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Abstract

In this paper, we establish the null controllability for system coupled by two backward
stochastic parabolic equations. The desired controllability result is obtained by means
of proving a suitable observability estimate for the dual system of the controlled system.
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1 Introduction

Let T > 0, G ⊂ Rn (n ∈ N) be a given bounded domain with a C4 boundary Γ, with G0 a
nonempty open subset of G. Put

Q
4
= (0, T )×G, Σ

4
= (0, T )× Γ.

Throughout this paper, we will use C to denote a generic positive constant depending only
on G and G0, which may change from line to line.

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space on which a one dimensional
standard Brownian motion {B(t)}t≥0 is defined, such that {Ft}t≥0 is the natural filtration
generated by {B(t)}t≥0. Let H be a Banach space. Denote by L2

F(0, T ;H) the Banach space
consisting of all H-valued {Ft}t≥0-adapted processes X(·) such that E(|X(·)|2L2(0,T ;H)) <∞,

∗College of Mathematics and Information Science, Leshan Normal University, Leshan 614004, China.
This work was partially supported by Sciencific Research Fond of Sichuan Provincial Education Department
of China under grant 10ZC110, and the project Z1062 of Leshan Normal University of China. E-mail:
hongheng.li@163.com.
†Basque Center for Applied Mathematics (BCAM), Bizkaia Technology Park, Building 500, 48160, Derio,

Basque Country, Spain; and School of Mathematical Sciences, University of Electronic Science and Technol-
ogy of China, Chengdu 610054, China. This work was partially supported by the Grant MTM2008-03541 of
the MICINN, Spain, Project PI2010-04 of the Basque Government, the ERC Advanced Grant FP7-246775
NUMERIWAVES and the ESF Research Networking Programme OPTPDE. E-mail: qlu@bcamath.org.

1



with the canonical norm; by L∞F (0, T ;H) the Banach space consisting of allH-valued {Ft}t≥0-
adapted bounded processes; by L2

F(Ω;C([0, T ];H)) the Banach space consisting of all H-
valued {Ft}t≥0-adapted processes X(·) such that E(|X(·)|2C(0,T ;H)) < ∞, with the canonical
norm.

This paper is devoted to the study of the null controllability for the following coupled
backward stochastic heat equations:

dy = −∆ydt+ (a1y + a2z + a3Y )dt+ Y dB(t) in Q,

dz = −∆zdt+ (b1y + b2z + b3Z + χG0f)dt+ ZdB(t) in Q,

y = z = 0 on Σ,

y(T ) = yT , z(T ) = zT in G,

(1.1)

where
ai ∈ L∞F (0, T ;L∞(G)), (i = 1, 2), a3 ∈ L∞F (0, T ;W 1,∞(G)),

bi ∈ L∞F (0, T ;L∞(G)), (i = 1, 2), b3 ∈ L∞F (0, T ;W 1,∞(G)),
(1.2)

and χG0 is the characteristic function of G0. In system (1.1), (yT , zT ) ∈ L2(Ω,FT , P ;L2(G)×
L2(G)) is the terminal state, (y, z) is the state variable and f ∈ L2

F(0, T ;L2(G0)) is the control
variable. By duality analysis as in [12], we can establish the existence and uniqueness for
the solutions of system (1.1) in the class of

(y, z, Y, Z) ∈
(
L2
F(Ω;C([0, T ];L2(G)× L2(G))) ∩ L2

F(0, T ;H1
0 (G)×H1

0 (G))
)

×L2
F(0, T ;L2(G)× L2(G)).

The null controllability of system (1.1) is formulated as follows:

Definition 1.1 System (1.1) is said to be null controllable at time T > 0 if for any given
(yT , zT ) ∈ L2(Ω,FT , P ;L2(G) × L2(G)), one can find a control f ∈ L2

F(0, T ;L2(G0)) such
that the solution (y, z) of system (1.1) satisfies (y(0), z(0)) = (0, 0) in G, P -a.s.

There are a great many works on the controllability theory of deterministic heat equations
and heat systems(see [1, 4, 5, 6, 7, 13] and the references therein). However, things are quite
different in the stochastic case. To the best of our knowledge, [2, 9, 10, 11] are the only four
published papers in which the null controllability for stochastic heat equations is studied. As
far as we know, there is no published paper which is concerned with the null controllability
of stochastic heat system.

Noting that we only act one control on system (1.1), it is reasonable to expect that the
action of z to y will be sufficiently effective. Hence we put the following condition on a2:

Condition 1.1 There is a nonempty subdomain G1 ⊂ G0 and a constant σ > 0 such that
a2(x, t) ≥ σ or a2(x, t) ≤ −σ, a.e. (x, t) ∈ G1 × (0, T ), P -a.s.

In this paper, we prove the following result.
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Theorem 1.1 Let Condition 1.1 hold. For any terminal state (yT , zT ) ∈ L2(Ω,FT , P ;L2(G)×
L2(G)), we can find a control f ∈ L2

F(0, T ;L2(G)) such that the solution of system (1.1) with
this control satisfies that (y(0), z(0)) = (0, 0) in G, P -a.s. Moreover, we have the following
estimate for the control:

|f |L2
F (0,T ;L2(G)) ≤ CeC[T−4(1+p2)+T (1+p2)]|(yT , zT )|L2(Ω,F0,P ;L2(G)×L2(G)), (1.3)

with

p
4
=

2∑
i=1

(|ai|L∞(0,T ;L∞(G)) + |bi|L∞(0,T ;L∞(G))) + |a3|L∞(0,T,W 1,∞(G)) + |b3|L∞(0,T,W 1,∞(G)).

By means of the classical dual argument( see [11] for example), the null controllability of
system (1.1) can be reduced to the observability estimate for the following coupled forward
stochastic heat equations:

dw = ∆wdt− (a1w + b1v)dt− a3wdB(t) in Q,

dv = ∆vdt− (a2w + b2v)dt− b3vdB(t) in Q,

w = v = 0 on Σ,

w(0) = w0, v(0) = v0 in G,

(1.4)

where (w0, z0) ∈ L2(Ω,F0, P ;L2(G)×L2(G)). We refer to [3] for the well-posedness of system
(1.4) under suitable assumptions in the class

(w, v) ∈ L2
F(Ω;C([0, T ];L2(G)× L2(G))) ∩ L2

F(0, T ;H1
0 (G)×H1

0 (G)).

In order to prove Theorem 1.1, we only need to derive the following observability estimate
for system (1.4).

Theorem 1.2 Let Condition 1.1 hold. Then any solution of system (1.4) satisfies that

|(w, v)|L2(Ω,FT ,P ;L2(G)×L2(G)) ≤ CeC[T−4(1+p2)+T (1+p2)]|v|L2
F (0,T ;L2(G0)). (1.5)

The idea for the proof of Theorem 1.2 comes from the proof of an analogous result of
Theorem 1.2 for deterministic heat systems(see [7] for example). We construct a functional
A(t)(see Section 3 for the details) to connect the suitable norm of w and v. The difference
here is that we need to utilize Itô calculus for the computation. This will lead to some
additional terms, compared with the deterministic case. Treating these additional terms is
the main difficulty we need to overcome.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries.
In Section 3, we prove Theorem 1.2. At last, in Section 4, we prove Theorem 1.1.

3



2 Some Preliminaries

This section is addressed to give some preliminaries. To begin with, we introduce the fol-
lowing function.

Let G2 and G3 be two nonempty open subsets of G such that G2 ⊂ G1 and G3 ⊂ G2.
From Lemma 5.1 in [11], we know that there is a ψ ∈ C4(G) such that

ψ > 0 in G,

ψ = 0 on ∂G,

|∇ψ| > 0 for all x ∈ G \G3.

(2.1)

Put

α(t, x) =
eλψ(x) − e2λ|ψ|L∞(G)

t2(T − t)2
, ϕ(t, x) =

eλψ(x)

t2(T − t)2
. (2.2)

We have the following lemma for the observability estimate of backward stochastic heat
equations.

Lemma 2.1 [11, Theorem 5.1] For any T > 0, there is a constant λ0 = λ0(G,G2) > 0
such that for all λ ≥ λ0, one can find two constants C = C(λ) > 0 and s0 = s0(λ) > 0
so that for all p ∈ L2

F(Ω;C([0, T ];L2(G))) ∩ L2
F(0, T ;H1

0 (G)), f ∈ L2
F(0, T ;L2(G)) and

g ∈ L2
F(0, T ;H1(G)) satisfying

dp−∆pdt = fdt+ gdB(t), (2.3)

and all s ≥ s1 = s1(λ, T )
4
= s0(λ) max(1, T 2), it holds that

s3λ4E
∫
Q

ϕ3e2sαp2dxdt+ sλ2E
∫
Q

ϕe2sα|∇p|2dxdt

≤ C

{
E
∫
Q

e2sαf 2dxdt+ s3λ4E
∫ T

0

∫
G2

ϕ3e2sαp2dxdt+ sλ2E
∫
Q

ϕe2sαg2dxdt

+E
∫
Q

ϕe2sα

n∑
i=1

[
(gxi + s2αxig)2 − (sα2

xi
+ sαxixi)g

2
]
dxdt

} (2.4)

Applying Lemma 2.1 to the first and second equation in system (1.4) respectively, we
obtain that

s3λ4E
∫
Q

ϕ3e2sαw2dxdt+ sλ2E
∫
Q

ϕe2sα|∇w|2dxdt

≤ C

{
E
∫
Q

e2sα(a1w+b1v)2dxdt+s3λ4E
∫ T

0

∫
G2

ϕ3e2sαw2dxdt+sλ2E
∫
Q

ϕe2sα(a3w)2dxdt

+E
∫
Q

ϕe2sα

n∑
i=1

[(
(a3w)xi + s2αxi(a3w)

)2

− (sα2
xi

+ sαxixi)(a3w)2
]
dxdt

} (2.5)
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and that

s3λ4E
∫
Q

ϕ3e2sαv2dxdt+ sλ2E
∫
Q

ϕe2sα|∇v|2dxdt

≤ C

{
E
∫
Q

e2sα(a1w+b1v)2dxdt+s3λ4E
∫ T

0

∫
G2

ϕ3e2sαv2dxdt+sλ2E
∫
Q

ϕe2sα(a3w)2dxdt

+E
∫
Q

ϕe2sα

n∑
i=1

[(
(b3v)xi + s2αxi(b3v)

)2

− (sα2
xi

+ sαxixi)(b3v)2
]
dxdt

}
.

(2.6)

By means of inequality (2.5) and inequality (2.6), choosing

s ≥ s2
4
= max {p

2
3 , s1},

we get that

E
∫
Q

ϕ3e2sα(w2 + v2)dxdt ≤ CE
∫ T

0

∫
G2

ϕ3e2sα(w2 + v2)dxdt. (2.7)

Hence we obtain the following proposition.

Proposition 2.1 Let (w, v) be a solution of system (1.4), then for each λ ≥ λ0 and all
s ≥ s2, inequality (2.7) holds.

3 Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2.

Proof of Theorem 1.2 : From Condition 1.1, we know that a2(x, t) ≥ σ or a2(x, t) ≤ −σ,
a.e. (x, t) ∈ G1 × (0, T ), P -a.s. Without loss of generality, we assume that a2(x, t) ≤ −σ,
a.e. (x, t) ∈ G1 × (0, T ), P -a.s.

By the definition of α, we know that

s3λ4E
∫
Q

ϕ3(w2 + v2)dxdt ≤ C E
∫ T

0

∫
G2

e
5
3
sα(w2 + v2)dxdt (3.1)

Let ξ ∈ C∞(Rn) be a cut-off function satisfying that

ξ = 1 in G2, ξ = 0 in Rn \G1, 0 ≤ ξ ≤ 1 in G1. (3.2)

Put η = ξ6. Let β0, β1, k, l be positive numbers, which will be specified later.
Let

A(t)
4
= E

∫
G

(
ekταη

4
3w2 + β0e

2ταηwv + β1e
lταη

2
3v2
)
dx. (3.3)

Then we have that

dA(t) = E
∫
G

{
kτekτααtη

4
3w2dt+ 2ekταη

4
3wdw + ekταη

4
3 (dw)2

+2τβ0e
2τααtηwvdt+ β0e

2ταη(vdw + wdv + dwdv)

+β1lτe
lτααtη

2
3v2dt+ 2β1e

lτη
2
3vdv + β1e

lταη
2
3 (dv)2

}
dx.

(3.4)
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Noting that (w, v) is the solution of system (1.4), from equality (3.4), we obtain that

dA(t) = E
∫
G

{
kτekτααtη

4
3w2dt+ 2ekταη

4
3w(∆w − a1w − b1v)dt+ ekταη

4
3 (a3w)2dt

+β0e
2ταη[2ταtwv + v(∆w − a1w − b1v) + w(∆v−a2w−b2v)+a3wb3v]dt

+β1lτe
lτααtη

2
3v2dt+β1e

lταη
2
3v(∆v−a2w−b2v)dt+β1e

lταη
2
3 (b3v)2dt

}
.

(3.5)
Integrating equality (3.5) in [0, T ], we get that

0 = −β0E
∫
Q

e2ταηa2w
2dxdt+ E

∫
Q

(
kτekτααtη

4
3w2 − 2ekταη

4
3a1w

2 + ekταη
4
3a2

3w
2
)
dxdt

−E
∫
Q

(
2ekταη

4
3 b1wv−2β0τe

2τααtηwv+β0e
2ταη(a1+b2−a3b3)wv+2β1e

lταη
2
3a2wv

)
dxdt

+E
∫
Q

(
β1lτe

lτααtη
2
3v2 − β0e

2ταηb1v
2 − 2β1e

lταη
2
3 b2v

2 + β1e
lταη

2
3 b2

3v
2
)
dxdt

+E
∫
Q

(
2ekταη

4
3w∆w + β0e

2ταη(v∆w + w∆v) + 2β1e
lταη

2
3v∆v

)
dxdt.

(3.6)
Denoting by Ii(i = 1, 2, 3, 4) the last four terms on the right-hand side of equality (3.6),

we obtain that

β0E
∫
Q

a2e
2ταηw2dxdt = I1 + I2 + I3 + I4. (3.7)

Now we are going to estimate Ii(i = 1, 2, 3, 4).
Choosing k > 2, r ∈ [3

2
, 2), l > 1 + r

2
, by the definition of α, we know that there is a

s3 > 0 such that for all s ≥ s3, it holds that

|kτe(k−2)τααt|L∞(Q) ≤ 1, |e(k−2)τα|L∞(Q) ≤ 1, |lτe(l−r)τααt|L∞(Q) ≤ 1,

|e(2−r)τα|L∞(Q) ≤ 1, |e(l−r)τα|L∞(Q) ≤ 1, |e(k−1− r
2

)τα|L∞(Q) ≤ 1,

|e(1− r
2

)τααt|L∞(Q) ≤ 1, |e(1− r
2

)τα|L∞(Q) ≤ 1, |e(l−1− r
2

)τα|L∞(Q) ≤ 1,

|τ |∇α|e
k−2
2
τα|L∞(Q) ≤ 1, |τϕe(k−2)τα|L∞(Q) ≤ 1.

(3.8)

By virtue of the first and second inequality in (3.8), we know that

I1 = E
∫
Q

(
kτekτααtη

4
3w2 − 2ekταη

4
3a1w

2 + ekταη
4
3a2

3w
2
)
dxdt

= E
∫
Q

e2τα
(
kτe(k−2)τααtη

4
3w2 − 2e(k−2)ταη

4
3a1w

2 + e(k−2)ταη
4
3a2

3w
2
)
dxdt

≤ C(p+ p2 + 1)E
∫
Q

e2ταηw2dxdt. (3.9)

As the estimate of I1, by the third, the fourth and the fifth inequality in (3.8), one can
easily obtain that

I3 = E
∫
Q

(
β1lτe

lτααtη
2
3v2 − β0e

2ταηb1v
2 − 2β1e

lταη
2
3 b2v

2 + β1e
lταη

2
3 b2

3v
2
)
dxdt
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= E
∫
Q

erταη
1
3v2
(
β1lτe

(l−r)τααtη
2
3−β0e

(2−r)ταηb1−2β1e
(l−r)ταη

2
3 b2+β1e

(l−r)ταη
2
3 b2

3

)
dxdt

≤ C
[
(β0 + β1)(p+ p2) + β1

]
E
∫
Q

erταη
1
3v2dxdt. (3.10)

Now we estimate I2. By Cauchy-Schwartz inequality, utilizing the sixth, the seventh, the
eighth and the ninth inequality in (3.8), we have

I2 = −E
∫
Q

[
2ekταη

4
3 b1wv − 2β0τe

2τααtηwv + β0e
2ταη(a1 + b2 − a3b3)wv

+2β1e
lταη

2
3a2wv

]
dxdt

≤ 1

4
E
∫
Q

e2ταηw2dxdt+ E
∫
Q

erταη
1
3v2
[
2e(k−1− r

2
)ταη

2
3 b1 − 2τβ0e

(1− r
2

)τααtη
1
3

+β0e
(1− r

2
)ταη

1
3 (a1 + b2 − a3b3) + 2β1e

(l−1− r
2

)ταa2

]2

dxdt. (3.11)

Recalling that l > 1 + r
2

and noticing that 1 + r
2
> r, we obtain that

I2 ≤ C
[
(β0 + β1)(p+ p2)

]
E
∫
Q

erταη
1
3v2dxdt+

1

4
E
∫
Q

e2ταηw2dxdt. (3.12)

At last, we estimate I4.

I4 = E
∫
Q

(
2ekταη

4
3w∆w + β0e

2ταη(v∆w + w∆v) + 2β1e
lταη

2
3v∆v

)
dxdt

= E
∫
Q

ekταη
4
3 ∆w2dxdt− 2E

∫
Q

ekταη
4
3 |∇w|2dxdt

+β0E
∫
Q

e2ταη∆(wv)dxdt− 2β0E
∫
Q

e2ταη∇w · ∇vdxdt

+β1E
∫
Q

elταη
2
3 ∆v2dxdt− 2β1E

∫
Q

elταη
2
3 |∇v|2dxdt. (3.13)

By virtue of integration by parts, we get that

E
∫
Q

ekταη
4
3 ∆w2dxdt

= E
∫
Q

∆(ekταη
4
3 )w2dxdt

= E
∫
Q

ekταw2
(
k2τ 2|∇α|2η

4
3 + kτ∆αη

4
3 +

4

3
|∇η|2η−

2
3 +

4

3
η

1
3 ∆η +

8

3
kτη

1
3∇α · ∇η

)
.

(3.14)

It is easy to check that

η−
5
6∇η = 6∇ξ ∈ L∞(Q), η−

2
3 ∆η = 30|∇ξ|2 + 6ξ∆ξ ∈ L∞(Q). (3.15)
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Recalling k > 2, by means of the last two inequalities in (3.8), we can obtain

E
∫
Q

ekταη
4
3 ∆w2dxdt ≤ CE

∫
Q

e2ταηw2dxdt. (3.16)

With the similar argument to obtain inequality (3.12) and inequality (3.16), we can show
that

β0E
∫
Q

e2ταη∆(wv)dxdt ≤ 1

4
E
∫
Q

e2ταηw2dxdt+ Cβ2
0E
∫
Q

erταη
1
3v2dxdt, (3.17)

and that

β1E
∫
Q

elταη
2
3 ∆v2dxdt ≤ Cβ1E

∫
Q

erταη
1
3v2dxdt. (3.18)

Then it follows from (3.13)-(3.18) that,

I4 ≤ CE
∫
Q

e2ταηw2dxdt+ C(β2
0 + β1)E

∫
Q

erταη
1
3v2dxdt

−2E
∫
Q

ekταη
4
3 |∇w|2dxdt− 2β0E

∫
Q

e2ταη∇w · ∇vdxdt

−2β1E
∫
Q

elταη
2
3 |∇v|2dxdt.

(3.19)

Let k + l < 4 and β1 >
β2
0

4
, then we know

−2E
∫
Q

ekταη
4
3 |∇w|2dxdt− 2β0E

∫
Q

e2ταη∇w · ∇vdxdt− 2β1E
∫
Q

elταη
2
3 |∇v|2dxdt ≤ 0.

(3.20)

Therefore we find

I4 ≤ CE
∫
Q

e2ταηw2dxdt+ C(β2
0 + β1)E

∫
Q

erταη
1
3v2dxdt. (3.21)

From (3.9)-(3.21), we see

β0E
∫
Q

a2e
2ταηw2dxdt ≤ C(1 + p2)(β2

0 + β2
1)E

∫
Q

erταη
1
3v2dxdt

+C(p2 + 1)

∫
Q

e2ταηw2dxdt. (3.22)

Finally, by setting β0 = 2C(1 + p2), we obtain that

E
∫
Q

e2ταηw2dxdt ≤ C(1 + p10)E
∫
Q

erταη
1
3v2dxdt. (3.23)
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Taking into account of Proposition 2.1, inequality (3.1) and inequality (3.23), for λ ≥ λ0

and s ≥ max{s2, s3}, we deduce that

E
∫
Q

ϕ3e2sα(w2 + v2)dxdt ≤ C(1 + p10)E
∫ T

0

∫
G0

e
3
2
sαv2dxdt. (3.24)

Recalling the definition of α and φ(see (2.2)), we have that

E
∫
Q

ϕ3e2sα(w2 + v2)dxdt ≥ min
x∈G

[
ϕ3
(
x,
T

2

)
e2sα(x,T

2
)
]
E
∫ 3T

4

T
4

∫
G

(w2 + v2)dxdt, (3.25)

and that

E
∫ T

0

∫
G0

e
3
2
sαv2dxdt ≤ max

(x,t)∈Q
(e

3
2
sα(x,t))E

∫ T

0

∫
G0

v2dxdt. (3.26)

From (3.24)-(3.26), we obtain that

E
∫ 3T

4

T
4

∫
G

(w2 + v2)dxdt ≤ CeCT
−4(1+p2)E

∫ T

0

∫
G0

v2dxdt. (3.27)

Noting that d(w2+v2) = 2wdw+(dw)2+2vdv+(dv)2, applying the usual energy estimate
to system (1.4), it is easy to see that, for any 0 ≤ t1 ≤ t2 ≤ T , it holds

E
∫
G

[
w2(t2) + v2(t2)

]
dx− E

∫
G

[
w2(t1) + v2(t1)

]
dx

= E
∫ t2

t1

∫
G

[
2wdw + (dw)2 + 2vdv + (dv)2

]
dxdt

= E
∫ t2

t1

∫
G

[
2w(∆w − a1w − b1v) + (a3w)2 + 2v(∆v − a2w − b2v) + (b3v)2

]
dxdt

≤ C(1 + p2)E
∫ t2

t1

∫
G

(w2 + v2)dxdt. (3.28)

Hence, in terms of Gronwall inequality, it follows

E
∫
G

[
w2(t2) + v2(t2)

]
dx ≤ eCT (1+p2)E

∫
G

[
w2(t1) + v2(t1)

]
dx. (3.29)

By inequality (3.27) and inequality (3.29), we conclude that the solution (w, v) of system
(1.4) satisfies inequality (1.5).

4 Proof of Theorem 1.1

This section is devoted to the proof of our controllability results: Theorems 1.1 . The proof
is almost standard dual argument. However, for the sake of completeness, we still give it
here.
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Proof of Theorem 1.1 : For any (yT , zT ) ∈ L2(Ω,FT , P ;L2(G)× L2(G)), we need to find
a control f ∈ L2

F(0, T ;L2(G0)) such that the solution of system (1.1) satisfies (y(0), z(0)) =
(0, 0) in G, P -a.s. We use the duality argument.

We introduce the following linear subspace of L2
F(0, T ;L2(G0))× L2

F(0, T ;L2(G)):

X
4
=
{
v|[0,T ]×G0×Ω

∣∣∣ (w, v) solves system (1.4) with some

(w0, v0) ∈ L2(Ω,F0, P ;L2(G)× L2(G))
}
,

and define a linear functional on X as follows:

L(v|[0,T ]×G0×Ω) = E
∫
G

(
yTw(T ) + zTv(T )

)
dx.

By means of the observability estimate ( see Theorem 1.2), we know that∣∣∣L(v|[0,T ]×G0×Ω)
∣∣∣ ≤ (E∫

G

(|yT |2 + |zT |2)dx
) 1

2
(
E
∫
G

(|w(T )|2 + |v(T )|2)dx
) 1

2

≤ CeC[T−4(1+p2)+T (1+p2)]
(
E
∫
G

(|yT |2 + |zT |2)dx
) 1

2
(
E
∫ T

0

∫
G0

|v|2dxdt
) 1

2
.

Thus, L is a bounded linear functional on X such that the norm of l is bounded by

CeC[T−4(1+p2)+T (1+p2)]
(
E
∫
G

(|yT |2 + |zT |2)dx
) 1

2
.

By Hahn-Banach Theorem, L can be extended to a bounded linear functional with the same
norm on L2

F(0, T ;L2(G0)). For simplicity, we use the same notation for this extension. Now,
Riesz Representation Theorem allows us to find a random field f ∈ L2

F(0, T ;L2(G0)) such
that

E
∫
G

[
yTw(T ) + zTv(T )

]
dx = E

∫ T

0

∫
G0

fvdxdt, (4.1)

and that

|f |L2
F (0,T ;L2(G)) ≤ CeC[T−4(1+p2)+T (1+p2)]|(yT , zT )|L2(Ω,F0,P ;L2(G)×L2(G)). (4.2)

We claim that this random field f is exactly the control we need. In fact, by means of
Itô formula, we know that

d(yw) = ydw + wdy + dydw, (4.3)

and that
d(zv) = zdv + vdz + dzdv, (4.4)

where (y, z) is the solution to system (1.1) and (w, v) is the solution to system (1.4). From
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(4.3), we obtain that

E
∫
G

yTw(T )dx− E
∫
G

y(0)w0dx

= E
∫
Q

(ydw + wdy + dydw)dx

= E
∫
Q

y
(

∆w − a1w − b1v
)
dxdt+ E

∫
Q

w
(
−∆y + a1y + a2z + a3Y

)
dxdt

+E
∫
Q

Y (−a3w)dxdt

= E
∫
Q

a2wz − b1vy dxdt.

(4.5)

From (4.3), we know that

E
∫
G

zTv(T )dx− E
∫
G

z(0)v0dx

= E
∫
Q

(zdv + vdz + dzdv)dx

= E
∫
Q

z
(

∆v − a2w − b2v
)
dxdt+ E

∫
Q

v
(
−∆z + b1y + b2z + b3Z + χG0f

)
dxdt

+E
∫
Q

Z(−b3v)dxdt (4.6)

= E
∫
Q

b1vy − a2wz + χG0fv dxdt,

Combining equality (4.1), equality (4.5) and equality (4.6), we find

E
∫
G

y(0)w0dx+ E
∫
G

z(0)v0dx = 0.

Since (w0, v0) can be chosen arbitrarily, this implies that (y(0), z(0)) = 0 in G, P -a.s.
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