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Abstract. We study the positivity of solutions of a class of semi-linear parabolic systems
of stochastic partial differential equations by considering random approximations. For the
family of random approximations we derive explicit necessary and sufficient conditions such
that the solutions preserve positivity. These conditions imply the positivity of the solutions of
the stochastic system for both Itô’s and Stratonovich’s interpretation of stochastic differential
equations.

1. Introduction

We study the positivity of solutions of systems of semi-linear parabolic equations under sto-
chastic perturbations. The systems are of the form

dul(x, t) =
(
−

m∑
i=1

Ali(x,D)ui(x, t) + f l(x, t, u(x, t))
)
dt+

∞∑
i=1

qjg
l
j(x, t, u(x, t))dW j

t ,(1)

l = 1, . . . ,m, where x ∈ O, O ⊂ Rn is a bounded domain, and t > 0. The function u =

(u1, . . . , um) is a vector-valued, Ali are linear elliptic operators of second order, and the non-
linearity f = (f1, . . . , fm) takes values in Rm. Moreover, we assume that {W j

t , t ≥ 0}j∈N
is a family of independent standard scalar Wiener processes on the canonical Wiener space
(Ω,F ,P), and dW j

t denotes the corresponding Itô differential. The non-negative parameters
qj are normalization factors and the functions glj are real-valued, l = 1, . . . ,m, j ∈ N. The
boundary conditions are given by the operators (B1, . . . , Bm),

Bl(x,D)ul(x, t) = 0 x ∈ ∂O, t > 0, l = 1, . . . ,m,
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and the solution satisfies the initial conditions

ul(0, x) = ul0(x) x ∈ Ō, l = 1, . . . ,m.

We interpret the stochastic system in the sense of Itô, denote by (A, f, g) stochastic systems
of the form (1), and the corresponding unperturbed deterministic system by (A, f, 0). Our
aim is to derive explicit conditions on the coefficient functions of the operators Ali and the
functions f and g to ensure that the solutions of System (1) preserve positivity. The explicit
characterization is important as it allows to verify mathematical models arising in various
applications, where the solutions describe positive quantities (see [5]). In this case, that is, if
solutions emanating from non-negative initial data remain non-negative as long as they exist,
we say that the system satisfies the positivity property. To study the positivity of solutions
of the stochastic system we construct a family of random PDEs such that its solutions con-
verge in expectation to the solution of the stochastic system. We are in particular interested
in characterizing the class of stochastic perturbations g such that the family of random ap-
proximations satisfies the positivity property, which then implies the positivity of solutions of
the stochastic system. Moreover, we prove that the positivity is preserved for both, Itôs and
Stratonovich’s interpretation of stochastic differential equations (see [7]).
Applications that fall into the class of stochastic models (1) are for instance predator-prey
systems under stochastic perturbations. We give an example that was discussed in [2] (Section
5), further applications can be found in [3] (Section 6). The deterministic model is formulated
as reaction-diffusion system for the predator u and the prey v in a bounded spatial domain
O ⊂ R3, (

∂tu
∂tv

)
=

(
∆u
∆v

)
+D(u, v)

(
u
v

)
,

where the matrix D(u, v) is of the form

D(u, v) =

(
β1
(∣∣ v
u

∣∣) cβ2
(∣∣ v
u

∣∣)
0

[
γ − β2

(∣∣ v
u

∣∣)]) ,
and the solutions satisfy homogeneous Neumann boundary conditions. The constants c and
γ are positive, and the functions β1, β2 : R+ → R+ non-negative. It can be verified by our
deterministic positivity criterion (see Theorem 3 in Section 2.2) that the system preserves
positivity. The model includes a certain uncertainty since it is impossible to determine the
exact model parameters γ, β1 and β2 (see [2]). One possibility to take this into account is to
add noise, which leads to the following stochastic model(

∂tu
∂tv

)
=

(
∆u
∆v

)
+
[
D(u, v) + dWt Id

](u
v

)
,(2)

where Id denotes the identity matrix. Our main result (Theorem 5 in Section 3.2) implies
that the positivity of solutions is also preserved by the stochastic system (2), and this is valid
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independent of the choice of Itô’s or Stratonovich’s interpretation of stochastic differential
equations.
The outline of the paper is as follows: In the introductory sections we present our problem,
explain our strategy to study the positivity property of stochastic systems and formulate our
main result. We specify the class of deterministic systems in Section 2 and formulate necessary
and sufficient conditions for the positivity of solutions of semi-linear parabolic PDEs. The
positivity property of stochastic systems is analysed in Section 3. Our proof is based on the
deterministic result and essentially uses an approximation theorem for stochastic systems. This
random approximation theorem was obtained by Chueshov-Vuillermot in [3] and is recalled in
Subsection 3.1. Finally, in Subsection 3.2 we formulate and prove our positivity criterion for
stochastic systems.

1.1. Deterministic case. Random equations can be interpreted pathwise and allow to apply
deterministic methods. The random approximations lead to a family of non-autonomous par-
abolic systems. For autonomous deterministic systems of quasi-linear and semi-linear PDEs
necessary and sufficient conditions for the positivity of solutions were obtained in [5]. Gener-
alizing the results for non-autonomous deterministic systems of the form (A, f, 0) we deduce
the following criterion (see Theorem 3 in Section 2).

Theorem 1. Under appropriate conditions on the coefficient functions of the operators A and
B the deterministic system (A, f, 0) satisfies the positivity property if and only if the differential
operators are diagonal, and the components of the interaction function satisfy

f l(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) ≥ 0 for x ∈ O, t ≥ 0, uk ≥ 0, k, l = 1, . . . ,m.

This theorem yields explicit conditions on the coefficients of the differential operator A and the
interaction function f , which are easy to verify, and allows to validate mathematical models
(see [8], Section 4.3, p.76, and [5]). As a consequence, it suffices to consider stochastic systems
with diagonal differential operators

dul(x, t) =
(
−Al(x,D)ul(x, t) + f l(x, t, u(x, t))

)
dt+

∞∑
i=1

qjg
l
j(x, t, u(x, t))dW j

t ,(3)

l = 1, . . . ,m, where x ∈ O and t > 0. In the sequel we denote by (f, g) the system of SPDEs
(3) and the corresponding unperturbed deterministic system by (f, 0).

1.2. Stochastic case. To analyse the stochastic problem (f, g) with diagonal differential op-
erator A we use a Wong-Zakaï type approximation theorem, which was obtained by Chueshov-
Vuillermot in [3], and yields a family of random approximations (fε,ω, 0) for the stochastic
system. The solutions of the random approximations do not converge to the solution of the
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original system, but to the solution of a modified stochastic system. Hence, we first construct
in Section 3.2 an auxiliary stochastic system (F, g) such that the solutions of the correspond-
ing random approximations (Fε,ω, 0) converge to the solution of our original problem (f, g).
We apply the deterministic result to derive explicit necessary and sufficient conditions for the
positivity property of the random systems (Fε,ω, 0). Since these conditions are preserved by
the random approximations and are invariant under the transformation relating the original
and the modified system, our main result yields an explicit characterization of the stochastic
perturbations g and interaction functions f to ensure that the stochastic system (f, g) sat-
isfies the positivity property. Furthermore, the conditions for the positivity property of the
random PDEs are invariant under the transformation relating the equations obtained through
Itô’s and Stratonovich’s interpretation. Our main result, stated in the following theorem, is
therefore independent of the choice of interpretation:

Theorem 2. Let (f, g) be a system of stochastic PDEs of the form (3), which is interpreted
in the sense of Itô or Stratonovich. Then, the associated family of random approximations
(Fε,ω, 0) satisfies the positivity property if and only if the interaction term satisfies

f l(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) ≥ 0 x ∈ O, t ≥ 0, for uk ≥ 0,

and the stochastic perturbation g fulfils

glj(x, t, u
1, . . . , ul−1, 0, ul+1, . . . , um) = 0 x ∈ O, t ≥ 0, for uk ≥ 0,

for all j ∈ N and k, l = 1, . . . ,m. In this case, the stochastic system (f, g) satisfies the
positivity property.

Remark 1. Up to the author’s knowledge for systems of stochastic PDEs only sufficient
conditions for the positivity of solutions are known. Initially, we were hoping to obtain a
stronger result. Namely, that the stochastic system (f, g) satisfies the positivity property if and
only if the stochastic perturbation g and the interaction function f satisfy the conditions in
Theorem 2. P. Kotelenez proved this equivalence in [6] for scalar parabolic equations. His proof
is not based on random approximations. While the sufficiency of the conditions is formulated in
our theorem, showing the necessity is more involved since we cannot deduce the non-negativity
of solutions of the random approximations from the non-negativity of the solutions of the
stochastic system. Hence, we cannot directly apply the necessary conditions known in the
deterministic case.

2. The Deterministic Case - Necessary and Sufficient Conditions for

Positivity
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2.1. Semi-linear Systems of Parabolic PDEs. Necessary and sufficient conditions for
autonomous systems of semi-linear and quasi-linear reaction-diffusion-convection-equations
were studied in [5]. We cannot directly apply these results in our case since the Wong-
Zakaï approximations lead to a family of parabolic systems with time-dependent interaction
functions. In this section we formulate a generalization of one of the theorems in [5] allowing
for non-autonomous interaction functions and arbitrary linear elliptic differential operators of
second order. For its proof we refer to [4], which uses the same methods and ideas as applied
in the mentioned article.
To be more precise, we consider the following class of systems of semi-linear parabolic equations

∂tu
l(x, t) = −

m∑
i=1

Ali(x,D)ui(x, t) + f l(x, t, u(x, t)) x ∈ O, t > 0,(4)

where u = (u1, . . . , um) is a vector-valued function, and O ⊂ Rn, n ∈ N, is a bounded domain
with smooth boundary ∂O.

Assumptions on the operator A

The linear second order differential operators Ali(x,D) are defined as

Ali(x,D) = −
n∑

k,j=1

ailkj(x)∂xk∂xj +

n∑
k=1

ailk (x)∂xk for x ∈ O, i, l = 1, . . . ,m.

Compared to the setting in [3] we omit the zero-order terms in the operator A as for our
problem it seems more natural to absorb these terms in the interaction function f . We assume
that the coefficient functions satisfy ailkj = ailjk, and the operators are uniformly elliptic,

n∑
k,j=1

ailkj(x)ζkζj ≥ µ|ζ|2 for all x ∈ O, ζ ∈ Rn, i, l = 1, . . . ,m.

Moreover, all coefficient functions of the operatorA are continuously differentiable and bounded
in the domain O.

Assumptions on the boundary operators B

The boundary values of the solution are determined by the operators

Bl(x,D) = bl0(x) + δl
n∑
k=1

blk(x)∂xk l = 1, . . . ,m,

where δl ∈ {0, 1}. The functions blk, b
l
0 are smooth on the boundary ∂O and satisfy bl0 ≥ 0.

Moreover, we assume bl0 ≡ 1 for δl = 0, and bl = (bl1, . . . , b
l
m) is an outward pointing, nowhere

tangent vector-field on the boundary ∂O.
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Assumptions on the non-linear interaction term f

For the interaction function we assume that the partial derivatives ∂uf l exist and are continu-
ous, l = 1, . . . ,m. Moreover, we assume that for x ∈ O and t > 0 the functions f l = f l(x, t, u)

and ∂uf l = ∂uf
l(x, t, u) are bounded for bounded values of u.

2.2. A Positivity Criterion. To formulate our criterion for the positivity of solutions we
define the positive cone in L2(O;Rm).

Definition 1. The positive cone is the set of all componentwise non-negative functions in
L2(O;Rm),

K+ := {u ∈ L2(O;Rm) | ui ≥ 0 a.e. in O, i = 1, . . . ,m}.

Furthermore, we say that System (4) satisfies the positivity property if every solution
u( · , · ;u0) : O × [0, T ]→ Rm originating from non-negative initial data u0 ∈ K+ remains
non-negative (as long as it exists); that is, u( · , t;u0) ∈ K+ for t ∈ [0, T ]. Thereby, [0, T ]

denotes the maximal existence interval of the solution.

Our concern is not to study the existence of solutions but their qualitative behaviour. Hence,
in the sequel we assume that for any initial data u0 ∈ K+ there exists a unique solution,
and for t > 0 the solution satisfies L∞-estimates. The following theorem provides a criterion
for the positivity property of System (4) and generalizes the previous result for semi-linear
systems in [5].

Theorem 3. Let the operators A and B be defined as in the beginning of this section and
the above conditions on the coefficient functions of the operators and interaction functions be
satisfied. Moreover, we assume the initial data u0 ∈ K+ is smooth and fulfils the compatibil-
ity conditions. Then, System (4) satisfies the positivity property if and only if the matrices(
ailkj
)
1≤i,l≤m and

(
ailk
)
1≤i,l≤m are diagonal for all 1 ≤ j, k ≤ n, and the components of the

reaction term satisfy

f i(x, t, u1, . . . , 0︸︷︷︸
i

, . . . , um) ≥ 0, for x ∈ O, t > 0, uk ≥ 0, i, k = 1 . . .m.(5)

This theorem can be proved by extending the method applied in [5], for a detailed proof we
refer to the forthcoming article [4].
Consequently, it suffices to consider stochastic perturbations of systems of semi-linear PDEs
of the form (3). A Wong-Zakaï approximation theorem for such systems was obtained in [3].



ON THE POSITIVITY OF SOLUTIONS OF SYSTEMS OF STOCHASTIC PDES 7

3. The Stochastic Case - Necessary and Sufficient Conditions for the

Positivity of Random Approximations

We use a Wong-Zakaï-type approximation theorem and associate to a given stochastic system
(f, g) a suitable family of random approximations. The result of the previous section yields
necessary and sufficient conditions for the positivity property of the family of random PDEs.
Since the solutions of the random approximations converge in expectation to the solution of
the original problem, theses conditions ensure the positivity property of the stochastic system.

3.1. Wong-Zakaï Approximation and Random Systems of PDEs. E. Wong and M.
Zakaï ([10],[11]) studied the relation between ordinary and stochastic differential equations
and introduced a smooth approximation of the Brownian motion to approximate stochastic
integrals by ordinary integrals. Doing so, they obtain an approximation of the stochastic dif-
ferential equation by a family of random differential equations. However, when the smoothing
parameter tends to zero the random solutions do not converge to the solution of the original
stochastic differential equation, but a modified one. The appearing correction term is called
Wong-Zakaï correction term. The Wong-Zakaï approximation theorem has been generalized
in various directions. In this section, we briefly recall the main result by Chueshov-Vuillermot
in [3] about a Wong-Zakaï-type approximation theorem for a class of stochastic systems of
semi-linear parabolic PDEs, which is, in particular, applicable for the systems we consider.

Assumptions on the stochastic perturbations

We assume {W j
t , t ≥ 0}j∈N is a family of mutually independent standard scalar Wiener

processes on the canonical Wiener space (Ω,F ,P), and dW j
t denotes the corresponding Itô

differential. The non-negative parameters qj are normalization factors. Moreover, the func-
tions glj : O × [0, T ] × R → R are smooth and assumed to be bounded for bounded values of
the solution, where j ∈ N, l = 1, . . . ,m.

3.1.1. Smooth Predictable Approximation of the Wiener Process. A general notion of a smooth
predictable approximation of the Wiener process is defined by Chueshov and Vuillermot in
[3] (Definition 4.1, p.1440). In the following, we will take their main example as a definition
(Proposition 4.2, p.1441).
Let {Wt, t ≥ 0} be a standard scalar Wiener process on the probability space (Ω,F ,P) with
filtration {Ft, t ≥ 0}. The smooth predictable approximation of {Wt, t ≥ 0} is the family
of random processes {Wε(t), t ≥ 0}ε>0 defined by

Wε(t) =

∫ ∞
0

φε(t− τ)Wτdτ,
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where φε(t) = ε−1φ(t/ε), and φ(t) is a function with the properties

φ ∈ C1(R), suppφ ⊂ [0, 1],

∫ 1

0
φ(t)dt = 1.

We will need the following result ([3], p.1442), which states that the derivative of the smooth
predictable approximation Wε, denoted by Ẇε, can be written as a stochastic integral of the
form

Ẇε(t) =

∫ t

t−ε
φε(t− τ)dWτ , t ≥ ε.(6)

As a consequence, Ẇε is Gaussian, which will be fundamental in our proof.

3.1.2. Predictable Smoothing of Itô’s Problem and Random Systems. Using the previously
defined family of smooth predictable approximations {W j

ε (t), t ≥ 0}ε>0,j∈N of the Wiener
processes {W j

t , t ≥ 0}j∈N the predictable smoothing of Itô’s problem (3) is the family of
random equations

(7) dul(x, t) =
(
−Al(x, t,D)ul(x, t) + f l(x, t, u(x, t))

)
dt+

( ∞∑
j=1

qjgj(x, t, u(x, t))
˙
W j
ε (t)

)
dt,

where l = 1, . . . ,m. Using our notation, we are led to the following definition:

Definition 2. The smooth random approximation of the stochastic system (f, g) of
PDEs with respect to the smooth predictable approximation {Wε(t), t ≥ 0}ε>0 is the family of
random PDEs (fε,ω, 0), where

f lε,ω(x, t, u(x, t)) = f l(x, t, u(x, t)) +

∞∑
j=1

qjg
l
j(x, t, u(x, t))

˙
W j
ε (t) ε > 0.

3.1.3. A Wong-Zakaï Approximation Theorem. Following Chueshov and Vuillermot ([3], p.1436)
we consider mild solutions of the stochastic system of PDEs (f, g):
In the following definition the family {U(t), t ≥ 0} denotes the linear semigroup generated
by the operator A = (A1, . . . , Am) in L2(O;Rm) with domain

W 2,2
B (O;Rm) := {u ∈W 2,2(O;Rm) : Bu = 0}.

Here, B indicates the boundary operator and

W k,2(O) := {u ∈ L2(O) : Dαu ∈ L2(O) for all |α| ≤ k}.

Definition 3. A random function u(x, t, ω) = (u1(x, t, ω), . . . , um(x, t, ω)) is called a mild

solution of the stochastic problem (f, g) in the space V = W 1,2
B (O;Rm) on the interval [0, T ],

if u(t) = u(x, t, ω) ∈ C(0, T ;L2(Ω×O)) is a predictable process such that∫ T

0
E ‖ u(t) ‖2V dt <∞,
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and satisfies the integral equation

(8) u(t) = U(t)u0 +

∫ t

0
U(t− τ)f(τ, u(τ))dτ +

∞∑
j=1

qj

∫ t

0
U(t− τ)gj(τ, u(τ))dW j(τ, ω),

where we assume that all integrals in (8) exist.

For further details we refer to [3] and [1].

Definition 4. Let (f, g) be a stochastic system of PDEs and u be its mild solution. We say
that the mild solutions uε of a family of random PDEs (Fε,ω, 0) converge to the mild solution
of the stochastic system (f, g) if

lim
ε→0

∫ T

0
E ‖ u(t)− uε(t) ‖2W 1,2(O;Rm) dt = 0.

Thereby, the function uε is a mild solution of the family of random PDEs (Fε,ω, 0) if it satisfies
the integral equation

uε(t) = U(t)u0 +

∫ t

0
U(t− τ)Fε,ω(τ, uε(τ))dτ.

The main result of Chueshov and Vuillermot in [3] is the following (Theorem 4.3, p.1443):

Theorem 4. Assume that the stated assumptions on the operators A and B and the functions
f and g are satisfied. Moreover, let

∑∞
j=1 qj < ∞, the initial data u0 ∈ C2

B(O;Rm) be
F0-measurable and E‖u0‖rC2(O) < ∞ for some r > 8. We assume the associated system of
random PDEs (fε,ω, 0) has a mild solution uε belonging to the class C(0, T ;Lr(Ω, Xα,p)) for
all 0 ≤ α < 1 and p > 1, and for this solution there exists a constant C independent of ε such
that

sup
t∈[0,T ]

E ‖ uε ‖rLp(O)≤ C for all p > 1.

Then, the mild solutions uε converge to a solution ucor of the corrected stochastic system of
PDEs (fcor, g) when ε tends to zero, where

f lcor = f l +
1

2

∞∑
j=1

q2j

m∑
i=1

gij
∂glj
∂ui

for l = 1, . . .m.

The spaces Xα,,p in Theorem 4 denote the fractional power spaces associated to the operator
A. For further details we refer to [3].

3.2. A Positivity Criterion for Systems of Stochastic PDEs. Our aim is to study the
positivity property of the stochastic system (f, g) of the form (3). Hence, in the sequel we
assume that a unique solution of the stochastic initial value problem exists, and the solutions
of the random approximations converge to the solution of the modified stochastic system (cf.
Theorem 4). Sufficient conditions for the existence and uniqueness of solutions under even
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more general assumptions can be found in the article [3] (Section 3). Since the solutions of the
random approximations do not converge to the solution of the original system we construct
an auxiliary stochastic system as follows:

• Let (F, g) be a stochastic system of the form (3). The corresponding family of random
approximations (Fε,ω, 0), ε > 0, ω ∈ Ω is explicit, depends on the definition of the
smooth approximation Wε of the Wiener process {W (t), t ≥ 0}, and is given by

F lε,ω = F l +
∞∑
j=1

qjg
l
jẆ

j
ε l = 1, . . . ,m.

• Theorem 4 states that the solutions of the random systems converge in expectation to
the solution of the modified stochastic system (Fcor, g), where

F lcor = F l +
1

2

∞∑
j=1

q2j

m∑
i=1

gij
∂glj
∂ui

l = 1, . . . ,m.

• To analyse a given stochastic system (f, g) of the form (3) we therefore construct
an auxiliary system (F, g) (see Equation (9) below) such that the solutions of the
associated system of random PDEs (Fε,ω, 0) converge to the solutions of our original
system (f, g).
• We then use the deterministic positivity criterion to derive necessary and sufficient
conditions for the positivity property of the family of random approximations (Fε,ω, 0).
Finally, we show that this property is preserved by the transformation relating the
original system and the modified system and by passing to the limit when ε goes to
zero.

Let (f, g) be a given system of SPDEs. If we define the auxiliary stochastic system (F, g) by

(9) F l = f l − 1

2

∞∑
j=1

q2j

(
g1j
∂glj
∂u1

+ · · ·+ gmj
∂glj
um

)
l = 1, . . . ,m,

then, the solutions of the family of random PDEs (Fε,ω, 0) converge to the solution of the
original stochastic system (f, g).
Theorem 3 states that the deterministic system (f, 0) satisfies the positivity property if and
only if the the interaction term satisfies Condition (5) in Theorem 3. This motivates the
following definition.

Definition 5. We say that the function

f : O × R+ × Rm → Rm, f(x, t, u) = (f1(x, t, u), . . . , fm(x, t, u)),

satisfies the positivity condition if it satisfies Property (5).
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The next lemma will be essential for the proof of our main result.

Lemma 1. Let (f, g) be a given stochastic system of PDEs. We assume that the functions glj
are twice continuously differentiable with respect to uk and satisfy

glj(x, t, u
1, . . . , 0︸︷︷︸

l

, . . . , um) = 0 x ∈ O, t > 0, uk ≥ 0,(10)

for all j ∈ N and k, l = 1, . . . ,m. Then, the following statements are equivalent:

(a) The function f satisfies the positivity condition.
(b) The modified function F satisfies the positivity condition.
(c) The associated random functions Fε,ω satisfy the positivity condition for all ε > 0 and

ω ∈ Ω.

Proof. The proof is a simple computation. Let j ∈ N and 1 ≤ l ≤ m. Since glj is continuously
differentiable with respect to ul and satisfies glj(x, t, u

1, . . . , ul−1, 0, ul+1, . . . , um) = 0, we can
represent it in the form glj(x, t, u) = ulGlj(x, t, u) with a continuously differentiable function
Glj . We obtain for the sum appearing in the Wong-Zakaï correction term

m∑
i=1

gij
∂glj
∂ui

=
m∑
i=1

gij
∂(ulGlj)

∂ui
=
∑
i 6=l

giju
l
∂Glj
∂ui

+ glj
∂(ulGlj)

∂ul
,

which leads to an associated function F of the form

F l = f l − 1

2

∞∑
j=1

q2j

m∑
i=1

gij
∂glj
∂ui

= f l − 1

2

∞∑
j=1

q2j

∑
i 6=l

giju
l
∂Glj
∂ui

+ glj
∂(ulGlj)

∂ul

 .

Due to Assumption (10) we note that the modified function F satisfies the positivity condition
if and only if f satisfies the positivity condition since all correction terms vanish if ul = 0.
Finally, the associated system of random PDEs (Fε,ω, 0) is given by

F lε,ω = F l +
∞∑
j=1

qjg
l
j

˙
W j
ε .

Condition (10) therefore implies

F lε,ω(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um) = F l(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um) = f l(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um),

which concludes the proof of the lemma. �

Applying Lemma 1 we derive necessary and sufficient conditions for the positivity property of
the random approximations.

Theorem 5. Let (f, g) be a system of stochastic PDEs and (Fε,ω, 0) be the associated family of
random approximations. We assume that the functions glj are twice continuously differentiable
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with respect to uk, for all j ∈ N and k, l = 1, . . . ,m. Then, the family of random approx-
imations (Fε,ω, 0) satisfies the positivity property for all ω and (sufficiently small) ε > 0 if
and only if f satisfies the positivity condition and the stochastic perturbation g fulfils Property
(10). In this case, the stochastic system (f, g) satisfies the positivity property.

Proof. Sufficiency: By assumption, the function f satisfies the positivity condition. Since
the stochastic perturbation fulfils Property (10), Lemma 1 implies the positivity condition
for random functions Fε,ω, ω ∈ Ω, ε > 0. We now apply the deterministic positivity criterion
(Theorem 3) to conclude the non-negativity of the solutions of the random approximations.
Finally, the Wong-Zakaï approximation theorem states that the solutions of the random ap-
proximations (Fε,ω, 0) converge in expectation to the solution of the stochastic system (f, g),
which implies that the stochastic system (f, g) satisfies the positivity property.
Necessity: We assume the family of random PDEs (Fε,ω, 0) satisfies the positivity property.
By Theorem 3 this is equivalent to the positivity condition for the random functions F lε,ω; that
is,

F lε,ω(x, t, ũ) = F l(x, t, ũ) +

∞∑
j=1

qjg
l
j(x, t, ũ)

˙
W j
ε (t) ≥ 0 x ∈ O, t > 0,(11)

where ũ := (u1, . . . , 0︸︷︷︸
l

, . . . , um), uk ≥ 0, k, l = 1, . . . ,m. The derivative of the smooth

approximation Wε(t) of the Wiener process can be represented as the stochastic integral (6)
and takes arbitrary values. Assuming that the function glj(x, t, u

1, . . . , ul−1, 0, ul+1, . . . , um)

is not identically zero, then for sufficiently small ε > 0 we always find an ω ∈ Ω such that
the inequality (11) is violated. This proves the necessity of the condition on the stochas-
tic perturbation. If Property (10) holds, the positivity condition for the family of random
approximations is equivalent to the positivity condition for the function f by Lemma 1. �

The same result is valid if we apply Stratonovich’s interpretation of stochastic differential
equations. In other words, the positivity property of solutions of the stochastic system is
independent of the choice of interpretation, which was stated in Theorem 2 in the introduction.

Corollary 1. Let (f, g) be a system of stochastic (Itô) PDEs. We assume the hypothesis
of Theorem 5 are satisfied and the family of random approximations (Fε,ω, 0) satisfies the
positivity property. Then, the stochastic system (f, g)Strat obtained when we use Stratonovich’s
interpretation of the stochastic differential equations satisfies the positivity property.

Proof. The Wong-Zakaï correction term coincides with the transformation relating Ito’s and
Stratonovich’s interpretation of the stochastic system (see [9], Section 6.1). That is, the
solutions of the random approximations (fε,ω, 0) converge to the solution of the given stochastic
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system, when interpreted in the sense of Stratonovich. Hence, the corollary is an immediate
consequence of Theorem 5 and Lemma 1. �

The intuitive interpretation of the condition on the stochastic perturbation is the following:
In the critical case, when one component of the solution approaches zero, the stochastic
perturbation needs to vanish. Otherwise, the positivity of the solution cannot be guaranteed.
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