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Abstract In these Notes we make a self-contained presentation oh#wy that
has been developed recently for the numerical analysiseofdmtrollability prop-
erties of wave propagation phenomena and, in particulathi® constant coeffi-
cient wave equation. We develop the so-called discreteoagpr In other words,
we analyze to which extent the semidiscrete or fully discdsthamics arising when
discretizing the wave equation by means of the most cldssiteeme of numeri-
cal analysis, shear the property of being controllablefounily with respect to the
mesh-size parameters and if the corresponding controlgecga to the continuous
ones as the mesh-size tends to zero. We focus mainly on 6iifiezence approxi-
mation schemes for the one-dimensional constant coeffiziane equation. Using
the well known equivalence of the control problem with thesetvation one, we
analyze carefully the second one, which consists in deténgithe total energy of
solutions out of partial measurements. We show how speamtiaysis and the the-
ory of non-harmonic Fourier series allows, first, to showt thigh frequency wave
packets may behave in a pathological manner and, seconéstgndefficient fil-
tering mechanisms. We also develop the multiplier apprélaahallows to provide
energy identities relating the total energy of solutiond #re energy concentrated
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on the boundary. This observability properties obtaingdrdiltering, by duality,
allow to build controls that, normally, do not control thel filynamics of the system
but rather guarantee a relaxed controllability propergsjiite of this they converge
to the continuous ones. We also present a minor variant otldmesical Hilbert
Uniqueness Method allowing to build smooth controls for sthalata. This result
plays a key role in the proof of the convergence rates of therdie controls towards
the continuous ones. These results are illustrated by nedaeseral numerical ex-
periments.

1 Introduction

In these notes, we make a survey presentation of the workiddhe last years on
the problems of controllability and observability of wa¥esm a numerical analysis
viewpoint. In particular, we explain that, even for numatischemes that converge
in the classical sense of numerical analysis, one cannetéipem to automatically
be well behaved for observation and control purposes. T pis essentially an
updated version of[114], in which we collect most of the mm®ent developments.

Problems of control and observation of waves arise in mafigrdnt contexts
and for various models but, to be more precise and betteeptréise milestones of
the theory that has been developed so far, we will focus oalyais on the wave
equation, and mainly in the 1-dimensional setting whereeisdvmethods can be
used to get rather explicit and complete results. We shéllgnéocus on the finite
difference method on a regular grid. Some of these resuitbe@xtended to several
space dimensions but, still, a lot remains to be done to diéfalgegneral variable co-
efficient wave equations and with schemes on non-uniforasgn one and several
space dimensions.

Controllability refers to the possibility of driving the siem under consideration
(here, the wave equation) to a prescribed final state at adimal time using a
control function. Of course, this question is interestinigew the control function
does not act everywhere but is rather located in some paheofidmain or on its
boundary through suitable actuators.

On the other hand, observability refers to the possibilitneasuring the whole
energy of the solutions of the free trajectories (i.e., aithcontrol) through partial
measurements. Again, one easily understands that suclperprés interesting and
non-trivial only when the measurements are not completedamé on the whole
domain where waves propagate, but they are rather locdlizeart of the domain
or on its boundary through suitable sensors.

It turns out that these two properties are equivalent andl @ from another.
This is the basis of the so-called Hilbert Uniqueness Mef8¢69] introduced by
J.-L. Lions, that we shall recall more precisely in Secfibfirat in a finite dimen-
sional setting and then for abstract conservative systetsas the wave equation.

In particular, on the basis of the Hilbert Uniqueness MetfitldM) one can also
build algorithms to compute the optimal control, the one fofninimal norm, in a
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sense to be made precise (see details in Selction 2). We shadticular explain
how, using the observability property, one can slightly moHUM with a weight
function in time, vanishing for the initial and final time, #wat the control obtained
minimizing this functional preserves the regularity prdjes of the data to be con-
trolled, see Sectioh 2.3 and[35]. Curiously enough, thesalts, inspired in[24]
where the regularity of the control for the wave equationrialgzed through mi-
crolocal analysis, are very recent. The abstract versighesfe results iri [35], was
proved using a simplified proof without requiring microlbeaalysis tools. Note
however that the results in[24], which are specific to theaneyuation, are stronger
than the ones ir [35] since they yield also a very precise idydecomposition of
the controls.

In the context of wave propagation phenomena, observahiiiti controllability
properties are very much related to the propagation of réngd, for the constant
coefficient wave equation, are straight space-time liregting at velocity one and
bouncing on the boundary according to the Descartes-&weti Geometric Optics
(see Sectioh 314 andI[6],]14]). In view of the finite veloditypropagation of rays,
as we shall explain, one needs the observation/control tiiniee large enough to
allow all the characteristics to meet the observationf@megion and ensure the
observability/controllability properties to hold.

In 1-d, these properties of propagation and reflection ageedsence of the
method of characteristics leading to D’Alembert’s formdiaat is why our presen-
tation of the observability/controllability of waves foses mainly in the 1-d setting,
see Sectiof]3.

As we said above, HUM characterizes the optimal controltghoa minimiza-
tion process of a quadratic coercive functional for the ohs of the adjoint wave
equation. This allows characterizing the controls throtighcorresponding Euler-
Lagrange equations or Optimality System and building effitalgorithms for com-
puting them. This is the so calledntinuous approach which one first derives a
complete characterization of the controls for the contireasave model to later use
numerical analysis tools to approximate them. There areofse different ways
of implementing this continuous approach for the consioncbf numerical ap-
proximations of the controls. The first article devoted tis thsue is, probably, [5].
Recently, the continuous approach to numerical control dea®loped differently
by Cindae et al.[[20]. They adapted at the numerical levelvibB-known itera-
tive algorithm by D. Russell[96] in which the property of ¢msilability is obtained
from the stabilization one by an iterated back and forthiapfibn of the dissipative
semigroup. We also refer to the recent works of D. Auroux &fum [3] that have
developed a similar approach in the context of the contralbwflinear viscous con-
servation laws. As we shall further explain in[32], the noetkin [20] lead to very
similar algorithms to those one would get by applying nucer@pproximations in
the conjugate gradient algorithm associated to the cootisminimization problem
that HUM leads to. While in[20] the back and forth iteratisrdione always on the
dissipative system, when following HUM one alternates leetvthe state equation
and the adjoint one in dual functional settings. Both apginea lead to similar con-
vergence rates but the HUM one is more flexible since it candaptad to a large
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class of problems, including those in which the control aparis unbounded as
it happens often in practice and in particular for the boupdantrol of the wave
equation.

But, very often in practice, one frequently applies the mdirect, so called,
discrete approackwhich consists on, first, discretizing the equation usingraver-
gent numerical approximation scheme, to later compute &@ldor this numerical
approximation. The model obtained after numerical diszaébn being a finite di-
mensional time continuous or discrete system, the compataf its control can
be performed using standard existing finite-dimensionadhods and software. But
such natural approach often fails.In particular, in the context of the wave equa-
tion under consideration, as we shall see below, for sontialidiata, this approach
yields discrete controls that are not even bounded as thk-sies goes to zero, see
Theoreni8.

Note that this point of view was systematically developedRbylowinski, J. L.
Lions and coworkers (see [43[, [44]) to build numerical apgmation algorithms.
In their works they developed and implement conjugate graidiescent algorithms
combined with Finite Element Methods for approximatingwae equations. They
observed the bad conditioning of the corresponding disgreiblems and indicated
the need of filtering the high frequencies. This was done iitiqudar using two-grid
filtering techniques (see R. Glowinski [40]) and motivatesbastantial part of the
work that we present in this article.

Part of this paper is devoted to develop a thorough studyisfdivergence or
blow up phenomenon for the space finite-difference senmielisd.-d wave equation
as a model example since other classical schemes, such asabgiven by finite
element methods, exhibit the same behavior.

Our approach is based on the analysis of the observabibtygsty of these finite-
dimensional systems that approximate the 1-d wave equadtigrarticular, as we
shall see, even when the convergence of the numerical métltloe classical sense
of numerical analysis is guaranteed, the discrete systeensod uniformly observ-
able with respect to the space discretization parameterTeeorenil6. As a con-
sequence, by duality, there are initial data for which tlgusece of corresponding
discrete controls diverge (Theor&in 8). In other words, thieikty in what concerns
the solvability of the initial-boundary value problem istrsufficient to guarantee
the stability with respect to the observability property.

The lack of uniform observability can be explained and ustiberd by looking to
the propagation properties of the solutions of the numkajgaroximation schemes.
In Sectior 4.8, we will explain that the numerical schemesegate spurious solu-
tions traveling with the so called group velocity which, Fagh frequency numerical
solutions, is of the order of the mesh-size paraméter [10%,72]. To be more pre-
cise, the high-frequencies involved in these wave packetsfahe order of 1h, h
being the space mesh-size. Asymptoticallyh éesnds to zero, they weakly converge
to zero, thus being compatible with the convergence of tinearical scheme in the
classical sense of numerical analysis, while being an otitstn for the observabil-
ity property to hold uniformly with respect to the mesh sizxgmeteh. This is
so since the time that these wave packets need to get intcbden@tion region
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is of the order of Yh. Actually, for T > O fixed, the observability constant for the
semidiscrete problems is of the order of &ph), seel[77].

Our analysis of the lack of uniform observability for theaste waves also indi-
cates the path to avoid these divergence and blow up phersoimeccur. A careful
analysis of the velocity of propagation of numerical wavesvgs that low frequency
components propagate with a uniform velocity, a fact thaisipatible with uni-
form observability properties. Here, by low-frequenciesnefer to those covering a
fixed percentage of the spectrum of the corresponding desdsgamics, indepen-
dent of the mesh-size. These “low” frequencies end up filliththe frequency range
as the discretization parameter goes to zero. This showsthmwugh filtering, i.e.
focusing on the low-frequency components, one can prov®umiobservability
results and still, by lettindp tend to zero, recover the full dynamics of the contin-
uous model. The need of filtering the high-frequency compts® focus on the
low-frequency ones was already observed in the papers bydwiski, J.-L. Li-
ons & all [40,[43[44]. Among the different ways of doing thit,this paper we
shall present Fourier filtering techniqués][53], Tychndémefjularization methods
and bi-grid techniques[2, 83,82].

In Sectionb we show how these ideas yield observability grigs that hold
uniformly with respect to the discretization parameterthimi the subspace of fil-
tered solutions. We will also briefly present the resultdlibl]] and in [27] in the
multi-dimensional setting.

These uniform observability properties lead to contraligbresults with uni-
formly bounded controls. However, the controls one obtairthis manner do not
control the full state but only suitable low-frequency gajons of the numerical
solutions. We shall then show how to prove the convergenteeadiscrete controls
towards the continuous ones and to derive convergence Tateprocedure we de-
scribe is general and can be adapted to various situatiomglifferent models and
numerical approximation schemes.

Note that, to the best of our knowledge, this is the first titmat tonvergence
rates are proved. This requires, in particular, a systemmagithod to build controls
preserving the regularity of the data to be controlled. Tihigdone by a suitable
weighted version of the HUM-method, see Theofém 3 [35].

The paper is organized as follows. Secfibn 2 recalls thelfasis on the Hilbert
Uniqueness Method. It also includes the main resulis 6f¢8%he regularity of con-
trols for smooth data. In Sectigh 3 we present the main obgdity/controllability
results for the constant coefficient one-dimensional (val)e equation, and briefly
comment on the works$ [6, 14] in the multi-dimensional seftinsing microlocal
analysis techniques. The main results on the lack of obb#ity&controllability of
finite difference semidiscretizations are then presente8eictiof#. In Sectionl 5,
we discuss several methods for curing high-frequency pagfes and getting weak
observability estimates. In Sectibh 6 we describe how thbservability results can
be used to develop numerical methods to obtain discretealsrthat converge to-
wards the continuous ones, with explicit convergence natesever the data to be
controlled are smoother. In Sectioh 7 with discuss sevdtaraelated issues and
present a list of interesting open problems.
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Notations

In all these notes, we shall use several different notations

e In an abstract setting is the state, solution of the controlled equatiéris the
operator that prescribes the dynamiBsis the control operator is a generic
control andg is the solution of the adjoint equation.

e When considering the wave equation, the state is denotgdamy the adjoint
state byu.

e Several controls shall appear. The notatwaa used to denote a generic control
function.Vi,ymrefers to the control given by the Hilbert Uniqueness Metand
V to the control given by the method in[35], which will be exipled hereafter
in Sectiof 2.1L.

e Indexeshwill refer to the space mesh size and all the above notatidhbewde-
noted with indexel when denoting quantities related to the semidiscrete syste
Furthermore, all vectorial quantities dependinghare noted in bold characters.

2 Control and observation of finite-dimensional and abstrat
systems

2.1 Control of Finite-Dimensional Systems

Numerical approximation schemes and, more preciselygttizd are semidiscrete
(discrete in space and continuous in time) yield finite-disienal systems of Ordi-
nary Differential Equations (ODES).

There is by now an extensive literature on the control ofdhtitmensional sys-
tems, and the problem is well understood for linear ones[@&&8)]). In this Sec-
tion we recall the basics ingredients of the theory and wesgneit in a manner
well suited to be extended to the PDE setting and to the lingic@ss from finite to
infinite dimensions that numerical analysis requires (88¢36] for more detalils).
Indeed, the problem of convergence of controls as the mashirsithe numerical
approximation tends to zero is very closely related to pask the limit as the di-
mension of finite-dimensional systems tends to infinity. Tdteer topic is widely
open and this article aims at describing some of its key dspec

Consider the finite-dimensional system of dimensibn

X =Ax+Bv, 0<t<T; x(0)=x° (1)

wherex = x(t) € RN is the N-dimensional state and = v(t) € RM is the M-
dimensional control, witiM < N.

Here Ais anN x N matrix with constant real coefficients aflis anN x M
matrix. The matrixA determines the dynamics of the system 8ndodels the way
M controls act on it.
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In practice, it is desirable to control tiecomponents of the system with a low
number of controls, and the best would be to do it by a singks anwhich case
M=1.

System[(ll) is said to beontrollablein time T when every initial datum® € RN
can be driven to any final datuxh in RN in time T. In other words, we ask if for any
(x9,x") € (RN)?, there exists a control function: [0, T] — RM so that the solution
x of (@) satisfies

X(T)=x". (2)

Since we are in a linear finite dimensional setting, it is dassheck that system
@@ is controllable in timél > 0 if and only if it is null-controllable in timer > 0,
i.e. if for anyx® € RN, there exists a control function: [0, T] — RM so that the
solutionx of (1)) satisfies

x(T)=0. 3)

In the following we shall focus on the null-controllabilignd we shall refer to it
simply as controllability.

There is a necessary and sufficient condition for contrditglwhich is purely
algebraic in nature. It is the so-call&lman condition System([(lL) is controllable
in some timeT > 0 if and only if

rankB,AB,...,AN"1B] = N. (4)

There is a direct proof of this result which uses the repregiem of solutions of
(@ by means of the variations of constants formula. Howelermethods we shall
develop along this article rely more on the dual (but congiyetquivalent!) problem
of observability of the adjoint system that we discuss now.

Consider theadjoint system

—¢'=A'¢, 0<t<T; ¢(T)=¢". (5)

Multiplying (@) by ¢ and integrating it or{0,T), one immediately gets that for
all¢T e RN,
T
0= [ (B )awdt+ (2.9 (0)n. ©

Hencev is a control function forl{l1) if and only if for aT € RN,

T * 0
oz/O (V.B* @) dt + (X0, $(0)) . 7)

This characterization of the controls f&f (1) is the hearthef duality methods we
shall use in all these notes, the so-called Hilbert Unigaeméethod (HUM), in-
troduced by J. L. Lions i [68, 69] and that has tremendouslyénced the recent
development of the field of PDE control and related topics.

Theorem 1.Systengl)) is controllable in time T if and only if the adjoint systd&)
is observablén time T, i.e., if there exists a constangge= Cops(T) > 0 such that,
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for every solutionp of (@) with initial data¢ T it holds:

.
D020 < CBos | [B"p[2ucl ®

Both properties hold in all time T if and only if the Kalman taoondition(d) is
satisfied.

Remark 1 The equivalence between the controllability of the stateagiqn and the
observability of the adjoint one is one of the most classiogtedients of the con-
trollability theory of finite-dimensional systems (see, fimstance, Theorem 1.10.2
in [57]). In general, observability refers to the posstigibf recovering the full solu-
tion by means of some partial measurements or observatiothe present context,
i. e.in (8), one is allowed to measure the outBt$ during the time interval0,T)
and wishes to recover complete information on the initigudag (0). Since in
finite-dimensions all norms are equivalent, and the ODEsundnsideration are
well-posed in the forward and backward sense of time, olisgthe value of the
solution of the adjoint state equatigiiO) att = 0 as in[8) is equivalent to observing
its datumg T at timet = T or both of them.

Proof. We proceed in several steps.

Stepl. Construction of controls as minimizers of a quadratic fumal. The
proof we present here provides a constructive method fddibgi controls from
the observability inequality{8). Indeed, assufme (8) halut$ consider the quadratic
functionald : RN — R:

/7
W67 =35 [ 1B OORudt+ 02,90 ©
If @7 is a minimizer forJ, sinceDJ(®T) = 0, then the control

Vhum= B* @, (10)

where® is the solution of[(b) with initial datun®T attimet = T satisfies[(l7). Hence
the corresponding solutionof (@) satisfies the control requireme® ) = 0.

Thus, to build the control it is sufficient to minimize the fitional J. For, we
apply the direct method of the calculus of variations. ThecfionalJ being con-
tinuous, quadratic, and nonnegative, since we are in fipiéee dimensions, it is
sufficient to prove its coercivity, which holds if and only(@) holds.

Step2. Equivalence between the observability inequaf@y and the Kalman
condition.

Since we are in finite-dimensions and all norms are equiva@pis equivalent
to the following uniqueness or unique continuation propddbes the fact that Bp
vanish for all0 <t < T imply that¢ = 0?

Taking into account that solutiogsare analytic in timeB* ¢ vanishes for alt
(0, T) ifand only if all the derivatives dB* ¢ of any order attimé= T vanish. Since
¢ =e A =T¢T this is equivalent tdd*[A*]¥¢T = 0 for all k > 0. But, according
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to the Cayley—Hamilton theorem, this holds if and only ifstsatisfied for alk =
0,...,N—1. ThereforeB*¢ = 0 is equivalent top™ € Nycon-1;Ker(B*[AT]K)).
Hencel[(8) holds if and only ific (... n—13Ker(B* [A*]]) = {0}, which is obviously
equivalent to[(#).

Step3. Lack of controllability when unique continuation failéthe observability
estimate[(B) does not hold, there exists a non-trifilakz 0 so thatB*@(t) = 0 for
all't € (0,T). We claim that the initial data® = ¢ (0) cannot be steered td = 0.
Otherwise, for some control function one would have froni{7) that

T i} 0
0:./0 (V,B"®)pm + (X7, (0))rn,

which would imply|@ (0)|?> = 0 and then contradict the fact thit # 0.

Remark 2The problem of observability can be formulated as that oéigeining
uniquely the adjoint state everywhere in terms of partiahsaeements. The prop-
erty of observability of the adjoint systerl (5) is equivadlém the inequality [(B)
because of the linear character of the system. In the cootéxtinite-dimensional
systems or PDE this issue is sensitive to the norms underd=yasion.

Remark 3t is important to note that in this finite-dimensional cotit¢he value of
time T plays no role in what concerns the property of controll@piln particular,
whether a system is controllable (or its adjoint obserJjaisiéendependent of the
time T of control. Note that the situation is totally different fitre wave equation.
There, due to the finite velocity of propagation, the timedwzktto control/observe
waves from the boundary needs to be large enough, of the ofdke size of the
ratio between the size of the domain and the velocity of pgagian.

In fact, the main task to be undertaken to pass to the limiuimerical approx-
imations of control problems for wave equations as the mightends to zero is
to explain why, even though at the finite-dimensional lete tontrol timeT is
irrelevant, it may play a key role for PDEs.

Note however that, even at the level of finite-dimensionateays, the problem
of how the size of controls depend on the control timand in particular how they
behave a§ — 0 is an interesting issue, sée[[97].

Remark 4Using [7) with¢ = @ given by the minimization of the functiondlin
(@), one easily checks that any control fiar (I)-(3) satisfies

T T
/0 (v, Vihum) e dit = /0 (VB D) dt = — (O, D(0))pn
T 2 T 2
:/0 |B*<D|RMdt:/O Vhurt 2y dit.

This immediately yields that the HUM contid,nis the one of minimal?(0, T;RM)-
norm.

The proof of Theorerl1 also yields the following importarsturk
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Corollary 1. Given T> 0, we assume thd8) holds.
Then for any X € RN, there is only one control function satisfyig) that can
be written as B¢ for ¢ solution of (&). This is the so-called HUM control\m

constructed in(@)-(@J).

Proof. Such a control should satisfly](7), heng€T) should be a critical point of
J defined in[[P). Butl is strictly convex because dfl(8) and therefore has only one
critical point.

Again, this has an important consequence:

Corollary 2. Given T> 0, we assume thd8) holds.
Then the map constructed in Theofgm 1

Vhum: X° € RN = Viyme L2(0, T; RM), (11)
where Wumis the control computed iQ), is linear.

Proof. Given any pairs<8, xg, obviously, by linearity, the solutior of (1)) with

initial data(x? + Ax3) and control functioWnym(X9) + A Vhum(x3) satisfies(T) = 0.

Moreover, using Corollary{{1), one easily deduces Wafm(X{ +AX9) coincides
with thm(Xg) + Athm(xg).

The norm of this map can even be characterized:

Theorem 2.Given T> 0, we assume thaf) holds, the norm of the control map
Vhum: RN — L?(0,T; RM) coincides with G, the observability constant ifg).

Proof. The proof of the controllability in Theored 1 yields exptibiounds on the
controlsVhymin (@I0) in terms of the observability constantid (8). Indggldigging
¢ = @ in (@), the controMyum given by [10) can be seen to satisfy

IVhumli2 o 7:2M) < CobdXCzn, (12)

Cobs being the same constant aslih (8). Therefmse,umﬂ2((RN)2;L2(O’T;RM)) < Cobs

We shall now prove the reverse inequality. Tgkeon-trivial such that it saturates
@), and sek® = —¢(0). Then, using[{7) withp = @, any controlv for x° should
satisfy

T
16(0)|5n = POfn = /0 (v, B* @) dt < [[Vl| 2o M) B* Bl L2(0.;mM) -

Using that¢ is non-trivial and saturategl(8), we find out that the corfinaktion
Vhum(—@(0)) should be of norm at lea€k,,d$ (0)|, hence the result.

Remark 5Step 3 of the proof of Theoreh 1 and the proof of Thedrém 2 relthe
same idea, that data that are difficult to observe correspmtite ones that are the
most difficult to control.
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2.2 Controllability and observability for abstract conservative
systems

In this Section, leX be a Hilbert space endowed with the nojtrijy and letT =
(Tt)ter be a strongly continuous group o with generatoA: Z(A) C X — X.

We further assume thétis a skew-adjoint operatdy” = —A.

For convenience, we also assume thAat invertible with continuous inverse
in X. This can be done without loss of generality by translathng $emigroup if
necessary using € R and replacind\ by A—iSl.

Define then the Hilbert spacg = 2(A) of elements oK such thaf|Ax||y < o,
endowed with the norrij-||; = ||A-||«. Also defineX_, as the completion oX with
respect to the norrf || _; = [|A~% .

Let us then consider the control system

X =Ax+Bv, t>0, x(0)=xeX, (13)

whereB € £(% ,X_1), 7 is an Hilbert space which describes the possible actions
of the control, and € L2 .([0,»); %) is a control function.

We assume that the operaf®is admissible in the sense 6f[102, Def. 4.2.1]:

Definition 1. The operatoB € £(% ,X_1) is said to be an admissible control oper-
ator forT if for somet > 0, the operatogz; defined orL?(0,T; %) by

T
%TV = / TrfsBV(s) dS
JO

satisfies RaZ; C X, where Rar®; denotes the range of the mdp.
WhenB is an admissible control operator féir system[(IB) is called admissible.

Note that, obviously, iB is a bounded operator, that isBfe £(%,X), thenB is
admissible fofT. But there are non-trivial examples as, for instance, thendary
control of the wave equation with Dirichlet boundary coratis, in whichB is un-
bounded but admissible, seée [68]. In such cases, the adhititggiroperty is then
a consequence of a suitable hidden regularity result fosthations of the adjoint
system.

To be more precise, the admissibility Bffor T is equivalent to the existence of
atimeT > 0 and a constariét > 0 such that any solution of

9'=Ap, te(0T), ¢ =0¢" (14)
satisfies
T * 2 T2
| 1B 0I5 dt< ke [0 s)

In this Section we will always assume thgis an admissible control operator for
T. Then, for every® € X andv € L? .([0,); % ), equation[[IB) has a unique mild

loc

solutionx which belongs t&€([0, »); X) (see[102, Prop. 4.2.5]).
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Our purpose is to study the controllability of systdml(13).
System[(IB) is said to be null controllable in tiféf for any x° € X, there exists
a control functiorv € L2(0,T; % ) such that the solution df(1L3) satisfies

X(T) =0. (16)

System [(IB) is said to be null controllable if it is null casitable in some time
T>0.

Note that since systeri {I13) is linear and time-reversibleeasy argument left
to the reader shows that systeml(13) is null controllabléntefT if and only if
it is exactly controllable, i.e. for ak%,x" in X, there exists a control functione
L?(0,T; %) such that the solutior of (I3) with initial datax® and control function
v satisfie(T) = x". Hence we will focus on the null-controllability propertythe
sequel, and we shall refer to it simply as controllability.

Here again, we claim that systein13) is controllable in fimigand only if there
exists a constart,,s such that all solutiong of the adjoint equatiori{14) satisfy

601 < CBus [ 1860 at an

We shall refer the interested reader[tol[68] for the proothef fact that the exact
controllability in timeT implies the observability(17) for the adjoint systedml(14).
This is based on a closed graph theorem.

The other implication is actually proved in Step 1 of the grobTheorent1,
which describes the Hilbert Uniqueness Method. The idea it a minimizer of
the functional

}
A1) =5 [ IBOOIE A+ (.60 9TeX. a8

Note that such a minimizer exists and is unique due to therehisity property
(@3). Then, ifdT denotes the minimizer af, sinceDJ(®T) = 0, the function

Vhum=B"®, (19)

where® is the corresponding solution ¢f({14) is a control functiomeed, it satis-
fiesforallg’ € X,

T
| M B0 1)+ (6.8(0))x =0, (20)

which, as in[(¥), characterizes the controls[ofl (13).
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2.3 Smoothness results for HUM controls

In this Section, we assume that the adjoint systenh (14)fiestithe observability
assumption[(47) in some timME*. We also assume that the admissibility property
holds.

We now address the issue of the regularity of the controltfand/,,, obtained
by minimizing the functional in (I8). To be more precise, we analyze whether this
control preserves the smoothness of the initial data to heraited.

According to a counterexample that we will present laterro8éctior 3.8, we
will see that, under the very general assumptions underig@ragion, no smooth-
ness of the control computed by the minimization of the fiomel J in (@) can be
expected.

We thus propose an alternate method, based on HUM, whicHsyglcontrol
of minimal norm in some weighted (in timé&y space, and for which we prove
that, with no further assumptions,xf € X;, then this control function belongs to
H&(0,T;%). Thus, this result can be readily applied to the most releegamples,
as itis for instance the case of the wave equation with Digidioundary control. In
particular, this implies that the controlled solutiof (I3) belongs t&€*([0, T], X)
and also, in various situations (see Sedfioh 3.5), to a stulzsspace aX for all time
t € [0,T], which will reflect the extra regularity of the initial data be controlled.
In particular, ifBB* mapsX; into X3, then the controlled solutioxwill belong to
CO([0, T]; Xy).

Fix T > T* and choos® > 0 such thall —26 > T*. Letn =n(t) € L*(R) be

such that 0 it ot
n:R—[04, ”(t):{l :f:§E5:T>i5]. (1)

In particular, there exists a positive const@gts such that any solutiogp of (14)
satisfies

T
19O < Clos [ 1) B9V dt. 22)
Then define the functiondlby
1T x 2 0
W67 =5 [ n®IB GO dt+ 6,90, 23)
where¢ denotes the solution of the adjoint systéml (14) with initiatag ™.

Inequality [22) then implies the strict convexity of the @ionalJ and its coer-
civity, but with respect to the norm

T
197 o= [ nIB" @)1, i (29)

Let us now remark that, since we assumed tha a strongly continuous unitary

group, the three norm$p ||, . |9 (0)[|x and ¢ T||, (in view of (IB){22)) are
equivalent.
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We are now in position to state our first result:

Proposition 1. Let X € X. Assume that syste@3) is admissible and exactly ob-
servable in some time*TLet T > T* andn € L*(R) as in(21).
Then the functional J if23) has a unique minimize®” € X on X. Besides, the
function V given by
V(t) = n(HB o), (25)

where @(t) is the solution of@d) with initial datum @7, is a control function
for system(@3). This control can also be characterized as the one of minimal
L?(0,T;dt/n;% )-norm among all possible controls for which the solution(@8)
satisfies the control requireme(dd). Besides,

T dt 2
2 2
) IVOIE o5 = 197 s < Conslol (26)
where Gpsis the constant in the observability inequal@2).
Moreover, this process defines linear maps

{x—>x*_x X—>L2(O,T,£;ﬁ2/>

Va: T and V: n(t)
X @ X0 V.

(27)

Besides, V is the unique admissible control function that lea written vt) =
n(t)B*¢(t) for some¢ solution of the adjoint equatiofLd).

This result is similar to those obtained in the context of Hs¢e [68] and
previous paragraphs) and follows the same lines as Steghg pfoof of Theorerfl 1.
Normally the weight is simply taken to be&) =1 on [0, T] while in the present
formulation, the fact that it vanishestat 0, T plays a key role.

The main novelty and advantage of using the weight funatios that, with no
further assumption on the control operaB®rthe control inherits the regularity of
the data to be controlled.

To state our results, it is convenient to introduce gerR ;, some notationd:s|
denotes the smallest integer satisfyirg) > s, |s| is the largest integer satisfying
|s|] <sand{s} =s—|[s|. Finally, the spac€® denotes the classical Holder space.

Theorem 3 ([35]). Assume that the hypotheses of Proposlfion 1 are satisfied.

Let se R, be a nonnegative real number and further assume ghatC/s! (R).

If the initial datum ¥ to be controlled belongs t&(AS), then the minimizes "
given by Propositiofl1 and the control function V giver(B%), respectively, belong
to 7(A%) and H§(0,T; % ).

Besides, there exists a positive constaytCs(n, Cops, K1) independent ofke
2(A°) such that

H (DT H;(AS) + ||VH|2-|8(0,T;02/) <Gs HXOH_ZQ(AS) : (28)

In other words, the map¥, andV defined in(27) satisfy:
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Va: @(AS) — _@(AS), V- .@(AS) — HS‘(O,T;@/). (29)

In other words, the constructive method we have proposeahgly inspired by
HUM, naturally reads the regularity of the initial data todmntrolled, and provides
smoother controls for smoother initial data. Note howehat if one is interested to
the regularity in space of the controlled trajectory, onedsto work slightly more.

Indeed, one of the main consequences of Thedlem 3 is thevintiaregularity
result for the controlled trajectory:

Corollary 3 ([85]). Under the assumptions of Theor&in 3, if the initial datdin x
to be controlled belongs t&(A®), then the controlled solution x dfL3) with the
control function V given by Propositidh 1 belongs to

C3([0,T]; X) L:rSTJ

,C0.T] 25 ), (30)

where the spaces?|);cn are defined by induction by
2o=X,  Z;=AYZj_1+BB'Z(A)), (31)
and the spaceg; for s> 0 are defined by interpolation by
Zs= 215 21515y

The spaces?j are not explicit in general. However, there are severalase
which they can be shown to be included in Hilbert spaces ofdita Z(Al), which
in practical applications to PDE are constituted by funwithat are smoother than
X with respect to the space variable.

In particular, ifBB* maps2(Al) to itself for all j € N, then the spaceg’j can
be shown to coincide witl(Al) for all j > 0. Of course, this is sharp, since one
cannot expect the controlled solution to be better @30, T]; 2(AS)) for initial
datax® € 2(AS).

Proof (Sketch of the proof of Theoréin 8Ye focus on the case= 1, the others
being completely similar.

SinceV(t) = n(t)B*®(t) is a control function, for any' < X, identity (20)
holds. Then, assuming théf = A2®T € X, we get

/OT n{t)(B*®(t),B*A%®(t)) 4 dt+ (X0, A2®(0))x = 0.

But
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[ )8 00,5 A0(),, d
= [ nE en.8 e m), o
- [noisen a- [ roeen.seo,a @)

and
(0, A20(0))x = — (AL, AD(0))x.

Therefore, assuming some regularity @, namely®r € 2(A?), one can prove

T T
/0 n@ (B e 1)l dt+/0 n'(t)(B* @(t),B* @'(t))u dt+ (AX, A®(0))x = 0.
(33)
But, sincen € C(R), for anye > 0, (the constant§ below denote various positive
constants which do not depend ©#@and that may change from line to line)

[ noEen e, < C/'B*<”ém+?/”y¢/’w
< S0k +ce oM
< |07 |+ ce [0
g;uwTHXwe/ DB @) o

where we used the equivalence of the noff#s ||, [ (0)[lx, [IB*¢ll 2077 and
67 pe the admissibility and observability inequalitiés(15)i4@2) and estimate
(28

In particular, takingge > 0 small enough,

)(B" @ B*@’()>%dt‘<CHx°HX 2/ 1B eV dt. (34)
It then follows from [3B) that

;
3| nwlsen

But ||X°||,, < C||AX||, and, applying the observability inequalify{22) Awb(0),
which reads

2 2
w QU= C [+ A [AeT

llx - (35)

AP} < CBos [ 1(6)[8°

”7/

we obtain
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2 dt<cC|AX|5.  (36)

T
% = IA®(0) % <CZys [ n(t)[|B@/(1)
1A®T]| i

SinceV’' =n'B*®+n(t)B* @,

[ v

But

2
2 dt. (37)

T T
f//dtSZ/o n'(t? B )% dt+2/0 n(t?|B ')

T avi * 2 T * 2
| nwierew ai<c [ g owl?

2
<clleTg <ClleTo=ClPl:  (@8)
where we used(15), the equivalence of the noff@s ||, and | ®(0)||x, (22) and
(28) in the last estimate.
Then estimate(28) follows from estimates](36)] (37) andl.(38
To make the arguments in the formal proof above rigorous, shrwild take,
instead ofp T = A2®T, which isa priori not allowed in[(Y),

¢I=T—12(¢(T+r)+cp(T—r)—2cpT),

and then pass to the limit in— 0.

As we said, the proof for integess= N can be made following the same lines.
And the general case> 0 can then be deduced using interpolation results. Details
can be found in[35].

Remark 6 When the operatoB is bounded fronX to %/, the HUM functionald

in (I8), without the time cut-off function, satisfies the same regularity results as
the one in Theoreihl 3 fas = 1. For largers, and if one furthermore assumes that
BB* € £(2(AX)) for all k < s, then Theoreril]3 holds. One immediately deduces
Corollary[3 as well. Of course, in this case, an easy indodigument shows that
2= 2(A) forallk<s.

The main difference appearing in the proof whee 1 is that, when integrating
by parts, boundary terms appeat at 0, T. But they can be suitably bounded when
B is bounded. Note that when the cut-off functigris introduced, these boundary
terms vanish and are transformed into time-integratedgdat are bounded by the
weaker admissibility condition.

Remark 7 Note that such regularity results can be found’id [24] fontlawe equa-
tion with internal control and a control operator satistyBB* € Ni=0&(Z(AX)).
There, the authors propose a thorough study of the opé&¥atior (29) and give pre-
cise estimates on how it acts on each range of frequenciésisTaf course much
more precise than the results presented in Thebiem 3.

But the proof of the results in [24] requires the use of vergglechnical tools
such as microlocal analysis and Littlewood-Paley decoiitipos



18 Sylvain Ervedoza and Enrique Zuazua

Let us also point out the article [64] which illustrates nuitally the estimates
obtained in[[24] on the operatdf, in (27).

Also remark however that our approach, though it yieldsessise results in the
context of the distributed control wave equation, is muchrenobust and applies
also for boundary control problems and any linear consie/atjuations.

3 The Constant Coefficient Wave Equation

3.1 Problem Formulation: the 1-d case

Let us first consider the constant coefficient 1-d wave eqoati

Ut — Uxx = 0, O0<x<10<t<T,
u(0,t) = u(1,t) =0, O<t<T, (39)
u(x,0) = u0(x), u (x,0) = ut(x), 0< x < 1.

In 39) u = u(x,t) describes the displacement of a vibrating string occupy@ng)).
The energy of solutions of (B9) is conserved in time, i.e.,

E(t):%/; (b 0P+ (02 dx=E©) ¥o<t<T.  (40)

The problem of boundary observability ¢f {39) can be forrtedaas follows:
To give sufficient conditions on T such that there exigtg(T) > 0 for which the
following inequality holds for all solutions df89):

E(0) < CondT)? | (L) Pl (41)

Inequality [41), when it holds, guarantees that the totatgyof solutions can be
“observed” from the boundary measurement on the exteeme. The best constant
Cobs(T) in (@J) is the so-calledbservability constarg

Similarly as in the previous Section, the observabilitylpeon above is equiva-
lent to the following boundary controllability propertyoFany (y°,y*) € L?(0,1) x
H~1(0,1) there existss € L?(0,T) such that the solution of the controlled wave
equation

Vit — Yxx = 0, 0<x<1,0<t<T,
y(0,t) = 0; y(1,t) = v(t), O<t<T, (42)
y(%,0) =Y°(X), %t (x,0) = y}(x), 0< x < 1,

2 Inequality [41) is just an example of a variety of similar eb&bility problems: (a) one could
observe the energy concentrated on the extreee or in the two extremeg =0 and 1 simul-
taneously; (b) thé.?(0, T)-norm of ux(1,t) could be replaced by some other norm; (c) one could
also observe the energy concentrated in a subintéaug) of (0,1), etc.
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satisfies
yX,T)=w%(xT)=0, 0<x<1. (43)

Note that systeni (39) fits in the abstract setting givefLil {ith

_(u A 0 Id
o=(a) A= (a%)
with X =H2(0,1) xL?(0,1), 2(A)=H?2NH(0,1) x H3(0,1). (44)

Hence the corresponding control system should be given hiitgdas in Section
[2. However, in the PDE context, it is classical to identif(0, 1) with its dual. Of
course, once this identification is done, thodglis an Hilbert space, its dua*
cannot be identified anymore with itself. That explains wig tontrol systeni (42)
is considered with initial dath?(0,1) x H1(0,1), which is a natural candidate for
X*. But our presentation in the abstract setting in Sedtionr2stél be done in
that case, but that would require the introduction of furthetations that may be
confusing.

Thus, we directly address this example showing why corabdlty of (42) is a
consequence df (#1) by a minimization method which yieléscitntrol of minimal
L?(0,T)-norm, similarly as the one developed in the previous Sectio

Given(y°,y}) € L%(0,1) x H~}(0,1), a controMyym€e L?(0,T) can be computed
as

thm(t) = Ux(l,t), (45)

whereU is the solution of[(39) corresponding to initial d&ta® Ut) € H3(0,1) x
L2(0,1) minimizing the functional

(WP, b)) = :—ZL/OT|ux(1,t)|2dt+/01y°u1dx—(yl,uO)H,le& (46)

in the spaced3(0,1) x L%(0,1).

Note thatJ is convex. The continuity of in H}(0,1) x L2(0,1) is guaranteed
by the fact that the solutions df (39) satisfy(1,t) € L?(0,T) (the so-called hidden
regularity property, that holds also for the Dirichlet plein for the wave equation
in several space dimensions; seel [60,[68, 69]). More, migci®r all T > 0 there
exists a constari€(T) > 0 such that, for all solution of(39),

[ 4@ 0F + (1.0 dt < KME©) @)

Thus, to prove the existence of a minimizer it is sufficient to prove that it is
coercive. This is guaranteed by the observability inequidl). Also note that the
observability inequality[(41) also guarantees the strazivexity of J and then the
uniqueness of a minimizer far

Let us see that the minimum dfrovides the control. The functionais of class
CL. Consequently, the gradient d&t the minimizer vanishes:
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T
0= (DJ((U%Ut)), (WP wh)) = / Ux(1,t)wy (1, t)dt
0
1
+ | Pulx— (AW

for all (W, w!) € H3(0,1) x L?(0,1), wherew stands for the solution of (89) with
initial data(w®,w'). By choosing the control as ih_(45) this identity yields

[ Vhuntws(1.0dt+ [ Puta (w1 =0 (@9

On the other hand, multiplying ifi_.(#2) lwy and integrating by parts, we get

! "ot (L
| vow@odis [ yPatax- 6w, s
1
— [ YT (A (T) (T2, = 0. (49)

Combining these two identities we gg][y(T)vvt (T)dx— (%t (T),W(T)>H,1ng =0

for all (w®,wt) € H3(0,1) x L?(0, 1), which is equivalent to the exact controllability
condition [43).

This argument shows thatbservability implies controllabilityThe reverse is
also true. If controllability holds, then, using Banachsgd graph Theorem, the
linear map that to all initial daté@?,y*) € L?(0,1) x H~(0,1) of the state equation
(@2) associates the control of the minirad(0, T )-norm, which can be still denoted
by Viumin view of Remark 4, is bounded. Multiplying the state ecqoti42) with
that control byu, solution of [39), and using (#3), we obtain

/Tv (t)ux(L t)dt+/1y°u1dx— (yh W) ~0 (50)
o hum! x4y o 5 H*le(}— .

Consequently,

[P yieiox

:
= | [ Vil < M0 (LDl
< C||(yoayl)HLz(O,l)xH*l(O,l)||UX(1vt)||L2(O,T) (51)

for all (y°,y!) € L2(0,1) x H™(0,1), which implies the observability inequality
@1).

Throughout this paper we shall mainly focus on the problerolafervability.
However, in view of the equivalence above, all the resultgvwesent have imme-
diate consequences for controllability. The most impdrtares will also be stated.
Note, however, that controllability is not the only apptioa of the observability
inequalities, which are also of systematic use in the cdraéxnverse problems
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([12,58,56/58]). We shall discuss this issue briefly in opesblem # 6 in Sec-
tion[7.2.

Remark 8 Note that here, we consider the adjoint equation (39) witieirdata at
timet = 0, whereas in the previous Section, we have considered jbimbelquation
(@4) with initial data at timé = T. This can be done because of the time-reversibility
of the wave equation under consideration.

3.2 Observability for the 1-d wave equation

The following holds.

Proposition 2. For any T > 2, system(@39) is observable. In other words, for any
T > 2 there exists gys(T) > 0 such that@T)) holds for any solution of39). Con-
versely, if T< 2, (39)is not observable, or, equivalently,

. 1 T P
usolutligr]:ofm)[E(O)/o | Ux(l,t) | dt] =0. (52)

The proof of observability fof > 2 can be carried out in several ways, including
Fourier series (and generalizations to non-harmonic Eoseiries, see [105]), multi-
pliers (Komornik [60]; Lions[[68, 69]), sidewise energyiesites ([110]), Carleman
inequalities (Zhand [106]), and microlo@dbols (Bardos, Lebeau, and Rauth [6];
Burq and Gérard[14]).

Let us explain how it can be proved using Fourier series. twis of [39) can
be written in the form

(ak cogkrt) + B sm(knt)) sin(krx), (53)
kzl kmt
=Y asi ur(x) =y biesin(kmx).
K>1 K>1
It follows that 1
=y [agk®r® + b
"3l )

On the other hand,

U(L,t) = 3 (~1)* [krasin(knt) + bxcog(krt)].
k>1

3 Microlocal analysis deals, roughly speaking, with the i/ of localizing functions and
its singularities not only in the physical space but alsohia frequency domain. Localization in
the frequency domain may be done according to the size otiémezies but also to sectors in
the euclidean space in which they belong to. This allowsodhicing the notion of microlocal
regularity; see, for instancé, [48].
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Fig. 1 Wave localized at = 0 near the endpoint= 1 that propagates with velocity 1 to the left,
bounces ax = 0, and reaches= 1 again in a time of the order of 2.

Using the orthogonality properties of gkitt) and cosgkrt) in L%(0,2), it follows
that
2
/ u(LO)Pdt= Y (rKaR+bY).
The two identities above show that the observability indigubholds whenT = 2
and therefore for any > 2 as well. In fact, in this particular case, we even have the
identity

E(0) = %/02|ux(1,t)|2dt. (54)

On the other hand, fof < 2 the observability inequality does not hold. Indeed,
suppose that = 2— 29 with & € (0,2). Solve

Ut —Ux=0, (Xt)€(0,1)x(0,T), u(0,t)=u(l,t)=0, 0<t<T, (55)

with data attime¢ =T /2= 1— é with supportin the subintervéDd, d). This solution
is such thati(1,t) =0for0O<t < T =2— 24 since the segment=1,t € (0,T)
remains outside the domain of influence of the space segimeiit/2, x € (0,0)
(see Figurgll).

Note that the observability timé& (= 2) is twice the length of the string. This is
due to the fact that an initial disturbance concentrated xeal may propagate to
the left (in the space variable) agcreases and only reach the extreme 1 of the
interval after bouncing at the left extreme- 0 (as described in Figulé 1).

As we have seen, in one dimension and with constant coeffi;itre observ-
ability inequality is easy to understand. The same resuéigrae for sufficiently
smooth coefficientsBV-regularity suffices). However, when the coefficients are
simply Holder continuous, these properties may fail, éhgrcontradicting an initial
intuition (see[[19]).
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3.3 Computing the boundary control

In this Section, we compute explicitly the control functigiven by HUM. As a
consequence, we will explain in particular that one canmgehsimilar regularity
results as the ones in Corolldry 3 when no cut-off functiotinme is introduced
within the functional as in [23).

Let us consider the 1-d wave equatiénl(42) controlled by thendary in time
T = 4. The timeT = 4 is larger than the critical time of controllability, cosgond-
ing toT* = 2, which is the time needed by the waves to go foom1 tox =0 and
bounce back at = 0.

The application of the classichlilbert Uniqueness Methoih this case consists
in minimizing the functional given by [4®6) to obtain a contrd,, from (48) in
terms of the minimizer od.

We now use the fact that, when the control time horizoh is 4 (actually it is
true for any even integer), the functiodadcts diagonally on the Fourier coefficients
of the solutionau of (39) and then the minimizer @gfcan be computed explicitly.

Using [53) for the solutions of (39), one easily checks that

1T , 1
5/0 lux(1,t)[“dt = 5/

(|aw| 2K + |by[?) .
1

2
dt

Z (akcos(knt) + IE’—; sin(knt)) kr(—1)k

k=1

8

k

The initial datum to be controlle@®,y*) € L2(0,1) x H~1(0,1) can be written
in Fourier series as

(Pyh) = 3 (5.9 sinkroq), (56)
k=1
with

> (i 2L <

=1

X

Thus, for(u®,u) as in [G3),

(o) 1 (o)
= z (Jaw|?k*7 + [bi?) 52 (JRbk — Vicax) (57)

Therefore the minimizefu®,U?) of J can be given as

A S

<] - 22"

(UOUD = 3 (A Bo)sin(kix),  with 4kA " (58)
K=1 B — ﬁ
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Solution with control

Time

Fig. 2 The controlled trajectory for the wave equation with ididata(y°(x), y*(x)) = (0, sin(71x))
for the HUM control in timeT = 4. A kick is introduced by the control function &t x) = (0,1)
and travels in the domain, hence making the solution noreimo

and the control functiok,ymis simply

Vihum(t) = aU (1,1) % z < cogkrt) ygsin(km)) .
In particular, it is obvious that, fofy?, y HO1 0,1) x L?(0,1), this method yields
(U%Ul) e H2NHE(0,1) x HE(0,1) andV € H(0,T).

However,

Therefore, ify® € H}(0,1), the controlled solutiory of (41) with that control
function cannot be a strong solution if

[

5 (1% 2o

k=1

whatever the regularity of the initial datum to be contrdlls, because the compat-
ibility condition y(1,0) =V (0) does not hold.

Of course, such case happens, for instance when the iratiafrdto be controlled
simply is (y°(x),y*(x)) = (0,sin(7x)). This is illustrated in Figurgl2. There, with
the control given by HUM, we see that the controlled solut®singular along the
characteristic emanating frofh x) = (0,1).

As this example shows, the regularity of the initial datunesloot yield addi-
tional regularity for the controlled wave equation whemgsihe HUM control.
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3.4 The Multidimensional Wave Equation

In several space dimensions the observability problenhfontave equation is much
more complex and cannot be solved using Fourier series ektepme particular
geometry. The velocity of propagation is still one for alllgmns but energy prop-
agates along bicharacteristic rays.

Before going further, let us give the precise definitionbatharacteristic ray
Consider the wave equation with a scalar, positive, and smariable coefficient
a=a(x):

—div(a(x)0u) = 0. (59)

Bicharacteristic rays+— (x(s),t(s), & (s), T(s)) solve the Hamiltonian system

{x<>: anE,  t(9=T,
£(9)=DaX)|sf,  T'(9)=0.

Rays describe the microlocal propagation of energy. Thgeptions of the bichar-
acteristic rays in théxt) variables are the rays of Geometric Optics that play a
fundamental role in the analysis of the observation androbptoperties through
the Geometric Control Condition (GCC), that will be intradudl below. As time
evolves, the rays move in the physical space according tsahdions of [6D).
Moreover, the direction in the Fourier spa@e 1) in which the energy of solutions
is concentrated as they propagate is given precisely byrtfjegtion of the bichar-
acteristic ray in thé€&, ) variables. When the coefficieat= a(x) is constant, the
ray is a straight line and carries the energy outward, whsdways concentrated
in the same direction in the Fourier space, as expected dBwafiable coefficients
the dynamics is more complex. This Hamiltonian system dlessithe dynamics of
rays in the interior of the domain where the equation is BatisWhen rays reach
the boundary they are reflected according to the Snell-Desciaws of Geometric
Opticsﬂ

When the coefficiend = a(x) varies in space, the dynamics of this system may
be quite complex and can lead to some unexpected behavjor [74

Let us now address the control problem for smooth dorflaimghe constant
coefficient case.

Let Q be a bounded domain &",n > 1, with boundan®Q of classC?, let w
be an open and nonempty subsefhfand letT > 0. Consider the linear controlled
wave equation in the cylind€ = Q x (0,T):

(60)

Yie — Ay = 1o in Q,
y=0 on dQ x (0,T) (61)

y(x,0) =y°(x), %t (x,0) = y}(x) in Q.

4 Note, however, that tangent rays may be diffractive or everrehe boundary. We refer o] [6]
for a deeper discussion of these issues.

5 We refer to Grisvard [45] for a discussion of these problemthe context of non-smooth do-
mains.
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Fig. 3 Ray that propagates inside the dom&lirfollowing straight lines that are reflected on the
boundary according to the laws of Geometric Optics.

In (89) = represents the lateral boundary of the cylin@ere., = dQ x (0,T), 1,
is the characteristic function of the s®t y = y(x,t) is the state, and = f(x,t) is
the control variable. Sincéis multiplied by 1, the action of the control is localized
in .

When (Y0, y}) € H}(Q) x L2(Q) and f € L%(Q), the system[{89) has a unique
solutiony € C ([0, T];H3(Q)) NC ([0, T;L3(Q)).

The problem otontrollability, generally speaking, is as followGiven(y°,y*) €
HE(Q) x L%(Q), to find fe L2(Q) such that the solution of systef§d) satisfies

y(T)=w(T)=0. (62)

The method of Sectidd 3, the so-called HUM, shows that thetexantrollability
property is equivalent to the followingbservability inequality

2 T
H(uo’ul)HH(}(Q)xLZ(Q) SC'/O '/wutdedt (63)

for every solution of the adjoint uncontrolled system

Ut —Au=0 in Qx(0,T),
u=0 on dQ x (0,T), (64)
u(x,0) = u9(x), (x,0) = ut(x) in Q.

The main result concerning (63) is that the observabiliggimality holds if and
only if the GCC is satisfied (see, for instance, Bardos, Lebaad Rauch [6] and
Burg and Gérard[14]): Roughly speaking, the GCC(f@r, w, T) states that all rays
of Geometric Optics should enter in the domairin a time smaller thai .

For instance, when the domain is a ball, the subset of thedamyrwhere the
control is being applied needs to contain a point of each diamOtherwise, if a
diameter skips the control region, it may support solutibias are not observed (see
Ralston[[87]). In the case of the square dom@irobservability/controllability fails
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if the control is supported on a set which is strictly smatlfem two adjacent sides,
as shown in Figurel4.

Trapped Ray

Control/Observation

Fig. 4 A geometric configuration in which the GCC is not satisfiedatelverT > 0 is. The domain
where waves evolve is a square. The control is located on sesuf three adjacent sides of
the boundary, leaving a small horizontal subsegment unaited. There is a horizontal line that
constitutes a ray that bounces back and forth for all timg@emdicularly on two points of the
vertical boundaries where the control does not act.

Several remarks are in order.

Remark 9Since we are dealing with solutions of the wave equationtferGCC

to hold, the control timél has to be sufficiently large due to the finite speed of
propagation, the trivial cas® = Q being the exception. However, the time being
large enough does not suffice, since the control subdomaieeds to satisfy the
GCC in afinite time. Figurgl4 provides an example of this fact.

Remark 10Most of the literature on the controllability of the wave atjon has
been written in the framework of tHeoundary controlproblem discussed in the
previous Section in the 1-dimensional setting. The conproblems formulated
above for(59) are usually referred to asternal controllability problems since the
control acts on the subsei of Q. The latter is easier to deal with since it avoids
considering non homogeneous boundary conditions, in wtéde solutions have
to be defined in the sense of transposition [68, 69] and 1€%(0, T];L?(Q)) N
CY([0,T];H1(Q)) for boundary controls il?((0,T) x Q).

Note that, if denotes an open subset of the bound®®; the HUM then ex-
presses the link between controllability of datd fiiQ) x H~1(Q) with controls in
L?((0,T) x I') with the following observability inequality, of course dlar to (Z1):
There exists a consta@l,s such that every solution of the adjoint control system
(64) satisfies

2 T
H(uo’ul)HH&(Q)xLZ(Q) chbs'/o '/r|f7nu|2dffdt (65)
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for every solution of the adjoint uncontrolled systéml (64).
Let us now discuss what is known abdutl(65):

(a) Using multiplier techniques, Ho [47] proved that if ormmsiders subsets 6T of
the formr™ (X°) = {xe I : (x—x%) -n(x) > 0} for somex’ € R" (we denote by
n(x) the outward unit normal t@ in x € I" and by- the scalar productiRR") and
if T > 0 is large enough, the following boundary observabilityguality holds:

) T
||(u07u1)HH&(Q)><L2(Q) = Cgbs/o //'(xO) |Gaul* dodt (66)

for all (u%,ut) € H3(Q) x L3(Q), which is the observability inequality that is
required to solve the boundary controllability problem.
Later, [66) was proved in [68.69] for arly > T(x°) = 2 || x—X° || =(g). This
is the optimal observability time that one may derive by nseafrthis multiplier
(see Osses [84] for other variants).
Proceeding as in [68], one can easily prove that (66) imB& whenw is a
neighborhood of (xX°) in Q, i.e., w = QN O, whereO is a neighborhood of
F(x%) in R", with T > 2 || x—=X? || »(q\ - IN particular, exact controllability
holds whenw is a neighborhood of the boundary @f

(b) Bardos, Lebeau, and Rauch [6] proved that, in the cla€°afomains, the ob-
servability inequality[(683) holds if and only {€2, I, T) satisfies the GCC: Every
ray of Geometric Optics that propagatestand is reflected on its boundary
J0Q intersectd” at a non-diffractive point in time less thdn
This result was proved by means of microlocal analysis. iLtite microlocal
approach was simplified by Burg|[7] by using the microlocdedemeasures in-
troduced by Gérard [38] in the context of homogenizatioth kinetic equations.
In [7] the GCC was shown to be sufficient for exact controligbior domainsQ
of classC? and equations witE? coefficients. The result for variable coefficients
is the same: The observability inequality and, thus, thet@ntrollability prop-
erty hold if and only if all rays of Geometric Optics interséwe control region
before the control time. However, it is important to notetttethough in the
constant coefficient equation all rays are straight lineghé variable coefficient
case this is no longer the case, which makes it harder to gaiition about the
GCC.

3.5 Smoothness properties

Note that the results in Sectign 2.3 also apply once obsiitya{®3) holds. In
particular, adding a cut-off function in time(t) as in [Z1) within the functional
in (8) implies gentle regularity results for the corresgioig minimizers ofJ and
the corresponding control functions.
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3.5.1 Internal Control Operators

Assume that, for some timEg"*,

2 T
H(uo’ul)HHg(Q)xLz(Q)chbs/o /ng,utzdxd'r, (67)

for all solutionsu of (64), wherex,, = Xw(X) is @ non-negative function a2 which
is localized inw.
LetT > T*, choosed > 0 such thall — 25 > T* and fix a functiom satisfying

0).
Then the functionall introduced in [(2B) is defined fofu®,u') € L?(Q) x

“1(Q) by

2/ / n () x2(x)|u( xt)|2dxdt+/ yruldx
—<y0aU1>H(}(Q)XH—l(Q)a (68)

whereu is the solution of[(6) with initial dat&®, u') € L?(Q) x H1(Q).

This functional is not exactly the one corresponding to th&tract presentation
above since we did not identify the energy spbigeQ) x L2(Q) with its dual. We
have rather shifted by one derivative the regularity of tiat solutions under
consideration so that their initial data lie i3(Q) x H~1(Q). Note that this func-
tional is more natural when doing PDE because of the cldsileatification of
L?(Q) with its dual.

But now, the relevant estimate is, instead[of (67),

2 T
H(uo7u1)||L2(Q)><H*1(Q) < Cgbs/o /QXZ>|U|2dXdL (69)

Let us also emphasize that the two estimdiek (67)and (68parpletely equivalent
and can be deduced one from another by differentiating egnating the solutions
of (©4) with respect to the timie

To state our results precisely, we define the operatas in [44). In particu-
lar, 2(AS) is the spaceéd5T1(Q) x HS(Q) for s> 0 with compatibility boundary
conditions depending os> 0. To be more preciséy®,y!) € 2(A%) if and only
(Y2, y}) € HS1(Q) x H3(Q) and satisfies

y\()aQ:_Ay\()aQ:(—A)jY\()aQZO j€{0,---,[s/2+1/4]}
and _
Yioa = —AYiao = (—4))Yiq =0 j€{0,--,[5/2—1/4]}.

To simplify the notations in a consistent way, we also introel 2 (A3) for s €
[~1,0], which is, fors= —1, 2(A™1) = L2(Q) x H}(Q), for s=0, 2(A%) =
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X =H}(Q) x L2(Q) and fors € (—1,0), Z(AS) is the corresponding interpolation
betweenz (A1) andX = 2(A°).

Actually, for explaining these notations, we emphasize W did not identify
X with its dual. Therefore, we shall introduce the spAte= L2(Q) x H1(Q), the
operator

A = (2 (')) L with 2(A%) = HY(Q) x L2(Q).

Of course, with the above notations, foralk 0, Z((A*)%) = 2(AS1).

Theoreni B and its corollaries then imply:

Theorem 4.Let nn be a smooth weight function satisfyi(@f). Let x., be a cut-off

function as above localizing the support of the control. mhender the controlla-

bility conditions above, given arfy®,y}) € H}(Q) x L?(Q), there exists a unique
minimizer(U% U?) of J over I2(Q) x H~1(Q). The function

V(x,t) = n(t) Xw(X)U (X,t) (70)
is a control for
Yit — Ay =V Xw, in Q x (0, ),
{ y=0, ondQ x (0,0), (71)
(y(0),%(0)) = (y°,y') € H3(Q) x L3(Q),

which is characterized as the control function of minima(Q, T;dt/n;L?(w))-
norm, defined by

VI 012000 = /T / v(x,1)2dxIL
(0,T:dt/n;L%(w)) Jo Je U(t)

Furthermore, if the weight function satisfies € C*(R), then if (y°,y*) belongs
to 2(AS) for some s R, (Ug,U1) € Z((A*)S) = 2(AS1).

In particular, wheny,, is smooth and all its normal derivatives vanish at the
boundary, the control function V given Q) belongs to

—1
V € H(0, T;L2(w))n

CH([0, T H® M(w)), (72)

the controlled solution y of71]) belongs to
S gl 2 Ls] k . s—k
() € C0.ThHG(Q) x L2(@)) [ CKO.TEZ(AY),  (73)

and, in particular,

o) € S0 TEHS1K(@) x Ho (@), (74
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Remark that in this case, the time-dependent cut-off fonds not needed if,,
is assumed to ma@(As) to Z(A°) for all s> 0. Note that this requires not only
that x,, € H3(Q) but also some suitable compatibility conditions on the luzumg,
that are satisfied for instance when all the normal derigatof x, on the boundary
vanish.

For more details, we refer to our work [35].

3.5.2 Boundary Control Operators

Let us assume that

2 T
(6.0 [0z < Cos [, [ XPIonuPdodt (75)

for all solutionsu of (€4), wherexr = xr (x) is a function localized on some pdrt
of the boundary Q.

Then the functional introduced in[(2B) is now defined di}(Q) x L?(Q) and
reads as

0,1 17 2 2 ! 1
A =5 [ [ nxr(0%auicnzardi+ [y0u(x0) dx
_<ylau0>H*1(Q)><H&(Q)’ (76)

whereu is the solution of[(GK).

Note that, here again, we have identifiet{ Q) with its topological dual. This
artificially creates a shift between the spades<*, and also betweem (Al) and
P2((A)1) = 2(AI*1). Besides, this is done in the reverse situation as in thequsv
paragraph, ie:

e The natural space for the controlled trajectoryXis = L?(Q) x H~%(Q) and
therefore the controlled trajectory should lie in the sp@¢eA”)S) = Z(AS1).

e The natural space for the adjoint equatioiXis- H}(Q) x L?(Q) and therefore
the regularity of the trajectory of the adjoint equation slddbe quantified with
the spaces/(AS).

Then our results imply the following:

Theorem 5.Assume thajr is compactly supported if € dQ and thatn is a
smooth weight function satisfyir@@1). Also assumézs).

Given any(y°,y!) € L2(Q) x H~1(Q), there exists a unique minimizgy® U?1)
of J over H(Q) x L?(Q). The function

V(xt) =n(t)xr (x)onU (X’t)\l_ (77)

is a control function for
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Vit — Ay =0, in Q x (0, ),
y= va onadQ x (0,0), (78)
(y(0) = (Y°.yh) e H}(Q) x L3(Q),

with target(y(T),%(T)) = (0,0).
Besides, V can be characterized as the control function whmimizes the
L?(0,T;dt/n;L?(r))-norm, defined by

dt
|2 / /|vxt )2dr S&
L2(0,T;dt/n;L2(r) nt )

among all possible controls.

Furthermore, if the functiory is smooth, then ify°,y!) belongs toZ((A*)®) =
2(A>1) for some real numbers R, , the control function V given b§f7) belongs
to

Ve HS(O,T;LZ(I’))E ck(o, TI;HS %)) (79)

and(U% U?) € 2(AS). In particular, the controlled solution y of78) then belongs
to

() € (0. THL2(@) x HX(2)) | CH(0.THS K(Q) < H* 1 H@)). (80)

4 1-d Finite Difference Semidiscretizations

4.1 Orientation

In Sectior B we showed how the observability/controllapitiroblem for the con-
stant coefficient wave equation can be solved by Fourieeseripansions. We now
address the problem of the continuous dependence of thevabdiéy constant
Cobs(T) in (41) with respect to finite difference space semidiszettbns as the
mesh-size paramethrtends to zero. This problem arises naturally in the numerica
implementation of the controllability and observabilisoperties of the continuous
wave equation but is of independent interest in the anabfsiiscrete models for
vibrations.

There are several important facts and results that deserpbasis and that we
shall discuss below:

e The observability constant for the semidiscrete modelge¢adnfinity for anyT
ash — 0. This is related to the fact that the velocity of propagatid solutions
tends to zero als — 0 and the wavelength of solutions is of the same order as the
size of the mesh.

e As a consequence of this fact and of the Banach—Steinhaarethethere are
initial data for the wave equation for which the controlstué semidiscrete mod-
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els diverge. This proves that one cannot simply rely on tassital convergence
(consistency stability) analysis of the underlying numerical schemeddsign
algorithms for computing the controls.

However, as we shall explain in Sect[dn 5, one can establkstker observability
results that hold uniformly with respect ko> 0. As a consequence, see Secfibn 6,
we will be able to propose numerical methods for which “wediscrete controls
converge.

4.2 Finite Difference Approximations

GivenN € N we defineh =1/(N+ 1) > 0. We consider the mesfx; = jh, j =
0,...,N+1} which divides0, 1] into N+ 1 subinterval$; = [xj,Xj+1], j =0,...,N.
Consider the following finite difference approximation bétwave equatiof (39):

u’j’—h—l2 Ujr1+Uj—1—2uj] =0, 0<t<T,j=1...N,

uj(t) =0, j=0,N+1,0<t<T, (81)

uj(0) = uf, Ui (0) = uj, i=1,...,N,
which is a coupled system of linear differential equations of second order.[Tn](81)
the functionu;(t) provides an approximation of xj,t) forall j =1,...,N, ubeing
the solution of the continuous wave equatibn] (39). The dmiug = Uy, =0
take account of the homogeneous Dirichlet boundary canditiand the second
order differentiation with respect to has been replaced by the three-point finite
difference. Symbdl denotes differentiation with respect to the titme

We shall use a vector notation to simplify the expressiamgadirticular, the col-
umn vector
us(t)

Up(t) =| (82)
Un(t)
will represent the whole set of unknowns of the system. thiming the matrix

2-100
1]-1" ".0
h .

o . ~.-1

0 0-12

the system[(81) reads as follows:

up(t) +Apup(t) =0, 0<t<T; up(0)=ul up(0)=u} (84)



34 Sylvain Ervedoza and Enrique Zuazua

The solutionuy, of (84) depends also dm but most often we shall denote it simply
by u.
The energy of the solutions ¢f(81) is

En(t) hs Ui 12+
h = 3 i
22|

and it is constant in time. It is also a natural discretizatbthe continuous energy
@0).

The problem of observability of systef {81) can be formwlate follows:To
find T > 0and G,(T) > O such that

Uj+1— U
h

2
] : (85)

2
dt (86)

Tun()

En(0) < Cn(T)? [ |24

0

holds for all solutions of81).

Observe thatuy/h |? is a natural approximati@rof | ux(1,t) |2 for the solution
of the continuous system (39). Indegdl,t) ~ [un.1(t) — un(t)]/hand, taking into
account thatiy;1 = 0, it follows thatux(1,t) ~ —un(t)/h.

System|[(811) is finite-dimensional. Therefore, if obserlighiolds for someT >
0, then it holds for alll > 0, as we have seen in Sect[dn 3.

Note also that the existence of a cons@q(T) in (88) follows from the equiv-
alence of norms in finite dimensional spaces and the facifthgtis a solution of
(B1) that satisfiesiy(t) = uy,1(t) = 0, thenu, = 0. This can be easily seen dn{81)
using a iteration argument.

We are interested mainly in the uniformity of the const@p{T) ash — 0. If
Ch(T) remains bounded ds— 0, we say that systeri (81) imiformly observable
ash — 0. Taking into account that the observability of the limistgm [39) holds
only for T > 2, it would be natural to expedt > 2 to be a necessary condition for
the uniform observability of (81). This is indeed the casg bs we shall see, the
conditionT > 2 is far from being sufficient. In factiniform observability fails for
all T > 0. In order to explain this fact it is convenient to analyze spectrum of
@D).

Let us consider the eigenvalue problem
1 . i
—ﬁ[le—i-wj,l—ij] =Awj, j=1...,N; wo=wni1=0. (87)

The spectrum can be computed explicitly in this case (Isaaaad Keller[[55]):
4 krth
k_ in _
/\h_h23| < > >, k=1,...,N, (88)

and the corresponding eigenvectors are

6 Here and in what followsiy refers to theNth component of the solution of the semidiscrete
system, which obviously depends alsofton
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-
wk = (w;hw@h) (W = sin(krzih), ko j=1,...,N. (89)
Obviously, A¥ — Ak = k?m, ash — 0 for eachk > 1, AX = k2 being thekth
eigenvalue of the continuous wave equation (39). On therdthed we see that
the elgenvector\wh of the discrete systerfi (B7) coincide with the restrictiothi
mesh points of the eigenfunctiow$(x) = sin(krx) of the continuous wave equation

(cie)ll

According to [88) we havdﬂZ = %sin(@) , and therefore, in a first approxi-

mation, we have 4 s
‘\/* ‘ kn3h (90)

This indicates that the spectral convergence is uniform ionthe rangek < h=2/3,
see [91]. Thus, one cannot solve the problem of uniform oladslity for the
semidiscrete systerii (B1) as a consequence of the obségvpliperty of the con-
tinuous wave equation and a perturbation argument withexgsph.

4.3 Nonuniform Observability

Multiplying B7) by j(wj1 —w;j), one easily obtains (see[53]) the following iden-
tity:

Lemma 1. For any h> 0 and any eigenvector ¢87) associated with the eigenvalue

A!
N lwji1—w
h J+ — ’_
JZO‘ h 4—Ah2] h
We now observe that the largest eigenva.hrﬂ\b of (81) is such that)\,g\‘h2 —
4 ash — 0 and note the following result on nonuniform observabhility

(91)

Theorem 6.For any T > 0,

1 T un |2
J\IL“O Up solult%L ofm)|:Eh( ) (/o F‘ dt)] =0 (92)

Proof (Proof of Theoreni]6)We consider solutions of (81) of the form, =
cos VANt)WN, whereAN andw) are theNth eigenvalue and eigenvector 6f187),
respectively. We have

(93)

7 This is a non generic fact that occurs only for the constasffiment 1-d problem with uniform
meshes.
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/ ’“N“ _|%2/0Tco§<\/ﬂt)dt. (94)

Taking into account thakr’]\‘ — o0 ash — 0, it follows that

T N) — —
/Oco§<\/gt dt—T/2 ash—0. (95)

By combining [91),[(3B) [(34) an@ (P5]. (92) follows immeei.

It is important to note that the solution we have used in tle®pof Theoreni b
is not the only impediment for the uniform observability guelity to hold.

Indeed, let us consider the following solution of the sestdite systenl (81),
constituted by the last two eigenvectors:

wh
Up = LN [exp(i /\r’]\‘t) wh — V\)\‘L’hlexp(i A,ﬂ\'lt) le} . (96)
JAD N

This solution is a simple superposition of two monochromatimidiscrete waves
corresponding to the last two eigenfrequencies of the syskae total energy of this
solution is of the order 1 (because each of both componestséd®n normalized in
the energy norm and the eigenvectors are orthogonal onectoather). However,
the trace of its discrete normal derivative is of the orde iof L?(0, T). This is due
to two facts.

and

e First, the trace of the discrete normal derivative of eagemiector is very small
compared to its total energy.

e Second, and more important, the gap betw?@ and,//\r']\‘*1 is of the order
of h, as is shown in Figuild 5, left. The wave packei (96) then haswapgvelocity

of the order ot.
To be more precise, let us complg|?, with up, as in [96):

IUj,h(t)Iz=$( Cog((\/;TN \/W) )

—1
le\‘-,h WNth

2
Wih N . =\ t
+ V\mlwhuw’h S|n2<<1/)\,§“—1//\k']\' 1) 5) :
By Taylor expansion, the difference between the two fregi /\r']\‘ and

A,ﬁ\‘*l is of the orderh, and thus we see that the solution is periodic of pe-

riod of the order of h.
Note that here, froni.(91), explicit computations yield
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Fig. 5 Left: Square roots of the eigenvalues in the continuous @&ueate cases (finite difference
semidiscretization). The gaps are clearly independekfrothe continuous case and of ordeior
largek in the discrete one. Right: Dispersion diagram for the pigse linear finite element space
semidiscretization versus the continuous wave equation.

(o ()
o (2)or((F-)3)

Thus, the integral of the square of the normal derivativeypbetween 0 and
T is of order ofh% where the smallness comes from both the fact tfiaf —

ANt ~hand [@).

High frequency wave packets may be used to show that the\aiskty constant
has to blow up at infinite order ds— 0 (seel[75],[[75]). To do this it is sufficient to
proceed as above but combining an increasing number of feggprencies. Actu-
ally, Micu in [77] proved that the consta@}(T) blows up exponentially by means
of a careful analysis of the biorthogonal sequences to thélyfaof exponentials
{exp(iy/Mt) .. ash— 0.

All these high-frequency pathologies are in fact very dipselated to the notion
of group velocity. We refer to [104, 101] for an in-depth arsid of this notion
that we discuss briefly in the context of this example. Siﬂrtee&igenvectorwﬁ

are sinusoidal functions (sde [89)) the solutions of theidisaorete system may be
written as linear combinations of complex exponentialsfiace-time):

VA
exp| tikm| —t—

krmt X
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In view of this, we see that each monochromatic wave progagdta speed

\//\Tlf _ 2sinkmh/2)  w(é)

=C E 5 (97)
kmt krth ¢ ‘{Ekrm} ©) {&=kmh}

with w(&) = 2sin(&/2). This is the so-callephase velocityThe velocity of prop-
agation of monochromatic semidiscrete wavyes (97) turnsmhée bounded above
and below by positive constants, independentif:dd < 2/ < ¢(&) < 1 < o for
allh>0,& € [0, 1. Note that0, r1] is the relevant range @. Indeed £ = krth and
k=1,...,N,Nh=1-—h. This corresponds to frequenci€s= & /hin (—m/h, r/h]
which is natural due to the sampling of the uniform grid.

But wave packets may travel at a different speed becauseeofahcellation
phenomena we discussed above. The corresponding spedtb$er semidiscrete
wave packets is given by the derivative @f-) (see [101]). At high frequencies
(k ~ N) the derivative ofw(&) at ¢ = Nmth = (1 — h) is of the order ofh, the
velocity of propagation of the wave packet.

This is illustrated in Figur&l6, where we have chosen a disdretial datum
concentrated in space arourek 0.5 att = 0 and in frequency af ~ 0.95/h. As
one can see, this discrete wave propagate at a very smatityelo

Fig. 6 A discrete wave packet and its propagation. In the horizats we represent the time
variable, varying between 0 and 2, and the vertical one theespariablex ranging from 0O to 1.

The fact that the group velocity is of orders equivalelﬁto the fact that the gap
between /AN andy /AN is of orderh.

According to this analysighe group velocity being bounded below is a neces-
sary condition for the uniform observability inequality hold. Moreover, this is
equivalent to a uniform spectral gap condition.

8 Defining group velocity as the derivative @f i.e., of the curve in the dispersion diagram (see Fig-
ure[8), is a natural consequence of the classical propatig® superposition of linear harmonic
oscillators with close but not identical phases (§eé [Zljgre is a one-to-one correspondence be-
tween the group velocity and the spectral gap which may beedeas a discrete derivative of this
diagram. In particular, when the group velocity decreaesgap between consecutive eigenvalues
also decreases.



Waves, control and numerics 39

The convergence property of the numerical scheme guasaotdg that the
group velocity of numerical waves is the correct one, clastéhat of the contin-
uous wave equation, for low-frequency wave packets andighi®mpatible with
the high frequency pathologies mentioned abBve .

The careful analysis of this negative example will be use&dullesign possible
remedies, i.e., to propose weaker observability resuétsould be uniform with
respect to the discretization paraméter 0. Actually, all the weak observability
results that we shall propose in Sectidn 5 (and others[ &jddBextensive refer-
ences and examples) are based, in a way or another, on regbgihigh-frequency
pathologies generated by the numerical scheme under esasih.

As we will see below in the next paragraph, the fact that theeokability in-
equality [86) is not uniform with respect fo> 0 has an important consequence in
controllability: There are some data to be controlled foickiithe discrete controls
diverge.

Remark 11Accordingto Figur€b, both finite-difference and finite elrhmethods
exhibit a frequency on which the group velocity vanishessHctually is a generic
fact. Indeed, as soon as the discretization method is imgatéea on a uniform mesh
in a symmetric way, the dispersion diagram is given by a omwtiis function of
{ € (—m/h, t/h) that scales as({h) /h, for some smooth functiom describing the
numerical method under consideration. But this functipoan actually be defined
for ¢ € R as the output of the discrete laplacian when the input igiéxp. Doing
that, one easily checks thatis necessarily &-periodic. According to this, itv is
smooth, it necessarily has a critical point(ia7r, ).

Therefore, the existence of waves traveling at zero grolgzitg is generic with
respect to the discretization schemes.

To our knowledge, only the mixed finite element method essdpis patho-
logical fact, but this is so since it corresponds to a nonetimdispersion raltion
w(&) = 2tan&/2), which is produced by introducing a mass matrix that degener
ates at frequency of order/h where the dispersion relation of the discretization of
the laplacian has a critical point. We refer fo][17] for a mprecise discussion on
that particular numerical scheme.

4.4 Blow up of discrete controls

This Section is devoted to analyze the consequences of gaine results on ob-
servability obtained in Theorel 6 at the level of the coaiility of the semidis-
crete wave equation (P8). The finite-dimensional contreteay reads as follows

9 Note that in Figur&ls, both for finite differences and elersgtite semidiscrete and continuous
curves are tangent at low frequencies. This is in agreemghtthhe convergence property of the
numerical scheme under consideration and with the factlthafrequency wave packets travel
essentially with the velocity of the continuous model.
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1 .
)/j/_ﬁ[yjjtl‘f'yj—l—ZYj}:O, O<t<T,j=1,...,N,
Yo(0,t) = 0;yny1(1,t) = v(t), O<t<T (98)
0) =2, y;(0) =y}, i=1,....N,

and it is the semidiscrete version of the controlled waveadqno [42).

Itis easy to see that this semidiscrete system, faralD and allT > 0, is exactly
controllable because the Kalman rank condition is satisfmte precisely, for any
givenT > 0,h > 0 and initial datgy?, y?}), there exists a contret, € L?(0,T) such
that

Yn(T) = yh(T) =0. (99)

But, of course, we are interested in the limit prochss: 0. In particular, we
would like to understand whether, when the initial data78) @re “fixed to be
(y%,y1) € L2(0,1) x H~1(0,1), the controlsy, of (@8) converge in?(0,T) ash — 0
to the control of the continuous wave equation (42). The tiegeesults on the ob-
servability problem, and the fact that these two problernseovability and control-
lability are equivalent, see Sectibh 2, make us predict thdact, the convergence
of the controls may fail. This is what happens in practicderd. In fact for suitable
choices of the initial data the controls may divergdas 0, whatevef > 0 is.

This negative result shows that the discrete approach teerioah control may
fail. In other wordsgcontrolling a numerical approximation of a controllablestgm
is not necessarily a good way of computing an approximatiathe control of the
PDE model Summarizingthe stability and convergence of the numerical scheme
for solving the initial-boundary value problem do not guatee its stability at the
level of controllability

4.4.1 Controllability of the discrete schemes

In this Section, we prove that the discrete systdmb (98)aetly controllable for
anyh > 0 and characterize the controls of minimal norm. This agtusla byprod-
uct of (88) and Section 2.1. We only rewrite it in our setting the convenience of
the reader.

Theorem 7.For any T > 0 and h> 0 system(@8) is exactly controllable. More
precisely, for anyy?, y}) € RN x RN, there exists a contrd¥ pymn € L2(0, T) given
by HUM such that the solution qB8) satisfieg[99).

Moreover, the controVpymn of minimal [?(0,T)-norm can be characterized
through the minimization of the functional

Jn(( uh,uh 2/ N

h
10 For given initial data(y®,y!), the initial data for the controlled semidiscrete systEm) @re
taken to be approximations ¢§°,y*) on the discrete mesh. The convergence of the contrgils
L?(0,T) is then analyzed for the controls corresponding to theseoappate initial data.

N N
m+h Yul—h'$ yh, (100)
JZ:LJJ JZ:LJJ




Waves, control and numerics 41

in RN x RN, whereuy, is the solution of the adjoint syste@l). More precisely, the
control Vyymn is of the form

Un(t)
h 9

whereUy, is the solution of the adjoint syste@l) corresponding to the initial data
(UQ, U}) minimizing the functionalp)

thmh(t) = — (101)

For eacth > 0, as explained in Corollafy 2, the control functipympn of min-
imal L2(0,T)-norm of system[{38) is given by a linear m&p of the initial data
(yP,yt) and can be written 8numn = Vi(y2, Y3).

For convenience, fdn > 0 we introduce the norms

ud u?

2
N 0 _
||(u|9’u&)||a#><Lﬁ:hzo (%) +|uif?
=
and
N N
1S, ym) |l 2ot = sup {h > yul—h > u?yjl} . (102)
mer [ [y, 2=2 L 152 =

The first one corresponds to the energy[ofl (85) and the secoadtands for the
norm of the space in which the solutions of the controlledid&trete system be-
long to.

In particular, if one extends the discrete functign§, u}) to continuous ones
using Fourier extension, denoted ([I;Z, uﬁ), the following norms are equivalent:

H(ur?auﬁ)Ha,}xLﬁ = H(Uﬁauﬁ)Hangz-
We thus deduce by duality the equivalence between the norms
H(yf?73'%)H|_ﬁngl = H(yo’y%)Hlﬁfol (103)
As a simple consequence of the equivalence stated in Thé&remm have
Vil gz 201y = V2Ch(T), (104)
whereCy(T) is the observability constant in (86).

By Theorem§R anld 6, this indicates that the norms of theeliscontrol opera-
tors blow up wherh — O:

Proposition 3. We have

m [[Vhll g z.mt 20y = +oo-
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Remark 12Identity (I04) indicates that the norm of the discrete calstmap blows
up whenh — 0 at the same rate &(T). In view of the results presented [n]77], it
blows up with an exponential rate.

As a consequence of Propositidn 3 there are continuougyfatd) € L2(0,1) x
H~1(0,1) for which the sequence of discrete controls computed on iberate
controlled systen{(98) is not even bounded.

To state our results precisely, we must explain how the naotis datdy®,y*)
are approximated by discrete ongg,y}).

For (y%,y}) € L?(0,1) x H=1(0,1), with Fourier expansion

(P = 3 (5w,
K=1
we introduce a sequen¢f, )n-o Of discretization operators

L%(0,1) x H71(0,1) — RN x RN,

. N
M0 R = a0t = 3 w0
=1

To simplify notations, we will denote similarly b, (y°,y*) the discrete functions
and their continuous corresponding Fourier extensions.

These operator&,, map continuous daté®, y*) to discrete ones by truncating
the Fourier expansion, and describe a natural relevantdization process for ini-
tial data inL?(0,1) x H=1(0,1).

For instance, as one can easily check, for @yy') € L2(0,1) x H1(0,1),

An(y’,yh P .y inL*(0,1) x H %(0,1). (106)

We now prove the following divergence result:

Theorem 8.There exists an initial daturfy®,y!) € L?(0,1) x H1(0,1) such that
the sequencéVi o An(Y2,y!))n=o is not bounded in #(0, T).

Proof. The proof is by contradiction.

Assume that for al{y®,y*) € L?(0,1) x H1(0, 1), the sequence of discrete con-
trols (Vi o Ap(Y°,y%))hso is bounded irL?(0, T).

Then, applying Banach-Steinhaus Theorem (or the Prinoiléniform Bound-
edness) to the operatof¥} o Ap)n-0, there is a constar@ > 0 such that for all
h> 0and(y’,y*) € L?(0,1) x H1(0,1),

HVh © Ah(yoayl)HLZ(o’T) S C H (yO’yl) HL2><H*1 .

Due to the particular form oy, this implies that for all

N
(Yr?ayﬁ) = Z (yg,hvy&,h)wﬁ’
K=1
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we have
HVh(yF?vy%)HB(o,T) < CH(yg’y%)HLﬁngl'

But this is in contradiction with Propositidd 3 and the e@l@nce [(10B), which
proves the result.

Remark 13According to Theoreml8, not only the global cost of contrailiy di-
verges, but there exist specific initial data such that itd diverges. This is a direct
consequence of the Principle of Uniform Boundedness. Aswieated above here
we refer to the cost of controlling the sequence of discratal data(y,?,y%) built
specifically from the initial dat&y®,y*) by truncating Fourier series.

But the approximatiod\, of the initial data can be defined differently as well,
and the result will remain true. For instance, we may takerdie averages of the
continuous data over intervals centered on the mesh-pxjntsjh. Of course, in
what concerng?, we have to be particularly careful since the fact that ibhgk to
H~1(0,1) allows only doing averages against test functionlsl&rqo, 1). The use of
these test functions can be avoided by first, taking a smaugtoaimation ofy* in
H~1(0,1) and then taking averages.

Remark 14This lack of convergence of the semidiscrete contk&|gmn towards

the continuous on¥ can be understood easily. Indeed, as we have shown above,
the semidiscrete system, even in the absence of controisrajes a lot of spurious
high frequency oscillations. The conti@h,mn of the semidiscrete systen {98) has

to take all these spurious components into account. Whergdbis it gets further

and further away from the true contidlof the continuous wave equatidn{42), as
the numerical experiments in the following Section illasér.

4.5 Numerical experiments

In this Section, we describe some numerical experimentsisigdooth the instabil-
ity of the numerical controls for suitable initial data to cxntrolled. These simula-
tions were performed by Alejandro Maass Jr. using Matlab.

We consider the wave equation in tirffie= 4 on the space intervé0,1). This
suffices for the boundary control of the continuous wave gqudor which the
minimal time isT = 2, see Propositidd 2.

Given an initial datum to be controlled, we can then compu#ieitly the con-
trol of the continuous equation.

The control function can then be computed explicitly usirogifier series, see
Sectior3.B. In Figurel8 we present its plot.

The control can also be computed explicitly by using D’Alertiformula. This
also explains the form of the control in Figlide 7, right, whiooks very much like
the superposition of the initial data to be controlled.

We now consider the finite-difference semidiscrete appnexion of the wave
equation by finite-differences. We then compute the exatrobof the semidiscrete
system[(9B) for several values Nf
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—0.05 |

—o.1|

—0.15 |

—0.2

Fig. 8 Plot of the continuous control corresponding to the inidiala(y°,y*) in FigurelT.

Of course, in practice, we do not deal with the space semgtis@djoint equa-
tions [81) but rather with fully discrete approximationsadur experiments we em-
ploy the centered discretization in time with time-stip= 0.5h, which, of course,
guarantees the convergence of the scheme.

Following the discrete approach for numerical control, wenpute the controls
for the resulting fully discrete system. This is done mirgimg the corresponding
time-discrete version of the functiond in (I00) using a conjugate gradient algo-
rithm. It turns out that the number of iterations needed tmvergence is huge. We
stop the conjugate gradient algorithm after 500 iteratidie obtained results are
plotin Figure® forN = 50 andN = 150. Increasing the number of iterations would
not change significantly the shape of the obtained contiu$e that they are very
far form the shape of the actual control above. This is a demlence of the diver-
gence of the discrete procedure to compute an effective ncahapproximation of
the control by controlling the approximate discrete dyr@amrhis is due to the very
weak observability of the corresponding discrete systernchvimakes the coerciv-
ity of the correspondingy, functional to be very weak. This produces two effects.
First, the descent algorithms are very slow and, seconddaha of the minimizers
is huge. This is what we see in these numerical experiments.
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Itis also very surprising that the conjugate gradient meétin@eds so many itera-
tions whereas it minimizes a functional on a finite-dimenaispace of dimension
2N. Indeed, it is well-known that the conjugate gradient althom yields the exact
minimizer afterK iterations, wher& is the size of dimension of the space we are
working in, hence, in our cag€ = 2N. Then the functional is very ill-conditioned
and the numerical errors cannot be negligible and preventtimjugate gradient
algorithm from converging inl4 iterations.

The descent iterative method does converge in 500 itesatigren the number
of mesh points is less thah < 44. But the controls one obtains when doing that are
very similar to those plotted in Figuké 9.

c
Control

Fig. 9 Divergent evolution of the discrete exact controls whenrthmberN of mesh-points in-
creases. Left: the number of mesh point&Nis- 50. Right:N = 150. In both cases, we plot the
control obtained after 500 iterations of the conjugate igratcalgorithm for the minimization af,

5 Remedies for High-Frequency Pathologies

In the previous Section we have shown that the discrete wguat®ns are not
uniformly (with respect to the space mesh sipeobservable, whatever the time
T>0is.

We have mentioned that this is due to high-frequency spangaves. In this
Section, we show that, when employing convenient filterireghanisms, ruling out
the high frequency components, one can recover unifornredisiity inequalities.
At this point it is important to observe that the high-fregog pathologies cannot
be avoided by simply taking, for instance, a different appration of the discrete
normal derivative since the fact that the group velocityishes is due to the numer-
ical approximation scheme itself and, therefore, cannadmepensated by suitable
boundary measurements. One has really to take care of thiesphigh frequency
solutions that the numerical scheme generates.
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5.1 Fourier Filtering

We introduce a Fourier filtering mechanism that consistslimieating the high
frequency Fourier components and restricting the semiglisevave equation under
consideration to the subspace of solutions generated b¥dhder components
corresponding to the eigenvaluks< yh~2 with 0 < y < 4 or with indices 0< j <
dh~1with 0< & < 1. In this subspace the observability inequality becoméstm.
Note that these classes of solutions correspond to takjgqirons of the complete
solutions by cutting off all frequencies withyh 1 < { < 2h™t

The following classical result due to Ingham in the theorynaihharmonic
Fourier series (see Ingham[54] and Youhg[105]) is usefupfoving the uniform
observability of filtered solutions.

Theorem 9 (Ingham [56]). Let { i}y, be a sequence of real numbers such that
Uk+1— Mk > 0 > 0 for all k € Z. Then for any T> 271/ 0 there exists a positive
constantCT, o) > 0depending only on T and such that

2

dt<C(T,0? 5 [af? (107)
keZ

1

T )
o Yy lals ayelh
CT.o7 & 2

for all sequences of complex numbéag} < /2.

Remark 15Ilngham’s inequality can be viewed as a generalization obtitteogo-
nality property of trigonometric functions we used to prdive observability of the
1-d wave equation in Sectigh 3, known as Paserval's identity

Ingham'’s inequality allows showing that, as soon as the gagition is satisfied,
there is uniform observability provided the time is largeegh.

All these facts confirm that a suitable cutoff or filtering b&tspurious numerical
high frequencies may be a cure for these pathologies.

Let us now describe the badtourier filtering mechanisnin more detail. We
recall that solutions of (81) can be developed in Fourigeseas follows:

un(t) = S akcos<\/7t) \/75|n<\/7t) Wk,

k:l
whereak, by are the Fourier coefficients of the initial data, |eh, Ek 1akwh,

Up = Sl bl _ _
Givens > 0, we introduce the following classes of solutions[ofl (81):

6h(s) = Uh(t):)\hés awos(ft) \/,S|n(\/7t) wk s, (108)
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in which the high frequencies corresponding to the indiges|d(N +1)| have
been cut off. As a consequence of Ingham’s inequality ancttadysis of the gap
of the spectra of the semidiscrete systems we have the ﬁolgmsuIE

Theorem 10 (see[[53])For any y € (0,4) there exists Ty) > 0 such that for all
T > T(y) there exists G= C(T, y) > 0 such that

1 T un(t
SEn(0) < /0 g

for every solutioruy, of 1) in the class%,(y/h?) and for all h> 0. Moreover,
the minimal time Ty) for which (Z09) holds is such that Ty) — 2 asy — 0 and
T(y) > wasy— 4.

Remark 16 Theoreni ID guarantees the uniform observability in eacts@ig y/h?)
for all 0 < y < 4, provided the timd is larger tharT (y).

The last statement in the theorem shows that when the fiffpanametey tends
to zero, i.e., when the solutions under consideration dorfigaver and fewer fre-
quencies, the time for uniform observability converges te 2, which is the corre-
sponding one for the continuous equation. This is in agreémith the observation
that the group velocity of the low-frequency semidiscresves coincides with the
velocity of propagation in the continuous model.

By contrast, when the filtering parameter increases, ileenvihe solutions under
consideration contain more and more frequencies, the tfrariform control tends
to infinity. This is in agreement and explains further theatag result showing
that, in the absence of filtering, there is no finite timior which the uniform
observability inequality holds.

The proof of Theoreri 10 below provides an explicit estimatette minimal
observability time in the classg;(y/h?): T(y) = 2/1/1— y/4.

Remark 17In the context of the numerical computation of the boundamtiol
for the wave equation the need of an appropriate filterindheftiigh frequencies
was observed by GlowinsKi [40] and further investigated atigally by Asch and
Lebeau in[[2].

Let us now briefly sketch the proof of Theorén] 10. The easiestrelies on the
explicit representation of the solutions#(y/h?) and the application of Ingham’s
theorem. This can be made possible since fdeaith AX < yh=2, \ /AKT1— /Ak>

rrcogkmh/2) > my/1— y/4, as explicit computations yield.
Another proof can be derived using the so-called discretiéipliar identity: for
all solutionsuy, of (81),

TEn(0) 0 2/ dt+—ZJ/

11 These results may also be obtained using discrete mutttpliniques (se€ [53] and [36] for an
improved version with a sharp estimate of the tim@)).

2
dt < C2Ep(0) (109)

J+l

N(t)
a dt, (110)
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with
X(t) = h N ih Ujr1—Uj—1 u. (111)

Using [11I0) and straightforward bounds on the time bountim X, and on

the extra term
h3 N T
7 ,Zj/o

one will be able to prove Theordml10 in any tifie> 2/(1— y/4), see[[53]. How-
ever, using more refined estimates on these terms, one aarerghe observability
timeT(y) =2/+/1—y/4, seel[3B].

Let us also note that the tinTgy) = 2/+/1— y/4 is sharp. More precisely, when
T < T(y), there is no uniform observability results in the claggy/h?) sinceT (y)
is the time corresponding to the minimum group velocity witie classé,(y/h?).
But the proof is technically more involved and is beyond tbepe of these notes.
We refer to[[72] and[36] for detailed proofs.

u . —u 2
% dt, (112)

5.2 A Two-Grid Algorithm

Glowinski and Li in [42] introduced a two-grid algorithm thanakes it possible to
compute efficiently the control of the continuous model. Tinethod was further
developed by Glowinski iri [40].

The relevance and impact of using two grids can be easilyrstate in view of
the analysis of the 1-d semidiscrete equation developédtkipitevious paragraph.

In (B8) we have seen that all the eigenvalues of the sematessystem satisfy
A < 4/h?. We have also seen that the observability inequality besonmiform
when one considers solutions involving eigenvectors spwading to eigenvalues
A < y/h?, with y < 4, see Theorefm 10.

The key idea of this two-grid filtering mechanism consistaiging two grids:
one, the computational one in which the discrete wave egusitire solved, with
step sizeh and a coarser one of siz&.4n the fine grid, the eigenvalues satisfy the
sharp upper bound < 4/h?. And the coarse grid will “select” half of the eigen-
values, the ones correspondingita< 2/h?. This indicates that in the fine grid the
solutions obtained in the coarse one would behave very maifitexed solutions.

To be more precise, |& € N be an odd number, and still consider the semidis-
crete wave equatiofi (81). We then define the class

Ugj+ugj+2
2 b)
je{0-,(N-1)/2},e{0.1}}. (113)

0,1 N N s
”Vh:{(uhvuh)ER XRY, U0 =
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The idea of Glowinski and Li is then to consider initial dagang in this space,
which can be easily described, as we said, in the physicakspa

Formally, the oscillations in the coarse mesh that corredpo the largest
eigenvalues\ ~ 4sin(11/4)?/h?, in the finer mesh are associated to eigenvalues
in the class of filtered solutions with parameter= 4sin(11/4)?> = 2. Formally,
this corresponds to a situation where the observabilitguiadity is uniform for

T>2/\/1-y/4=2V2.
The following holds:

Theorem 11.For N € N an odd integer and T> 2v/2+ 2h, for any initial data
(uP,uf) € 74, the solutioruy, of (1) satisfies:

E(O)<#/T‘U—N2dt (114)
T 2vz—2no IR

Theoreni Il has been obtained recentlyin [36] using the ptigitidentity [110)
and careful estimates on each term in this identity. This@ggh yields the most
explicit estimate on the observability constant for bidgechniques.

This issue has also been studied theoretically in the af@3] using the mul-
tiplier techniques in 1-d (but getting an observation time- 4), and later in[[50]
in 2d using a dyadic decomposition argument. The time has leten improved in
1-d toT > 2v/2 using Ingham techniques in [71], loosing track of the otsieitity
constants.

Theoreni Il justifies the efficiency of the two-grid algoritfon computing the
control of the continuous wave equation, as we shall derigeeraxplicitly in Sec-
tion[8.

This method was introduced by Glowinski [40] in the contektte full finite
difference (in time) and finite element space discretizatio2D. It was then fur-
ther developed in the framework of finite differences by McAsnd G. Lebeau
in [2], where the Geometric Control Condition for the waveiation in different
geometries was tested numerically.

5.3 Tychonoff Regularization

Glowinski, Li, and Lions|[[4B] proposed a Tychonoff regulaiion technique that
allows one to recover the uniform (with respect to the mezg)sioercivity of the
functional that one must minimize to get the controls in tHéNHapproach. The
method was tested to be efficient in numerical experiments.

In the context of observability Tychonoff regularizatiooresponds to relaxing
the boundary observability inequality by adding an extraesiation, distributed
everywhere in the domain and at the right scale so that it pgytally vanishes as
htends to zero but it is strong enough to capture the enerdyegbathological high
frequency components. The corresponding observabilgguality is as follows:
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2 3 N T
dt+h /
JZO 0

2
Tlu (t) u 1_u’.
En(0) gcmz{ /O N S dt} (115)

The following holds:

Theorem 12 ([100]).For any time T> 2, there exists a constan{T) such that, for
all h > 0, inequality (IT8) holds for all solutionsu,, of (81). Furthermore, CT)?
can be taken to b2/(T — 2).

In (II8) we have the extra terfi (112) that has already beesuetered in the
multiplier identity [110). By inspection of the solution$ @1)) in separated vari-
ables it is easy to understand why this added term is a seitai# to reestablish
the uniform observability property. Indeed, consider thieison of the semidiscrete

systemup, = exp(tiy //\r‘ft)wﬁ. The extra term we have added is of the order of

hzx\k‘fEh(O). Obviously this term is negligible as— 0 for the low-frequency solu-
tions (fork fixed) but becomes relevant for the high-frequency ones w&ﬁeﬂ 1/h?,
Accordingly, when inequality[(86) fails, i.e., for the higlequency solutions, the
extra term in[(11b) reestablishes the uniform charactehe®stimate with respect
to h. It is important to emphasize that both terms are neededlfd)(to hold. In-
deed,[(T1PR) by itself does not suffice since its contributi@mishes ak — 0 for the
low-frequency solutions.

We do not give the proof of Theoredm]12, which is an easy coresezpiof the
discrete multiplier identity[ (T10)E(T1L1).

5.4 Space semidiscretizations of the 2D Wave Equations

In this Section we briefly discuss the resultslin [111] on thace finite difference
semidiscretizations of the 2D wave equation in the sq@aee (0, 1) x (0, 1) of R?:

W —Au=0 inQ=0Q x(0,T),
u=20 ondQ x (0,T), (116)
u(x,0) = u9(x), w (x,0) = ut(x) in Q.

Obviously, the fact that classical finite differences pdavilivergent results for 1-
d problems in what concerns observability and controlighindicates that the same
should be true in two dimensions as well. This is indeed tse ddowever, the mul-
tidimensional case exhibits some new features and desadeisonal analysis, in
particular in what concerns filtering techniques. Gief, ut) € H}(Q) x L?(Q),
system [116) admits a unique solutiare C ([0, T];H3(Q)) NC* ([0, T};L*(Q)).
Moreover, the energy

Et) = %/Q [lw(xt) 2+ Ougxt) 2] dx (117)
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remains constant, i.e.,
E(t)=E(0) VO<t<T. (118)

Let ' denote a subset of the boundary®@fconstituted by two consecutive sides,
for instance,

I ={(xg,m):x1€(0,m}U{(mx2) : % € (0,7)}. (119)

It is well known (see([68, 69]) that f6F > 2/2mthere exist€,pg(T) > 0 such that

2

]
£0) <Con(T [ [ |50 dodt (120)

holds for every finite-energy solution ¢f (1116).

We can now address the standard five-point finite differepaee semidis-
cretization scheme for the 2-d wave equation.

As in one dimension we may perform a complete descriptiorotti the contin-
uous solutions and those of the semidiscrete systems i @fFourier series. One
can then deduce the following:

e The semidiscrete system is observable for all timend mesh sizé;

e The observability constaf},(T) blows up as tends to 0 because of the spurious
high-frequency numerical solutions.

e The uniform (with respect th) observability property may be reestablished by a
suitable filtering of the high frequencies.

However, filtering needs to be implemented more carefulth@multi-dimensional
case.

Indeed, the upper bound on the spectrum of the semidisagysters in two di-
mensions is §h? but it is not sufficient to filter by a constantf y < 8, i.e.,
to consider solutions that do not contain the contributibthe high frequencies
A > yh~?, to guarantee uniform observability.

In fact, one has to filter by means of a constart § < 4. This is due to the exis-
tence of solutions corresponding to high-frequency cailhs in one direction and
very slow oscillations in the other. Roughly speaking, oaeds to filter efficiently
in both space directions, and this requires taking4 (seel[111]).

In order to better understand the necessity of filtering aettirgy sharp observ-
ability times it is convenient to adopt the approachlof [73] Fased on the use of
discrete Wigner measures. The symbol of the semidiscrstersyfor solutions of
wavelength is

12— 4(sin?(&1/2) + sirf(&2/2)) (121)

and can be easily obtained as in the von Neumann analysi® aftaiility of nu-
merical schemes by taking the Fourier transform of the siscriete equation: the
continuous one in time and the discrete one in s@ce.

12 This argument can be easily adapted to the case where thainahapproximation scheme is
discrete in both space and time by taking discrete Fourd@storms in both variables.
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Note that in the symbol if{121) the parametedisappears. This is due to the
fact that we are analyzing the propagation of waves of wangleof the order oh.
The bicharacteristic rays are then defined as follows:

Xj(s) = —2sin({j/2)cog¢j/2) = —sin(§)), =12,

t'(s) =T,

g9 =0, j=12 (122)
T(s)=0

It is interesting to note that the rays are still straighe$inas for the constant
coefficient wave equation, since the coefficients of the gomand the numeri-
cal discretization are both constant. We see, howeverjnh@22) the velocity of
propagation changes with respect to that of the continu@vewquation.

Let us now consider initial data for this Hamiltonian systeith the following
particular structurex’ is any point in the domaif2, the initial timetg = 0, and the
initial microlocal direction(t*, £*) is such that

(1)2 = 4(sir?(&7 /2) +sif (85 /2)). (123)

Note that the last condition is compatible with the chdige- 0 andé; = mtogether

with 7" = 2. Thus, let us consider the initial microlocal directi§n= mandt* = 2.

In this case the ray remains constant in tix@) = x°, since, according to the first
equation inIIIZIZ)x’J— vanishes both fof = 1 andj = 2. Thus, the projection of the
ray over the spacedoes not move as time evolves. This ray never reaches the exte
rior boundaryd Q where the equation evolves and excludes the possibilitawaily

a uniform boundary observability property. More precistiys construction allows
one to show that, ds— 0, there exists a sequence of solutions of the semidiscrete
problem whose energy is concentrated in any finite timevwatdy <t < T as much

as one wishes in a neighborhood of the patht

This example corresponds to the case of very slow oscitlatio the space vari-
ablex; and very rapid ones in the-direction, and it can be ruled out, precisely,
by taking the filtering parametgr< 4. In view of the structure of the Hamiltonian
system, it is clear that one can be more precise when chotigngpace of filtered
solutions. Indeed, it is sufficient to exclude by filtering thays that do not prop-
agate at all to guarantee the existence of a minimal velafifgropagation (see
Figure[10). Roughly speaking, this suffices for the obseliyainequality to hold
uniformly in h for a sufficiently large time 742, 73].

This ray approach makes it possible to conjecture the optimiform observ-
ability time depending on the class of filtered solutions emcbnsideration. The
optimal time is the one that all characteristic rays entgiirthe class of filtered so-
lutions need to reach the controlled region. This congt#tihe discrete version of
the GCC for the continuous wave equation. Moreover, if therfilg is done so that
the wavelength of the solutions under consideration is afraer strictly less than
h, then one recovers the classical observability result ierdonstant coefficient
continuous wave equation with the optimal observabilityeti
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Fig. 10 Level set representation of the group velocity as a funatibtihe frequencyhéy, hé,) €
(—m, m). In red, the points where the group velocity is 1, which iste®city of propagation of
continuous waves. In blue, the points where the group wldgiclose to zero. When, by means
of a filtering method the blue areas are removed, the velafipropagation of rays is uniformly
bounded from below.

5.5 A more general result

Here, we describe the most general result available in teeature for uniform
observability of space semidiscrete wave equations.

This concerns the finite-element discretization[ofl (59)esbsd through some
subdomairw. Let us emphasize from the beginning that the results ptedémthat
Section hold under the Geometric Control Condition @, w, T ), whatever the
dimension is and under very mild assumptions on the fingeieht discretization
under consideration.

In the following, to simplify the presentation, we focus e tonstant coefficient
wave equation:

U —Au=0, in Q x (0,T),
u=0, ondQ x (0,T), (124)
u(0)=u’, w(0)=ul, inQ

observed througReu: onw x (0,T).
The corresponding observability inequality is

:
1002 + 12y < Coos || It Ozt (125)

Let us now describe the finite element method we use to dizergi23).

Consider(\h)h=0 a sequence of vector spaces of finite dimensipthat embed
V;, into L2(Q) using a linear morphisnpy, : Vi, — L2. For eachh > 0, the inner
product(-,-) 2 in L? induces a structure of Hilbert space fdf endowed by the
scalar product:, -)n = {Pn-, Pn-) 2. We assume that for eath> 0, the vector space
Pn(Vh) is a subspace a?((—Ap)Y/?) = H3(Q). We thus define the linear operator
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Aoh i Vh — Wy by
(Aon®n, Whh = (0pn®@h, OpnWn) 2, V(@h, Yn) € Vit- (126)

The operatorAq, defined in [[(IZ6) obviously is self-adjoint and positive defi-
nite.Formally, definition[{126) implies that

Aon = (0pn)*Opn. (127)

This operatorAg, corresponds to the finite element discretization-afp, the
Laplace operator with Dirichlet boundary conditions. 8yst(124) is then dis-
cretized into

Up+Agup =0, Ux(0) =ul €Vh, UL(0) = U} €W (128)

In this context, for alh > 0, the observation operator naturally becomggnup,(t).
We now make precise the assumptions we have, usuallg,.oand which will

be needed in our analysis. For this, we introduce the addipt from \j, endowed

with the scalar product of 142-, 1{]2->h to @(A(l)/z) = H}(Q) endowed with the

scalar product-, 0-), 2.
One easily checks thaip, = Idy,. Besides, the embedding, describes the
finite element approximation we have chosen. In partictharyector spacgn (V)

approximates, in the sense given hereafter, the ﬁ@ééﬂ) =H3(Q): There exist
6 > 0 andCp > 0, such that for alh > 0,

{ |O(enor; — |)UH|_2(Q) < Col|Oul| 2(q), Vue Ha (),

. 9 > (129)

| O(enp;; — I)u||L2(Q) < Coh?||-Aul| 2(g), YueH*NHG(Q).
Note that in many applications, estimates (129) are sati$ie® = 1. This is in
particular true when discretizing on uniformly regular ies (se€ [92]).

We will not discuss convergence results for the numerigat@aamation schemes
presented here, which are classical under assumptioh, @2®which can be found
for instance in the textbook [92].

In view of the previous results, it is natural to restrict gelves to filtered initial
data. For alh > 0, sinceAy, is a self adjoint positive definite matrix, the spectrum
of Ao is given by a sequence of positive eigenvalues

O<AF<AE< - <A (130)

and normalized (iv}) eigenvector$wﬁ)1§k§nh. For anys, we can now define, for
eachh > 0, the filtered space (to be compared with (108))

() = {uh -3 (akcos(ﬁhkt) +;—:? sin(\/ATft)> wh} |
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We are now in position to state the following results:

Theorem 13 ([27]).Assume that the magpn)n-o satisfy property(I29) and that
(w, Q,T) satisfies the Geometric Control Condition, i.e. that sysfE?d)is exactly
observable.

Then there exist > 0, a time T* and a positive constantdss such that, for any
h € (0,1), any solution of28)lying in ¢, (g/h?) satisfies

T*
HDPhuﬂHiZ(Q) + HPhU%HiZ(Q) < Cgbs'/o HXwPhUIh(t)Hiz(Q) dt. (131)

Note in particular that this yields the same results as tieeaintained in[[90] in
a 1-d framework and generalizes it to any dimension.

The proof of this Theorem combines, essentially, the olad®lity inequality
of the continuous wave equation and sharp estimates on thesgence of the
numerical scheme towards the continuous model. Roughlgképg, one needs to
build the subspace of initial data so that numerical sohgiare uniformly close to
the continuous ones so that they inherit the observabitiperties of the later.

The interest of this result is that it holds in any space disi@mand in a very
general Galerkin approximation setting. To our knowled@€} and the companion
paper[29] are the first ones in which this kind of results aesented with such a
degree of generality.

The proof of this statement can be derived using resolveimates [16, 79] (see
also [88] for a similar estimate) but this method does noldysharp estimates on
the observability time. Hencg* in Theoreni_1IB may be much larger than the time
for which (w, Q,T) satisfies GCC and the one one could expect to be sharp in view
of the analysis of the dispersion diagram of the numerida¢ste.

Note also thaf{131) holds within a class of functions thatratuch more filtered
than in Theoreni_10. The later holds up to the critical scakbhiwisubclasses of
the form%,(y/h?), y < 4. Whether the result in Theordm]13 is true or not in these
optimal subclasses is an interesting open problem. Notmyrcase, that Theorem
[I3 holds in a much more general setting, where new phenoneerd accur. Even
in 1-d, for the finite element method on non-uniform meshéwtiver Theoremn 13
can be improved or not is an open problem.

6 Convergence results

The goal of this Section is to describe a general approachaw ghe convergence
of the discrete controls, obtaining convergence rates tiee observability results
presented in the previous Section.
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6.1 A general procedure for the convergence of the discrete
controls

In this Section, we describe the setting in which we are waykand present the
main ideas.

Let A be a skew-adjoint operatér: 2(A) C X — X with compact resolvent and
dense domain, arl8 be an admissible control opera®e £(7%,X_1).

We assume that the continuous systEm (13) is controllalgerime timeT > 0.

Now, we approximate the continuous model (13) by a sequéiftéte-dimensional
systems

Xh=AnXh+Bnvh, t>0,  Xu(0)=x]€ X, (132)

where(Ay, By) is a sequence of finite-dimensional approximations of theratprs
(A,B) respectively, where for eadh> 0, A, is a skew-adjoint operator defined on
a finite dimensional spacg, embedded intX, andBy, is defined on a vector space
2 that embeds into the Hilbert spae with values inXs,.

We consider the embeddimmy : X;, — X, which provides an Hilbert structure on
Xa by [l = llon(-)lIx-

To simplify the presentation, we further assume Bgats simply given byp;,B,
whereB is the continuous control operator, so tiat simply coincides withZ/.
Otherwise, similar ideas can be applied, see for instanced®&s.2.3.

We also assume that the spacgsfill the spaceX ash — 0 in a sense that
will be made precise below. Of course, the finite differencehe finite-element
approximation schemes for the wave equation fit into thisrggtand a more precise
description can be made in these cases.

We have already seen in Section]4.4 that, for the finitediffee method, the
discrete controls fulfilling the control requireme@{T) = 0 may blow up a$ — 0,
due to the fact that observability properties do not holdarnily with respect to
the discretization parameter> 0.

However, we have seen in Sectldn 5 that weak observabitityteecan be shown
to hold uniformly with respect to the discretization paraené > 0, provided suit-
able filtering mechanisms are implemented. To be more @eeis assume that
there exist a positive constafif,s and a timeTl such that, for alh > 0,

i
2 *
[08 Il < Cos [ (0 [Bi0R0I, ot Vol e (139

where¢}, is a subspace of,, n is a smooth function with values {0, 1], vanishing
fort ¢ [0,T] and equals to 1 on some non trivial subse0oT |, similarly as in[(21),
and¢y is the solution of the adjoint system

Oh="Andn te(0T),  on(T)=0f. (134)
We now consider the HUM-type functiond, defined forg|| € ¢, by
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T
WO =5 [ nOIBnOI5 dtr (6000 (135)

Using the same arguments as in Theokém 1 and Cordllary 1, asily ehecks
that:

Theorem 14.Assume thafl33) holds. with constants C and T independent of h
0.

Let h> 0 and xﬁ € Xn. Then the functionalplin (I38) is continuous, strictly
convex and coercive af}, and it admits a unique minimiz@g € €. Then, setting
Vi = n(t)B},®n, wheredy, is the solution ofI33)with initial data @/, the solution
X of (I32)satisfies

Voh €€h (dh,xn(T)n=0, (136)

or equivalently x(T) € ¢f.

Besides, this is the only contral, € L?(0, T;% ) such that the corresponding,
satisfiegI38) and which is of the fornvy, = nB;¢n, for somegy, solution of (134)
with ¢p(T) € Cp.

Moreover,

1 2 (T
IR [ V1% 5 = [ n0 18001 de< CelR17
bs k k
(137)
The following two questions arise now naturally:

° ConvergenceGivenxﬂ that converge (weakly or strongly) % in X ash— 0 (in
a sense to be made precise), can we show that the discretelsdfj converge
toV, the continuous control correspondingdbfor (I3) ?

e Convergence ratesCan we furthermore give a convergence rate for the conver-
gence oV, towardsV ?

These two questions will be investigated below in this veepeayal setting. Of
course, getting such results requires a more precise kdgelef the numerical
schemes under consideration.

We shall then present a general frame on which, under saitajpotheses that
should then be carefully verified in each situation, the eogence will be proved
with convergence rates.

6.1.1 Convergence

To derive the convergence of the discrete contvglgiven by Theorerh 14, we need
the following hypotheses, that should be verified in eaarasion:

Hypothesis #1.For ¢7 € Ns.0Z(A%) and¢ be the corresponding solution of
(@3), there exists a sequence of functiaﬂse ¢, such that, ifpy, denotes the cor-
responding solution ofi33),
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Pnpn(0) — 6(0) X (138)
B;f,thE;B*(p L2(0,T;%). (139)

Hypothesis #1 looks like a classical result of convergeifiteenumerical meth-
ods under consideration. This is indeed the case, excephéofact that the ap-
proximations of¢ " are searched within the restricted subspég®f X. This in
practice requires proving the convergence of suitableggtmjns of the numerical
approximations.

We also need the following assumption:

Hypothesis #2.For¢! € X, and¢™ € X such that
Pndy, o pT X andsEpHB;¢h(t)|‘L2(O,T;U) <o, (140)

denoting bypy, and¢ respectively the solutions dfL34) and [I4) with initial data
¢! andgT respectively,

prgn = 9 LE(0.T:X) (141)
Bign — B'¢ L*0.T;%) (142)
Pnpn(0) — 6(0) X. (143)

The statements in Hypothesis #2 typically hold for cladsicenerical approxi-
mation schemes.
Under these two main hypotheses we get the following result:

Theorem 15.Let ¥ € X andxﬂ € X be such thaphxﬂ weakly converges td»n X
ash— 0.

We further assume that Hypotheses #1 and #2 hold true.

Then the discrete controlé, given by Theorefi 14 weakly converge to V given
by PropositioilL in B(0,T;dt/n; %) as h— 0.

Moreover, ifphxﬂ strongly converge to% V, strongly converge to V in the norm
of L?(0,T;dt/n; %) (hence in the £(0, T; % )-norm as well) as h- 0.

Proof. The proof of Theorem 15 is divided into several steps.

Step 1. Extraction of a weakly convergent sequence of denffoom Theo-
rem[13, the sequendé, is bounded inL?(0,T;dt/n;% ). Hence, up to extrac-
tion of a subsequence, the contralg weakly converge to some functionin
L2(0,T;dt/n;%).

Step 2. Any weak accumulation point\6f is a control function for(I3). The
Euler-Lagrange equation satisfied by the minimkzﬁrof Jn in (I38) is the follow-

ing one:
T

Vol € e, /0(Vh(t),B;¢h>%dt+(xﬂ,¢h(0)>h:O. (144)
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Letus thentak@ ' € Ns-0Z(A%). Using Hypothesis #1, we obtain a sequefife
¢y such that the strong convergendes {189)4(138) hold. Fuutiag that

(Xp, #n(0))n = (PnXp, Pndn(0))x,

and passing to the limit il (T#4), we obtain that forg@ll € N0 2 (AS),

'/O.T<v(t),B*¢)a// dt+ (x2,¢(0))x = 0. (145)

By density, this also holds true for afi” € X. From [20), this implies that is a
control function for[(IB).

Step 3. Any weak accumulation point Wgfcan be written as v nB* ¢ for some
¢ solution of the adjoint syste@4). For allh > 0, V, = nB} @y, whered, is the
solution of [I3%) with initial datap], andVp, andphCD,T are bounded, respectively,
in L2(0,T;dt/n;%) andX, due to [Z3F7). Thus, up to subsequenagh! weakly
converge inX to some@ . Thus, from Hypothesis #&,= nB*$, where¢ is the
solution of [I#) corresponding ' .

Step 4. Any weak accumulation poind\fis the control V given by Proposition
[I. This follows from the uniqueness of the control functionatthan be written
nB*¢ for someg solution of [14) (see Propositidh 1).

Hence there is only one weak accumulation point for the secp(@/},), which
coincides with the control given by Propositiofil1. Therefore, the seque(i¢g)
weakly converges t¥ in L2(0,T;dt/n; %) ash — 0.

Step 5. Strong convergence Wm{xﬁ strongly converges to®kIn view of the
weak convergence property from Step 4, we only need to pravednvergence of
theL?(0,T;dt/n; % )-norms ofVy, ash — 0.

But, from (144) applied tah! (< &),

.
IVhllE2i07at/n2) :/0 N [IBR@n()]I3, dt = — (o0, n®n(0)x.  (146)

On the other hand/ = nB* ®, where® is given by Propositionl 1. Frofi (20) applied
togp” = @', we obtain

]
V1B orama = [, NOIB @O, dt= 00 ®O)x.  (147)

Now, using Step 3 and Hypothesis #mqﬂ weakly converges to somg' in X
which is such thaV = nB*¢. From the observability inequalitj (22, = @, the
one corresponding to the minimizer of the functiohal (23). Hencqohcbg weakly
converges irX to @'. Applying again Hypothesis #2,®,(0) weakly converges
to ®(0) in X ash — 0.

Passing to the limit{onx2, pn®n(0))x converges taxo, @(0))x ash — 0, and
then passing to the limit i (I#6) and usifg (1147), t8€0, T;dt/n; % )-norms of
Vh converge to th&?(0, T;dt/n; % )-norm ofV.

This concludes the proof of the Theorem.



60 Sylvain Ervedoza and Enrique Zuazua

Note that this method of proof is not new (see, for instarg@])[and it has been
shown to be robust and efficient, whatever the discretinagtheme or the weak
observability properties under consideration are.

However, this approach did not seem to be sufficient to getergence rates for
the discrete controls. The main reason is that it was not knavith this degree of
generality, that smooth initial data to be controlled yisidooth controls. As we
have explained above, we now know that such results holdrraebroad abstract
setting, but only when the cut-off function in timgt) is introduced or when the
control operator is bounded, i.B.€ £(% ,X). Then, using Theorefd 3, we will be
in conditions to prove also convergence rates.

6.1.2 Convergence rates

To prove convergence rates for the discrete controls tasviuel continuous ones, it
is necessary, as is standard in numerical analysis, to @&some smoothness on the
initial data. One then needs to make sure that the numedheahses approximating
the PDE model have suitable convergence rates that we il thansfer to the
controls. In the following Hypothesis #3 we require thisgeay to be fulfilled.

Hypothesis #3.There exist; > 0 and a constarfl, > 0 such that for allh™ €
2(A%), one can find a sequence of functicﬂﬁe ¢}, such that the corresponding
solutionspy, of (134) satisfy, forh > 0,

tszgg)(ﬂphqﬁh— 9llx) + IB*(ondh — @)l 201:) SCO* 07| ). (148)
S

where¢ is the solution offTd) with initial data¢ ™ .

Note that Hypothesis #3 is a stronger version of Hypothekidt#lways holds
with X, instead oy, for convergent numerical approximation schemes. As we shal
see, in specific examples, similar results hold within tressésty, as assumed in
Hypothesis #3.

Also note that wheB* is bounded, estimate (148) is implied by the weaker one:

sup [ —llx < Ch[[97]], per)- (149)
te(0,T)

We also need a similar convergence assumption for the dmttequation:

Hypothesis #4.There exist, > 0 and a constarth such that for alk® € & (A%)
and®' € 2(A%), settingx} = pix°, v=nB*® where® is the solution of(14)
with initial data®™ andvy, € L?(0,T;% ), the corresponding solutioms andx of
(@32) and [I3) respectively satisfy:

[l onxn(T) —x(T)][x < Ch® (HXOHQ(ASZ) + H(DTH_@(ASZ)) +CHVh_VHL2(0,T;“7/)'
(150)
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Note that Hypothesis #4 looks like a classical convergeaselt for numerical
methods. The fact that the source term is givemB8® is needed to guarantee
that the controlled trajectorylies in a smooth space, and in particular that this is a
strong solution, see Corollaly 3 and Secfiod 3.3.

We are now in position to state our main result:

Theorem 16.Assume that Hypotheses #3 and #4 hold.

Let s= max{s;,s} and6 = min{ 6y, 6,}.

Then, for any X € 2(A), settingx? = p,;‘xo, the discrete control¥}, given by
Theoreni 14 converge to the control V given by Proposiflond. an

IVh=Vll207a/n2) < Ch HXOH@(AS) : (151)

Proof. The proof is divided into several steps.

Step 1. The continuous control is smodtat x° € 2(AS) . From Theorerfil3, the
weighted HUM method yields a contrel(t) = n(t)B*®(t), computed by Propo-
sition[d where® is the solution of[[I4) corresponding to the minimizet of the
functionald in 23), which is smooth:

=3

<C|x’

H@(AS) H@(AS)'

Step 2. An approximate C()NntrcﬂjncecbT € 2(A%), by Hypothesis #3, one can
approximated by a sequencé, of solutions of the discrete equatiofis (1.34) with
initial data®/ € ¢y, such that

[[B*(pn®n — (‘D)HLZ(O,T;“’Z/) <chl||o’ ||@(AS) <ch? HX()H@(AS) :
Hence, setting 3
Un(t) = n(t)Br®n(t), (152)

U, satisfies
o 0 (/0
19 = Vllzo7at/nizry < CH° ]| s (153)

Then, using Hypothesis #4, we get that the solukgof
Kh=An%n+Bnln, t>0,  %(0)=x,
satisfies

1%n(T)ln < CHP[1X°] ) -

Step 3. An exact discrete contrkom Theoreni 14, there exists a control func-
tion U, € L2(0, T;% ) such that the functiow, solution of

W, = AnWh+ B,  t>0, wh(0) =0,

satisfies
Vo €€, (Wn(T)+%Zn(T), ¢n(T))h = 0.
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Besides, from TheoremIl4, this can be done with a controtiomé;, € L?(0, T; %)
that can be writteri, = nB;;.{, for i solution of [I3#) with initial datal{ € &y,
and with

91l c2(0.7:0t/m;2) < C 1% (T)ll < CH? HXOH%AS) : (154)

Hencel, + ¥y, is a control for[(T3R) (in the sense 6f(136)).
Step 4. Identification of the controlstom the uniqueness of the discrete controls
that can be written agB;¢, with ¢ € ¢y, stated in Theorel 14/, = ¥, + U,

Hence, from[(I53)E(154),
- . ]
”V _VhHLZ(O,T;dt/n;ﬂ//) < ”V _Vh”LZ(O,T;dt/r];f'Z/) + HVh”LZ(O,T;dt/n;“//) <Ch HXOHQ(AS) :
This completes the proof of the Theorem.

The approach presented above is very general and can bedpplnany sit-
uations. Below, we shall explain how it yields convergeresuitts from the weak
observability results stated in Sect[dn 5.

Remark 18We refer to the recent work [20] for approximation resultsdzh on
the continuous approach. In that approach the approxineateats are not built as
controls for an approximate discrete dynamics but rathserdtizing an iterative
algorithm leading to convergence at the continuous lewglnbcessarily to the con-
trol of minimal norm. Note also that the method developed@] jonly converges
for initial data to be controlled lying ir@(Ae’/Z) (the proofs in[[20] focus on the
finite element methods for the wave equation, for which tpizce is the natural
one), but does nat priori converge when the initial data to be controlled only lie in
X. The discrete approach we develop here provides both, ogewee results in the
optimal class of initial data and convergence rates for smdata.

Remark 191n a first reading, the fact that the proof of convergence efdiscrete
controls does not require the convergence of the contrelgchtions might seem
surprising. Indeed, Hypotheses #1, #2 and #3 refer only¢catljoint equation
(@I32)-[14) and only Hypothesis #4 directly refers to thevemgence of the con-
trolled equation.

But the convergence properties of the adjoint equafion))(iddards the contin-
uous one[(14) in Hypotheses #1, #2 and #3 also yield conveeg@sults for the
discrete controlled systerd (132)-[13) since their sohsgiare defined by transposi-
tion, taking scalar products with the solutions of the adjsiystem.

6.2 Controllability Results

In this Section we apply the above procedure for derivingveagence rates for
numerical controls in various relevant examples.

Before going further, let us emphasize that the problem ahidary control, as
the internal control problem above, corresponds to a casdiich the energy space
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is notidentified with its dual, as it is done in the previousgggiaph. This fact creates
a shift in the functional spaces below. We made the choiceesfgmting the abstract
theory in the reflexive case with the identification betwéeand its dual for the
sake of simplicity.

More precisely, in the case of the boundary controllabditghe wave equation,
the adjoint equatior(39) lies iX = H}(0,1) x L?(0,1), whereas the controlled
equation[(4R) is solved in the spaxé = L?(0,1) x H=1(0,1).

Note in particular that the wave semigroup is an isometrydthispaceX and
X*, and thus the only difference with respect to the presamtatbove is that the
identification betweeX and its dual is not done.

Hence, Hypotheses #1, #2, #3 should be checked in the er;mgylft&(o, 1) x
L?(0,1), whereas Hypothesis #4, that refers to the convergenceeotdhtinu-
ous controlled equation towards {42), should be proved éngacel ?(0,1) x

-1(0,1).

6.2.1 Filtering methods

Based on Theoref 110, we can €gt= %h(y/h?) with y € (0,4). Note that, here
%h(y/h?) refers to the space in which the trajectornigs solutions of[(81L), live. Of
course, this can be identified with the set of data such thiatdmet € (0,T) (and
then for allt € (0,T)), (un(t),up,(t)) belongs to the vector space spanned by the first
eigenvectorsvﬁ corresponding to the eigenvalukaﬁg y/h?.

In that case, the control requirement (11 36) for solutipnef (@8) becomes:

N
Yup € Gh(y/h?), h Zy, (T)—h Zlyj (T)uj(T)=0,  (155)
=

or, equivalently,
TEgh(y/hZ)yh(T) =0, and TEgh(y/hZ)yf-l(T) =0, (156)

where Tl (y/h2) denotes the orthogonal projection Inﬁ(O, 1) on the vector space

spanned by the eigenfunctiowﬁ corresponding to eigenvaluﬁ# <y/R.
Fix now y € (0,4), andT > T(y) given by Theoreri 0. Introduc® > 0 such
thatT > T(y) + 2d. Letn be a smooth function of time such that

n:R—1[01, n{t) = {égg}[g,\T(g)TJré],

According to the analysis done in the previous Section tités natural to introduce
the following functional

h(Un) = 2/

(157)

o[
h

N
dt+h Z Youl— Zlyjlu?, (158)
J:
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for un € Gh(y/h?).
Then, similarly as in Theoref 7, we have:

Theorem 17.Lety € (0,4) and T > T(y) given by Theorefn10.

For all h > 0 system(@8) is controllable in the sense ¢fl58) (or, equivalently,
(%8).

More precisely, for anyy?, y}) € RN x RN, there exists a controf, € L2(0, T;dt/n)
such that the solution of98) satisfie[I53)

Moreover, the controV/y, of minimal (0, T; dt/n)-norm fuffilling (I53) can be
characterized through the minimization (ov&(y/h?)) of the functional § in (I58)

as Un(t
Vit) = ) 20, (159)

whereUy, is the minimizer of Jin (I58) over %, (y/h?).

Here, the difference with the situation in Theoren 7 is thatidte systems are
observable within the spadg(y/h?), uniformly with respect to the discretization
parameteh > 0. This allows to deduce that the discrete contkb|gyiven by The-
orem 1T are bounded.

One should then prove that the Hypotheses #1 and #2 holdsicdlisie, to obtain
a convergence result. In this case, they take the followangnf

Lemma 2 ([53,[36]).Let (u,ul) € CJ(0,1)? and u be the corresponding solution
of [39). Then there exists a sequence of functians % (y/h?) such that

(Prun(0), pnUip(0)) —— (u(0),u'(0)) Ho(0,1) x L*(0,1) (160)

CUnn 2
S gu(Lt) LX), (161)

wherepy, is the continuous extension of the discrete functigby Fourier series.

In other words, Hypothesis #1 is satisfied in this case. Gpording to Hypoth-
esis #2, we have:

Lemma 3 ([53,[36]).Let (uP,uf) be discrete functions an(l®,ut) € H3(0,1) x
L2(0,1) such that

(Pnuf, o) = (u,uh) Hg(0,1) x L*(0,1) (162)
and .
sup Unn(t) < 00, (163)
h h L2(0,T)

Then, denoting by, and u respectively the solutions 1)) and (39) with initial
data(u?,u}) and (u%, u') respectively, we have
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(Pnun, prup) = (W) L2(0,T;HG(0,1) x L*(0,1)) (164)
_Unh 2

o Gu(Ly LA0T) (165)

(Pnuf, paup) = (P,u") H(0,1) x L%(0,1). (166)

Here, again,pn denotes the continuous extension operator of discretdifurscby
Fourier series.

In other words, Hypothesis #2 is satisfied in this case.

Note that, due to the multiplier identitiz (1110), one easihecks that[(183) is a
consequence df(162). Indeed, weakly convergent sequarebsunded, anf{1110)
immediately yields an uniform admissibility result for thescrete wave equation
@1).

We refer to [[53[36] for the proof of LemmBk[2-3.

Accordingly, based on the convergence result in Thedrdnvé et

Theorem 18.Within the setting of Theordml17, givef,y*) € L?(0,1) x H1(0,1)
and a sequence of discrete initial datg,yt) such that(pny?, pnyi) weakly con-
verges to(y%,y!) in L?(0,1) x H~%(0, 1), the discrete control¥y, provided by The-
orem[IT weakly converges ift(0,T;dt/n) to V, the control provided by Theorem
B, as h— 0.

Besides, if the discrete initial datg},yr) are such that{pny?, pnyi) strongly
converges tgy°,y!) in L2(0,1) x H=(0, 1), then the discrete control, strongly
converges toV in4(0,T;dt/n) as h— 0.

It is then natural to address the issue of the convergenes fat the discrete
controlsVy, given by Theorerfi 7. For this to be done, as we have said iffisignt
to derive the order of convergence for the discrete waveteyanamely the ones
corresponding to Hypotheses #3 and #4.

The following result is proved in [36]:

Proposition 4 ([3€]). Let (u°,ut) € H2NH(0,1) x H3(0,1). Then there exists a

constant C=C(T) independent ofu®, u') and a sequenc@u?, u}) € 6 (1/h%3) of
initial data such that for all > 0,

|| (phuga PhU%) - (UO’ ul)HH&XLZ < Chz/3 H (UO (167)

’ul)HHzﬁngH&

and the solutions u of39) with initial data (u°,u') anduy, of 1)) with initial data

(uP, uf) satisfy, for all h> 0,

sup || (onun(t), up(t) — (u(t),u' ()| 41, 2 < CH3 (U uh)]| iz s

te[0,T] 0 00
(168)

Un.n() <O [0 |z N>0. (169)

h

+ux(1,-)

L2(0,T)
Moreover,
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sup H(PhUh(t)aPhuﬁ(t))HHZmHlel < CH(uO,ul)HHzﬂHlel, (170)
te[0.T] oo o
UN’E(.) <ClW.u) ez g h>0. (71)
HL(0T) 00

Note that Propositiol4 is proved by taking the Fourier sediecomposition of
the continuous solution of (39) and truncating it at the best order, which turns out
to be/\r‘f ~ 1/h*3. This might be surprising since it introduces powers of threrf
h?/3 for the rate of convergence of the numerical scheme. Buia#gt this strategy
is optimal, as explained in [91]. This is due to the fact that

VAR — k= Esin (@) — ke~ Z—"zk%z,

which is small within the range df such thatk < h~2/3, hence corresponding to
/\r‘f <h4/3,

Also note thapy, denotes the Fourier extension of the discrete solutionscéelé
is smooth and one can take tH&(0, 1) norms of these continuous approximations
as required in the statement above.

Finally, let us emphasize that Propositldn 4 is well-knowoept for what con-
cerns the convergence of the normal derivatives on the ayynish particular, our
approach strongly uses the uniform hidden regularity pitgpmgven by the multi-
plier identity [110).

Once this is done, we are in position to state the followingnterpart of Hy-
pothesis #4:

Theorem 19 ([36]).Let (y°,y!) € H3(0,1) x L?(0,1) and ve H(0,T) and denote
by y the corresponding solution ¢2).

Consider a sequence of initial datg,y;) and control functionsy, € L?(0,T)
such that

sup{ | (on. oy + Il o) <

and denote by, the corresponding solution of@g). Then there exists a positive
constant C independent of£h0 such that

H (thh(T)aph)/h(T)) - (y(T),)/(T)) HL2><H*1
<cr/ 3ﬁ§£’{ [[(onis oY) a2 + IIVhHHgm,n}

+ | (onyfs ony) — YY) | 22 +ClIVa = Vlli2ory - (172)

The details of the proof of Theordml19 will be given[in|[36].
This is slightly more subtle than Propositidn 4 at least ¥av teasons:

e To give a precise definition of the solution of the wave edquratiith initial data
in L?(0,1) x H~1(0,1) with a boundary data< L?(0, T), one needs to introduce
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the concept of solutions in the sense of transpositionpased on the duality
with solutionsu of equations similar td{39) lying in the energy spatE0, 1) x
L?(0,1), and to use hidden regularity results that show tiét,t) € L?(0,T),
see(68].

e One should then use the explicit convergence results stateapositiodn #, and
in particular the one on the normal derivatize (1.69).

Then, using Propositidd 4 and Theorenh 19 and Thebrém 16, tve ge

Theorem 20.Let (y°,y!) € H3(0,1) x L?(0,1) and consider a sequence of discrete
initial data (yP, yi) such thaf pny?, pry}) strongly converges to®,y*) in L2(0,1) x
H-1(0,1).

Lety € (0,4) and T> T(y). Then the control¥}, given by Theoreiln 17 strongly
converge to V in £(0, T;dt/n), where V is the control given by Theorgim 5 corre-

sponding tay°, y*).
Besides, there exists a constant C such that for all®

IV =Vlizoran) < P sup{ [ (onyf. o) o2}
+C|[(onyRs oryi) — Y [l 2spy-1 - (173)

In particular, choosing{yﬁ,y%) such that for some C independent of 19,

[ onyh: onYR) g 2 < IO YD) gz (174)
H (phyﬂ7phy%) - (yoayl) HL2><H’1 S Ch2/3 H (yoayl) HHS‘XLZ ’ (175)

one immediately gets
IVh=Vllz07at/m) < CH2 (L) g (176)

To our knowledge, this is the first result on the order of cogeace for the
discrete controls obtained in Theorem 17.

Let us also emphasize that the convergence results sta@d4h[175) are sat-
isfied when taking as discrete initial data the restrictiorthe mesh points of the
orthogonal projections ih?(0,1) or H3(0,1) on the vector space spanned by the
functions(wX(x) = sin(kmx))1<k<n. Of course, other interpolation operators can be
considered for which assumptiohs (1 74)-(1175) are satisfied

Remark 20The observability results in classes of filtered solutidagsl in Section
and obtained i [111] for the semidiscrete finite-défeze approximations of
the multi-dimensional wave equation, also yield similanwergence estimates with
proofs that follow line to line those above. We do not writewiidhe details here for
the sake of conciseness.

The results stated in Theorém| 18 ([27]) do not apply in theedrof boundary
controllability, but rather when the control is distribdtmside the domain. In that
case one does not need to use transposition methods sinters®hre defined in a
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classical manner and this can be done by standard energyearndresup methods
(see Theorerml4). Consequently, the needed convergendts imsumore classical.
But still, to our knowledge, a rigorous proof of the fact thitpothesis #3 holds in
that case is still missing.

Of course, despite of this, Hypotheses #1 and #2 hold ano\WdHom classical
convergence results for the finite element methods[ $e&ljiéfefore, one can prove
the counterpart of Theordm]18 in that case, 5ek [27] forldetai

6.2.2 The bi-grid technique

The methods above can also be used to obtain convergentts sesiiconvergence
rates for the two-grid filtering technique.

In this case¢y, = ¥, where?4, is given by [I1IB). We are then precisely in the
same setting as the one in Secfion 6.1.

Based on the observability result stated in Theorein 11 guSheoreni ¢ we
obtain:

Theorem 21.Let T > 2v/2 andn be as in(I57)with T(y) replaced by2v/2.

Let(yP,yt) be discrete initial data.

Then introduce the functional Xefined as in(I58) for uy, solution of (B1)
such that(un(T),u;,(T)) € %. This functional has a unique minimize, solu-
tion of (1)) with (Un(T),U}(T)) € ¥h, among the space of solutiong such that
(Un(T),U(T)) € %

ThenV}, defined as iffI59)is a control function for which the solutigm, of (38)
satisfies

N N
Yy up ) €%, hY My —h Y vt =0 (177)
=1 =1

Moreover,V}, is the control of minimal (0, T;dt/n) norm for which the corre-
sponding solution of98) satisfies the control requiremef72). It is also the only
control satisfying{I74)that can be written as i59)for a solutionuy, of (81) with
(Un(T), Up(T)) € 7h.

Now, using Theoremi 15, Lemnia 3 and an easy variant of Lefim# léne
reader, one can then prove the following:

Theorem 22 ([36]). Within the setting of Theorem121, givéy?,y*) € L?(0,1) x
H~1(0,1) and a sequence of discrete initial datg?,yf) such that(pny?, pny})
weakly converges t6/°,y') in L?(0,1) x H=1(0, 1), the discrete control¥/y, pro-
vided by Theorefi 21 weakly converge f{Q, T;dt/n) to V, the control provided
by Theoreri]5, as & 0.

Besides, if the discrete initial datg/?,yr) are such thatpny2, pnyi) strongly
converge tay?,y!) in L?(0,1) x H=1(0,1), the discrete control¥, strongly con-
verge to V in B(0,T;dt/n) as h— 0.
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To go further, one should then prove a variant of Proposiidor the solutions
up of the discrete wave equatioris{81) such tha{(T),u;,(T)) € #». One way of
doing that is to take the discrete solutions givenBy (4)chtiielong toé,(1/h*/3)
and to add to them high-frequency components so(thdf ), u;,(T)) € #. Doing
this, one can check that the high-frequency componentshthat been added that
way are small and do not modify the estimates in Propodiiion 4

Note that, of course, these approximations will not belangwore toz,(1/h*3)
but it does not matter for our purpose.

Then, using Theorem 15, Theorgn 19 and this slightly modifeethnt of Propo-
sition[4 where we furtherimposed on the discrete data theition (un(T),u;,(T)) €
4, one can obtain convergence rates for the convergence distiete controls:

Theorem 23 ([36]). Let (y°,y*) € H3(0,1) x L2(0,1) and consider a sequence of
discrete initial data(y?,yi) such that(pny?, pryt) strongly converges t¢/°,y?) in
L?(0,1) x H71(0,1).

Let T > 2y/2. Then the control®/}, given by Theoref 21 strongly converge to
V in L?(0,T;dt/n), where V is the control given by Theor&in 5 corresponding to
Y2,y

Besides, there exists a constant C such that for all®y estimatefI73)holds. In
particular, choosingy?, y}) such that for some C independent of 9, (I74)-(175)
are satisfied, one immediately g¢ig8).

The proof can be found i [36] but, again, it follows the gexténeory developed
in Sectiorf 6.1L.

6.2.3 Tychonoff regularization

The Tychonoff regularization is of slightly different nagusince, in agreement with
Theoren{IP, one has to reinforce the observation operatadbding an extra ob-
servation, distributed everywhere in the discrete gridthed observability holds
uniformly on the mesh-size parameter for all solutions.iewof this, the applied
control mechanism has to be reinforced as well, so that tdothmdary discrete
control we will add an extra control distributed everywharehe domain. How-
ever, this added control will vanish &s— 0 and the methods of Sectibn 6.1 will
apply to show the convergence towards the limit control efléading term. There
are however some minor modifications to be introduced witheet to the abstract
functional setting provided in Sectién 6.1 that we deschibew.

Let n be as in[(Z57) withr (y) replaced by 2.

First, we introduce the functiond} defined for(ud,u}) € RN x RN by:
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dt+4zo/

U 2
J+1 Yj

~ 1
=1 [Tnw) dt

N
+h Zly?ujl —h Zlyjlu?, (178)
= =

whereuy, is the solution of the adjoint systef {81) with initial datlauﬂ, uﬁ).
Using this functional and based on Theoiferh 12, we get theviirig:

Theorem 24.Set T> 2, and consider an initial datun(yo,yh) € RN xRN,
For each h> 0, the functional, in (T78)has a unique minimiztJ?, Ut). Then,
setting

Vi(t) = —n ) 2
o (179)
Gint) = %z (Ufs1=2U7+Ujy), j=1-N,

the solutionyy, of

1 .
3/1/_? Vi1 +Yj-1-2yj] :hZG/j,ha 0<t<T,j=1..,N

Yo(t) = 0 Y 1(t) = Va(t). 0<t<T (180)
O):y?’YJ(O):y:JL? J:17"'7N7
satisfies the control requirement

Theoreni 24 shows how the Tychonoff regularization moditiescontrol prob-
lem. It introduces a control everywhere in the domain, thatikly converges to
zero. This is of course compatible with our analysis, whittes the existence of
high-frequency spurious solutions which do not propagatetherefore can not be
controlled from the boundary. Therefore, if one wants tisgathe strong control
requirement(181), one needs to introduce a control evesysvim the domain. But
this control can be built in such a way that it vanishes when 0.

Note that Theoreiii 12 gives a lot more of information, and inipalar the fol-
lowing one:

Proposition 5. Under the assumptions of Theorenh 24, there exists a cor3tant
independent of b- 0 such that

Vall2om) +h|‘thhHL2(O,T;H*1(O,1))+h2thGh”L""(O,T;LZ(O,l))
< C(T) H (PhygaPhY%) ||L2(0,1)><H*1(O,1) . (182)

We now state the following counterparts of Leminha 2 [@nd 3,:

Lemma 4 ([3€]). In the setting of Lemnid 2 (with= 4 so that no filtering is imple-
mented), we further have
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h2phAnur, —0 L2((0,T) x (0,1)). (183)
Lemma 5 ([3€]). In the setting of Lemnid 3, we further have
h2pnAnu, =0 L2((0,T) x (0,1)). (184)

Based on Propositidd 5, Lemnidg -5 and using the same idea$lasoren 1b,
one gets the following:

Theorem 25 ([36]). Within the setting of Theorem124, givéy?,y!) € L?(0,1) x
H~1(0,1) and a sequence of discrete initial datg,y}) such that(pny?, pny?)
weakly converges tgy°,y!) in L?(0,1) x H~1(0,1), then the discrete controls
(Vh,Gp) provided by Theorefn 24 weakly converge in the followingesens

Vh héov’ in L?(0,T;dt/n),

PaGn = 0, inL2(0.T)x (0,1)), (189)
where V is the control provided by TheorEm 5, as 0.

Besides, if the discrete initial datg},yr) are such thatpny?, pnyi) strongly
converges tgy°,y*) in L?(0,1) x H~%(0,1), then the discrete contro[¥/,, ?pnGp)
strongly converge toV,0) in L?(0,T;dt/n) x L?((0,T) x (0,1)) as h— 0.

One can even follow the proof of Theoré€nj 16 to obtain convecgeates for the
discrete controls. For doing that, inspecting the proof leédreni 1P, we need the
following for the convergence of the equations[ofl(81)fd)(39

Proposition 6 ([3€]).In the setting of Lemnid 3, we further have

SEDH hphAhu%(t)HLZ(m) < ChH(uO, ut) HHZmH(}ng : (186)

The proof of this additional estimate is easy: Basicallysis thah(l,, are uniformly
bounded with norm smaller than 2, and then

||hphAhu§1H|_2(o,1) S thuf’\HH(} S H(PhuﬁvPhU%)HHZmngHg-

We also need to be able to give an estimate on the controlleatieq, which is
mainly the one in Theorem L9 except that an internal comrbl (0, T;L?(0,1))
has been added. When the distributed source terms dr&@T;L?(0,1)) con-
vergence results in the energy space are classical and clute, for instance,
in [4]. One can easily deal with source termsHn (0, T;L2(0,1)) integrating the
equations in time,and working in the spdc€0,1) x H=1(0,1).

Hence we can derive the following result:

Theorem 26 ([36]). Within the setting of Theorem 125, 16°,y) € H}(0,1) x
L2(0,1) and consider a sequence of discrete initial dg yi ) such that pny?, pnyt)
strongly converge t¢y°,y*) in L?(0,1) x H=%(0,1).
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Fig. 11 The initial positiony® to be controlled.

Let T > 2. Then the control§Vy,, h°Gy,) given by Theoref 24 strongly converge
to (V,0) in L?(0,T;dt/n) x L2((0,T) x (0,1)), where V is the control given by
Theorenib corresponding tg°, y*).

Besides, there exists a constant C such that for all®

IVh =V lli207:at/n) + "thhGhHLz((O,T)x(O,l))
< Ch2/3ﬁug{ | (oryp. Pry?) ||Hg><L2} + | (onyR. onym) — YY) 2opyr - (187)
>

In particular, if (T74)-(T73)are satisfied, we get
”Vh _VHLZ(O,T;dt/r]) + ththhHLZ((O,T)X(O,l)) < Ch2/3 H (yo’yl) HH&XLZ . (188)

The precise proofs will be given ih [36], but here again, thely on the same
ideas as for Theorei 116. Indeed it consists in using that fingmizer (U°,U?Y)
of the continuous HUM functional is smooth. Therefore, oae approximate it
with a known error term by a discrete soluti(:lﬂg, Uﬁ) of (81), which corresponds
to some approximate controf§y,,h?g;,) defined by [(179) withJp, instead ofUp,.
One should then correct this error, and this can be done witil £ontrols using
the observability result in Propositioh 5. We finally cordduby the unigueness of
controls(vh,gh) that can be written ag (1]79) for some solutigyof (87).

6.3 Numerical Experiments

In this Section, our goal is to illustrate the convergenseiits proven above. We
focus on the study of the filtering method, the others being sinilar.

We first consider the case in which the initial datum to be e lies in
L2(0,1) x H71(0,1): y°(x) = x? for x € (0,1/2),y°(x) = —(1L—x)? for x € (1/2,1)
andy! = 0 (see FigurE11).
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Fig. 12 Discrete controls computed for the initial datyR, 0) with y° as in Figur&lL, for different
values ofN, under the CFL conditioAt = 0.5h, in time T = 4 and with a filtering parametgr= 1.
From left to right and top to bottonN = 50,N = 100,N = 150,N = 200,N = 250 andN = 300.

We then represent in Figufel12 the control functions forawzsichoices of.
Note that here, due to the weight function in time, the expégpression of the
control that is given through the minimization of the fuoctal J in (Z4) is not
available anymore.

Here, the wave equation is discretized in time, with a CFLdithon At = 0.5h.
The filtering parameter is taken to lye= 1. The functionn is chosen such that:
n =1fort € (0.4,3.6). Ont € (0,0.4), n(t) is a polynomial of order 3 so that
n(0) =n'(0) = n’(1) =0 andn(0.4) = 1, and we choose it in a similar way in
(3.6,4). Of course, is notC® smooth but onlyC?, but this would be enough for
our purpose. With these choices, the time of coniret 4 suffices to control the
fully discrete dynamics.
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As one can see, the controls in Figliré 12 exhibit some kindlaf§phenomenon
close to the discontinuities of the control.

Let us now present similar numerical results, but for anahdatum to be con-
trolled in H3(0,1) x L2(0,1). Now, (y°,y!) are chosen such thaf® = 0 andy! is
the discontinuous triangular function in Figlird 13. Thelgi@expression of! is
yL(x) = —xfor x € (0,1/2) andy}(x) = 1 —xin (1/2,1).

This corresponds to an initial datum to be controlledHf(0,1) x L?(0,1).
Therefore, we should expect better convergence propedibsfore.

We present in Figuile14 the controls computed for that irdigda and for several
values ofN. One can see that there, the controls in Figuie 14 seem to betlsen
than the ones in Figufe112. This is of course consistent withamalysis which
states that:

e the smoothness of the continuous control corresponds tentie®thness of the
initial datum to be controlled,
¢ the discrete controls converge towards the continuous one,

and the added regularity of the data being controlled.

To conclude our analysis, we illustrate our results on the of convergence
of the discrete controls. For that to be done, we take asenefercontrol the one
carefully computed for some large reference systemiize Using this accurately
computed control,,,, we compute the norm ofy — V.., for variousN < Nret.
The rate of convergence df towardsVy,,, should give a realistic estimate of the
convergence rate of the discrete controls towards the mamtis one. In log-log
scales, this yields Figufell5.

The linear interpolations of the obtained curves have slep®4 when control-
ling (0,y*) with y* as in Figuré€ I and slope0.34 when controllingy®, 0) with y°
as in Figuré_In.

The fact that, for(0,y!) with y* as in Figuré_I3, the rate is much better than the
expected rate-2/3 predicted by Theorein 20 comes from the fact that the initial
datum to be controlled0,y*), with y* as in Figurd_IB, lies not only i (0,1) x
L2(0,1) but in H§(0,1) x HS1(0,1) for all s < 3/2. This gain of ¥2~ derivative
with respect of the energy space explain the faster conmeggeate as we shall
explain below.
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Fig. 14 Discrete controls computed for the initial dat@y*) with y* as in Figur&B, for different
values ofN, under the CFL conditioAt = 0.5h, in time T = 4 and with a filtering parametgr= 1.
From left to right and top to bottonN = 50,N = 100,N = 150,N = 200N = 250 andN = 300.

Similarly, (y°,0) with y° as in FigurélL, lies not only ib?(0,1) x H=1(0, 1) but
also inH§(0,1) x H3%(0,1) for all s< 1/2, thus explaining why the controls seem
to converge with a rate of the order of3

In fact, the numerical approximations of the controls cagedo that of the limit
system with rates corresponding to the class of regulafith@initial data under
consideration. Actually, following the proofs df [36], ifi¢ initial data to be con-
trolled lye inH$(0,1) x H3%(0,1) for s€ (0,3/2) (above the valus = 3/2, more
compatibility boundary conditions are required), the @gence rate is of the order
of h®/3, This is completely consistent with the numerical simwlasi in Figuré 15
since the theory then predicts a convergence rate of dfd&for s= 1/2 and ofh
for s=3/2, to be compared with the rate834 andh'%4 found in Figurd_Ib. For
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Convergence of the discrete approach Convergence of the discrete approach

34 26 3.8 4 4.2 a4 46 48 5

Fig. 15 Graph of lod ||V —Vaoo||) as a function of logN) for N € (30,120): left, for the discrete
controls computed for the initial datu®,y*) with y* as in Figurd 1B, the linear interpolant has
slope —1.04; right, for the discrete controls computed for the imitatum (y°,0) with y° as in
Figure[11, the linear interpolant has slop8.34.

the proof of these more general convergence rates ressiiffides, in fact, to prove
the analogs of Theoreris]19320 in the spaces of the correisgpredjularity and
convergence rates.

7 Further Comments and Open Problems

7.1 Further Comments

1. Time-discrete and fully discrete approximations.In these notes, we have
addressed the problem of the convergence of the controlspface semidiscrete
approximations of the wave equation as the mesh-size goesrto But one can
go further and discretize in time these space semidiscpgi®aimations to obtain
fully discrete approximation schemes. This time-diseagton adds further spurious
high-frequency waves and, consequently, extra difficsittiethe fulfillment of the
observability inequalities. This is so since the time-thization process deforms
the spectrum and the dispersion relation of the system.

This added numerical dispersion effect has been studied precisely in[[31]
for abstract conservative systems (see alsol[107] for aysifid time discrete and
space continuous wave equation) using resolvent type as&ifil6 79, 88]. The in-
terest of the method developed there is that it completadpdgles the effects of the
space discretization process from the ones originating fite time discretization.
Again, the main results can be stated as follows: removiglg-fiequency solutions,
one can get uniform observability properties, where, heméprmity is referred to
space and time discretization parameters. Spurious waEsaaat frequencies of
the order of ¥(At), whereAt is the time discretization parameter ([31]). On the
other hand, the added filtering that the time-discretizaimcesses require can be
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avoided through suitable CFL type conditions on the spadetiare discretization
parameters. These results are sharp, as it has been sholieitlgxp [LO7].

However, the results if [31] do not provide any precise estgnon the time
needed to guarantee the uniform observability inequdihys is a drawback of the
method developed in [31], which is based on resolvent estisna

To overcome this drawback, more recently [in][36], we havestiped a dis-
crete transmutation technique, inspired on previous warkparticular by Miller
[80,[79], which establishes a connection between solutidriise time continuous
systems and the time-discrete ones. This approach yiefdEigestimates on the
time needed to guarantee uniform observability results.

The approach developed in Section 6.1 also applies in thtexoof fully discrete
schemes and also yields convergence results for the conds discrete controls
with explicit convergence rates based on the existing tesul the convergence of
the fully discrete systems towards the continuous one.

2. Other space discretization methodsn these notes, we have mainly consid-
ered the 1-d wave equation discretized using finite diffeesrand we have proved
that their observability and controllability propertieslto be uniform as the mesh-
size parameters tend to zero. This turns out to occur for maserical methods. In
particular, this is also the case for the finite element methee[[58], among others.

However, there are some schemes that enjoy uniform obsktywaiooperties,
but they seem to be very rare. This is the case for instancihéomixed finite el-
ement method [41, 17, 118,128]. For these schemes obsetyaditi controllability
properties are uniform, without any need of filtering, anel discrete controls con-
verge towards the continuous ones. But this discretizatiethod has an important
drawback: Its CFL type condition for stability has the foth < h?, whereAt is
the time discretization parameter. This is in contrast withabove methods which
only requireAt < h.

3. Stabilization and discretization. As already noticed in_[96], the theory of
stabilization and observation/control are strongly licke

This connection has been made even more precise_in [46],ishawat the
damped wave system

Zt — A2+ Xz =0 in Q,
z=0 on %, (189)
z(x,0) = 2(x),z(x,0) =Z'(x) in Q.

is exponentially stable, in the sense that there exist @anttdand a strictly positive
constantu > 0 such that for all initial datd2’,z!) € H3(Q) x L?(Q) and for all
t>0,

E(t) < Ce ME(0),

if and only if the wave systeni (64) is observable throagh
This result can be easily extended to an abstract frameywaokided the damp-
ing and control operators are bounded.
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In the context of stabilization of waves one often considersndary damping
operators. They turn out to be unbounded perturbationseottimservative semi-
group and, therefore, the equivalence of stabilizatiomefdamped system and the
observation of the conservative one does not apply. We tefé} for partial results
in that direction.

Going back to the problem of stabilization by distributednténg as above, and
in what concerns the numerical approximation issues, oderstanding of the lack
of observability for space semidiscrete systems (and fililgrete ones, see Com-
ment #1 above) suggests that similar pathologies may argénignthe decay prop-
erties of the corresponding semidiscrete or fully discsgtems not to be uniform.
That is indeed the case. As a by byproduct of the lack of umfobservability for
(&4), the apparently most natural discretizationg of [ #8@)not exponentially uni-
formly stable, see e.d. [99,181.190]. Again, this is due tdHiggquency phenomena
and spurious solutions coming from the numerical schemeégmconsideration.
One shall then add a numerical viscosity term everywherbendomain to damp
out efficiently these spurious waves. This is the idea thaibe&n developed ih [99]
for the 1 and 2-d wave equation and then later formalized iruammore general
form in [33,[34].

The possible use of two-grid filtering techniques to ensuiéoum decay prop-
erties is an interesting subject that requires furtheryeiml Of course, one of the
main difficulties is related to the fact that the property efrty of two-grid form is
not preserved along the dissipative dynamics.

4. Other models.Let us also point out that many control results exist for othe
type of models, such as Schrodinger equalfioh [67], bearatiu[89], where sim-
ilar ideas as the one presented above can be applied, evenatise, each case
presents some specificity and should be handled carefully.

The convergence properties of controls for discrete hezdtémns has also been
developed lately in([70, 61, 30] 8/ [9,110]. The later woiKs9Bare based on Car-
leman estimates for discrete elliptic operators, whictuiegimportant technical
developments.

7.2 Open Problems

Problem 1. Semilinear Wave EquationsWe have studied the convergence of
the discrete controls for linear wave equations, and we tleseribed the difficulties
encountered because of the spurious high-frequency sofutind how to remedy
them.

Of course, the same questions arise in the context of serailwave equations,
even with globally Lipschitz nonlinearities, a case that haen handled for instance
in [I13]. Most often the nonlinear problems are addressatd&gns of a fixed point
argument together with a careful analysis of the contropprties of the linearized
system. One of the main difficulties that appears when ddiagis to estimate the
dependence of the observability constants on(the-depending potentials of the
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linearized the equation. This can be handled using sidegrgegy estimates (but
this works only in 1-d), multipliers or Carleman estima{&89,[110[ 37,_26], thus
yielding various constraints on the growth of the non-litgaat infinity for the
controllability property to hold. This kind of results gaatees the controllability of
the nonlinear system for all initial data in an uniform time.

But one can relax the control problem, analyzing it locdty,small data. Local
results, together with exponential convergence onesddddy means of suitable
damping mechanisms, allow showing that, eventually, eietial data can be con-
trolled to zero but on a time that depends on the size of th@limata and that
may tend to infinity when the norm of the data tend to infinitpchl results can
be proved for nonlinearities growing at infinity in a supeglar manner. When us-
ing energy methods, however, one needs to impose growthtmorslat infinity.
More recently, using dispersive estimates (seél[2b, 24¢) ctass of nonlinearities
for which this kind of results holds has been extended to cthe range of non-
linearities that can be handled for the well-posednesseoCiduichy problem in the
energy space by means of Strichartz inequalities. We retbetsurvey articleé [108]
for a discussion of this issue.

The extension of the numerical analysis we have developegrasented in this
article to this semilinear setting is a widely open problém{115], the adaptation
of the two-grid technique to globally Lipschitz nonling&s is presented, together
with some open problems and directions of research.

There is also plenty to be done to adapt the numerical asatgshniques pre-
sented here to super-critical exponents since the theodjspérsive estimates for
linear discrete waves is also difficult matter in itself. Viééer to in [51/ 49, 50] for
the first results in that direction in the context of Schriiggr equations.

The same problems arise in the context of many other nonligBé&, for in-
stance: semilinear Schrodinger equations [62], KdV equat95], semilinear heat

equations[112, 26], etc.

Problem 2. Non-uniform meshes.In applications, one usually deals with non-
uniform meshes for finite element methods. But the Fouriaheis methods we
have developed here can not be applied in that setting. Rpspghaking, the only
existing result in this direction is the one presented inoFee I3 ([27]), ensuring
that, when filtering the high frequencies at the scale’h, uniform observability
holds. But on uniform meshes, the critical scale j$1.1An in depth analysis is
needed in order to explain what is the behavior of numerieades in this interme-
diate range for frequencies in betweeh/h and /h.

The issue is even open in 1-d. For instance, it would worthtifléng the class
of quasi-uniform meshes for which thétifiltering scale suffices.

In this context, the articlé [28] is worth mentioning: Theitehas been proved
that, for the mixed finite element method in 1-d on non-umfaneshes, uniform
observability properties hold under some mild restricsion the mesh. This is based
on the very nature of the mixed finite element discretizatubwch allows to com-
pute explicitly the spectrum of the discrete equations hed to apply Fourier anal-
ysis techniques.
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Note that this issue can also be related to the observapiliyerties of the wave
equation with variable coefficients in uniform meshes. Rerdontinuous 1-d wave
equation the assumption on the BV regularity of the coefiitsiés sharp (se€ [19]).
Adapting the numerical analysis results presented in thpepto that setting is a
challenging open problem.

Problem 3. Uniform control of the low frequencies.In [[77] it has been proved
that, in 1-d, for initial data having only a finite number ofuf@r components, the
discrete controls are uniformly bounded and converde-as0 towards the control
of the wave equation. This result has been proved using mopreblem tech-
nigues. The article [77] provides explicit estimates onlikerthogonal functions
depending both on the frequency and the mesh-size paransetdrin particular
yields uniform estimates in the case in which only a finite bemof frequencies
are involved. This analysis is limited by now to 1-d probleifise extension of this
result to multi-dimensional problems, even in the case efithit square observed
from two consecutive boundaries, is a challenging andéstarg open problem.

Problem 4. Wigner measuresin [[72,[73], Macia adapted Wigner measures to
study the propagation of the singularities of waves in ardigcsetting on uniform
meshes of the whole space (see Problem 2). Roughly spedkiagy sequence
of solutions of the discrete wave equation one associatesasume living on the
space and frequency variables that is constant along thatsaicteristic flow of the
Hamiltonian corresponding to the wave process under cergdidn. This Wigner
measure has some interesting features. In particular, wbesidering sequences
that weakly converge to zero I, the Wigner measure describes the possible lack
of strong convergence very accurately.

But this theory is still to be developed more completely tadie, for instance,
boundary conditions and non-uniform meshes or to adaptdtiemof polarization
introduced in[[15] to the discrete setting.

Problem 5. Numerical methods using randomnessWhen discretizing one
dimensional hyperbolic systems of conservation laws, are use the so-called
Glimm’s random choice method.

This idea, originally developed in [89], has even been usqatdve existence of
solutions for one dimensional hyperbolic systems.

A natural question then is the following one: Can we use Glismamdom choice
method to obtain convergent sequences of discrete cont8usfar, this issue is
widely open. The only contribution we are aware ofiis| [22],iethstates that, for
the corresponding discrete 1-d wave equation, with an Exgdrobability, uniform
observability holds. Here, excellent probability meanshva probability greater
than exg—C(T)(At/h)?/(At)), whereAt is the time discretization parameter, and
C(T) is a strictly positive constant whéin> 2.

But of course, this first result should be further developegarticular for con-
servation laws. Also, one could try to extend Glimm’s idehitgher dimensions and
derive numerical schemes for the 2-d wave equation with samaéom effects that
could help on the obtention of discrete observability préps.
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Problem 6. Inverse ProblemsThe literature on inverse problems for hyperbolic
equations is wide. We refer, for instance, to the works of ghéim and Klibanov
[13] and the books$ [12, 58, 56,159] (and the references thefai a presentation of
the state of the art in that field. For what concerns the amwstve equation, we
can also refer to the works df[86,152].

Roughly speaking, the problem is that of determining theprties of a medium
by making boundary measurements on the waves propagatitg in

To illustrate the kind of problems that arise in this field anéir intrinsic com-
plexity let us consider the example of the 1d wave equatiavhiich the velocity of
propagatiort is a positive unknown constant:

Ut —Cuyx=0, 0<x<1,0<t<T, u(0t)=u(Lt)=0 0<t<T. (190)

One could then consider the problem of determining the gl@out of boundary
measurements(1,t) fort € R.

In this continuous setting, using the time periodicity digions with time period
2/c, one could determine the value ©in terms of the periodicity of the boundary
measurement. But, of course, this cannot be applied in 8weate setting since the
discrete versions of (190) generate a lot of spurious hightfency waves that travel
at any velocity between 0 argl thus breaking down the periodicity properties of
continuous waves.

Hence, even on that simple example, the convergence of théoss of the
discrete inverse problems towards those of the continuoesi® not so obvious
and very unlikely to hold. Of course, on more intricate ex&@apthe situation will
become even worse. Generally speaking, the problem ofrapliscrete inverse
problems and passing to the limit as the mesh-size parateet#s to zero is widely
open.

Note that these questions are also of interest for what coadbe so-called
Calderon problem, which consists, in the elliptic settiog identifying the electri-
cal conductivity of a medium by the knowledge of the so-chlgrichlet to Neu-
mann map (or voltage to current map), see [103]. There atmiour knowledge,
convergence issues for numerical approximation schemesrtw been analyzed.

Problem 7. Unique continuation for discrete wavesFor the continuous wave
equation in a bounded domain, it is well-known that if theusioh vanishes in
some open subset during a certain amount of time (which slealarge enough
and depends on the whole geometry of thesethere the solution vanishes and
the domainQ where the equation holds), then the solution is identicaghp every-
where. For the constant coefficient wave equation this isrs@guence of Holm-
gren’s uniqueness theorem, se€ [48].

Such result is not true for the discrete wave equation, agplicé counterexam-
ple by O. Kavian shows (mentioned [n[114]): In the unit seyavhen discretizing
the Laplacian on a uniform grid using the usual 5-pointsdhdiifference discretiza-
tion, there exists a concentrated eigenvalue, alterndtatggeen 1 and-1 on the
diagonal, and taking the null value 0 outside. This corregigao the eigenvalue
4/h?, whereh is the mesh-size, hence to a very high eigenfunction. Ofseguhis
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makes the discrete version of the unique continuation ptg@dove to be false.
However, one could expect this uniqueness property to keewithin a class of
filtered solutions. This is indeed the case, as it has beemtiggroved in[[9].

But the same can be said about the quantitative versiongafrtiyueness theo-
rem above that are by now well known in the continuous sefseg among others,
[63,[93,94[85]). These results consist in weak observglgfitimates for the con-
tinuous wave equation when no geometric condition is fekill

When no geometric condition is fulfilled, such weak obseittitgtestimates for
discrete wave equations are so far completely unknown, leuéxpect this to be
reachable using suitable discrete versions of the Carleénemyualities, the prelim-
inary results by[[B] and the so-called Fourier-Bros-ladjaai transform([94, 85].

Problem 8. Waves on networksSeveral important applications require the un-
derstanding of the propagation of waves into networks, baut tontrol theoretical
properties. Even in the continuous setting, this questantricate since the propa-
gation of the waves in a network depend strongly on its genca¢tind topological
properties. In particular, when the network includes aeaiolop, some resonant
effects may appear. We refer {0 [23] (and to the referenceith) for a precise
description of the state of the art in this field, updated artbcent survey [11.6].

Hence, when discretizing these models, understandingtpapation, observa-
tion and control properties of discrete waves propagatenietworks, becomes a
complex topic that is widely open. Some preliminary reshése been obtained in
[11] on a star shaped network of three strings controllechftbe exterior nodes.
But there is still an important gap between the understandirthe observability
properties of the waves on networks in the discrete and moatis frameworks.

Problem 9. Hybrid parabolic/hyperbolic systems.In these notes we focused
on the classical wave equation and its semidiscrete appaiin schemes, but in
many applications the relevant models are much more complex

A classical example is given by the system of linear therastadity, whose null-
controllability properties have been derived/inl[65]. Téystem is composed of one
parabolic type equation coupled with an hyperbolic one6h] it is proved that the
system of linear thermoelasticity is null-controllableerhthe Geometric Control
Condition is satisfied, which of course comes from the hyplcinature of the
underlying wave equation.

When discretizing such equations, in view of the resultsetiged above, it
is natural to expect that the discrete controllability prdjes may fail to be uni-
form. But this should be discussed more precisely, becditbe coupling with the
parabolic component that may strongly influence the dynamic

Acknowledgements.When preparing the last version of this manuscript we
were supported by Alejandro Maas Jr., internship studesrhfthe Universidad
Técnica Federico Santa Maria (UTFSM), Chile, visitingA¢ for two months
early 2011. He made an important contribution to improvegots and also to run
the numerical experiments we present here. We express atituge to him for his
efficient and friendly help.



Waves, control and numerics 83

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. Ammari and M. Tucsnak. Stabilization of second ordesletion equations by a class of
unbounded feedback&SAIM Control Optim. Calc. Var6:361-386 (electronic), 2001.

M. Asch and G. Lebeau. Geometrical aspects of exact boydatrollability for the wave
equation—a numerical studyESAIM Control Optim. Calc. Var3:163-212 (electronic),
1998.

. D. Auroux and J. Blum. Back and forth nudging algorithm data assimilation problems.

C. R. Math. Acad. Sci. Parig40(12):873-878, 2005.

. G. A. Baker and J. H. Bramble. Semidiscrete and singlefsigpdiscrete approximations

for second order hyperbolic equatiof®AIRO Anal. Numér13(2):75-100, 1979.

. C. Bardos, F. Bourquin, and G. Lebeau. Calcul de désivéarmales et méthode de

Galerkin appliquée au probleme de contrdlabilité ésaC. R. Acad. Sci. Paris Sér. | Math.
313(11):757-760, 1991.

. C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient ¢onslifor the observation, control

and stabilization of waves from the bounda®yAM J. Control and Optim30(5):1024—-1065,
1992.

. T. Z. Boulmezaoud and J. M. Urquiza. On the eigenvalueshefspectral second order

differentiation operator and application to the bounddrgesvability of the wave equation.
J. Sci. Comput.31(3):307-345, 2007.

. F. Boyer, F. Hubert, and J. Le Rousseau. Discrete Carlesi@mates for elliptic operators

and uniform controllability of semi-discretized paraleadiquationsJ. Math. Pures Appl. (9)
93(3):240-276, 2010.

. F. Boyer, F. Hubert, and J. Le Rousseau. Discrete carlestanates for elliptic operators in

arbitrary dimension and application§IAM J. Control Optim.48:5357-5397, 2010.

F. Boyer, F. Hubert, and J. Le Rousseau. Uniform nullcdability properties for
space/time-discretized parabolic equatioiamer. Math, to appear.

U. Brauer and G. Leugering. On boundary observabilityreges for semi-discretizations
of a dynamic network of elastic string<ontrol Cybernet.28(3):421-447, 1999. Recent
advances in control of PDEs.

A. L. Bughgeim.Volterra equations and inverse problemisiverse and Ill-posed Problems
Series. VSP, Utrecht, 1999.

A. L. Bukhgeim and M. V. Klibanov. Uniqueness in the kg a class of multidimensional
inverse problemsDokl. Akad. Nauk SSSR60(2):269-272, 1981.

N. Burg and P. Gérard. Condition nécessaire et sufésaour la controlabilité exacte des
ondes.C. R. Acad. Sci. Paris Sér. | Matt825(7):749-752, 1997.

N. Burg and G. Lebeau. Mesures de défaut de compapipéication au systeme de Lamé.
Ann. SciEcole Norm. Sup. (484(6):817-870, 2001.

N. Burg and M. Zworski. Geometric control in the preseata black box.J. Amer. Math.
Soc, 17(2):443-471 (electronic), 2004.

C. Castro and S. Micu. Boundary controllability of a hlneemi-discrete 1-d wave equation
derived from a mixed finite element methddumer. Math, 102(3):413-462, 2006.

C. Castro, S. Micu, and A. Miinch. Numerical approximaf the boundary control for the
wave equation with mixed finite elements in a squakéA J. Numer. Anal.28(1):186-214,
2008.

C. Castro and E. Zuazua. Concentration and lack of ofisiity of waves in highly hetero-
geneous medidrch. Ration. Mech. Angl164(1):39-72, 2002.

N. Cindae, S. Micu, and M. Tucsnak. An approximationhoétfor exact controls of vibrat-
ing systems. Preprint, 2010.

G. C. Cohen. Higher-order numerical methods for transient wave equaio Scientific
Computation. Springer-Verlag, Berlin, 2002. With a fored/by R. Glowinski.

J.-M. Coron, S. Ervedoza, and O. Glass. Uniform obsdityabstimates for the 1-d dis-
cretized wave equation and the random choice meth@dmptes Rendus Mathematique
347(9-10):505 — 510, 2009.



84

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

Sylvain Ervedoza and Enrique Zuazua

R. Dager and E. ZuazudVave propagation, observation and controllifd flexible multi-
structures volume 50 ofMathématiques & Applications (Berlin)Springer-Verlag, Berlin,
2006.

B. Dehman and G. Lebeau. Analysis of the HUM control cjperand exact controllability
for semilinear waves in uniform timeésIAM J. Control and Optim48(2):521-550, 2009.

B. Dehman, G. Lebeau,,and E. Zuazua. Stabilization amlaidor the subcritical semilinear
wave equationAnn. SciEcole Norm. Sup. (486(4):525-551, 2003.

T. Duyckaerts, X. Zhang, and E. Zuazua. On the optimafithe observability inequalities
for parabolic and hyperbolic systems with potentialann. Inst. H. Poincaré Anal. Non
Linéaire, 25(1):1-41, 2008.

S. Ervedoza. Spectral conditions for admissibility ehdervability of wave systems: appli-
cations to finite element schemésumer. Math, 113(3):377-415, 2009.

S. Ervedoza. Observability properties of a semi-disci® wave equation derived from
a mixed finite element method on nonuniform mesheSAIM Control Optim. Calc. Var.
16(2):298-326, 2010.

S. Ervedoza. Admissibility and observability for Smiiriger systems: Applications to finite
element approximation schemessymptot. Ana).71(1-2):1-32, 2011.

S. Ervedoza and J. Valein. On the observability of abstime-discrete linear parabolic
equationsRev. Mat. Complut23(1):163-190, 2010.

S. Ervedoza, C. Zheng, and E. Zuazua. On the obseryatiliime-discrete conservative
linear systemsJ. Funct. Anal,. 254(12):3037-3078, June 2008.

S. Ervedoza and E. Zuazua. Analysis of the hum contralabpefor the computation of
exact controls for conservative systems. Work in progress.

S. Ervedoza and E. Zuazua. Uniform exponential decayi§mous damped systems. In
Advances in phase space analysis of partial differentiabgigns volume 78 ofProgr. Non-
linear Differential Equations Appl.pages 95-112. Birkhauser Boston Inc., Boston, MA,
2009.

S. Ervedoza and E. Zuazua. Uniformly exponentiallylstalpproximations for a class of
damped systemgl. Math. Pures App|.91:20-48, 2009.

S. Ervedoza and E. Zuazua. A systematic method for Ingilsinooth controls for smooth
data.Discrete Contin. Dyn. Syst. Ser, B4(4):1375-1401, 2010.

S. Ervedoza and E. Zuazu#&ropagation, observation and numerical approximations of
waves Book in preparation.

X. Fu, J. Yong, and X. Zhang. Exact controllability for ltdimensional semilinear hyper-
bolic equationsSIAM J. Control Optim.46(5):1578-1614 (electronic), 2007.

P. Gérard. Microlocal defect measur€amm. Partial Differential Equationd6(11):1761—
1794, 1991.

J. Glimm. Solutions in the large for nonlinear hyperbslystems of equation€omm. Pure
Appl. Math, 18:697-715, 1965.

R. Glowinski. Ensuring well-posedness by analogy: &agbroblem and boundary control
for the wave equation). Comput. Phys103(2):189-221, 1992.

R. Glowinski, W. Kinton, and M. F. Wheeler. A mixed finitéement formulation for
the boundary controllability of the wave equatiorinternat. J. Numer. Methods Engrg.
27(3):623-635, 1989.

R. Glowinski and C. H. Li. On the numerical implementatiof the Hilbert uniqueness
method for the exact boundary controllability of the waveiaepn. C. R. Acad. Sci. Paris
Seér. | Math, 311(2):135-142, 1990.

R. Glowinski, C. H. Li, and J.-L. Lions. A numerical appoh to the exact boundary con-
trollability of the wave equation. I. Dirichlet controlsescription of the numerical methods.
Japan J. Appl. Math.7(1):1-76, 1990.

R. Glowinski, J.-L. Lions, and J. Hé&xact and approximate controllability for distributed
parameter systemsolume 117 ofEncyclopedia of Mathematics and its Applicatio@am-
bridge University Press, Cambridge, 2008. A numerical aggin.

P. Grisvard. Controlabilité exacte des solutions'@gulation des ondes en présence de sin-
gularités.J. Math. Pures Appl. (9)68(2):215-259, 1989.



Waves, control and numerics 85

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

A. Haraux. Une remarque sur la stabilisation de certsyistemes du deuxieme ordre en
temps.Port. Math, 46(3):245-258, 1989.

L. F. Ho. Observabilite frontiere de I'equation desles.C. R. Acad. Sci. Paris Sér. | Math.
302(12):443-446, 1986.

L. Hormander.Linear partial differential operators Die Grundlehren der mathematischen
Wissenschaften, Bd. 116. Academic Press Inc., PublisNew, York, 1963.

L. I. Ignat and E. Zuazua. Dispersive properties of aodscnumerical scheme for the
Schrodinger equatiorC. R. Math. Acad. Sci. Pari840(7):529-534, 2005.

L. I. Ignat and E. Zuazua. A two-grid approximation sckefor nonlinear Schrodinger
equations: dispersive properties and converge@cdr. Math. Acad. Sci. Pari841(6):381—
386, 2005.

L. I. Ignat and E. Zuazua. Numerical dispersive scheroeghie nonlinear Schradinger
equation.SIAM J. Numer. Anal47(2):1366—1390, 2009.

0. Y. Imanuvilov and M. Yamamoto. Determination of a icégnt in an acoustic equation
with a single measuremenitaverse Problemsl9(1):157-171, 2003.

J.A. Infante and E. Zuazua. Boundary observability ierdpace semi discretizations of the
1-d wave equationMath. Model. Num. Ann33:407-438, 1999.

A. E. Ingham. Some trigonometrical inequalities witlplagations to the theory of series.
Math. Z, 41(1):367-379, 1936.

E. Isaacson and H. B. Kelleinalysis of numerical methoddohn Wiley & Sons Inc., New
York, 1966.

V. Isakov. Inverse problems for partial differential equatignslume 127 ofApplied Math-
ematical SciencesSpringer, New York, second edition, 2006.

J. Klamka.Controllability of dynamical systemsolume 48 ofMathematics and its Appli-
cations (East European Seriesjluwer Academic Publishers Group, Dordrecht, 1991.

M. V. Klibanov. Inverse problems and Carleman estimdte®rse Problems8(4):575-596,
1992.

M. V. Klibanov and A. Timonov.Carleman estimates for coefficient inverse problems and
numerical applicationsinverse and lll-posed Problems Series. VSP, Utrecht, 2004

V. Komornik. A new method of exact controllability in shdime and applicationsAnn.
Fac. Sci. Toulouse Math. (5)10(3):415-464, 1989.

S. Labbé and E. Trélat. Uniform controllability of seliscrete approximations of parabolic
control systemsSystems Control Lett55(7):597-609, 2006.

C. Laurent. Global controllability and stabilizaticor the nonlinear Schrodinger equation
on some compact manifolds of dimensionS3AM J. Math. Anal.42(2):785-832, 2010.

G. Lebeau. Contrdle analytique. I. Estimations a pribuke Math. J.68(1):1-30, 1992.

G. Lebeau and M. Nodet. Experimental study of the HUM imdmiperator for linear waves.
Experiment. Math.19(1):93-120, 2010.

G. Lebeau and E. Zuazua. Null-controllability of a systef linear thermoelasticityArch.
Rational Mech. Ana).141(4):297-329, 1998.

E. B. Lee and L. Markug-oundations of optimal control thearyRobert E. Krieger Publish-
ing Co. Inc., Melbourne, FL, second edition, 1986.

L. Lebn and E. Zuazua. Boundary controllability of theité-difference space semi-
discretizations of the beam equatioBSAIM Control Optim. Calc. Var8:827-862 (elec-
tronic), 2002. A tribute to J. L. Lions.

J.-L. Lions. Contrdlabilite exacte, Stabilisation et Perturbatiods Systemes Distribués.
Tome 1. Controlabilité exacteolume RMA 8. Masson, 1988.

J.-L. Lions. Exact controllability, stabilization amerturbations for distributed systems.
SIAM Rev.30(1):1-68, 1988.

A. Lopez and E. Zuazua. Some new results related to theantrollability of the 1-d heat
equation. InSéminaire sur leg€quations aux Dérivées Partielles, 1997-19p8ges Exp.
No. VIII, 22. Ecole Polytech., Palaiseau, 1998.

P. Loreti and M. Mehrenberger. An ingham type proof fove-grid observability theorem.
ESAIM: COCV 14(3):604-631, 2008.



86

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

Sylvain Ervedoza and Enrique Zuazua

F. Macia. The effect of group velocity in the numericadlysis of control problems for the
wave equation. IMathematical and numerical aspects of wave propagationA#$2003
pages 195-200. Springer, Berlin, 2003.

F. Macia. Wigner measures in the discrete setting:-frigliuency analysis of sampling and
reconstruction operatorSIAM J. Math. Anal.36(2):347—-383 (electronic), 2004.

F. Macia and E. Zuazua. On the lack of observability favevequations: a Gaussian beam
approach Asymptot. Ana).32(1):1-26, 2002.

A. Marica. Propagation and dispersive properties ferdiscontinuous Galerkin and higher
order finite element approximations of the wave and Schgiti equationsPh D Thesis,
Universidad Autbnoma de Madri@010.

A. Marica and E. Zuazua. Localized solutions for the didiifference semi-discretization of
the wave equatiorC. R. Math. Acad. Sci. Pari848(11-12):647-652, 2010.

S. Micu. Uniform boundary controllability of a semi-diste 1-D wave equationNumer.
Math., 91(4):723-768, 2002.

S. Micu and E. Zuazua. An introduction to the controligpof partial differential equations.
Collection Travaux en Cours Hermannin“Quelques questidashéorie du controle’pages
67-150, Sari, T., ed., 2005.

L. Miller. Controllability cost of conservative systsnresolvent condition and transmuta-
tion. J. Funct. Anal, 218(2):425-444, 2005.

L. Miller. The control transmutation method and the afdast controls.SIAM J. Control
Optim, 45(2):762—-772 (electronic), 2006.

A. Miinch and A. F. Pazoto. Uniform stabilization of acdss numerical approximation for
a locally damped wave equatio=eSAIM Control Optim. Calc. Varl13(2):265-293 (elec-
tronic), 2007.

M. Negreanu, A.-M. Matache, and C. Schwab. Wavelet ifiigefor exact controllability of
the wave equatiorSIAM J. Sci. Comput28(5):1851-1885 (electronic), 2006.

M. Negreanu and E. Zuazua. Convergence of a multigrithodefor the controllability of a
1-d wave equationC. R. Math. Acad. Sci. Pari838(5):413—-418, 2004.

A. Osses. A rotated multiplier applied to the contrdligbof waves, elasticity, and tangen-
tial Stokes controlSIAM J. Control Optim.40(3):777-800 (electronic), 2001.

K. D. Phung. Waves, damped wave and observation. In iEmTs, Yue-Jun Peng, and Bo-
Peng Rao, editorssome Problems on Nonlinear Hyperbolic Equations and Appbtas
Series in Contemporary Applied Mathematics CAM 15, 2010.

J.-P. Puel and M. Yamamoto. On a global estimate in arlimearse hyperbolic problem.
Inverse Problemsl2(6):995-1002, 1996.

J. V. Ralston. Solutions of the wave equation with Iazadi energy. Comm. Pure Appl.
Math., 22:807-823, 19609.

K. Ramdani, T. Takahashi, G. Tenenbaum, and M. Tucsnalspe&tral approach for the
exact observability of infinite-dimensional systems wikiew-adjoint generator.J. Funct.
Anal, 226(1):193-229, 2005.

K. Ramdani, T. Takahashi, and M. Tucsnak. Semi-disa#on en espace du probleme de
la stabilisation interne de I'equation des poutreSAIM: Proceedingsl8:48-56, 2007.

K. Ramdani, T. Takahashi, and M. Tucsnak. Uniformly ewgaially stable approxima-
tions for a class of second order evolution equations—aafitin to LQR problemsESAIM
Control Optim. Calc. Var.13(3):503-527, 2007.

J. Rauch. On convergence of the finite element methochéomeve equation.SIAM J.
Numer. Anal.22(2):245-249, 1985.

P.-A. Raviart and J.-M. Thomasintroduction a I'analyse numérique des équations aux
dérivées partielles Collection Mathématiques Appliquées pour la Maitriggollection of
Applied Mathematics for the Master's Degree]. Masson,24983.

L. Robbiano. Théoreme d'unicité adapté au coetdés solutions des problemes hyper-
boliqgues.Comm. Partial Differential Equationd6(4-5):789-800, 1991.

L. Robbiano. Fonction de colit et controle des solstites équations hyperboliquésymp-
totic Anal, 10(2):95-115, 1995.



Waves, control and numerics 87

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

L. Rosier and B.-Y. Zhang. Control and stabilization lué Korteweg-de Vries equation:
recent progresses. Syst. Sci. Complex2(4):647-682, 2009.

D. L. Russell. Controllability and stabilizability tbey for linear partial differential equa-
tions: recent progress and open questi@iaM Rev.20(4):639-739, 1978.

T. l. Seidman and J. Yong. How violent are fast contrdls®ath. Control Signals Systems
9(4):327-340, 1996.

E. D. Sontag. Mathematical control theoryvolume 6 of Texts in Applied Mathematics
Springer-Verlag, New York, second edition, 1998. Deteistia finite-dimensional systems.
L. R. Tcheugoué Tebou and E. Zuazua. Uniform boundatyilstation of the finite differ-
ence space discretization of thé wave equation.Adv. Comput. Math.26(1-3):337-365,
2007.

L.R. Tcheugoué Tébou and E. Zuazua. Uniform expdsleong time decay for the space
semi-discretization of a locally damped wave equation wiadificial numerical viscosity.
Numer. Math,.95(3):563-598, 2003.

L. N. Trefethen. Group velocity in finite difference eales. SIAM Rev. 24(2):113-136,
1982.

M. Tucsnak and G. Weis@bservation and Control for Operator Semigroupslume XI of
Birkauser Advanced TextSpringer, 2009.

G. Uhlmann. Developments in inverse problems sinceetah’s foundational paper. In
Harmonic analysis and partial differential equations (Cago, IL, 1996) Chicago Lectures
in Math., pages 295-345. Univ. Chicago Press, Chicago,9R91

R. Vichnevetsky and J. B. BowleBourier analysis of numerical approximations of hyper-
bolic equationsvolume 5 of SIAM Studies in Applied MathematicSIAM, Philadelphia,
PA., 1982. With a foreword by G. Birkhoff.

R. M. Young. An introduction to nonharmonic Fourier seriefAcademic Press Inc., San
Diego, CA, first edition, 2001.

X. Zhang. Explicit observability estimate for the wagation with potential and its appli-
cation.R. Soc. Lond. Proc. Ser. A Math. Phys. Eng.,2&6(1997):1101-1115, 2000.

X. Zhang, C. Zheng, and E. Zuazua. Exact controllgi®fithe time discrete wave equation.
Discrete and Continuous Dynamical Syste@307.

X. Zhang and E. Zuazua. Exact controllability of the sknear wave equation. In Prince-
ton University Press, editodnsolved problems in mathematical systems and controhyheo
pages 173-178, 2004.

E. Zuazua. Exact controllability for the semilineave@quation.J. Math. Pures Appl. (9)
69(1):1-31, 1990.

E. Zuazua. Exact controllability for semilinear wage&tions in one space dimensidmnn.
Inst. H. Poincaré Anal. Non Linéaird 0(1):109-129, 1993.

E. Zuazua. Boundary observability for the finite-défece space semi-discretizations of the
2-D wave equation in the squaré. Math. Pures Appl. (9)78(5):523-563, 1999.

E. Zuazua. Some results and open problems on the dahtlity of linear and semilinear
heat equations. I€arleman estimates and applications to uniqueness andataheory
(Cortona, 1999) volume 46 ofProgr. Nonlinear Differential Equations Applpages 191—
211. Birkhauser Boston, Boston, MA, 2001.

E. Zuazua. Controllability of partial differential wafions and its semi-discrete approxima-
tions. Discrete Contin. Dyn. Syst8(2):469-513, 2002. Current developments in partial
differential equations (Temuco, 1999).

E. Zuazua. Propagation, observation, and control eésvapproximated by finite difference
methods.SIAM Rev.47(2):197-243 (electronic), 2005.

E. Zuazua. Control and numerical approximation of tagenand heat equations. linter-
national Congress of Mathematicians. Vol., ljages 1389-1417. Eur. Math. Soc., Zirich,
2006.

E. Zuazua. Control and stabilization of waves erdinetworks. In B. Piccoli and M. Rascle,
editors, Traffic flow on networksCIME Subseries. Springer Verlag, to appear.



	The Wave Equation: Control and Numerics
	Sylvain Ervedoza and Enrique Zuazua
	Introduction
	Control and observation of finite-dimensional and abstract systems
	Control of Finite-Dimensional Systems
	Controllability and observability for abstract conservative systems
	Smoothness results for HUM controls

	The Constant Coefficient Wave Equation
	Problem Formulation: the 1-d case
	Observability for the 1-d wave equation
	Computing the boundary control
	The Multidimensional Wave Equation
	Smoothness properties

	1-d Finite Difference Semidiscretizations
	Orientation
	Finite Difference Approximations
	Nonuniform Observability
	Blow up of discrete controls
	Numerical experiments

	Remedies for High-Frequency Pathologies
	Fourier Filtering
	A Two-Grid Algorithm
	Tychonoff Regularization
	Space semidiscretizations of the 2D Wave Equations
	A more general result

	Convergence results
	A general procedure for the convergence of the discrete controls
	Controllability Results
	Numerical Experiments

	Further Comments and Open Problems
	Further Comments
	Open Problems

	References



