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Abstract

We examine necessary and sufficient conditions under which a continuous bilinear functional B on Lp(Rd)⊗E,
p > 1, E being a separable Banach space, can be continuously extended to a linear functional on Lp(Rd;E). The
extension enables a generalisation of the H-distribution concept, allowing us to obtain a (heterogeneous) velocity
averaging result in the Lp framework for any p > 1.

Résumé

Sur une extension d’une fonctionnelle bilinéaire sur Lp(Rd) ⊗ E aux espaces du Bochner avec une
application sur la moyennisation en vitesse Nous examinons des conditions nécessaires et suffisantes pour
qu’une fonctionelle bilinéaire continue sur Lp(Rd)⊗E, p > 1, E est un espace de Banach séparable, peut étendre
à une fonctionnelle linaire sur Lp(Rd;E). L’extension permet une généralisation de l’H-distributions, qui fournit
l’amélioration d’un résultat de (hétèrogène) moyennisation en vitesse sur le cadre Lp pour tout p > 1.

1. Introduction

Question of extension of a bilinear functional from a tensor product E ⊗ F of two Banach spaces to
a more complicated structure is classical in functional analysis. Probably the best known example is the
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Schwartz kernel theorem stating that a continuous bilinear functional B on C(X) ⊗ C(Y ), X ⊂ Rd,
Y ⊂ Rm, can be continuously extended to a distribution B ∈ D′(X × Y ).
Among many notable applications of the Schwartz kernel theorem, we mention H-measures [8,14] and

their variants ([2,11] and references therein). Roughly speaking, all of them measure loss of strong pre-
compactness of a sequence (un) converging weakly to zero in Lp(Rd) for an appropriate p ≥ 2.
An H-measure is initially defined as a bilinear functional on C0(R

d) ⊗ C(Sd−1) where Sd−1 is the
sphere in Rd. Thus, according to the Schwartz kernel theorem, it is a distribution from D′(Rd × Sd−1).
Since it can be proved that it is positively definite, according to the Schwartz lemma on non-negative
distributions, one can also state that it is a Radon measure on Rd × Sd−1.
In an extension (called H-distributions [3]) of the H-measure concept to Lp(Rd) sequences, p > 1, the

lack of positivity of appropriate bilinear functional restricts the analysis within the realm of Schwartz
distributions.
In [10,11] we investigated (heterogeneous) velocity averaging for equations of different types in the Lp

framework for p ≥ 2. More precisely, we considered a sequence of functions (un) weakly converging to
zero in the above space, and satisfying the following sequence of (fractional order partial differential)
equations

Pun(x,p) =
d∑
k=1

∂αk
xk

(ak(x,p)un(x,p)) = ∂κpGn(x,p) , (1)

where αk > 0 are real numbers, and ∂αk
xk

are (the Fourier) multiplier operators with the symbols (2πiξk)
αk ,

while ∂κp = ∂κ1
p1 . . . ∂

κm
pm for a multi-index κ = (κ1, . . . , κm) ∈ Nm.

It is well known that the sequence (un) does not necessarily converge strongly in Lploc(R
m+d) for any

p ≥ 1. Still, from the viewpoint of applications, it is often enough to analyse behaviour of the sequence of
the solutions averaged with respect to the velocity variable (

∫
Rm ρ(p)un(x,p)dp), ρ ∈ Cc(R

m) (see e.g.

[6,12]) which can be strongly precompact in Lploc(R
d) for an appropriate p ≥ 1 even when the sequence

(un(x,p)) is not. Such results are usually called velocity averaging lemmas (e.g. [1,7,13,15]).
As we saw in [11, Section 4] (see also sketch of the proof of Theorem 3.1 here), if the coefficients are

irregular in the sense that they belong to Lp space for an appropriate p > 1, the velocity averaging
problem naturally leads to a bilinear functional on Lp(Rd) ⊗ C(P), where P is an appropriate manifold
(non necessarily the sphere), and a problem of its extension to Lp(Rd; C(P)).
The main goal of the note is to find conditions under which it is possible to extend a continuous bilinear

functional on Lp(Rd)⊗ E, p > 1 and E being a Banach space, to a continuous functional on Lp(Rd;E)
(Section 2), and to apply it to the velocity averaging theory in order to generalise the results to the case
when solutions to (1) belong merely to Lp(Rd+m), p > 1 (Section 3).

2. Functional analytic tools

In this section we shall introduce analytical tools required to prove the velocity averaging result. We
start with the announced theorem on an extension of bilinear functionals on Lp(Rd)⊗ E.
Theorem 2.1 Let B be a continuous bilinear functional on Lp(Rd)⊗E, where E is a separable Banach
space and p ∈ 〈1,∞〉. Then B can be extended as a continuous functional on Lp(Rd;E) if and only if
there exists a (nonnegative) function b ∈ Lp

′
(Rd) such that for every ψ ∈ E and almost every x ∈ Rd, it

holds
|B̃ψ(x)| ≤ b(x)‖ψ‖E , (2)

where B̃ is a bounded linear operator E → Lp
′
(Rd) defined by 〈B̃ψ, ϕ〉 = B(ϕ,ψ), ϕ ∈ Lp(Rd).
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Proof: Let us assume that (2) holds. In order to prove that B can be extended as a linear functional
on Lp(Rd;E), it is enough to obtain an appropriate bound on the following dense subspace of Lp(Rd;E):

{
N∑
i=1

ψiχi(x) : ψi ∈ E,N ∈ N} , (3)

where χi are characteristic functions associated to mutually disjoint, finite measure sets.

For an arbitrary function φ =
N∑
i=1

ψiχi from (3), the bound follows easily once having noticed that

‖φ‖p
Lp(Rd;E)

=

∫
Rd

‖
N∑
i=1

ψiχi(x)‖pEdx =

∫
Rd

N∑
i=1

‖ψi‖pEχi(x)dx ,

In order to prove the opposite side of the implication, take a countable dense set of functions in the
unit sphere of E, and denote them by ψj , j ∈ N. For each function B̃ψj ∈ Lp

′
(Rd) denote by Dj the

corresponding set of Lebesgue points, and their intersection by D = ∩jDj .
For any x ∈ D and k ∈ N denote

bk(x) = max
1≤j≤k

B̃ψj(x) =
k∑
j=1

B̃ψj(x)χ
k
j (x)

where χkj0 is characteristic function of the set Xk
j0

of all points x ∈ D for which the above maximum

is achieved for j = j0. Furthermore, we can assume that for each k sets Xk
j are mutually disjoint. The

sequence (bk) is clearly monotonic sequence of positive functions, bounded in Lp
′
(Rd), whose limit (in

the same space) we denote by b. As D is a full measure set we have that for every ψj

|B̃ψj(x)| ≤ b(x), (a.e. x ∈ Rd).

The assertion now follows since (2) holds on the dense set of functions ψj , j ∈ N. 2

Next, we shall need multiplier operators with symbols defined on a manifold P determined by the order
of the derivatives from (1):

P = {ξ ∈ Rd :

d∑
k=1

|ξk|lαk = 1}.

where l is a minimal number such that lαk > d for each k. In order to associate an Lp multiplier to a
function defined on P, we extend it to Rd\{0} by means of the projection(

πP(ξ)
)
i
= ξi

(
ξlα1
1 + · · ·+ ξlαd

d

)−1/lαi

, i = 1, . . . , d, ξ ∈ Rd\{0}.

According to the choice of l, given manifolds are at least of class Cd which enables us to introduce an
appropriate variant of the H-distributions.
Theorem 2.2 Let (un) be a bounded sequence of functions in Ls(Rd+m), s ∈ 〈1, 2〉, with a common
compact support with respect to p ∈ Rm variable, and let (vn) be a bounded sequence of uniformly
compactly supported functions in L∞(Rm). Then, after passing to a subsequence (not relabelled), for any
s̄ ∈ 〈1, s〉 there exists a continuous bilinear functional B on Ls̄

′
(Rd+m) ⊗ Cd(P) such that for every

ϕ ∈ Ls̄
′
(Rd+m) and ψ ∈ Cd(P) it holds

B(ϕ,ψ) = lim
n→∞

∫
Rd+m

ϕ(x,p)un(x,p)
(
AψPvn

)
(x)dxdp , (4)

where AψP is the (Fourier) multiplier operator on Rd associated to ψ ◦ πP.
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Proof: According to the Marcinkiewicz multiplier theorem [9, Theorem 5.2.4] and the Hölder inequality,
we conclude that the right-hand side of (4) determines a sequence of bilinear mappings (Bn) uniformly
bounded by C‖ψ‖Cd(P)‖ϕ‖Ls̄′ (Rd+m) for a constant C independent of ψ or ϕ. The statement now follows

from [3, Lemma 3.2]. 2

According to the Schwartz kernel theorem, the functional B defined above can be extended as a distri-
bution from D′(Rd+m × P). However, by means of Theorem 2.1 we get a better result.
Corollary 2.3 The bilinear functional B defined in Theorem 2.2 can be extended as a continuous func-
tional on Ls̄

′
(Rd+m; Cd(P)).

3. Application to the velocity averaging

In this section, we consider a sequence of solutions un to (1), weakly converging to zero in Ls(Rd+m)
for some s > 1. Without loss of generality, we assume that (un) is uniformly compactly supported with
respect to p ∈ Rm. Furthermore, let us assume that coefficients entering the equation satisfy the following
conditions:
a) ak ∈ Ls̄

′
(Rd+m), for some s̄ ∈ 〈1, s〉, k = 1, . . . , d,

b) the sequence (Gn) is strongly precompact in the anisotropic space Lŝ
′
(Rm;W−α,ŝ′(Rd)), where

α = (α1, . . . , αd) and 1/s̄′ + 1/ŝ = 1/s′.
The following, velocity averaging result holds.

Theorem 3.1 Let A =
∑
k

(2πiξk)
αkak(x,p) be the principal symbol of the (pseudo-)differential operator

P in (1). Assume that

|A|2

|A|2 + δ
−→ 1 in Ls̄

′

loc(R
d+m; Cd(P)) (5)

strongly as δ → 0. Then, for any ρ ∈ Cc(R
m), the sequence

∫
Rm ρ(p)un(·,p)dp strongly converges to zero

in L1
loc(R

d).
Proof: Fix ρ ∈ C1

c (R
m) and χ ∈ L∞

c (Rd), and denote by V a weak ∗ L∞(Rd) limit along some
subsequence (not relabelled) of the sequence of functions

Vn =
χ(x)

∫
Rm ρ(q)un(x,q)dq∣∣∫

Rm ρ(q)un(x,q)dq
∣∣ .

Denote vn = Vn − V and remark that vn
∗
⇀ 0 in L∞(Rd).

The proof is accomplished by showing that the H-distribution B from Theorem 2.2 associated to the
sequences (un) and (vn) equals zero. By repeating the procedure from the beginning of [11, Section 4],
we conclude that it holds

〈fA,B〉 = 0, f ∈ Cc(R
d+m)⊗ Cd(P). (6)

According to Corollary 2.3, the distributionB can be tested on functions from the space Ls̄
′
(Rd+m; Cd(P)).

Thus for an arbitrary φ ∈ D(Rd+m × P) we can choose in (6) a test function of the form

f(x,p, ξ) =
φ(x,p, ξ)A(x,p, ξ)

|A(x,p, ξ)|2 + δ
,

for any fixed δ > 0. By passing to the limit in such obtained (6) and using (5), we conclude:

B = 0.
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In order to finish the proof, take in (4) test functions ψ = 1 and ϕ(x,p) = χ(x)ρ(p) for the previously
chosen ρ and χ. Since B = 0, from the definition of the sequence (vn) (keep also in mind that un ⇀ 0 in
Ls(Rd+m)), it follows

lim
n→∞

∫
Rd

χ2(x)
∣∣∣( ∫

Rm

ρ(p)un(x,p)dp
)∣∣∣dx = 0,

which concludes the proof (due to arbitrariness of ρ and χ). 2

A special case of conditions (5) are the following non-degeneracy conditions:
For Uδ = {(x,p) : A2(x, ξ,p) > δ, ξ ∈ P} and every compact set K ⊂ Rd+m the measure of K\Uδ

goes to 0 when δ → 0.
It is not difficult to see that given non-degeneracy conditions are satisfied for elliptic and parabolic

equations, but also fractional convection-diffusion equations [5], and parabolic equations with a fractional
time derivative [4] which degenerate on a set of measure zero .
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