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Abstract

This paper studies the singular limit of the non-isentropic Navier-Stokes equations with zero
thermal coefficient in a two dimensional bounded domain as the Mach number goes to zero.
A uniform existence result is obtained in a time interval independent of the Mach number,
provided that the initial data satisfy the “bounded derivative conditions”, that is, the time
derivatives up to order two are bounded initially, and Navier’s slip boundary condition is
imposed.
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1. Introduction and Main Results

The motion of low Mach number fluid flows are described by the following non-dimensional
Navier-Stokes equations:

ρt + div(ρu) = 0, (1.1)

(ρu)t + div(ρu⊗ u)− divS +
1

ε2
∇p = 0, (1.2)

(ρe)t + div(ρue) + pdivu− div(κ∇T ) = ε2S ·D(u), (1.3)

where ρ, u, p, e, T stand for the density, velocity, pressure, internal energy and temperature
respectively. The constants µ, λ are the viscous coefficients with µ > 0, µ+ λ ≥ 0 (in 2D), ε
is the Mach number, κ is the heat conductivity coefficient, and

S ≡ S(u) = 2µD(u) + λdivuI

is the viscous stress tensor, with D(u) = (∇u+∇ut)/2. Moreover, we assume that the fluid
flows are polytropic ideal gases:

e = CV T , p = RρT , (1.4)
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where CV > 0 is the specific heat at constant volume, and R is the generic gases constant.
The ratio of specific heats is γ = 1 + R/CV . In this paper, we are interested in the 2-
dimensional flow. In this case, the velocity field is given by u = (u1, u2). Formally, as ε
tends to zero, the solutions to (1.1)-(1.3) converge to those for the following problem:

ρt + div(ρv) = 0, (1.5)

(ρv)t + div(ρv ⊗ v)− div(2µD(v)) +∇π = 0, (1.6)

CV γdivv = div(κ∇(
1

ρ
)). (1.7)

Specifically, in the isentropic case, or under the assumption κ = 0, which is considered in
this paper, (1.7) reduces to the incompressible constraint

divv = 0.

This low Mach number limit process is singular. It is not only a physically interesting
problem (see [31]), but also challenging mathematically, since it is difficult to obtain uniform
estimates in Mach number which is necessary to justify the convergence to the background
incompressible flows.

The investigation of low Mach number limit began at seventies of last century by Ebin
[16] in the isentropic regime. Klainerman and Majda [27, 28] set up a framework for
studying this singular limit in case of no physical boundary conditions for smooth and
“well-prepared” initial data, which means that the initial data is nearly appropriate for
the limit equation. When the fluids are isentropic, the results are rather plentiful (see e.g.
[4, 5, 11, 12, 13, 14, 23, 24, 25, 29, 30, 32, 36, 39, 40, 41, 42, 44] ), even though the initial
data are “ill-prepared”.

In the non-isentropic regime, the behavior of solutions is much more complicated because
the temperature variations play an important role in creating the resonance.

For Euler equations with the solid boundary condition, Schochet [38] studied the low
Mach number limit under the assumptions that the initial data are “well-prepared” and
the entropy is purely transported. By analyzing the acoustics, Metivier and Schochet
investigated the situation of “ill-prepared” data in Rn by the techniques of pseudo-differential
operators and wave-packet transform [34]. These methods can also be adapted to the case of
exterior domains [2], since the decay of energy also implies the local strong convergence. For
the case of periodic boundary, one may refer to [35] for the results in one spacial dimension.

For the Navier-Stokes equations, the way to obtain the uniform estimates is very different
from the case of the Euler equations, since the viscous dissipation effects would prevent us
identifying the oscillatory acoustic waves from the background incompressible flows. In
the case that both the density and the temperature vary in a small range of O(ε), the
differential operators of O(1

ε
) are still anti-symmetric. Hagstrom and Lorenz [22] proved

a uniform estimate independent of ε ∈ (0, 1] and t ∈ [0,+∞) in the whole space, provided
that the background incompressible fluid flows are sufficiently smooth. We remark that in
the reality, the temperature may vary in a large range, the coefficient of the heat diffusion
term is O(1

ε
), thus the strategies in the estimates for Euler equations do not apply. Kim

and Lee [26] verified the low Mach number limit of local strong solutions of Navier-Stokes
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equation with zero heat-conductivity and “well-prepared” initial data in R3. The strategy of
Klainerman and Majda [27, 28] and the elementary energy estimates are applied in [26].
Recently, Alazard studied the low Mach number limit of the full system in Rn for certain
“ill-prepared” initial data [3] by the technique of pseudo-differential operators. Moreover,
the uniform estimates in the Mach number hold in both Rn and T n. However, the technique
of pseudo-differential operators does not apply directly to the case of bounded domain due
to the restriction of the Fourier transform. Feireisl and Novotný [18] considered the low
Mach number limit for the periodic “variational solutions” to the full Navier-Stokes-Fourier
equations for “ill-prepared” initial data for certain radiative gases [18], which excludes the
ideal polytropic gas. Related results on bounded domains with various boundary conditions
can be found in [15, 17, 19]. Note that different gaseous laws may lead to different frameworks
for the low Mach number analysis.

The study of low Mach number limit for the non-isentropic Navier-Stokes equations
governing ideal polytropic gases in bounded domains is far from completed. In a recent
work, Ou [37] studied the incompressible limit of non-isentropic Navier-Stokes equations
with zero thermal conductivity coefficient in a finite interval. If the time derivatives up to
order two are bounded initially, that is,

‖(ρ0, u0, q0)‖H2 + ‖(ρt(0), ut(0), qt(0))‖H1 + ‖(ρtt(0), utt(0), qtt(0))‖L2 + ‖ρ0
−1‖L∞ ≤ C,

with q = (p − 1)/ε being the pressure variation, the solutions are bounded uniformly with
respect to the Mach number in the same class as initial data, which implies that the limiting
solution is exactly an incompressible profile. In this case, the analysis relies on the estimates
for the temporal derivatives, which serve as the only tangential derivatives to the boundary.

Note that in the usual sense of “well-prepared” initial data, only the time derivatives of
first order are bounded initially in some norms (see [26, 27, 28] for example), which is almost
equivalent to the boundedness of divu0/ε and ∇p0/ε. However, in [37] and this paper, there
are more restrictive bounded derivative conditions on the initial data, due to the presence
of solid boundary. This is motivated by the works [8, 9] of Kreiss, who first developed the
method of bounded derivatives. In this paper, the boundedness of time derivatives of second
order coincide with the boundedness of ‖divu0/ε

2‖H1 , ‖∇q0/ε
2‖H1 and ‖u0‖H4 .

Our purpose is to verify the low Mach number limit for the zero heat-conductive Navier-
Stokes equations in bounded domains of two spatial dimensions. The geometry of boundary
causes much difficulty when showing the uniform estimates in the Mach number, due to the
boundary effects of the acoustic waves. In contrast to [3, 26], integrating by parts is usually
invalid in the boundary case, especially when estimating high order spatial derivatives. Thus
the usual way to balance the singular differential operators in the whole space or periodic
space is not applicable. The result of this paper also generalize the 1D result [37] in some
sense. In the analysis of 1D, high order spatial estimates can nearly be controlled by the
temporal estimates. But it is not true in 2D when we handle the normal derivatives near
the boundary. To circumvent this trouble, we separate the uniform full-norm estimates
into the estimates of vorticity and of divergence of velocity. For this purpose, the most
important observation is that, Navier’s slip boundary condition (see (1.13)), is equivalent
to a representation of vorticity on the boundary (see Lemma 2.7), which is only valid for
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dimension two. Another observation is that,

∆u = ∇divu−
−−→
curlcurlu,

where
−−→
curl = (−∂2, ∂1)t and curlu = ∂1u2− ∂2u1 for any u = (u1, u2)t, so that the separation

of divergence and vorticity is reasonable (yet, this is not limited to dimension two). Note
that we don’t take the strategy in [45] that dealing with the boundary estimates by consider
the tangential and normal components near the boundary separately, since it may lose the
uniform estimates of the highest order normal derivatives to the boundary. Furthermore,
the strategy applied here is more simple and clear.

We prove the local existence of the strong solution to the Navier-Stokes equations under
Navier’s slip boundary conditions with the uniform estimates in a small time interval. The
key ingredients of this paper are the global existence of the “essentially linear” system in
any finite time interval, and the uniform estimates for this system in a small time interval
independent of the Mach number. Note also that in this paper, the space-time derivatives
of same order can be estimated as an entity. Then due to the completeness of L2 estimates,
one can show the uniform estimates of the full norm order by order. This is also a key point
of this paper.

In the following, we assume that the heat conductivity coefficient κ = 0. We introduce
the pressure variation q by

p = 1 + εq. (1.8)

Then the non-dimensional system (1.1)-(1.3) can be rewritten as

ρt + div(ρu) = 0, (1.9)

ρ(ut + u · ∇u) +
1

ε
∇q = div(2µD(u)) + λ∇divu, (1.10)

1

γ
(qt + u · ∇q) + qdivu+

1

ε
divu =

γ − 1

γ
ε(2µ|D(u)|2 + λ(divu)2). (1.11)

We impose the initial conditions

(ρ, u, q)|t=0 = (ρ0, u0, q0)(x), x ∈ Ω, (1.12)

where Ω ⊂ R2 is a simply connected, bounded domain with smooth boundary ∂Ω, and
Navier’s slip boundary conditions are described as

u · n = 0, τ · S(u) · n+ αu · τ = 0 on ∂Ω× (0, T ), (1.13)

where α(x) ≥ 0 is a C2 function, n and τ are the unit outer normal and unit tangential
vector to ∂Ω, respectively. Navier’s slip boundary conditions describe an interaction between
a viscous fluid and a solid wall. Various existence results of compressible Navier-Stokes
equations with this kind of boundary conditions have been proved by Tani [43], Zajaczkowski
[45] and among others.

We denote the norm in Sobolev space W k,p(Ω) by ‖ · ‖Wk,p for k ≥ 0, 1 ≤ p ≤ ∞,
the norm in Hk(Ω) by ‖ · ‖Hk for k ≥ 0 (H0 ≡ L2), the norm in Lp(Ω) by ‖ · ‖Lp for
1 ≤ p ≤ +∞. Moreover, we denote the Sobolev norm in Lp(0, t;Hk(Ω)) by ‖ · ‖Lp

tH
k for
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1 ≤ p ≤ ∞, 0 ≤ k <∞ and 0 < t <∞, and the norm in C([0, t], Hk(Ω)) by ‖·‖CtHk for k ≥ 0
and t > 0. Throughout this paper, we denote various positive constants, various positive and
continuous functions of M0, M (to be defined in Definition 2.1), which are all independent
of ε, by C, F0(·) and F (·), respectively. Moreover, we shall use Fi(·) (i = 0, 1, 2, · · · ), F (·),
Fi(·, ·), F (·, ·), Fi(·, ·, ·), F (·, ·, ·) e.t.c. to stand for various positive and continuous functions.
Furthermore, we would denote the partial derivatives by subscripts and the components of
a vector by superscripts. For example, uj means the j-th component of a vector u, and uy
stands for the partial derivative of u with respect to y.

During the estimates, Hölder’s inequality, Sobolev ’s inequality and the following inter-
polation inequality will be used implicitly.

Lemma 1.1. (Interpolation inequality, see Chaper II, [21]) Assume that Ω ⊂ RN is a bound-
ed domain with locally Lipschitz boundary ∂Ω. Then for any u ∈ W 1,q(Ω),

‖u‖Lr ≤ C‖u‖1−λ
Lq ‖u‖λW 1,q , (1.14)

where r ∈ [q,Nq/(N − q)] if q ∈ [1, N), r ∈ [q,+∞) if q ≥ N , and C is independent of u
and λ = N(r − q)/(rq). 2

Below is the main theorem of this paper.

Theorem 1.1. Suppose that the initial datum (ρε0, u
ε
0, q

ε
0) satisfies that ρε0 ≥ C−1

0 > 0, and

‖(ρε0, uε0, qε0)‖H2 + ‖(ρεt, uεt, qεt)(0)‖H1 + ‖(ρεtt, uεtt, qεtt)(0)‖L2 ≤ C0. (1.15)

Moreover, we assume that (ρε0, u
ε
0, q

ε
0) ⇀ (ρ0, u0, q0) in (H2)3. Then the initial-boundary

value problem (1.9)-(1.13) admits a unique solution (ρε, uε, qε) in C([0, T ]0;H2(Ω))3, for
some positive constant T0 independent of ε. Moreover, (ρε, uε, qε) satisfies

max
t∈[0,T ]0

(‖(ρε, uε, qε)‖H2 + ε‖uε‖H3 + ‖(ρεt, uεt, qεt)‖H1 + ‖(ρε)−1‖L∞)(t)

+‖(ρεtt, uεtt, qεtt)‖L∞(0,T0;L2) +

(∫ T0

0

(‖uε‖2
H3 + ‖uεt‖2

H2 + ‖uεtt‖2
H1)dt

) 1
2

≤ C.

(1.16)

Here C0, C = C(δ0, C0) are positive constants independent of ε ∈ (0, 1]. Furthermore, (ρε, uε)
converges to (ρ, u) in certain Sobolev spaces as ε → 0, and there exists a function P (x, t)
such that (ρ, u, P ) in C([0, T ]0;H2(Ω)2 × H1(Ω)) solves the initial-boundary value problem
of the inhomogeneous incompressible Navier-Stokes equations:

ρt + u · ∇ρ = 0, divu = 0,

ρ(ut + u · ∇u) +∇P = µ∆u in Ω× (0, T0)

u · n = τ · S(u) · n+ αu · τ = 0 on ∂Ω× (0, T0),

(ρ, u)|t=0 = (ρ0, u0).

(1.17)

2

Remark 1.1. The notation ρt(0) is indeed a quantity signifying for −div(ρ0u0) by the den-
sity equation (1.9). Analogously, the notations qt(0)ut(0), ρtt(0), utt(0), qtt(0) are defined
recursively by the equations (1.9)-(1.11) and the initial data ρ0, u0 and q0.

Remark 1.2. From the assumption that qεt(0), uε0, qε0 are bounded, and the weak convergence
of initial data of compressible Navier-Stokes equations, we have divu0 = 0 a.e. in Ω, for the
initial data of the incompressible Navier-Stokes equations.
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2. Uniform estimates of the “essentially linear” equations

We consider the following “essentially linear” equations:

ρt + div(ρv) = 0, (2.1)

ρ(ut + v · ∇u) +
1

ε
∇q = 2µdiv(D(u)) + λ∇divu, (2.2)

1

γ
(qt + v · ∇q) + qdivv +

1

ε
divu =

γ − 1

γ
ε(2µ|D(v)|2 + λ(divv)2). (2.3)

We impose the following initial conditions

(ρ, u, q)|t=0 = (ρ0, u0, q0)(x), x ∈ Ω, (2.4)

and Navier’s slip boundary condition

u · n = 0, τ · S(u) · n+ αu · τ = 0 on ∂Ω× (0, T ) (2.5)

where n is the unit outer normal to ∂Ω and v is a given function satisfying v|t=0 = u0,
v ·n|∂Ω = 0, vt|t=0 = ut(0), v ∈ C([0, T ];H2)∩L2(0, T ;H3), vt ∈ C([0, T ];H1)∩L2(0, T ;H2),
and vtt ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1).

Theorem 2.1. (Global existence for the “essentially linear” system) Suppose that the initial
datum (ρε0, u

ε
0, q

ε
0) satisfies

(ρε0, u
ε
0, q

ε
0) ∈ H2(Ω)3, (ρεt(0), uεt(0), qt(0)) ∈ H1(Ω)3, (ρεtt(0), uεtt(0), qtt(0)) ∈ L2(Ω)3,

with ρε0 ≥ δ0 for some positive constant δ0. Assume the following compatibility conditions
are satisfied:

uε0 · n = τ · S(uε0) · n+ αuε0 · τ = uεt(0) · n = 0 on ∂Ω. (2.6)

Then the initial boundary problem (2.1)-(2.5) admits a unique solution (ρε, uε, qε) ∈ C([0, T ];
H2 ×H3 ×H2) satisfying ρε > 0 in Ω× (0, T ) and

(ρεt, u
ε
t, q

ε
t) ∈ C([0, T ];H1)3, uεt ∈ L2(0, T ;H2),

(ρεtt, u
ε
tt, q

ε
tt) ∈ L∞(0, T ;L2)3, uεtt ∈ L2(0, T ;H1).

2

The proof of this theorem will be given in the last section of this article.

Definition 2.1.

M0 :=
2∑
i=0

‖∂it(ρ, u, q)(t = 0)‖H2−i + ‖ρ−1
0 ‖L∞ ,

M := max
t∈[0,T ]

(
2∑
i=0

‖∂itv‖H2−i + ε‖v‖H3

)
(t) +

(∫ T

0

2∑
i=0

‖∂itv‖2
H3−idt

) 1
2

.
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We will obtain two sets of the uniform estimates for (2.1)-(2.5) in the following propo-
sition, which is the key to our problem. Note that both the short-time estimates and the
long-time estimates are stated in this proposition, which are necessary for the proofs of both
Theorem 1.1 and Theorem 2.1, respectively. Indeed, the intermediate long-time estimates
are also applied in the proof of Theorem 2.1 when we extend the local solution in [0, T0] to
the global solution in [0, T ] in a finite number of fixed time-steps.

Proposition 2.1. Assume that the initial datum (ρ0, u0, q0) satisfies

M0 ≤ C0, (2.7)

for some positive constant C0 independent of ε ∈ (0, 1]. Suppose that (ρ, u, q) is the unique
global solution described in Theorem 2.1. Then there exist positive constants T0(M) and
C(C0) independent of ε ∈ (0, 1] and M , such that

max
t∈[0,T0]

(‖(ρ, u, q)‖H2 + ε‖u‖H3 + ‖(ρt, ut, qt)‖H1 + ‖ρ−1‖L∞)(t)

+ ess sup
t∈[0,T0]

‖(ρtt, utt, qtt)‖L2(t) +

(∫ T0

0

(‖u‖2
H3 + ‖ut‖2

H2 + ‖utt‖2
H1)dt

) 1
2

≤ C.
(2.8)

Moreover, if M is fixed, then T0 = T , while C depends on both M and C0. 2

This proposition follows from Lemma 2.1 and Lemma 2.17, since ε‖u‖H3 can be estimated
directly from equation (1.10). In the sequel, we derive the estimates of ρ and the estimates
of q and u separately, since the density equation (2.1) does not contain O(1/ε) terms.

2.1. Estimates of ρ

The proof of this part is standard, we sketch it here for the sake of completeness. First,
we derive the lower bound for ρ. For any integer k ≥ 2, we multiply (2.1) by −ρ−k to derive

1

k − 1

∫
Ω

(∂tρ
1−k + u · ∇ρ1−k)dx−

∫
Ω

ρ1−kdivudx = 0,

which gives, by integrating by parts,

d

dt
‖ρ−1‖Lk−1 ≤ C

k

k − 1
‖divu‖L∞‖ρ−1‖Lk−1 ,

for some constant C > 0 independent of k. Then by Gronwall’s inequality and letting
k → +∞, we obtain

‖ρ−1‖L∞(t) ≤ ‖ρ−1
0 ‖L∞ exp

(
C
√
t‖v‖L2

TH
3

)
≤ CM0 exp

(√
tM
)
, ∀ t ∈ [0, T ].

Next, we shall establish the H2 estimates of ρ. It follows from (2.1) that

(Dαρ)t + v · ∇(Dαρ) +Dα(ρdivv) = [v,Dα] · ∇ρ, (2.9)
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for 0 ≤ |α| ≤ 2, where Dα is the spatial derivative with multi-index α and the commutator
[a, b] is defined by [a, b] := ab − ba. Multiplying (2.9) by Dαρ and integrating the resulting
equality over Ω to get, and applying the Gronwall inequality, we have

‖ρ‖H2(t) ≤‖ρ0‖H2 exp

(
C

∫ t

0

‖v‖H3ds

)
≤M0 exp

(
C
√
tM
)
, ∀t ∈ [0, T ].

Differentiating (2.1) in temporal variables once and calculating as above, we obtain

‖ρt‖L2(t) ≤
(
‖ρt(0)‖L2 +

∫ t

0

‖vt‖H1‖ρ‖H2ds

)
exp

(
C

∫ t

0

‖v‖H3ds

)
≤(M0 +

√
tM‖ρ‖CtH2) exp

(
C
√
tM
)
, ∀ t ∈ [0, T ].

On account of the lower order estimates, one shows

‖∇ρt‖L2(t) ≤ exp

(
C

∫ t

0

‖v‖H3ds

)(
‖ρt(0)‖H1 +

∫ t

0

(‖ρt‖L2‖v‖H3 + ‖ρ‖H2‖vt‖H2)ds

)
≤ exp

(
C
√
tM
)(

M0 +
√
tM(‖ρt‖CtL2 + ‖ρ‖CtH2)

)
, ∀ t ∈ [0, T ].

Finally, we estimate ρtt to complete the estimates of ρ. Differentiating (2.1) twice in time
variables, we have

ρttt + v · ∇ρtt + divvρtt + 2vt · ∇ρt + vtt · ∇ρ+ 2ρtdivvt + ρdivvtt = 0. (2.10)

Similar to the previous computations, we deduce

d

dt
‖ρtt‖2

L2 ≤ C(‖divv‖L∞‖ρtt‖2
L2 + C‖ρtt‖L2(‖vt‖H2‖∇ρt‖L2+

+ ‖vtt‖H1‖∇ρ‖H1 + ‖divvt‖H1‖ρt‖H1 + ‖divvtt‖L2‖ρ‖H2),

and thus from the assumptions on the initial data, ∀ t ∈ [0, T ],

‖ρtt‖L2(t) ≤ exp
(
C
√
tM
)

(M0 +
√
tM(‖ρt‖CtH1 + ‖ρ‖CtH2)).

Collecting all the estimates above and applying Gronwall’s inequality, we obtain, by observ-
ing that T and M are fixed numbers in the long-time estimates in [0, T ],

Lemma 2.1. There exist positive constants T1(M) := min(T, (1 +M2)−1) and C̃ such that
for any t ∈ [0, T1],

(‖ρ‖H2 + ‖ρt‖H1 + ‖ρtt‖L2 + ‖ρ−1‖L∞)(t) ≤ C̃M0.

Moreover, we have, for any t ∈ [0, T ],

(‖ρ‖H2 + ‖ρt‖H1 + ‖ρtt‖L2 + ‖ρ−1‖L∞)(t) ≤ F (M0,M),

for some positive continuous function F (·, ·). 2

The later estimate, which is a part of the long-time estimate in Proposition 2.1, can be
obtain at the same time with a bound depending on both M and M0.

In the following steps, we will estimate (u, q) by the anti-symmetric property of the
singular operators.
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2.2. L2-estimates of (u, q)

Lemma 2.2. (Korn’s inequality, see [45]) Let Ω ⊂ R2 be a simply connected open bounded
domain with C2 boundary ∂Ω. Then for any u ∈ H1(Ω), with u · n|∂Ω = 0, one has

‖u‖H1 ≤ C‖D(u)‖L2 . (2.11)

2

From Lemma 2.2, one gets

−
∫

Ω

(2µdiv(D(u)) + λ∇divu) · udx

=

∫
Ω

(2µ|D(u)|2 + λ(divu)2)dx+

∫
∂Ω

α(u · τ)2dS ≥ γ0‖u‖2
H1 ,

for some constant γ0 > 0. Therefore we integrate the inner product of both sides of (2.2)
and u over Ω to obtain

1

2

d

dt
‖√ρu‖2

L2 + γ0‖u‖2
H1 −

1

ε

∫
Ω

qdivudx ≤ 0. (2.12)

Meanwhile, direct computations show that

1

2γ

d

dt
‖q‖2

L2 +
1

ε

∫
Ω

qdivudx ≤ C‖divv‖L∞‖q‖2
L2 + Cε‖∇v‖2

L4‖q‖L2 .

It follows from the previous two inequalities, the un-signed large terms of O(1
ε
) are canceled:

‖√ρu‖L2(t) + ‖q‖L2(t)

≤ exp
(√

t‖v‖L2
TH

3

)(
‖(√ρ0u0, q0)‖L2 +

∫ t

0

ε‖v‖2
H2ds

)
≤C(M0 + εtM) exp(

√
tM), ∀ t ∈ [0, T ].

Thus we conclude that

Lemma 2.3. There exists a positive continuous function F1(·), such that for any t ∈ [0, T1],

‖(u, q)‖L2(t) + ‖u‖L2
tH

1 ≤ F1(M0).

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F1(M0) replaced by F (M0,M).

2

2.3. Estimates of first order derivatives of (u, q)

In the following, we will estimate the time and spacial derivatives of u and q of the same
order as an entity. That is one of our main strategies. First, we will estimate ‖∇u‖CtL2 and
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‖qt‖L2
tL

2 . Differentiating (2.2) with respect to t and multiplying the resulting equation by u,
we obtain, by the boundary condition in (2.5) and the immersion H1(Ω) ↪→ L2(∂Ω),(

µ‖D(u)‖2
L2 +

λ

2
‖divu‖2

L2 +

∫
∂Ω

α

2
|u|2dS

)
(t)− 1

ε

∫ t

0

∫
Ω

∇qt · udxds

≤C
(
‖u0‖2

H1 +

∫
∂Ω

|u0|2dS
)
−
∫ t

0

∫
Ω

(ρut)t · udxds

+

∫ t

0

∫
Ω

(
(ρtv · ∇u+ ρ(vt · ∇u+ v · ∇ut)

)
· udxds ≡ CM2

0 + I1 + I2,

where the estimates of utt are transferred into the estimates of lower order derivatives:

|I1| ≤
∣∣∣∣∫

Ω

ρut · udx
∣∣∣∣t
s=0

+ ‖√ρut‖2
L2
tL

2

≤1

4
‖ut‖2

L2(t) + ‖ρ‖2
L∞x,t
‖u‖2

L2(t) +M3
0 + ‖√ρut‖2

L2
tL

2

and

|I2| ≤
∫ t

0

(
‖ρt‖H1‖v‖H2‖u‖2

H1 + ‖ρ‖H2‖u‖H1(‖vt‖H1‖∇u‖L2 + ‖v‖H2‖∇ut‖L2)
)
ds

≤1

4
‖∇ut‖2

L2
tL

2 +

∫ t

0

((‖ρt‖H1 + ‖ρ‖H2)M + ‖ρ‖2
H2M2)‖u‖2

H1ds.

Then we reach that, by Korn’s inequality,

‖u‖2
H1(t)−

1

ε

∫ t

0

∫
Ω

∇qt · udxds

≤F0(M0) +
1

4
(‖ut‖2

L2
tH

1 + ‖ut‖2
L2(t)) +

∫ t

0

‖ρ‖L∞‖ut‖2
L2ds

+

∫ t

0

((‖ρt‖H1 + ‖ρ‖H2)M + ‖ρ‖2
H2M2)‖u‖2

H1ds, ∀ t ∈ [0, T ].

On the other hand, we multiply (2.3) by qt and integrate the resulting equation over
Ω× (0, t) to get

1

γ
‖qt‖2

L2
tL

2 +
1

ε

∫ t

0

∫
Ω

divuqtdxds

≤η‖qt‖2
L2
tL

2 + Cη−1

∫ t

0

(‖v‖2
H2‖q‖2

H1 + ε2‖∇v‖4
L4)ds

≤η‖qt‖2
L2
tL

2 + Cη−1

∫ t

0

M2(‖∇q‖2
L2 + ‖q‖2

L2)ds+ CtM4.

Summarizing the above two inequalities and choosing η sufficiently small, we obtain the
following lemma by the L2-estimates and the estimates of ρ.
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Lemma 2.4. There exist a positive constant T2(M) := min (T, (1 +M4)−1) and a positive
continuous function F0(·), such that for any t ∈ [0, T2],

‖u‖2
H1(t) +

1

2γ
‖qt‖2

L2
tL

2 ≤F0(M0) +
1

4
(‖ut‖2

L2
tH

1 + ‖ut‖2
L2(t))

+

∫ t

0

F0(M0)(1 +M2)(‖(ut,∇q)‖2
L2 + ‖u‖2

H1)ds.

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2

Next, we estimate ‖∇q‖CtL2 and ‖∇divu‖L2
tL

2 . Note that the right-hand side of (2.2) can be
written as

(2µ+ λ)∇divu− µ
−−→
curlcurlu,

where
−−→
curl = (∂2,−∂1)t. Thus we multiply (2.2) by ∇divu and integrate to get, for any

t ∈ [0, T ],

(2µ+ λ)‖∇divu‖2
L2
tL

2 − µ
∫ t

0

∫
Ω

−−→
curlcurlu · ∇divudxds− 1

ε

∫ t

0

∫
Ω

∇q · ∇divudxds

≤δ‖∇divu‖2
L2
tL

2 + Cδ−1

∫ t

0

‖ρ‖2
H2(‖ut‖2

L2 + ‖v‖2
H2‖∇u‖2

L2)ds.

In order to estimate the second term of left-hand side of the above inequality, we introduce
a lemma concerning the boundary condition u · n|∂Ω = 0.

Lemma 2.5. (see [10]) Suppose that Ω is a bounded simply connected domain in R2 with
smooth boundary ∂Ω, and v ∈ H2(Ω) with v · n = 0 on ∂Ω. Then we have

2τ ·D(v) · n− curlv + 2κv · τ = 0 on ∂Ω,

where curlv = ∂1v2−∂2v1 and κ is the curvature of ∂Ω given in a standard way by dτ
ds

= −κn.
2

Due to Navier’s slip boundary condition (2.5), Lemma 2.5 and the trace theorem, we have∫
Ω

−−→
curlcurlu · ∇divudx =

∫
∂Ω

curlu
∂

∂τ
divudS

=

∫
∂Ω

(2κ− α

µ
)(u · τ)

∂

∂τ
divudS

≤ δ‖divu‖2
H2(Ω) + Cδ−1‖u‖2

H1(Ω).

For δ < µ/4, we have, for any t ∈ [0, T ],

µ

2
‖∇divu‖2

L2
tL

2 −
1

ε

∫ t

0

∫
Ω

∇q · ∇divudxds

≤δ‖∇2divu‖2
L2
tL

2 + (µ/4 + Cδ−1)‖u‖2
L2
tH

1

+ Cδ−1

∫ t

0

‖ρ‖2
H2(1 +M2)‖(ut,∇u)‖2

L2ds.

(2.13)
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In order to cancel the unsigned large integral in the above inequality, we apply the
operator ∇ to (2.3) to get

1

γ
(∇qt+v · ∇2q +∇v∇q) +∇qdivv + q∇divv +

1

ε
∇divu

=
γ − 1

γ
ε∇(2µ|D(v)|2 + λ(divv)2).

Then we integrate the inner product of both sides of this equality and ∇q over Ω to get

1

2γ
‖∇q‖2

L2(t) +
1

ε

∫ t

0

∫
Ω

∇divu · ∇qdxds

≤CM2
0 +

∫ t

0

(‖v‖H3‖q‖2
H1 + ε2‖v‖H3‖v‖2

H2)ds

≤CM2
0 + ε

√
tM3 +

√
tM‖q‖2

L2(t) +

∫ t

0

‖v‖H3‖∇q‖2
L2ds, ∀ t ∈ [0, T ],

Combining (2.13) with the above inequality, and applying Lemma 2.3, we obtain

Lemma 2.6. There exist a positive constant T3(M) := min(T, (1 + M6)−1) and a positive
continuous function F0(·), such that for any t ∈ [0, T3] and any δ ∈ (0, µ/4],

‖∇q‖2
L2(t) + ‖∇divu‖2

L2
tL

2 ≤ (1 + δ−1)F0(M0) + δ‖∇2divu‖2
L2
tL

2

+

∫ t

0

F0(M0)δ−1(1 +M2 + ‖v‖H3)‖(ut,∇u,∇q)‖2
L2ds.

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M).

2

Next we estimate ‖(ut, qt)‖CtL2 and ‖ut‖L2
tH

1 . From (2.2) and (2.3), we have respectively

ρ(utt+v · ∇ut)− div(2µD(ut))− λ∇divut +
1

ε
∇qt

=− ρtut − ρtv · ∇u− ρvt · ∇u,
(2.14)

and

1

γ
(qtt+v · ∇qt + vt · ∇q) +

1

ε
divut + qtdivv + qdivvt

=
γ − 1

γ
ε∂t(2µ|D(v)|2 + λ(divv)2).

(2.15)

Then by (2.1) and (2.5), the integration of the inner product of (2.14) and ut yields, for any
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t ∈ [0, T ],

1

2
‖√ρut‖2

L2(t) + 2µ‖D(ut)‖2
L2
tL

2 + λ‖divut‖2
L2
tL

2

+

∫ t

0

∫
∂Ω

α|ut|2dSds+
1

ε

∫ t

0

∫
Ω

∇qt · utdxds

≤ F0(M0) +

∫ t

0

(‖ρt‖H1‖ut‖H1(‖ut‖L2 + ‖v‖H2‖u‖H1)

+‖ρ‖H2‖vt‖H1‖u‖H1‖ut‖H1)ds

≤ η‖ut‖2
L2
tH

1 + F0(M0) +
C

η

∫ t

0

(‖ρt‖H1 + ‖ρ‖H2)(1 +M)(‖ut‖2
L2 + ‖u‖2

H1)ds.

Similarly, we derive from (2.15) that, for any t ∈ [0, T ],

1

2γ
‖qt‖2

L2(t) +
1

ε

∫ t

0

∫
Ω

divutqtdxds

≤CM2
0 +
√
tM3 +

∫ t

0

(‖v‖H3 + ‖vt‖H2)‖(qt,∇q)‖2
L2ds.

By use of Korn’s inequality, we combine the above two inequalities and choose η small enough
to get

Lemma 2.7. There exists a positive continuous function F0(·), such that for any t ∈ [0, T3],

‖(ut, qt)‖2
L2(t) + ‖ut‖2

L2
tH

1

≤ F0(M0) +

∫ t

0

F0(M0)(1 +M + ‖v‖H3 + ‖vt‖H2)(‖(ut,∇q, qt)‖2
L2 + ‖u‖2

H1)ds.

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2

Finally, we will estimate ‖curlu‖CtL2 and ‖∇curlu‖L2
tL

2 to close the estimates of the first
order derivatives. Recall that curlu and divu are in different scales, thus it is convenient to
estimate them separately. Let

w = curlu,

then the momentum equation becomes the equation for the vorticity w:

ρ(wt + v · ∇w)− µ∆w = g, (2.16)

where g := (∂2ρu1t − ∂1ρu2t) + (∂2(ρv) · ∇u1 − ∂1(ρv) · ∇u2). The boundary condition for w
is

w|∂Ω = (2κ− α

µ
)u · τ. (2.17)

Direct calculations show that

‖√ρw‖2
L2(t) + µ‖∇w‖2

L2
tL

2

≤ CM4
0 +

∫ t

0

∫
Ω

gwdxds+

∫ t

0

∫
∂Ω

w
∂w

∂n
dxds := CM4

0 + J1 + J2.
(2.18)
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For any t ∈ [0, T ], one shows

|J1| ≤
∫ t

0

‖w‖H1(‖∇ρ‖H1‖ut‖L2 + ‖ρ‖H2‖v‖H2‖∇u‖L2)ds

≤δ‖w‖2
L2
tH

1 + Cδ−1

∫ t

0

‖ρ‖2
H2(1 +M2)‖(ut,∇u)‖2

L2ds.

Moreover, we deduce by the trace theorem that

|J2| ≤ C

∫ t

0

∫
∂Ω

|∇w||u · τ |dSds ≤ δ‖∇w‖2
L2
tH

1 + Cδ−1‖u‖2
L2
tH

1 .

Then we derive the following lemma by (2.18), the estimates of J1 and J2, and the L2

estimates, and by choosing δ ∈ (0, δ0] (for example), for some small positive constant δ0.

Lemma 2.8. There exists a positive continuous function F0(·), such that for any t ∈ [0, T ]
and any δ ∈ (0, δ0],

‖w‖2
L2(t) + ‖w‖2

L2
tH

1 ≤ (1 + δ−1)F0(M0) + δ‖(∇2divu,∇2w)‖2
L2
tL

2

+

∫ t

0

F0(M0)δ−1(1 +M2)‖(ut,∇u)‖2
L2ds.

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) being replaced by F (M0,M).

2

We are ready to derive the uniform estimates of first order derivatives. We define the
following notations for convenience.

Definition 2.2.

Φ1(t) :=‖(∇q, ut, qt)‖2
L2(t) + ‖u‖2

H1(t)

+

∫ t

0

(‖(ut, w)‖2
H1 + ‖(∇divu, qt)‖2

L2)ds.

We conclude from Lemmas 2.4, 2.6, 2.7 and 2.8, by choosing δ small enough and using the
Gronwall inequality that

Lemma 2.9. There exists a positive continuous function F0(·), such that for any t ∈ [0, T3],
and any positive constant η1 which will be chosen sufficiently small later,

Φ1(t) ≤ (1 + η−1
1 )F0(M0) + η1‖(∇2divu,∇2w)‖2

L2
tL

2 . (2.19)

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2
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2.4. Estimates of second order derivatives
In order to obtain the lower bound of the density ρ, one needs to obtain the uniform

high-norm estimates of u as well. We proceed the same procedure as in the estimates of the
first order derivatives.

First, one needs to estimate ‖∇divu‖CtL2 and ‖∇qt‖L2
tL

2 . We integrate by parts and use
Lemma 2.5 to get ∫

Ω

−−→
curlcurlut · ∇divudx

=

∫
∂Ω

(2κ− α

µ
)ut · τ(−n2∂1divu+ n1∂2divu)ds

≤ 1

8
‖∇divu‖2

H1 + C1‖ut‖2
H1 .

Multiplying both sides of (2.14) by ∇divu and integrating the resulting product, one has

2µ+ λ

2
‖∇divu‖2

L2(t)−
1

ε

∫ t

0

∫
Ω

∇qt · ∇divudxds

≤1

8
‖∇divu‖2

L2
tH

1 + C1‖ut‖2
L2
tH

1 +

∣∣∣∣∫ t

0

∫
Ω

ρutt · ∇divudxds

∣∣∣∣
+

∫ t

0

‖∇divu‖L2

(
‖ρt‖H1(‖ut‖H1 + ‖v‖H2‖∇u‖H1)

+ ‖ρ‖H2(‖vt‖H2‖∇u‖L2 + ‖v‖H2‖∇ut‖L2)
)
ds+ CM2

0

≤1

8
‖∇divu‖2

L2
tH

1 + C1‖ut‖2
L2
tH

1 + F0(M0) +

∣∣∣∣∫ t

0

∫
Ω

ρutt · ∇divudxds

∣∣∣∣
+ C

∫ t

0

(‖ρt‖2
H1 + ‖ρ‖2

H2)(1 +M2)‖(ut,∇u)‖2
H1ds.

(2.20)

Next, we convert the estimates concerning utt in terms of the estimates for other derivatives.∫ t

0

∫
Ω

ρutt · ∇divudxds =

∫ t

0

∫
Ω

(∇ρ · utt + ρdivutt)divudxds

=

(∫
Ω

∇ρ · utdivudx(s)
∣∣∣t
s=0

+

∫ t

0

∫
Ω

ut · (∇ρtdivu+∇ρdivut)dxds

)
+

(∫
Ω

ρdivutdivudx(s)
∣∣∣t
s=0

+

∫ t

0

∫
Ω

divut(ρtdivu+ ρdivut)dxds

)
:=K1 +K2.

Note that for any t ∈ [0, T ],

|K1| ≤‖ρ0‖H2‖ut(0)‖L2‖divu0‖H1 + ‖∇ρ‖CtH1‖ut‖L2(t)‖divu‖L4(t)

+

∫ t

0

‖ut‖H1(‖∇ρt‖L2‖divu‖H1 + ‖ρ‖H2‖divut‖L2)ds

≤F0(M0) + C(1 + ‖ρ‖2
CtH2)(‖ut‖2

L2(t) + ‖divu‖2
L2(t))

+
µ+ λ

2
‖∇divu‖2

L2(t) + C

∫ t

0

(‖ρ‖2
CtH2 + ‖ρt‖2

CtH1)‖(ut, divu)‖2
H1ds,
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and similarly,

|K2| ≤F0(M0) +
1

8
‖divut‖2

L2(t) + C‖ρ‖2
CtH2‖divu‖2

L2(t)

+ C

∫ t

0

(‖ρ‖2
CtH2 + ‖ρt‖2

CtH1)‖(ut, divu)‖2
H1ds.

Then from (2.20), Lemma 2.9 and the estimates for K1 and K2, we obtain

µ‖∇divu‖2
L2(t)−

1

ε

∫ t

0

∫
Ω

∇qt · ∇divudxds

≤F0(M0) +
1

8
(‖divut‖2

L2(t) + ‖∇2divu‖2
L2
tL

2)

+C1‖ut‖2
L2
tH

1 + C(1 + ‖ρ‖2
CtH2)(‖ut‖2

L2(t) + ‖divu‖2
L2(t))

+

∫ t

0

F0(M0)(1 + ‖ρ‖2
H2 + ‖ρt‖2

H1)‖(ut, divu)‖2
H1ds.

(2.21)

To cancel the large quantity appearing in (2.21), we apply the operator ∇ to (2.3) and
integrate the inner product of the resulting identity with ∇qt to get

1

γ
‖∇qt‖2

L2
tL

2 +
1

ε

∫ t

0

∫
Ω

∇divv · ∇qtdxds

≤ 1

2γ
‖∇qt‖2

L2
tL

2 + C

∫ t

0

(‖v‖2
H2‖q‖2

H2 + ε2‖∇2v‖2
L2‖∇v‖2

L∞)ds

≤ 1

2γ
‖∇qt‖2

L2
tL

2 + t
2
3M4 + C

∫ t

0

M2‖q‖2
H2ds.

(2.22)

By (2.21), (2.22), Lemmas 2.3 and 2.9, we obtain

Lemma 2.10. There exist positive continuous functions F0(·) and F2(·) such that, for any
t ∈ [0, T3], and any positive constant η1 which will be chosen sufficiently small later,

µ‖∇divu‖2
L2(t) +

1

2γ
‖∇qt‖2

L2
tL

2

≤1

8
(‖divut‖2

L2(t) + ‖∇2divu‖2
L2
tL

2) + F2(M0)η1‖(∇2divu,∇2w)‖2
L2
tL

2

+ (1 + η−1
1 )F0(M0) + (1 + η−1

1 )F (M0)

∫ t

0

(1 +M2)‖(ut, divu,∇q)‖2
H1ds.

Moreover, there exist positive continuous functions F (·, ·) and F2(·, ·) s.t. for any t ∈ [0, T ],
the above estimate holds with F0(M0), F2(M0) being replaced by F (M0,M) and F2(M0,M),
respectively. 2

Second, we shall estimate ‖∇2q‖CtL2 and ‖∇2divu‖L2
tL

2 . Applying ∂xi∂xj (denoted by
∂ij) to (2.3), and multiplying the resulting equation by ∂ijq, then integrating this product
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over Ω× (0, T ), we obtain by applying the interpolation inequality,

1

2γ
‖∂ijq‖2

L2(t) +
1

ε

∫ t

0

∫
Ω

∂ijkuk∂ijqdxds

≤M2
0 +

∫ t

0

‖∂ijq‖L2(‖v‖H3‖q‖H2 + ε‖∇v‖L∞‖∇v‖H2 + ε‖∇2v‖2
L4)ds

≤M2
0 +

∫ t

0

‖q‖H2

(
(‖v‖H3 + ‖v‖

4
3

H3)‖q‖H2 + ‖v‖
4
3

H3‖v‖
4
3

H2 + ‖v‖H3‖v‖2
H2

)
ds

≤M2
0 + C

∫ t

0

(1 + ‖v‖
4
3

H3)‖q‖2
H2ds+ t

1
3M

8
3 + t

1
2M3.

(2.23)

On the other hand, we deduce from (2.2) that

(2µ+ λ)‖∂ijkuk‖2
L2
tL

2 −
1

ε

∫ t

0

∫
Ω

∂ijq∂ijkukdxds

≤(µ+ λ)‖∂ijkuk‖2
L2
tL

2 + C‖∇2curlu‖2
L2
tL

2

+

∫ t

0

‖ρ‖2
H2(‖ut‖2

H1 + ‖v‖2
H2‖∇u‖2

H1)ds.

(2.24)

Thus we conclude from (2.23) and (2.24) that

Lemma 2.11. There exist positive constants C2 and T4(M) := min(T, (1 + M8)−1), and a
positive continuous function F0(·) such that, for any t ∈ [0, T ]4,

1

2γ
‖∇2q‖2

L2(t) + µ‖∇2divu‖2
L2
tL

2

≤F0(M0) + C2‖∇2curlu‖2
L2
tL

2 +

∫ t

0

F0(M0)(1 +M2 + ‖v‖
4
3

H3)‖(∇q, ut,∇u)‖2
H1ds.

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2

Third, we need to estimate ‖(divut,∇qt)‖CtL2 and ‖∇divut‖L2
tL

2 . Regarding the time
direction as a tangential direction to ∂Ω, we have the boundary condition utt ·n|∂Ω = 0, and
thus ∫

Ω

utt · ∇divutdx = −1

2

d

dt
‖divut‖2

L2 . (2.25)

We multiply (2.14) by ∇divut/ρ and integrate to get, for any t ∈ [0, T ],

1

2
‖divut‖2

L2(t) + (2µ+ λ)‖
√
ρ−1∇divut‖2

L2
tL

2 −
1

ε

∫ t

0

∫
Ω

∇qt
ρ
· ∇divutdxds

≤CM0
2 + C‖∇curlut‖2

L2
tL

2‖ρ−1‖L∞t,x + C

∫ t

0

(
‖v‖2

H2‖∇ut‖2
L2

+ ‖vt‖2
H1‖∇u‖2

H1 + ‖ρ−1‖2
L∞‖ρt‖2

H1(‖ut‖2
H1 + ‖v‖2

H2‖∇u‖2
H1)
)
ds.

(2.26)
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Next, we apply ∂t∇ to (2.3) to get

1

γ
(∇qtt + v · ∇2qt +∇v∇qt + vt · ∇2q +∇vt∇q) +

1

ε
∇divut +∇qtdivv

+ qt∇divv +∇qdivvt + q∇divvt =
γ − 1

γ
ε∂t∇(2µ|D(v)|2 + λ(divv)2).

(2.27)

It follows from the density equation (2.1) that∫
Ω

ρ−1∇qt·(∇qtt + v · ∇2qt)dx

=
1

2

∫
Ω

ρ−1
(
∂t(|∇qt|2) + v · ∇|∇qt|2

)
dx

=
1

2

d

dt
‖
√
ρ−1∇qt‖2

L2 −
∫

Ω

ρ−1divv|∇qt|2dx.

Moreover, the right hand side of (2.27) can be estimated as

‖∂t∇(2µ|D(v)|2 + λ(divv)2)‖L2

≤C(‖vt‖H2‖∇v‖L∞ + ‖∇2v‖L4‖∇vt‖L4)

≤C(‖vt‖H2‖v‖
1
3

H3‖v‖
2
3

H2 + ‖v‖
1
2

H3‖v‖
1
2

H2‖vt‖
1
2

H2‖vt‖
1
2

H1)

≤C(‖vt‖
3
2

H2 + ‖v‖H3‖v‖2
H2 + ‖v‖H3‖v‖H2 + ‖vt‖H2‖vt‖H1).

Then it yields from (2.27) and the above calculations, for any t ∈ [0, T ],

1

2γ
‖
√
ρ−1∇qt‖2

L2(t) +
1

ε

∫ t

0

∫
Ω

ρ−1∇qt · ∇divutdxds

≤F0(M0) +

∫ t

0

‖ρ−1‖L∞((1 +M2)‖v‖H3 + ‖vt‖H2 + ‖vt‖
3
2

H2)‖(∇q, qt)‖2
H1ds

+

∫ t

0

‖ρ−1‖L∞‖vt‖H2‖q‖2
L2ds+

∫ t

0

‖ρ−1‖L∞(‖vt‖
3
2

H2 + (1 +M2)(‖v‖H3 + ‖vt‖H2))ds.

Thus we summarize the above inequality and (2.26) to get

Lemma 2.12. There exist a positive constant C3 and a positive continuous function F0(·)
such that, for any t ∈ [0, T4],

‖(divut,
√
ρ−1∇qt)‖2

L2(t) + ‖
√
ρ−1∇divut‖2

L2
tL

2

≤C3M0‖∇curlut‖2
L2
tL

2 + F0(M0)

+ F0(M0)

∫ t

0

(1 + (1 +M2)‖v‖H3 + ‖vt‖
3
2

H2)‖(ut,∇u, qt,∇q)‖2
H1ds.

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2
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Similar to the estimates for the first order derivatives, we have to estimate ‖curlut‖CtL2

and ‖∇curlut‖L2
tL

2 to close the estimates. Differentiating (2.16) in time variable, we get

ρ(wtt + v · ∇wt)− µ∆wt = gt − ρtwt − (ρtv + ρvt) · ∇w, (2.28)

where

|gt| ≤C
(
|∇ρt||ut|+ |∇ρ||utt|+ (ρ|∇v|+ |∇ρ||v|)|∇ut|

+ (ρ|∇vt|+ |ρt||∇v|+ |∇ρt||v|+ |∇ρ||vt|)|∇u|
)
.

The boundary condition for wt is

wt|∂Ω = (2κ− α

µ
)ut · τ. (2.29)

Then we derive the estimate for wt by taking the inner product of (2.28) and wt:

‖√ρwt‖2
L2(t) + 2µ‖∇wt‖2

L2
tL

2

≤ F0(M0) +

∫ t

0

∫
∂Ω

|ut|dSds+

∣∣∣∣∫ t

0

∫
Ω

gtwtdxds

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
Ω

wt(ρtwt + (ρtv + ρvt) · ∇w)dxds

∣∣∣∣
:= F0(M0) + C‖ut‖2

L2
tH

1 + L1 + L2.

(2.30)

By direct calculations, one shows, ∀ t ∈ [0, T ],

|L1| ≤ C

∫ t

0

‖wt‖H1

(
‖ut‖H1(‖ρt‖H1 + ‖ρ‖H2‖v‖H2) + ‖ρ‖H2‖utt‖L2

+ ‖∇u‖H1(‖ρ‖H2‖vt‖H1 + ‖ρt‖H1‖v‖H2)
)
ds

≤ δ‖wt‖2
L2
tH

1 + Cδ−1

∫ t

0

(‖ρt‖H1 + ‖ρ‖H2)
(

(1 +M2)‖(ut,∇u)‖2
H1 + ‖utt‖2

L2

)
ds.

Similarly, for any t ∈ [0, T ], we have

|L2| ≤δ‖wt‖2
L2
tH

1 + Cδ−1

∫ t

0

F0(M0)(1 +M2)‖(wt,∇w)‖2
L2ds.

As a consequence of (2.30), the estimates of L1 and L2, one obtains

Lemma 2.13. There exists a positive continuous function F0(·) such that, for any t ∈ [0, T4],

‖√ρwt‖2
L2(t) + ‖wt‖2

L2
tH

1

≤F0(M0) +

∫ t

0

F0(M0)(1 +M2)(‖(ut,∇u)‖2
H1 + ‖utt‖2

L2)ds.
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Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2

Next, to complete the estimates for the vorticity, one needs to estimate ‖∇curlu‖CtL2 and
‖curlu‖L2

tH
2 . Note that from the boundary conditions for w and wt,

−
∫

Ω

wt4wdx =
1

2

d

dt
‖∇w‖2

L2 −
∫
∂Ω

(2κ− α

µ
)ut · τ

∂w

∂n
dS.

Thus we multiply the vorticity equation (2.16) by ρ−14w and integrate the resulting product
to obtain

1

2

d

dt
‖∇w‖2

L2 + µ‖
√
ρ−14w‖2

L2

≤C‖w‖2
H2 + C‖ut‖2

H1 + Cδ−1(‖v‖2
H2‖∇w‖2

L2 + ‖ρ−1‖L∞‖g‖2
L2),

by the trace theorem. It follows that, for any t ∈ [0, T ],

‖∇w‖2
L2(t) + µ‖

√
ρ−14w‖2

L2
tL

2

≤CM2
0 + C‖w‖2

L2
tH

2 +

∫ t

0

(1 + ‖ρ‖2
H2)(1 +M2)‖(ut,∇u)‖2

H1ds.

By (2.16) and the usual H2 estimates for the elliptic equations, we have

‖w‖2
H2 ≤ C(‖g‖2

L2 + ‖ρ‖2
H2(‖wt‖2

L2 + ‖v‖2
H2‖∇w‖2

L2) + ‖u · τ‖2
H3/2(∂Ω)),

and thus by the estimates obtained so far, we have, for any t ∈ [0, T ],∫ t

0

‖w‖2
H2ds ≤

∫ t

0

(1 + ‖ρ‖2
H2)(1 +M2)‖(ut,∇u)‖2

H1ds.

Therefore the following lemma is shown.

Lemma 2.14. There exists a positive continuous function F0(·) such that, for any t ∈ [0, T4],

‖∇w‖2
L2(t) + ‖w‖2

L2
tH

2 ≤ F0(M0) +

∫ t

0

F0(M0)(1 +M2)‖(ut,∇u)‖2
H1ds.

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2

Finally, one needs to estimate ‖(utt, qtt)‖CtL2 and ‖∇utt‖L2
tL

2 to close the energy estimates.
Differentiating (2.2) twice in temporal variable, we obtain

ρ(uttt+v · ∇utt) +
1

ε
∇qtt − 2µdiv(D(utt))− λ∇divutt

=− ρttut − 2ρtutt − (ρttv + 2ρtvt + ρvtt) · ∇u− 2(ρtv + ρvt) · ∇ut.
(2.31)
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We multiply this equation by utt and integrate to get that, ∀ t ∈ [0, T ],

1

2
‖√ρutt‖2

L2(t) + γ‖utt‖2
L2
tH

1 −
1

ε

∫ t

0

∫
Ω

∇qtt · uttdxds

≤F0(M0) +

∫ t

0

(‖ρtt‖2
L2 + ‖ρt‖2

H1 + ‖ρ‖2
H2)(1 +M2)(‖(ut,∇u)‖2

H1 + ‖utt‖2
L2)ds,

(2.32)

by using Korn’s inequality, for some constant γ > 0. Meanwhile, a similar calculation yields

1

2γ

d

dt
‖qtt‖2

L2 +
1

ε

∫
Ω

divuttqttdx

≤‖v‖2
H2‖qtt‖2

L2 + ‖qtt‖L2(‖vt‖L∞‖∇qt‖L2 + ‖vtt‖H1‖∇q‖H1

+ ‖divv‖L∞‖qtt‖L2 + ‖divvt‖H1‖qt‖H1 + ‖q‖H2‖divvtt‖L2

+ ‖vt‖H2‖vt‖H1 + ‖∇vtt‖L2‖v‖
1
3

H3‖v‖
2
3

H2),

by the interpolation inequality. Note that by Young’s inequality, we have

‖∇vtt‖L2‖v‖
1
3

H3‖v‖
2
3

H2 ≤ C(‖vtt‖
3
2 + ‖v‖H3‖v‖2

H2).

It follows that for any t ∈ [0, T ]4,

1

2γ
‖qtt‖2

L2(t) +
1

ε

∫ t

0

∫
Ω

divuttqttdx

≤CM2
0 + C

∫ t

0

(1 +M2 + ‖v‖H3 + ‖vt‖H2 + ‖vtt‖
3
2

H1)(‖qtt‖2
L2 + ‖(qt,∇q)‖2

H1)ds.

(2.33)

From (2.32) and (2.33), one concludes the following lemma.

Lemma 2.15. There exists a positive continuous function F0(·), such that for any t ∈ [0, T4],

(‖√ρutt‖2
L2 + ‖qtt‖2

L2)(t) + ‖utt‖2
L2
tH

1

≤F0(M0) +

∫ t

0

F0(M0)(1 +M2 + ‖v‖H3 + ‖vt‖H2 + ‖vtt‖
3
2

H1)

×
(
‖(utt, qtt)‖2

L2 + ‖(ut,∇u, qt,∇q)‖2
H1

)
ds.

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2

Definition 2.3.

Φ2(t) := ‖(∇divu,∇2q, divut,
√
ρ−1∇qt,

√
ρcurlut,∇curlu,

√
ρutt, qtt)‖2

L2

+

∫ t

0

(‖(∇qt,∇2divu,
√
ρ−1∇divut,∇curlut)‖2

L2 + ‖curlu‖2
H2 + ‖utt‖2

H1)ds.

Noting that ut · n = 0 on ∂Ω, we have

‖ut‖2
H1 ≤ C(‖divut‖2

L2 + ‖curlut‖2
L2). (2.34)

It thus follows from Lemmas 2.10-2.15 that,
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Lemma 2.16. There exists a positive continuous function F0(·), such that for all t ∈ [0, T4],

Φ2(t) ≤ F0(M0) + F2(M0)η1‖(∇2divu,∇2w)‖2
L2
tL

2

+

∫ t

0

F0(M0)(1 +M2 + ‖v‖H3 + ‖vt‖H2 + ‖vtt‖
3
2

H1)(Φ1(s) + Φ2(s))ds.
(2.35)

Moreover, there exists a positive continuous function F (·, ·), s.t. for any t ∈ [0, T ], the above
estimate holds with F0(M0) replaced by F (M0,M). 2

Summarizing the inequalities in Lemmas 2.9 and 2.16, and inserting the estimate of
‖∇2divu‖L2

tL
2 , then the estimate of ‖∇2w‖L2

tL
2 in Lemma 2.14, into the right-hand side of

the resulting inequality, we conclude the following uniform estimates by use of Lemma 2.3
and Gronwall’s inequality.

Lemma 2.17. There exists a positive continuous function F3(·), such that for any t ∈ [0, T4],

‖(u, q)‖L2(t) + ‖u‖L2
tH

1 + Φ1(t) + Φ2(t) ≤ F3(M0).

Furthermore, there exists a positive continuous function F (·, ·) such that, the left-hand side
of the above inequality is less than F (M,M0), for any t ∈ [0, T ]. 2

3. Proof of the main theorem

In the following, we will prove Theorem 1.1 by fix-point arguments, given the global
existence of the “essentially linear” equations in Theorem 2.1 and the uniform estimates in
Proposition 2.1.

Proof of Theorem 1.1. Let M := C̃M0 + F3(M0) in Proposition 2.1, where C̃ and F3(·)
are defined in Lemma 2.1 and Lemma 2.17, respectively. Then we choose T0 > 0, s.t.
T0 < T4 := T4(M(M0)). Define the mapping L: v 7→ u, where (ρ, q, u) is the unique solution
to the problem (2.1)-(2.5). Moreover, we define

RM,T0 :=
{
u
∣∣∣ u ∈ C([0, T0], H2) ∩ L2(0, T0;H3),

ut ∈ C([0, T0], H1) ∩ L2(0, T0;H2),

utt ∈ L∞(0, T0;L2) ∩ L2(0, T0;H1);

max
t∈[0,T0]

(
‖u‖H2 + ‖ut‖H1

)
(t) + ess sup

t∈[0,T0]

‖utt(t)‖L2

+
(∫ T0

0

(‖u‖2
H3 + ‖ut‖2

H2 + ‖utt‖2
H1)dt

) 1
2 ≤M

}
,

where M depends on M0, but not on ε ∈ (0, 1].
Standard results on closeness of Sobolev spaces in Lp-norms ensure that RM,T0 is a closed

subset of X := C([0, T0], L2). The compactness of RM,T0 ⊂ X follows directly from the
celebrated Arzela-Ascoli theorem. And it is easy to check that RM,T0 is also non-empty and
convex. Given M (defined at the beginning of the proof) and for T0 < T4, L maps RM,T0
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into itself by the uniform estimates in Proposition 2.1. Note that ε ∈ (0, 1] is arbitrary and
T0 is independent of ε ∈ (0, 1]. The continuity of L in X can be shown in a routine manner.
Assuming that un = L(vn), u = L(v), and vn → v in X, we can show easily that un → u in
X by the Gronwall inequality.

Schauder’s fixed-point theorem says that, if K ⊂ X is compact and convex, and the
mapping A : K → K is continuous, then A has a fixed point in K. Applying Schauder’s
fixed-point theorem, we conclude that L has a fixed point u in RM,T0 . Thus there exists
(ρε, uε, qε) solving the nonlinear problem (1.9)-(1.13) in Ω× [0, T0], and satisfying (1.16) for
all ε ∈ (0, 1]. Uniqueness in X can be shown by the Gronwall inequality. Then the uniform
existence results in Theorem 1.1 is shown. It follows from the above uniform bounds and the
Aubin-Lions Lemma that, there exists a subsequence of (ρε, uε, qε), still denoted by (ρε, uε, qε),
such that

(ρε, uε, qε)→ (ρ, u, q) in L∞(0, T0;Hs), ∀s < 2,

uε → u in L2(0, T0;H2)

and
(ρεt, u

ε
t, q

ε
t)→ (ρt, ut, qt) in L2(0, T0;L2)

as ε→ 0. Therefore we can apply “curl” to (1.9)-(1.13), then pass to the limit to show that
(ρ, u, q) is indeed a solution of the incompressible Navier-Stokes equations (1.17). 2

In order to establish the global existence of the problem (2.1)-(2.5) in Ω× [0, T ] for any
given constant T > 0, we should show the local existence theorem to the problem (2.2)-(2.5)
first. In this step, we take ε = 1 without loss of generality.

Lemma 3.1. (Local existence) Assume that the initial datum (u0, q0) ∈ (H2)2 satisfies

(ut(0), qt(0)) ∈ (H1)2, (utt(0), qtt(0)) ∈ (L2)2

and the compatibility conditions

u0 · n = τ · S(u0) · n+ αu0 · τ = ut(0) · n = 0 on ∂Ω,

while ρ, v are known functions satisfying ρ > 0 in Ω× (0, T ),

(ρ, v) ∈ C([0, T ];H2)2, (ρt, vt) ∈ C([0, T ];H1)2, (ρtt, vtt) ∈ L∞(0, T ;L2)2,

v ∈ L2(0, T ;H3), vt ∈ C([0, T ];H2), vtt ∈ L2(0, T ;H1),

(v, ρ)|t=0 = (u0, ρ0) and (vt, ρt)|t=0 = (ut(0), ρt(0)). Then there exists a positive constant T ′,
such that the problem (2.2)-(2.5) admits a unique local solution (u, q) in Ω×(0, T ′), satisfying

q ∈ C([0, T ′];H2), u ∈ C([0, T ′];H1
0 ∩H2) ∩ L2(0, T ′;H3),

qt ∈ C([0, T ′];H1), ut ∈ C([0, T ′];H1
0 ) ∩ L2(0, T ′;H2),

qtt ∈ L∞(0, T ′;L2), utt ∈ L∞(0, T ′;L2) ∩ L2(0, T ′;H1).

(3.1)
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Proof. Since (2.2) contains ∇q and (2.3) contains divu, we need to decouple the system
so that the standard theory of linear equations applies. First, we show the existence of the
approximate system:

ρut − 2µdiv(D(u))− λ∇divu = −∇q̃ − ρv · ∇ũ := f1, (3.2)

1

γ
(qt + v · ∇q) + qdivv =

γ − 1

γ
ε(2µ|D(v)|2 + λ(divv)2)− divũ := f2. (3.3)

(u, q)|t=0 = (u0, q0)(x), x ∈ Ω, (3.4)

u · n = 0, τ · S(u) · n+ αu · τ = 0 on ∂Ω (3.5)

where q̃, ũ are known functions with ũ · n = 0, τ · S(ũ) · n + αũ · τ = 0 on ∂Ω. Moreover,
q̃, ũ satisfy the same regularities as ρ, v, respectively.

Since (3.2) and (3.3) are uncoupled, we are able to solve them by different methods:
(3.3) by the method of characteristics, and (3.2) by Galerkin’s method. Then we improve
the regularities by the energy estimates on the solutions themselves and their temporal
derivatives. Finally, we use Schauder’s fixed-point theorem to show the existence of solutions
to (2.2)-(2.3). That is, we define the mapping L̃: (q̃, ũ) → (q, u), and then verify that L̃
is continuous and has a fixed point (q, u) in a non-empty, convex, compact subset R̃M,T∗ ⊂
X̃ = C([0, T∗];L

2)2, where the definition of R̃M,T∗ is similar to RM,T0 .
First, we show the existence of (3.3)-(3.4). Define χ(x, s; t) the solution to the following

problem {
d
dt
χ(x, s; t) = v(χ(x, s; t), t), t, s ∈ [0, T ], x ∈ Ω̄,

χ(x, s; s) = x.
(3.6)

Then q can be expressed explicitly as

q(x, t) =q0(χ(x, t; 0)) exp(

∫ t

0

divv(χ(x, t; τ), τ)dτ)

+γ

∫ t

0

f2(χ(x, t; s), s) exp(

∫ s

t

divv(χ(x, s; τ), τ)dτds

along the particle path χ(x, s; t). Since v, ũ ∈ L2(0, T ;H3) and f2 ∈ L2(0, T ;H2), we deduce
that q ∈ C([0, T ];H2) as the estimates for ρ in the previous section. Thus we also have
σt ∈ C([0, T ];H1) and σtt ∈ C([0, T ];L2). Additionally, we can show the energy estimates of
q and its temporal derivatives which depend only on the initial data (possibly also on ε).

Next, we show the local existence of solutions to (3.2), (3.4)-(3.5) by the Galerkin method.
As in [45], we define the weak solution to the problem (3.2) and (3.4)-(3.5) as the function
u satisfying ∫

Ω

(ρ̃ut · φ+ µcurlucurlφ+ (µ+ λ)divudivφ− f1 · φ)dx = 0. (3.7)

for any φ ∈ C∞(Ω)2 with φ · n|∂Ω = 0. Then we can prove, by small modifications to
[45], that u ∈ L∞(0, T ;H2) ∩ L2(0, T ;H3), ut ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) and utt ∈
L∞(0, T ;L2)∩L2(0, T ;H1), by Galerkin’s approximations. Due to the regularity theory, we
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obtain u ∈ C([0, T ];H2) and ut ∈ C([0, T ];H1). Note that the boundary condition is a
“complementing” boundary condition in the sense of Agmon-Douglis-Nirenberg [1].

One can verify it in an algebraic way by applying the arguments in pages 38-43 of [1].
However, we can also check it in a non-algebraic way by using the formulation in the para-
graph near the top of page 36 in [1]. Since the equations are invariant under translation
and rotation, it suffices to check the complementing boundary condition in the hyperplane
{y = 0} in the following way. For any ξ ∈ R with ξ 6= 0, we consider the solution

u = eixξv(y) (3.8)

of the homogeneous problem
−µ∆u− ν∇divu = 0 in R× (0,+∞),
u · n = 0, τ · S(u) · n+ αu · τ = 0 on {y = 0},
u→ 0 as y → +∞,

(3.9)

where v = (v1(y), v2(y))t and ν = µ + λ > 0. The complementing boundary condition
requires that v ≡ 0 for every ξ 6= 0, if v is bounded on the semi-axis y ≥ 0. Substituting
(3.8) into (3.9), we obtain the boundary value problem of ordinary differential equations for
v(y) as follows: 

(µ+ ν)(v′′ − ξ2v)eixξ + 2iνξv′eixξ = 0, y ≥ 0,
v2e

ixξ = 0, (iξv2 + αv1)eixξ = 0 on {y = 0},
vi → 0 (i = 1, 2) as y → +∞.

(3.10)

Indeed, calculating separately the real part and the imaginary part of the first equation in
(3.10), we obtain

(µ+ ν)(v′′ − ξ2v) + 2νξ sin(2xξ)v′ = 0.

And the boundary conditions on {y = 0} reduce to

v1 = 0, v2 = 0.

Thus we obtain that vi(y) = C1(eq1y − eq2y), for any C1 ∈ R, where qi ∈ R(i = 1, 2) are the
solutions to the corresponding characteristic equation, with

q1 > q2 and q1 =
−νξ sin 2xξ +

√
ν2ξ2 sin2 2xξ + ξ2(µ+ ν)2

µ+ ν
> 0.

Since v should decay at far field, we have C1 = 0, and thus v ≡ 0. This verifies that Navier’s
slip boundary condition in (3.9) is a complementing boundary condition.

Thus we can apply the regularity results therein to deduce that u ∈ C([0, T ];H3) by
regarding f1 − ρ̃ut as source term. The energy estimates depending only on ε and initial
data are standard, as in [45]. 2

From the local existence theorem proved above, we are ready to show the global existence
theorem by the standard continuity arguments.
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Proof of Theorem 2.1. Define the particle path χ(x, s; t) through (x, s), to be the solution
of {

d
dt
χ(x, s; t) = v(χ(x, s; t), t), t, s ∈ [0, T ], x ∈ Ω̄,

χ(x, s; s) = x.
(3.11)

Then ρ can be expressed explicitly as

ρ(x, t) = ρ0(χ(x, t; 0)) exp

(
−
∫ t

0

divv(χ(x, t; s), s)ds

)
, (3.12)

on the particle path χ̇ = v(χ, t).

Lemma 3.2. see ([6]) Assume G ∈ C([0, T ];W k,q(Ω;RN)) with 1 ≤ q < +∞, and k >
N/q + 1. Then the problem

dχ

dt
(x, t) = G(χ(x, t), t), χ(x, 0) = x,

has a solution χ ∈ C1([0, T ];Dk,q(Ω)), where

Dk,q(Ω) =
{
η ∈ W k,q(Ω)| η : Ω̄→ Ω̄ is bijective, η−1 ∈ W k,q(Ω)

}
.

�

Lemma 3.3. see ([6]) Let k ≥ 2 be an integer, and let 1 ≤ p ≤ q ≤ +∞ be such that
p < +∞ and k > N

q
+ 1. If F ∈ W k,p(Ω), then the mapping G 7→ F ◦G is continuous from

Dk,q(Ω) into W k,p(Ω). �

Since v ∈ C([0, T ];H3) and thus v ∈ C([0, T ];W 2,q) for any 2 ≤ q < ∞ by Sobolev’s
embeddings, we have χ ∈ C1([0, T ]2;D2,q) by use of Lemma 3.2. From the formula of
ρ in (3.12) and Lemma 3.3, we obtain that ρ ∈ C([0, T ];H2) since ρ0 ∈ H2. It follows
immediately from the density equation in (2.1) that ρt ∈ C([0, T ];H1), ρtt ∈ C([0, T ];L2),
and ρ > 0 provided that inf

x∈Ω
ρ0(x) > 0.

Since the global existence of ρ is available, it suffices to show the global existence of (u, q)
to the problem (2.2)-(2.5). Assume that (u, q) is the local solution obtained in Lemma 3.1
with T ′ being replaced by T1 := T1(M0,M, ε). Upon redefining the values of (u, q) at t = T1,
if necessary, we have

(‖(u, q)‖H2 + ‖(ut, qt)‖H1 + ‖(utt, qtt‖L2) (T1) ≤ F̃ (M0,M, ε),

with u(·, T1) · n = τ · S(u(·, T1)) · n + αu(·, T1) · τ = 0 on ∂Ω. Assume that T1 < T without
the loss of generality. By the uniform estimates proved in Proposition 2.1,

(‖(u, q)‖H2 + ‖(ut, qt)‖H1 + ‖(utt, qtt‖L2) (t = T1) ≤ F (M0,M),

for any 0 < ε ≤ 1. Again, we use the local existence results obtained in Lemma 3.1 with
the new initial time t = T1. Then there exists T2 := T2(M0,M, ε) such that (u, q) solves
(2.2)-(2.5) in Ω × [0, T1 + T2]. If T1 + T2 ≥ T , we are done; otherwise, we continue the
extension of solution. Since T1 +T2 < T , by the uniform bounds F (M0,M) in [0, T ], we may
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extend (u, q) to Ω× [0, T1 + 2T2] as in the previous step. Applying the local existence lemma
repeatedly, there must exist m ∈ N such that T1 +mT2 > T. Therefore the global existence
of (u, q) in Theorem 2.1 is proved. 2
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