above suffices to
prove Fpr,mec < Fp.mec (up to an error of order ¢) under the additional assumption
that Q : Q — Qp is piecewise-constant.

Step 2, Q(z) piecewise-constant. Suppose Q € L%*(Q, Qp) and piecewise-
constant, that is, there exists a partition of 2 consisting of a finite number m of open
and pairwise disjoint sets 27 such that

(2.23) Q=|JUN,
j=1
where [N| = 0 and Q’ := Q|q; is constant and biaxial. By Step 1 it follows that, for

every )/, there exist sequences

(2.24) Q) — Q7 in L*(Q7,M3*3), w, —u’ in H'(Q7,R?) as n — +oo,
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with supp(uf, — u;) CC €’ and where u/ is the restriction of u on ©7, such that

(2.25) lim sup / frnee(QF, YVl )dx < / Free(QF, VU )d + =
n—+oo JQOJ QI m

Define

(2.26) u, :=ul on O, Q,L::Qfloan, j=1,....m

Recalling that support(uf,—u’) CC 7, then u,, € H'(Q,R3) and u,,—u € H}(Q,R3).
Therefore, we can write

(2.27)  liminf fmec(Qn, Vu,)dz = lim mfZ/ fmec Qn, Vuﬂ)

n—-+oo n—-+oo

n—-+oo

< thsup/ fmee(Q), Vi, )da < Z(/ﬂ Fimee(Q7, VU )da + %)
QJ = j

-y [ el @ Vo 42 = [ fracl@ Va)d 4
ek Q
where the inequality in (2.27) follows from (2.25). Summarizing, we have

(228) Fanec(Qa ) < hm Hlf fmec(Q?’u Vun)

n—-+oo

< / fmec(Q, Vu)dx +e= FB,mec(Qa u) te
Q

We can now extend (2.28) to the case in which Q is any tensor in L?(Q, Qp).

Step 3, Q(z) € L?(Q,9p). Let any (Q,u) € L*(Q,9p) x H(Q,R?). By
applying Proposition 3 with d = 3 and K = Qp there exists a sequence {Qr} C
L?(2, Qp) of piecewise-constant matrices such that

(2.29) Qr — Qin L*(Q,M**3) as k — +o0.

Therefore, if we plug Qy, into (2.28), we obtain

(2.30) Frrmec(Qr,u / Fmee(Qi, Vu)dz + ¢,

and, taking the limit in &,

(231) Frronec@w) < i int Frpnee(Qurw) < fimint | feo(Qu Ve + =

By the continuity of the integral on the right-hand side in (2.31) we have

(232) FFr mec Q7 / fmec Qv Vu)dx +e

and, taking the limit ¢ — 0,

(233) FFr,rnec(cza ll) < FB,THEC(Qﬂ u)' o
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Remark 2. In view of the proof of Theorem 1 it is an easy exercise to show that
L?(Q, Qp) coincides with ¢o(L?(Q, Qpy)), the closed convex hull of L?(€2, Qp,.) with
respect to the weak topology. For the reader’s convenience, we sketch the argument
required for the proof of this claim. The argument of Step 3 ensures that any Q €
L?(2, Q) can be approximated (in the strong topology) by a sequence of piecewise-
constant tensors in L?(Q, Q). Moreover, the constructions contained in Steps 1 and
2 prove that it is possible to approximate any piecewise-constant matrix in L?(Q, Qp)
with a weakly convergent sequence of Frank-type tensors. This is sufficient to prove
that

LZ(Q, QB) - @(LQ(Q, QFT’))

The opposite inclusion is trivial because L?(2, Qp) is closed, convex, and contains
L?(Q, Qp,) by definition. Moreover, since L?(2, Qp,) C L*(Q, Qu) C L3(2, Qp), it
also follows that ¢o(L?(Q2, Qu)) = L*(Q, Op).

Remark 3 (boundary conditions). Theorem 1 can be improved to obtain relaxation
results in the presence of slightly different boundary conditions for the displacement
u, as shown in the next corollary.

COROLLARY 1. Let Q C R3 be an open, bounded, connected set with Lipschitz
boundary, and let T'p C 02 be an open subset with positive surface measure. Take
g(z) € HY(Q,R3) and assume fmee as in (1.20). Define

FLP9 (Qu) = /Qfm@C(Q,Vu)da: on L*(Q, Qx) x Hf (0, R?) 4 g(x),
+oo otherwise in L*(Q,M3*3) x H'(Q,R?),

X,mec

where X stands for either F'r, or U, or B. Then the relazation of Fiﬁ_’r;fec in the sense
of o (see (2.1)) is Fi20 . /

Proof. Consider first Tp = 0. We can repeat the proof of Theorem 1 even in
this case, because the sequence {11,,} defined in Step 2 is such that 0, —u € H}(Q,R?)
for every n € N. Then the proof for any I'p C 9 follows from a standard argument.

Observe that we can write

(2.34) Fprmee(Qu) <Fp29 (Quu) <FYEMY . (Q,u),

Fr,mec Frymec

where g = u. By relaxing all the functionals in (2.34), we show that the relaxation
of FLD:9 g equal to Fp mec if (Q,u) belongs to the set

Frymec
(2.35) L*(Q,9p) x Hf_ (Q,R?) + g(z),divu =0

and +o0 in the complementary of (2.35) in L?(Q2,M3*3) x H1(Q,R?), because (2.35)
is closed in the sense of o. 0

2.1.2. The case of incompressible elastomers. We turn to the relaxation of
models for incompressible elastomers, that is, the case in which we assign an infinite
penalization if the displacement u is not divergence-free. In the next theorem we
recall the definition of the functional Fx e which was introduced at the beginning
of section 2.

THEOREM 2. Let Q C R3 be an open, bounded, connected set with Lipschitz
boundary. Assume fmec as in (1.20) and define

/ fmee(Q,Vu)dz  on L?(Q,Qx) x HY(Q,R?),divu =0,
]:X,mec(Qau) = Q
+o0 otherwise in L*(Q, M3*3) x H1(Q,R?),
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where X stands for either Fr, or U, or B. Then the relazation of Fy ... in the sense
of o (see (2.1)) is Fp ppee-

Proof. Again, in the case X = B there is nothing to prove and the discussion of the
case X = U is postponed to section 2.2.1. In the case X = F'r the proof is essentially
based on an argument of Braides [5] and largely employed also in [7]. We show that
7FT’mec = FB.mec DY proving two inequalities. First of all, by definition it follows
that Fi e < Frpmee a0d, by relaxing both sides, we obtain Fp .. < F prmec- We
are left with the proof of the opposite inequality / /

(236) ?Fr,mec S ]:B,mec'
For convenience, we label with F% . the functional introduced in (2.4), that is,

/ (qu(vu) — QP+ g(div u)z)dx on L2(9, Qx) x H'(Q,R?),
Q

F})I(,mec(Qv u) =
+00 otherwise in L?(, M3*3) x H(Q,R3),

where X stands for either F'r or B, and h € N. Hence, by Theorem 1, the relaxation

of F& e is Fig .. The following chain of equalities has a crucial role in order to
prove (2.36):
(237) I- lim F}IL’T mec(Q7 u) = sup Fi}l‘"’r mec(Q7 u)

h—+o0 ? h >

= Sl}ip F%,mec(Qv 11) = ]:B,THEC(Qv u)'

Notice that the first equality in (2.37) follows from Proposition 1 and the second
one is a consequence of Theorem 1. Then the last equality is an application of the
Beppo—Levi theorem for monotone sequences of integrals, stating that the supremum
of a family of increasing integrals coincides with the integral of the pointwise limit of
the energy densities:

pE(F) —7Qf* if tr F =0,

h—+o0 +00 otherwise.

h
iin_ (W) ~1QP + 50 F)?) = {
Now, if divu # 0 or Q ¢ L2(2,Qp) the inequality .Tpmnec < FB,mec is trivial,
and for the rest of the proof we can suppose divu = 0 and Q € L2(2, Q). Since
the Gamma-convergence is metrizable, it is sufficient to prove that for any sequence
{Qn,up} C L3(Q, Qp) x HY(Q,R3) such that

(2.38) Qn,up 2 Q,u  as h — 400,
there exists a sequence z;, — u in H(Q, R3) with divz;, = 0 such that

(239) lhlgli{olf -FFr,mec(Qhazh) < lhlgli{olf F%‘r,mec(Qha uh)~

In view of (2.37), by taking the infimum over all the sequences {Qp, uy} which con-
verge to (Q,u) with respect to the topology o, we obtain Fp mec on the right-hand
side of (2.39). Moreover, by applying Corollary 1 with I'p = 012, we may restrict
ourselves to sequences of displacements such that up, —u € H2(Q,R3). In order to
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define {z,}, we apply Proposition 2 with p = 2,n = 3. For any h € N, let wy(x) be
a solution to the problem

wy, € Hy(Q,R%),
divwy, = divu, = div (up — u),
Wl (o,rs) < C(Q)||divug||L2)-

Since Fg nec(Q,u) < 400, we can suppose that Ff,.  (Qpn,u;) < Const for every
h € N. Hence,

[|divuy||22 < Const/h
and, by Proposition 2,
(2.40) wp, — 0 in H'(Q,R?) as h — oo.
If we let zp, := u;, — wy, we have
(2.41) z, —uin H'(Q,R?), z, —u, € H(Q,R?), and divz, = 0.

Now, by Holder’s inequality it follows that

| /Q (IE(Vun) = 1Quf? = [E(Var) — yQul* ) do| < ConstE(Vw) | 2o o),
and, in conclusion,
0t P e Qo) = it | plB(V2) = 1@ P

<liminf [ pE(Vuy) —vQunlda
Q

h—+oco

(2.42) + dim | [ (IB(T20) = 9Qu = [E(Tw) =@ o]

h—+oco

=liminf [ p/E(Vus) — vQul?dz
Q

h—+oco

+0 < lim inf Fhrmee(Qnyun). O

Remark 4. The relaxation result for incompressible rubbers holds also in the
presence of slightly different boundary conditions for the displacement u, as shown in
the next corollary.

COROLLARY 2. Let Q C R? be an open, bounded, connected set with Lipschitz
boundary, and let I'p C 02 be an open subset with positive surface measure. Take
g(z) € HY(Q,R?) with divg(z) =0 a.e. in Q, fimee as in (1.20) and define

/ Fnee(Q, V11)da
_ Q

I'p,g .
Fximee(Q 1) = on I2(Q, Qx) x H (Q,R%) + g(x), divu =0,
+00 otherwise in L*(Q, M3*3) x H1(Q,R3),

where X stands for either Fr, or U, or B. Then the relazation of f;’f’n’fec in the sense
of o (see (2.1)) is F2!

B,mec"
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Proof. To start, let I'p = 99 and g(x) = 0. The result is immediate if we assume
u € H(Q,R3) in the proof of Theorem 2. Then let g € H(Q,R3) with divg = 0.
In this case we can repeat the proof of Theorem 2 by simply considering a sequence
{u,} such that u, — g € H(Q,R?) for any h € N. Then in the general case with any
I'p C 09 we can proceed exactly as in the proof of Corollary 1 where an analogous
case is treated. O

Remark 5. Another by-product of Theorem 2 is implicitly given by (2.37). Notice
t_l}lat this formula holds trivially for the energies defined for X = B since F ’}imec =
Fp5 mee- This proves that the functional Fp e of an incompressible material can
be Approximated in the sense of Gamma-convergence by a sequence of energies with
increasing bulk moduli

(243) I- hEToo F%7mec(Q7 u) = -FBﬂnec(Q; u)'

2.2. Gamma-convergence theorem. For the reader’s convenience, in the next
theorem we recall the definition of Fx .(Q,u).

THEOREM 3. Let Q C R3 be an open, bounded, connected set with Lipschitz
boundary, and let T'p C 02 be an open subset with positive surface measure. Take
g(z) € HY(Q,R?) with divg(z) =0 a.e. in Q and assume free as in (1.20). Define

/Q(’L‘ZWQI2 + frnee(Q, Vu))dx

Fxe(Qu) = on H'(Q, Ox) x H(Q,R?), divu = 0,
+00 otherwise in L*(Q, M3*3) x H(Q,R3)

and

/Q(’L‘ZWQI2 + Finee(Q, Vu))dx

FA2(Qu) =
T on H'(Q, Ox) x Hf (2, R?) 4+ g(z),divu = 0,
+o0 otherwise in L*(, M?*3) x H1(Q,R?),

where X stands for either Fr, or U, or B. Then

(244) F(U)'Eh_r% fX,a(Qau) = -FBnnec(Qau)
and
(2.45) I(o)-lim F379(Q.u) = F50.(Q.w),

where Fg ... and fgzinic are defined in Theorem 2 and Corollary 2.

Proof. We prove (2.45) in the case X = Fr. We find it convenient to characterize
the Gamma-limit of a sequence of functionals by the liminf and limsup inequalities
(see [4], [14]). First of all, observe that if Q ¢ L?(Q, Qp), then there is nothing to
prove. Then, as ¢ — 0, let {€,} be a countable sequence such that ¢; — 0 as j — +o0.

Liminf inequality. It is enough to prove that for any sequence
(2.46) {Qj,u;} C L*(Q, Qp) x H'(Q,R?) such that Q;,u; > Q,u as j — +oo,
we have

B mec

(2.47) Fiee(Q ) < lminf Fp20 Qg uy).
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We can restrict our attention to sequences for which the right-hand side of (2.47)
is finite and, passing to subsequences (not relabeled), uniformly bounded by some
positive constant C. Therefore, we can write

hmmf/ p|E(Vu,) — 7Q; [ da < ljiglig/9<€?|VQj|2—|—u‘E(Vuj)—’ij‘Q)da: <c.

Jj—+o0

By weak convergence, Korn’s theorem, and the properties of the trace, the limit
functional is finite over the set L*(Q,Qp) x {H}, (2, R?) + g(x),divu = 0} and
hence (2.47) follows by Corollary 2.

Limsup inequality. According to the sequential characterization, we introduce the
Gamma-limsup as follows:

I- hrnhup}"Ff,’sg(Q, u) = 1nf{hmsup]-'FT€ (Qj,uy), Qj,uin,u},

j—+oo Jj—+o0
with {Q;,u;} C L3(Q, Op) x H'(Q,R?), and we prove that

(2.48) FLPod (Q,u) > T- hmsupfng(Q, u).

B ,mec
j—+oo

Observe that if u ¢ {H} (Q,R?) + g(x), divu = 0}, then the claim is trivially true.
Now, let us assume for a moment that (Q,u) € H'(, Qr,) x {H}_ (Q,R?) + g(x),

divu = 0} and take the constant sequence {Qj, u;} = (Q,u). We have

(2.49) I- limsup}'FD’ (Q,u) < 11msup/ﬂ(£?|VQj|2 +fmec(Qj,Vﬁj))dx

Jj—+oo Jj—+oo

- / Fomee(Q. Vu)dz
Q

Then, by Lemma 1, for every Q € L?(Q, Qp,) there exists a sequence {Qi} C
HY(Q, Qp,) such that

Qi — Qin L*(Q,M3**3)  as k — oo,

and, if we plug Q. instead of Q into (2.49), we obtain

(2.50) I- hrnhup}"Ff,’Eg(Qk, u) < / [L‘]E(Vu) —7Qk|2dx VEkeN.
Q

j—+oo

Recalling that the Gamma-limsup is a lower semicontinuous functional [14] and that
the integral on the right-hand side of (2.50) is continuous in the strong topology of
L2(Q,M3%3), we have

I- hmsupfgfsg (Q,u) < hmlnf(F hmsup]-'Ffsg (Qk, ))

j—+oo k—+o0 j—o00
(2.51) < tim [ plE(V0) - Qe = | E(Tw - 1QPds
— oo Q Q

Summarizing, for every (Q,u) € L?(Q,M3*3) x H(Q,R?), it follows that

(2.52) I- hlrnsup]-'FD:S (Q,u) < Flow (Q,u),

¥ Fr,mec
Jj—+oo
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and to conclude it is sufficient to relax both sides by applying Corollary 2.

The proof of (2.44) in the case X = F'r follows as above.

Then, considering the case X = B, the proof of (2.45) (and of (2.44)) is even eas-
ier. The liminf inequality becomes trivial, and the limsup inequality can be modified
as follows. Observe that the proof for the Frank model is based on the approximation
of L(2, Qp,)-tensors with H*(£2, Qp,.)-tensors in the strong L?(, M3*3)-topology.
In the biaxial case, the result can be obtained by approximating L2(£2, Qp)-tensors
with a sequence of H'(2, Qp)-tensors in the strong L2-topology. We can always as-
sume that such a sequence exists (this follows by convolution and the convexity prop-
erty of Qp). The discussion of the case X = U is postponed until section 2.2.1. d

The Gamma-convergence result holds also if we remove the constraint on the
divergence of u, as described in the next corollary.

COROLLARY 3. Let Q C R? be an open, bounded, connected set with Lipschitz
boundary, and let I'p C 02 be an open subset with positive surface measure. Take
g(z) € HY(Q,R?) and assume fmee as in (1.20). Define

/ (£2|VQ|2 + frmec(Q, Vu))dw on HY(Q, Qx) x H(Q,R?),
Q

FX,E(Q? 11) =
+oo otherwise in L?(2, M3*3) x HY(Q,R3)
and
(19 + fuee(@ V) o
I'p, .
FA(Q,u) = on HY(Q, Qx) x HE_(Q,R3) + g(a),

+00 otherwise in L2(2,M3*3) x HY(Q,R3),

where X stands for either Fr, or U, or B. Then

(253) F(U)_ Eh_rf(l) FX7€(Q3 u) = FBJTLEC(Q? u)
and
(2.54) F(U)-gi_l% Fi?a)g(Qv u) = Fg,Dﬁzgec(Qv u),

where Fp ... and Fll;l;’ngec are defined in Theorem 1 and Corollary 1.
Proof. We refer to the proof of Theorem 3, where an analogous case is treated.
We observe that it is not necessary to take sequences of displacements with divergence

equal to zero. O

2.2.1. Uniaxial models. We show how to obtain all the relaxation and Gamma-
convergence results claimed in the theorems and corollaries above for the uniaxial
model X = U. Consider the functionals defined in Theorem 1 under the hypotheses
specified therein. In view of the inclusion Qp, C Qu C Qp, we have

(255) FBJTLEC < FU,mec < Fanec
and, by taking the relaxation,
(256) FB,mec = FB,Tnec < FU,Tnec < FFr,rnec = FB7meC~

This proves that the relaxation of Fy e is F mec. Analogously, if we consider the
functionals introduced in Theorem 2 and Corollaries 1 and 2, we obtain Fy mee =
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=I'D,g I'p,g —=I'p.g I'p,g . :
FBmee; Fumee = Fpmeer a0d Fymee = Fpliees respectively. The same chain of

inequalities holds for the Gamma-limits of Theorem 3:

FBmee =I-1lim Fp . <I'-liminf Fy. <TI-limsup Fy . < I-limsup Fr, . = FB,mec;
’ e—=0 ’ =0 e—0 e—0 ’

yielding I-lim. 0 ;. = Fp e, and, similarly, I-lim._o 7,29 = F2¢ . Then
the Gamma-convergence results for the functionals defined in Corollary 3 in the case

X = U follow similarly.

2.3. Discussion. In this section we apply our relaxation and Gamma-conver-
gence results to some concrete examples, and we discuss some physical implications
of our analysis.

Physical interpretation. In the case in which we model the order of the sys-
tem according to the Frank theory, we accept a direct coupling between strain and
local orientation of the liquid crystal molecules. Experimental results show that a
uniaxial stretch aligns the molecules along the direction of maximal stretch. Whether
a macroscopic deformation may alter also the local order of the molecules and not
only the local direction is a debated problem. Therefore, the direct coupling imposed
by (1.1) may be accepted if Q € Qp,, while it may seem too simplistic if Q € Qp
or Qp. We reveal the main consequences of our relaxation and Gamma-convergence
results.

COROLLARY 4. Under the hypotheses of Theorem 2 and Corollary 2
(2.57)

Fi50.(Q,u) = m Fp2o (Q,u).

inf = in
L2(Q,M3%3) x H1(Q,R3) L2(Q,M3%3) x H1(Q,R3)
Moreover, let {Qj,u;} be a minimizing sequence of f)F()DE;jq. Then there exists a sub-
sequence which converges to a solution of the right-hand side of (2.57) with respect to
the topology o. Finally, we have
. . I'p, _ . T'p,
(2.58) lim [inf -in—jg] = min F3"¢

jo+too B,mec’

Proof. Equation (2.57) follows from a well-known property of the relaxation (see
[14]). For the reader’s convenience, we show that the minimum on the right-hand side
of (2.57) is attained. Since the function (Q,F) — u|E(F)—~vQ[*+ 5 (tr F)? is convex,
fg)%gec is weakly lower semicontinuous. Moreover, the H'-norm of the displacement u
is controlled by Korn’s inequality (1.12) and Poincaré’s inequality [10, Theorem 6.1-8]
thanks to the coercivity condition (1.21), and the L?-norm of Q is bounded because
Op is compact. The second part of Corollary 4 is a consequence of the fundamental
theorem of Gamma-convergence (see [4], [14]). 0

Remark 6. A result analogous to that of Corollary 4 holds also for the energies of
compressible elastomers of Theorem 1 and Corollary 1.

Corollary 4 has a relevant physical interpretation. The equilibrium solution to
the left-hand side of problem (2.57) is characterized by a biaxial tensor field. This
is true not only if the elastomer is modeled in the frame of the de Gennes theory,
but also in the case of the Frank tensor by developing an effective biaxial microstruc-
ture. Interestingly, we obtain the full information associated with the biaxial order
tensor theory, that is, the possibility of describing isotropy and low order phases, thus
justifying the material’s instabilities observed experimentally [3], [29].
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Relaxation of the macroscopic model. The asymptotic analysis presented in
section 2 is not the only possible way to model formation of microstructure in nematic
elastomers. We show that there exists a relation between the Gamma-convergence
result of Theorem 2 and the relaxation of another nonconvex energy for nematic
elastomers presented in [7]. Furthermore, as a by-product of this discussion, we solve
explicitly the minimization problem (2.57) in the presence of an affine traction imposed
on the boundary of the domain.

We define

A
2.59 F):= inf fne(Q,F)= inf p[EF)—~1Q*+ Z(trF)?,
(259)  Jx(F)i= nf oo QF) = int uE(F) — QP + (e F)
where X stands for either F'r, or U, or B. Clearly, the new functions obtained in
(2.59) are the measure of the distance from the set vQx:

inf u|E(F) —7Q|* + i(trF)Q = pdist® (E(F),7Qx) + é(tr F)%

QeQx 2 2

In this new model the influence of the internal nematic variable Q is perceived only
through its coupling to the strain. In fact, the interaction between the macro-
scopic variable E(F) and the microscopic variable Q is solved by substituting in
Q — fmec(+, F) the optimal tensor field generated by a constant strain. Hence, we
obtain a macroscopic model ruled by the displacement. The explicit expressions of
frr, fu, and fp are reported in [8] and [7]. We observe that, since Qp, C Qu C Op,
it follows that fg(F) < fu(F) < fr-(F). Moreover, it turns out that fp,. and fy
are nonconvex energy densities, while fp is convex. In [7] we study minimization
problems for functionals defined by integrating the densities fr,, fu, and fp over the
reference configuration ). In the case of the biaxial theory, namely, if we assume fg,
we obtain compactness of the minimizing sequences and weak lower semicontinuity by
convexity. On the other hand, the functionals which we define in the cases X = F'r
or X = U are not weakly lower semicontinuous, and we prove that their relaxation
is precisely the energy defined for X = B. Hence, also in the scenario of the macro-
scopic models, we obtain an effective de Gennes-type microstructure via relaxation.
This fact suggests investigating possible connections between the Gamma-limits of
section 2 and the relaxation results of [7]. We recall the main theorem regarding the
macroscopic models.

THEOREM 4 (see [7, Theorems 1 and 2]). Let Q C R?® be an open, bounded,
connected set with Lipschitz boundary, and let T'p C 0S) be an open subset with positive
surface measure. Assume fx () as in (2.59). Take p(z) and g(x) in H'(Q,R3) with
divg(z) = 0 a.e. in Q and define in H' (2, R?)

Ix(u) on HE (QR?) + p(z),
+00 otherwise

Jx(u) ::/QfX(Vu)dx and JE(D""(u) ::{
and

Ix(u) := {

Jx(u) ifdiva=0, I () = Jx(u)on HE  +g(z),divu=0,
400 otherwise, X T 400 otherwise,

where X stands for either Fr, or U, or B. Then the relaxation of Jx, JQD’“", Ix,
j§D’g 1s, respectively, Jg, JIJ;D"", JB, j;D’g. Furthermore, fg satisfies a solenoidal
quasi-convezification formula, namely,

(2.60) f5(Z) = inf{|w|’1 / fx(Z+ Vw(y))dy : w € H (w, R?), divw = 0}
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VZ € MSXB, where w is any nonempty, open, bounded, connected subset of R3 with
Lipschitz boundary.

In order to compare minima and minimizers of FLo 5 mec and of J BD 9. we start by
manipulating (2.57):

. FLo.g : : 2
min 29 (Q,u) = inf min / pE(Vu) — vQl*dx
L2 (Q,M%%3) B ueH%D (R%)+g(x), QeL?(Q,9B) Jo
x H' (Q,R%) divu=0
(2.61) - inf pdist?, (E(Vu), VL2 (9, QB)).
uEH%D (Q,R?)+g(z),
divu=0

Thanks to Proposition 4 and (1.17), we can write
(262)  pdist} (B(Vw), 2(2,7Qp)) = / dist? (E(Vu(z)), 1 Qp )dx
Q

and, summarizing,

. I'p,g _ . I'p,g
(2.63) Lo o) Fpimec(Qsu) = . I (a).

Therefore, at equilibrium, the energy is the same in both models. We continue our
discussion in order to obtain information on minimizers. Considering again (2.63), we

label with (Q, W) a minimizer of .FBDmgec and with ¥ a minimizer of 5. Hence, if

we define Q := 727 (E(VW)/7), we can write
HIE(VE) = 1Q L) = Fpliee( Q) = T (@) = 1 / [E(v®) - Qfdr,

This is not sufficient, of course, to conclude that (Q,u) coincides with (6, 1), which
would be true, for instance, if both F5> o and J, L29 were strictly convex. Anyway,

it is clear that (Q,u) minimizes JlgD 9 and that (6, U) minimizes FlgDmgec as well.

This simple observation suggests that, in order to find a minimizer of Fy> B one

can solve the minimization problem for BD 9 which, at least in some cases, may be

more convenient. As an example, we turn to the relevant situation where I'p = 99
and g(z) = Fz, with F € M3*?. Thanks to (2.60) (in the trivial case X = B), we
have

(2.64) / fa(F)dz < / fB(F+Vw)dr VYwe H(Q,R?) with divw = 0,
Q Q

I'p,g
and hence a minimizer of F Bomec 18

(2.65) Q) = (v (E(F)/2). F ).

To conclude, we observe that an analogous discussion holds for minima and min-

. . . r r
imizers of the functionals for compressible elastomers F BDn’wc and Jz”7.
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3. Small particles: Asymptotics. We turn to the asymptotic analysis for
small particles. The space L2(£2, M3*3) x H(Q,R3) is now endowed with the strong
topology of L?(€2, M3*3) for the variable Q and the weak topology of H!(2,R?) for
u, and we write

(3.1) o := strong-L? (9, M3*3) x weak-H'(Q, R?).

In this scenario, any relaxation phenomenon is ruled out and, as a consequence, the
analysis turns out to be simplified. In what follows, we denote by

(3.2) {H*(Q, Qx), Const} := {Q: Q — Qx, Const},

where X stands for either Fr, or U, or B, the subset in H!(Q, Qx) of the con-
stant tensors. Observe that the weak (and strong) topology of H'(Q,M3*3) on
{H'(Q,M3*3), Const} coincide with the standard topology of M?3*3.

3.1. Gamma-convergence theorem. We state the Gamma-convergence result
for incompressible materials.

THEOREM 5. Let Q C R?® be an open, bounded, connected set with Lipschitz
boundary, and let T'p C 0 be an open subset with positive surface measure. Take
g(r) € HY(Q,R3) with divg = 0. Assume fmec as in (1.20), and Fx.c and F)F(”:’E’g as
in Theorem 3, that is,

/Q(<€2|VQI2 + finee(Q, Vu))dx

Fxe(Qu) = on HY(Q, Qx) x HY(Q,R?),divu = 0,
+oo otherwise in L?(Q, M3*3) x HY(Q,R3)

and
/ (52|VQ|2 + frnee(Q, Vu))da:
Q

I'p.g —
Fx(Qu) = on HY(Q, Qx) x Hi_ (Q,R?) +g(x),divu =0,
+o0 otherwise in L*(Q, M3*3) x H(Q, R3),

where X stands for either Fr, or U, or B. Then

(3.3) P(o)- _lim Fxeo(Q u) = Gxmec(Q,u)
and

(3.4) I(o')-_lim Fy79(Q.u) = G0 (Q.u).
where

/ Fnee(Q, Vu)da
Q

Gxmee(Q, 1) = on {H*(Q, Qx), Const} x H(Q,R3),divu =0,
+o0 otherwise in L*(, M?*3) x H1 (2, R?)
and
[ fnecl@ Vujdo
I'p,g — Q
Gxmee(Qy 1) = on {H'(Q, Qx), Const} x H} (Q,R?) +g,divu =0,

+00 otherwise in L*(Q, M3*3) x H1(Q,R3).
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Proof. Consider first (3.4). As e — +o00, we extract a countable subsequence {¢;}
such that ¢; — +o0o0 as j — +o0o. We characterize again the Gamma-limit by the
liminf and limsup inequalities.

Liminf inequality. 1t is enough to show that, for any {Q;,u;} C L*(Q2, Qp) x
H(Q,R3) such that

(3.5) Q;,u; L Q,u asj— +oo,
we have
(3.6) Gxtee( Q) < liminf FA27(Q,wy).

If we pass to subsequences (here not relabeled) for which the right-hand side of (3.6)
is uniformly bounded by some constant C', we obtain

(3.7) liminf/ |E(Vu;) — vQ;|*dz
Q

Jj—+oo

< liminf/ (s§|VQj|2 +[E(Vuy) —ij|2)dx <c.
Q

j—+oo

Moreover, observe that
(3.8) /Qs;%wqmdx < Feo(Quuy) < G,

and hence [, |VQj|*dz — 0 as j — +oo. Therefore, by Korn’s and Poincaré’s
inequalities and the properties of the trace, it follows that the set where the functional
is finite is

(3.9) {H'(9, Qx), Const} x {H} (2,R?) + g(),divu = 0}.

The claim follows trivially from (3.7).
Limsup inequality. Given any (Q,u) € L2(Q,M3*3) x H1(Q,R3) we have to
exhibit a sequence {Q;,u;} C L*(Q,M3*3) x H*(Q,R?) such that

(3.10) Qj — Qin L*(Q,M**%), d; = uin H'(Q,R?) as j — +oo,
yielding

(3.11) G50 ,(Q, 1) = lim sup F2%(Q;, ;).

j—+oo

To obtain the claim it is sufficient to take the trivial sequence {Qj, u;} = (Q,u). The
proof of (3.3) is similar. O

In the following corollary we present the Gamma-convergence result for small
samples of compressible elastomers.

COROLLARY 5. Let Q C R? be an open, bounded, connected set with Lipschitz
boundary, and let I'p C 02 be an open subset with positive surface measure. Take
g(z) € HY(Q,R?). Assume fmee as in (1.20), and Fx . and F)lgg’g as in Corollary 3,
that is,

/(52|VQ|Q +fmec(Q,Vu))dx on HY(Q, Qx) x HY(Q,R%),
Q

FX. (Qvu) =
N +o0 otherwise in L*(Q, M3*3) x H1(Q2,R?)
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and
/9(52|VQ|2+fmec(Q,Vu))dx
I'p,e -
Fy7(Q,u) = on H'(Q, Qx) x HL_(Q,R?) + g(x),
+00 otherwise in L2(2,M3*3) x HY(Q,R3),
where X stands for either Fr, or U, or B. Then

(3.12) ['(0')- lim Fx.(Q,u) = Gx me(Q,u)
Jj—+o0 ’
and
N I'p,g = qLpg
(313) F(U) JEI_POOF R (Qau) Xmec(Qv )7
where

/ fmee(Q,Vu)dz  on {H*(Q, Qx), Const} x H (2, R?),
+00 otherwise in L?(Q, M3*3) x HY(Q,R3)

GX mec(Qa

and

[ @ Vu)do

FD g Q
X mee(Q 1) = on {H* (), Qx), Const} x H%D (Q,R3) + g(x),
+o00 otherwise in L*(Q, M3*3) x H1(Q,R3).

Proof. We refer to the proof of Theorem 5. Note that it is not necessary to take
sequences of displacements with divergence equal to zero. O

3.2. Discussion. It is easy to show that the problem

(3.14) min Gxe(Q,u)
L2(Q,M?*3)x H (Q,R?)

has at least one solution. The coercivity condition (1.21) and the compactness of Qx
guarantee that we have boundedness of minimizing sequences. Then the weak lower
semicontinuity of gLp Xom 9 follows trivially.

Problem (3.14) has a very relevant role in the engineering literature, since min-

)F(f’mgec capture the asymptotic behavior of minimizers of F XD Y in the

following sense. Let {Q;,u;} be a minimizer of f;if and let (Q,u) be a minimizer
of G¥2¢ .. Then

X,mec

imizers of G

FX29(Qy,w5) = G359 (Qu) as j — +oo,

X,mec

and there exists a subsequence of {Q;, u;} which converges to a solution of (3.14) with
respect to the topology o’. Interestingly, in the case in which we impose an affine
boundary conditions for the displacement u, it is possible to solve (3.14) explicitly.
To this end, observe that it is possible to write

(3.15) min G352 (Q,u)
L2 (Q,M3*3)x H! (Q,R?)
= inf min /,u|E(Vu)—*yQ|2d3:.
{QeH' (2,9x),Const}  ueH! (2R%)+gdivu=0 JQ
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In view of Korn’s inequality (1.12) and by the strict convexity of the function E +—
| - —vQJ?, the minimization problem

(3.16) min L/vam—yq%x

ueHllD (2,R3)4g,divu=0 J

has a unique solution which we denote by u. Now, we label with E" € M3X3 the
average of the tensor field E(V1), namely,?

‘w'—i u)dx
(3.17) E fKMAEW)d

and define E™ () := E(Va) — E". Since E*" and Q are constant matrices, we have

(3.18) /Q(Elw -1Q) : E (2)dz = 0.
Therefore, (3.16) reads
3.19) g [ 1B =1Q+E @l = p [ (B QP + B (@) ds
and (3.15) can be formulated as follows:
min Q)F(f’n’fec(Q, u) = inf / E" —4Q|?dzx
L2(Q,M3%3)x H (Q,R%) {QeH'(2,9x),Const} Q

+u/ B (z)?dz = /dzst2 Y 7Ox dx+u/ E™ (z)|%dx.

Now, let T'p = 0Q and g(v) = Fz with F € M3*3. By the strict convexity of
E — |- —vQJ? and since Q € Qx is constant, we can write

(3.20) [ WE®) —1QPdr < [ WBE+Vw) QP
Q Q
Vw € H}(Q,R?) with divw = 0,

which proves that @ = F 2 for every x in Q. Writing E = Eav, then (3.20) becomes

: Gtr: Y
BBy T Q) = [ 5 (B @)
and the minimization problem on the left-hand side of (3.21) can now be solved
algebraically by computing the element of minimum distance from yQx. We find the
exact asymptotic expressions of the minimizers of the energy parameterized by the
mechanical strain E = E(F) imposed by a traction on the boundary. The pictorial
representation of Q as a function of E is called a phase diagram. Though this is
defined as a map of solutions to a very particular boundary value problem the phase
diagram yields in fact qualitative information on the minimizers of .7-" 2.9 even in the
presence of more general boundary conditions, provided that we con51der the behavior
of solutions sufficiently far away from the boundary. The phase diagrams for all the
models considered in this paper are presented and discussed in detail in [8, section 5].
Again, an analogous construction holds also for the case of compressible elastomers.

2 Again, we identify a constant matrix E(z) € L2(Q, M5X3) with a matrix E € M35,
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