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Abstract

The modeling of wave propagation problems using finite element methods usually requires the introduction
of a fictitious truncating surface enclosing the computational domain around the scatterer of interest. Absorbing
boundary condition are classically considered to avoid spurious reflections. In this paper, we investigate some
properties of the Dirichlet to Neumann map posed on a spheroidal boundary in the context of the Helmholtz
equation to efficiently deal with an elongated scatterer.

1 Introduction

In the context of time-harmonic linear acoustic wave propagation, a classical problem consists in considering the
scattering by an impenetrable bounded rigid body Ω′ ⊂ R3 with regular boundary illuminated by an incident pressure
wave uinc(x) = exp(ik · x). The wavenumber k =

√
k21 + k22 + k23 is the norm of the wave vector k = (k1, k2, k3).

The phasor of the pressure field utot is then governed by a well posed problem [13] composed of a Helmholtz equation
equipped with Neumann boundary condition. The scattered field u(x) = utot(x) − uinc(x), with x ∈ Ω = R3 \ Ω′

solves the following exterior problem:

u ∈ H1
loc(Ω) =

{
u : Ω −→ C | χu ∈ H1(Ω) for all χ ∈ D(R3)

}
,

∆u(x) + k2u(x) = 0 on Ω,

∂u

∂n
(x) = −∂uinc

∂n
(x) on ∂Ω,

u(x) is outgoing.

(1)

Standard notation in the theory of partial differential equations are used without comment.

To numerically solve the aboc problem, a classical approach consist in restricting the computational domain to{
x ∈ Ω | ∥x∥ < R

}
where R is chosen large enough so that Ω′ ⊂ {x ∈ R3 : ∥x∥ < R}. The remove unbounded part is

then taken into account by an artificial boundary condition posed on the sphere
{
x ∈ R3 | ∥x∥ = R

}
.

This impedance boundary condition can either be an exact non local Dirichlet to Neumann map, see [6], or an
approximate local differential operator which can be derived by a microlocal analysis, see [4, 5].

When the rigid body is elongated, this choice of computational domain is not optimal. To avoid unnecessary
computational costs, the authors of [12, 2] have proposed to use a prolate spheroidal computational domain:

D = {x ∈ Ω | x
2 + y2

b2
+
z2

a2
≤ 1} with b < a. (2)

where a and b are chosen large enough to ensure that the rigid body Ω′ is included in the spheroidal domain of
semi-major axis a and semi-minor axis b. A radiation boundary condition is then posed on the artificial boundary

Γ = {x ∈ Ω | x
2 + y2

b2
+
z2

a2
= 1}. (3)

2 The radiation condition in spheroidal coordinates

We take advantage of the properties of the scattered field in the exterior domain D′ =
{
x ∈ R3 | x2+y2

b2 + z2

a2 ≥ 1
}
to

derive the Dirichlet to Neumann map DtN defined on Γ by

∂u

∂n
+ DtNu = 0 on Γ. (4)
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In D′, the scattered field u is an outgoing solution of the Helmholtz equation{
u ∈ H1

loc(D
′) outgoing

∆u + k2 u = 0 in D′.
(5)

According to [9], [12] or [3], we can perform a separation of variables for the Helmholtz equation using the prolate
spheroidal coordinates ξ ∈ [1,+∞[, η ∈ [−1, 1] and φ ∈ [0, 2π[

x(ξ, η, φ) = f
√
(ξ2 − 1)(1− η2) cos(φ)

y(ξ, η, φ) = f
√
(ξ2 − 1)(1− η2) sin(φ),

z(ξ, η, φ) = fξη,

(6)

where f > 0 is the interfocal distance of the prolate spheroid Γ such that f2 = a2 − b2.

Hence, the function u restricted to D′ can be determined analytically up to a family of scalars um,n ∈ C:

u(x(ξ, η, φ)) =
∑

(m,n)∈S

um,n
Ψm,n(kf, ξ)

Ψm,n(kf, a/f)

Ym,n(kf, η, φ)∥∥Ym,n

∥∥2
Γ

in D′ (7)

S is the set of integers such that S = {(m,n) ∈ Z × N : −n ≤ m ≤ n}, Ψm,n are the prolate radial spheroidal
functions of third type (see Section 3) and Ym,n are the prolate angular spheroidal functions (see Chapter 21 of [1])
which constitute an orthogonal basis for the weighted L2-space

∥∥Ym,n

∥∥2
Γ

=

∫
Γ

∣∣Ym,n(kf, η(x), φ(x))
∣∣2√

a2/f2 − z2/a2
dsx; (8)

The scalars um,n ∈ C are related to the trace u on the surface Γ through

um,n =

∫
Γ

u(x) Ym,n(kf, η(x), φ(x))√
a2/f2 − z2/a2

dsx. (9)

Then, the normal derivative of the scattered field u(x) satisfies:

∂u

∂n
(x) =

b

f2

∑
(m,n)∈S

um,n Zm,n(kf,
a

f
) Ym,n(kf, η(x), φ(x))√

a2/f2 − z2/a2 ∥Ym,n∥2Γ
on Γ (10)

with the impedance coefficient Zm,n :]0,+∞[×]1,+∞[−→ C defined by:

Zm,n(c, ξ) =

∂ψm,n

∂ξ
(c, ξ)

ψm,n(c, ξ)
for all (m,n) ∈ S. (11)

Proposition 1. The non local Dirichlet to Neumann operator DtN : H
1
2 (Γ) −→ H−1/2(Γ) has the following expression

DtN : v 7−→ − b

f2

∑
(m,n)∈S

vm,n Zm,n(kf,
a

f
) Ym,n(kf, η(x), φ(x))√

a2/f2 − z2/a2 ∥Ym,n∥2Γ
. (12)

with vm,n ∈ C as vm,n in (9) but replacing u by v.

Hence, the restriction to D of the scattered field solves the following mixed problem:

u ∈ H1(D),

∆u + k2 u = 0 in D,

∂u

∂n
= −∂uinc

∂n
on ∂Ω,

∂u

∂n
+ DtNu = 0 on Γ.

(13)

In this work we investigate the properties of the coefficients Zm,n(kf, a/f) to develop an accurate numerical method
for their computation. Then, we state the well-posedness of problem (13) and propose a variational formulation adapted
to the finite element solution of the initial scattering problem.
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3 The impedance coefficients

Let c > 0 and (m,n) ∈ S. The radial spheroidal functions of third type ψm,n(c, ·) ∈ C∞(]1,+∞[), see [1], solve
∂

∂ξ

(
(ξ2 − 1)

∂ψm,n

∂ξ

)
(c, ξ) +

(
c2ξ2 − m2

ξ2 − 1
− λm,n(c)

)
ψm,n(c, ξ) = 0,

dψm,n

dξ
(c, ξ) − icψm,n(c, ξ) = O

ξ→+∞
(
1

ξ2
),

(14)

where the scalars λm,n(c) ∈ R are the so-called prolate spheroidal eigenvalues (see [1]). These systems uniquely define
the radial spheroidal functions up to a multiplicative constant which can be chosen arbitrarily. Among all the possible
normalizations, we fix the multiplicative constant by imposing the asymptotic expansion of ψm,n at infinity such that

ψm,n(c, ξ) =
exp(icξ)

ξ

(
1 + o

ξ→+∞
(1)

)
. (15)

Taking into account (11), (14) and (15) the function Zm,n(c, ξ) can be seen as the unique solution of the generalized
Riccati equation 

∂ξZm,n(c, ξ) + Fm,n(Zm,n(c, ξ), ξ) = 0 ∀ξ > 1

lim
ξ→+∞

Zm,n(c, ξ) = ic
(16)

with the function Fm,n : C×]1,+∞[−→ C given by

Fm,n(Z, ξ) = Z2 +
2ξ

ξ2 − 1
Z +

(
c2 +

c2 − λm,n(c)

ξ2 − 1
− m2

(ξ2 − 1)2

)
. (17)

The following lemma is crucial for proving that Problem (13) is well-posed.

Lemma 1. For all (m,n) ∈ S, we have
ℑZm,n(c, ξ) > 0. (18)

Proof. Let R be the subset
R = {ξ ∈]1,+∞[: Zm,n(ξ) is real}. (19)

We will prove that R = ∅ by showing that R is closed and open with respect to the canonical topology of ]− 1,+∞[.
Since Zm,n is continuous, R is closed. Let us consider ξ∗ ∈]1,∞[ such that Zm,n(c, ξ∗) is real. Let us remark that
Fm,n(Z, ξ) is real for all ξ ∈]1,+∞[ and Z real . Consequently Zm,n(ξ) is real in a neighborhood of ξ∗ due to the
Cauchy Lipschitz Picard theorem. Hence, we have R =]1 +∞[ or ∅. We conclude that R = ∅ since Zm,n is not real
for sufficiently large ξ. �

Equation (16) is posed on an unbounded domain which should be truncated and a terminal value is thus required
to compute a numerical approximation of Zm,n(c, ξ). We define a zero order approximation as the unique solution to
the problem 

Zapp
m,n :]0,+∞[×[1, ξmax] −→ C

∂ξZ
app
m,n(c, ξ) + Fm,n(Z

app
m,n(c, ξ), ξ) = 0 ∀ξ ∈]1, ξmax]

Zapp,0
m,n (c, ξmax) = ic.

(20)

with ξmax > 1 the truncation parameter. Mimicking the method of [8, 7], this function can then be numerically
computed by an ODE solver backward in time. To be accurate, this approximation needs a large truncation parameter
ξmax which makes it difficult to control the error of the numerical ODE solver. Hence, we are led to improve the
choice of the terminal value.

The following lemma is obtained by injecting a generalized Taylor expansion in (16).

Lemma 2. For all (m,n) ∈ S, c > 0 and p ∈ N, we have the asymptotic expansion:

Zm,n(c, ξ) = Zasym,p
m,n (c, ξ) + O

ξ→+∞
(

1

ξp+1
). (21)

with 

Zasym,0
m,n (c, ξ) = ic

Zasym,1
m,n (c, ξ) = ic− 1

ξ

Zasym,2
m,n (c, ξ) = ic− 1

ξ
+
λm,n(c)− c2

2ic

1

ξ2

Zasym,3
m,n (c, ξ) = ic− 1

ξ
+
λm,n(c)− c2

2ic

1

ξ2
− λm,n(c) + c2

2c2
1

ξ3

(22)
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The last lemma reveals the terminal value of the p−order (p ∈ N) approximation of Zm,n as
Zapp,p
m,n :]0,+∞[×[1, ξmax] −→ C

∂ξZ
app,p
m,n (c, ξ) + Fm,n(Z

app,p
m,n (c, ξ), ξ) = 0 ∀ξ ∈]1, ξmax]

Zapp,p
m,n (c, ξmax) = Zasym,p

m,n (c, ξmax).

(23)

4 Computation of the spheroidal functions

In these simulations, the parameter c = kf is fixed to 10
√
0.75. We compare the zero order, first order, second order

and third order approximations of Zm,n. These approximations are numerically computed with a backward in time
RK4 method with a timestep h = 0.01. For some modes (m,n) ∈ S, their real and imaginary parts can be found in
Figure 1, 2, 3 and 4. The truncature parameter is given as ξmax = 4.
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Figure 1: Real and imaginary parts of Zapp,p
0,0 for p = 0 (- - -), p = 1 (– - –), p = 2 (| | |) and p = 3 (—).
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Figure 2: Real and imaginary parts of Zapp,p
1,4 for p = 0 (- - -), p = 1 (– - –), p = 2 (| | |) and p = 3 (—).
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Figure 3: Real and imaginary parts of Zapp,p
2,5 for p = 0 (- - -), p = 1 (– - –), p = 2 (| | |) and p = 3 (—).
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Figure 4: Real and imaginary parts of Zapp,p
5,6 for p = 0 (- - -), p = 1 (– - –), p = 2 (| | |) and p = 3 (—).

We mainly observe that increasing the order of the approximation reduces the spurious oscillations.

5 A well-posed variational formulation

Proposition 2. The restriction to D of the solution to (1) is the unique function u ∈ H1(D) satisfying

∫
D

(
∇u(x) · ∇v(x)− k2u(x)v(x)

)
dx︸ ︷︷ ︸

a(u,v)

+

− b

f2

∑
(m,n)∈S

Zm,n(kf,
a

f
)
um,nvm,n

∥Ym,n∥2Γ)


︸ ︷︷ ︸

b(u,v)

= −
∫
∂Ω

∂uinc
∂n

(x)v(x)dsx︸ ︷︷ ︸
ℓ(v)

(24)

for all v ∈ H1(D), with the forms a : H1(D)×H1(D) −→ C, b : H1(D)×H1(D) −→ C and ℓ : H1(D) −→ C.

Proof. Due to the Fredholm alternative the well-posedness will follow from the uniqueness of the solution. Let
us show that u = 0 in D if a(u, v) + b(u, v) = 0 for all v ∈ H1(D). Equivalently, the function u solves the following
system 

u ∈ H1(D),

∆u + k2 u = 0 in D,

∂u

∂n
= 0 on ∂Ω,

∂u

∂n
+ DtNu = 0 on Γ.

(25)
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Taking v = u as test function, we have ℑ
(
a(u, u) + b(u, u)

)
= ℑ

(
b(u, u)

)
= 0. Evaluating this expression, we get

∑
(m,n)∈SN

(
ℑZm,n(c,

a

f
)
) ∣∣um,n

∣∣2
∥Ym,n∥2Γ

= 0. (26)

Equation (18) leads to um,n = 0 for all (m,n) ∈ S. Then, due to (7), (12) and (25), we have

u = 0 and
∂u

∂n
= 0 on Γ. (27)

Finally, the unique continuation principle [11] ensures that u = 0 in D which concludes the proof. �
The bilinear form b involves an infinite number of terms and should be truncated before being implemented. In

the following, we denote by N ∈ N the order of truncation. In order to avoid the existence of spurious modes, the
approach of [10] is adopted. Since Ym,n is an orthogonal basis for the weighted L2 space, for all α ∈ C, we have the
identity

b(u, v) = −
∑

(m,n)∈S

( b

f2
Zm,n(c,

a

f
) + α

)um,nvm,n

∥Ym,n∥2Γ
+ α

∫
Γ

u(x)v(x)√
a2

f2 − z2

a2

dsx. (28)

We denote by SN = {(m,n) ∈ S : n ≤ N}. Truncating this expression leads to an approximation bN of b

bN (u, v) = −
∑

(m,n)∈SN

( b

f2
Zm,n(c,

a

f
) + α

)um,nvm,n

∥Ym,n∥2Γ
+ α

∫
Γ

u(x)v(x)√
a2

f2 − z2

a2

dsx. (29)

The well-posedness of the truncated variational formulation by reproducing the proof of Proposition 2:

Theorem 1. Let α ∈ iR satisfying ℑα < 0. There exists a unique uN ∈ H1(D) such that

a(uN , v) + bN (uN , v) = ℓ(v) ∀v ∈ H1(D) (30)
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Université de Versailles Saint-Quentin-en-Yvelines, December 2008.

[4] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves. Math. Comp.,
31:629–651, 1977.

[5] B. Engquist and A. Majda. Radiation boundary conditions for acoustic and elastic wave calculations. Comm.
Pure Appl. Math., 32 (3):314–358, 1979.

[6] J. B. Keller and D. Givoli. Exact non-reflecting boundary conditions. Journal of Computational Physics, 82:172–
192, 1989.

[7] P. Kirby. Calculation of radial prolate spheroidal wave functions of the second kind. Computer Physic Commu-
nications, 181:514–519.

[8] P. Kirby. Calculation of spheroidal wave function. Computer Physics Communications, 175:465–472, 2006.

[9] N. N. Lebedev and R. A. Silverman. Special functions and their applications. Dover, New York, 1972.

[10] M. Lenoir and A. Tounsi. The localized finite element method and its application to the two-dimensional sea-
keeping problem. SIAM J. Numer. Anal., 25:729–752, 1988.

[11] M. H. Protter. Unique continuation for elliptic equations. Trans AMS, 95:81–91, 1960.

[12] A.-G. Saint-Guirons. Construction et analyse de conditions absorbantes de type Dirichlet-to-Neumann pour des
frontières ellipsoidales. PhD thesis, Université de Pau et des Pays de l’Adour, November 2008.
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