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Abstract. We construct exponential pullback attractors for time continuous asymptotically
compact evolution processes in Banach spaces and derive estimates on the fractal dimension
of the attractors. We also discuss the corresponding results for autonomous processes.

1. Introduction

The study of the longtime dynamics of semigroups acting in infinite dimensional spaces
can often be reduced to the study of the dynamics on the global attractor. It is a strictly
invariant compact subset, which attracts all bounded subsets of the phase space. To be more
precise, let T (t) : X → X, t ≥ 0, be operators in a metric space (X, dX). We call the family
{T (t)| t ≥ 0} a semigroup in X if it satisfies the properties

T (t) ◦ T (s) = T (t+ s), t, s ≥ 0,

T (0) = Id, and

R+ ×X 3 (t, x) 7→ T (t)x ∈ X is continuous,

where Id denotes the identity operator in X. The subset A ⊂ X is the global attractor for
the semigroup {T (t)| t ≥ 0} if A 6= ∅ is compact, strictly invariant, that is T (t)A = A for all
t ≥ 0, and for every bounded subset D ⊂ X

lim
t→∞

distH(T (t)D,A) = 0.

Here, distH(·, ·) is the Hausdorff semidistance in X; that is, distH(A,B) = sup
a∈A

inf
b∈B

dX(a, b).

The global attractor is unique, minimal within the family of closed subsets that attract all
bounded sets and the maximal bounded invariant subset of the phase space. In most cases
the fractal dimension of the global attractor is finite. The rate of convergence however can be
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arbitrarily slow and the global attractor is in general sensitive to perturbations. Due to these
drawbacks the notion of an exponential attractor was introduced in [6] proposing to consider a
larger set, which is still finite dimensional and attracts all bounded subsets at an exponential
rate. This concept requires to weaken the invariance property of the attracting set.

Definition 1. We call M ⊂ X an exponential attractor for the semigroup {T (t)| t ≥ 0}
if M 6= ∅ is compact, of finite fractal dimension dimf(M) < ∞, semi-invariant, that is
T (t)M⊂M for all t ≥ 0, and for every bounded subset D ⊂ X there exists a constant ω > 0

such that

lim
t→∞

eωtdistH(T (t)D,A) = 0,

where dimf(A) = lim sup
ε→0

log 1
ε
NX
ε (A), and NX

ε (A) denotes the minimal number of ε-balls in

the space X with centers in A needed to cover the subset A ⊂ X.

Thanks to the exponential rate of attraction exponential attractors are more robust under
perturbations than the global attractor. Furthermore, if a semigroup possesses an exponential
attractor, the global attractor is contained in the exponential attractor, which immediately
implies its existence and finite-dimensionality. However, exponential attractors are only semi-
invariant under the action of the semigroup and consequently not unique. Indeed, ifM is an
exponential attractor then T (t)M yields an exponential attractor for the semigroup, for each
t ≥ 0.

The existence proof and method for the construction of the exponential attractor in [6] is
non-constructive, applicable for semigroups acting in Hilbert spaces and based on the squeez-
ing property of the semigroup. In [7] an alternative method and explicit algorithm for the
construction of exponential attractors was developed for discrete semigroups acting in Banach
spaces. It is based on the compact embedding of the phase space into an auxiliary normed
space and uses the regularizing or smoothing property of the semigroup. The rate of conver-
gence and the bound on the fractal dimension of the exponential attractor can explicitly be
estimated in terms of the entropy properties of this embedding.

While the notion of attractors in the autonomous setting is well established and well under-
stood, its counterpart for non-autonomous evolution equations is not as well established and
less understood. In non-autonomous problems the rule of evolution from the instant s to the
instant t ≥ s depends not only on the elapsed time t− s as in the autonomous case, but also
on the starting time s. The rules of evolution in the non-autonomous setting are dictated by
what is called an evolution process.
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Definition 2. The two-parameter family {U(t, s)| t, s ∈ R, t ≥ s} of continuous operators
from X into itself is called an evolution process in X if it satisfies the properties

U(t, s) ◦ U(s, r) = U(t, r), t ≥ s ≥ r

U(t, t) = Id, t ∈ R and

T ×X 3 (t, s, x) 7→ U(t, s)x ∈ X, is continuous,

where T := {(t, s) ∈ R× R| t ≥ s}.

Evolution processes extend the definition of semigroups. Indeed, if {T (t)| t ≥ 0} is a
semigroup, then U(t, s) = T (t − s) is an autonomous evolution process. There are different
approaches to generalize the notion of global attractors of semigroups to non-autonomous
evolution processes (cf. [1], [3], [4]). In our work we use the notion of so-called pullback
attractors (or kernel sections in [4]).

Remark 1. We will reserve the letter T (the letter U) to denote the semigroup (the evolution
process) under consideration. When we need to decompose the semigroup {T (t)| t ≥ 0} (the
evolution process {U(t, s)| t ≥ s}) as a sum of two operators, we will always write T (t) =

S(t) + C(t) (U(t, s) = S(t, s) + C(t, s)).

Definition 3. The family of nonempty subsets {A(t)| t ∈ R} of X is called a global pullback

attractor for the process {U(t, s)| t ≥ s} if A(t) is compact for all t ∈ R, the family
{A(t)| t ∈ R} is strictly invariant, that is

U(t, s)A(s) = A(t) for all t ≥ s,

it pullback attracts all bounded subsets of X, that is for every bounded D ⊂ X and t ∈ R

lim
s→∞

distH(U(t, t− s)D,A(t)) = 0,

and the family is minimal within the families of closed subsets that pullback attract all bounded
subsets of X.

Comparing with the notion of global attractors of semigroups the minimality is an addi-
tional property needed to ensure uniqueness of the pullback attractor, since non-autonomous
invariance is a weaker concept than the invariance of a fixed set in the autonomous case. If
we replace the pullback attraction in the above definition by the forwards convergence; that
is, for every bounded set D ⊂ X and t ∈ R

lim
s→∞

distH(U(t+ s, t)D,A(t+ s)) = 0,

we call the family {A(t)| t ∈ R} a forwards attractor for the process {U(t, s)| t ≥ s}. If
the pullback (forwards) convergence to the attractor holds uniformly in t ∈ R, it implies the
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forwards (pullback) convergence, and the attractors coincide. However, these concepts are not
related in general (cf. [3]).

The construction of exponential attractors for discrete semigroups in [7] was further de-
veloped in [8] and also extended to non-autonomous problems using the concept of forwards
attractors. An explicit algorithm for discrete evolution processes was presented and in an
application to non-autonomous reaction-diffusion systems also an exponential attractor of the
generated time continuous process was constructed. Based on these results the construction
has recently been modified considering the pullback approach, and the algorithm has been ex-
tended to time continuous evolution processes in [5] and [10]. Applying the pullback approach
and generalizing the concept of exponential attractors for evolution processes we obtain the
following definition (cf. [5] and [8]).

Definition 4. Let {U(t, s)| t ≥ s} be an evolution process in a metric space X. We call the
familyM = {M(t)| t ∈ R} a pullback exponential attractor for the evolution process

{U(t, s)| t ≥ s} in X if

(i) the subsetsM(t) ⊂ X are non-empty and compact in X for all t ∈ R,
(ii) the family is positively semi-invariant, that is

U(t, s)M(s) ⊂M(t) for all t ≥ s,

(iii) the fractal dimension in X of the sectionsM(t), t ∈ R, is uniformly bounded and
(iv) the family {M(t)| t ∈ R} exponentially pullback attracts bounded subsets of X; that is,

there exists a positive constant ω > 0 such that for every bounded subset D ⊂ X and
t ∈ R

lim
s→∞

eωsdistH(U(t, t− s)D,M(t)) = 0.

The constructions in [5] and [10] are similar, require strong regularity assumptions on the
process and restrictive assumptions with respect to the pullback attraction. Based on these
articles we propose a different construction for time continuous evolution processes and gen-
eralize the results to asymptotically compact processes. In particular, we show the existence
of a pullback exponential attractor under significantly weaker hypothesis and obtain better
estimates for the fractal dimension of the sections A(t) of the pullback attractor. The con-
structions in [5] and [10] are based on the existence of a fixed bounded pullback absorbing set.
This allows the pullback attractor to be unbounded in the future, but it is always bounded
in the past. Instead of a fixed bounded absorbing set we consider a family of time-dependent
absorbing sets, which can even grow in the past, and obtain an exponential pullback attractor
with sections, that are not necessarily uniformly bounded in the past. If the pullback expo-
nential attractor exists, it contains the global pullback attractor and immediately implies its
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existence and the finite dimensionality of its sections. Existence proofs for global pullback
attractors of asymptotically compact processes often require the boundedness of the global
pullback attractor in the past (cf. [1]), and the finite dimensionality of global pullback at-
tractors that are not uniformly bounded in the past has been an open problem (see [10] or
Remark 3.2 in [11]). Hence, our main theorem also yields existence results for global pullback
attractors, that are possibly unbounded in the past, and implies their finite fractal dimension.

The outline of our paper is as follows. For convenience of the reader in Section 2 we
summarize some known results about the existence of pullback attractors and the construction
of exponential attractors for evolution processes.

In Section 3.1 we present the construction of an exponential pullback attractor for discrete
evolution processes. The method is based on the results in [5], [8] and [10], but generalizes
the construction for asymptotically compact processes. Moreover, instead of a fixed pullback
absorbing set we consider a time-dependent family of absorbing sets, which can grow in the
past.

We then propose an alternative construction for time continuous processes in Section 3.2.
Our method does not require the strong regularity properties in time of the process as in [5]
and [10], which are typical for parabolic problems. It yields better estimates for the fractal
dimension of the sections of the attractor and is applicable for a larger class of evolution
problems. If the conditions in the cited articles are satisfied our pullback exponential attractor
is contained in the pullback exponential attractor constructed in [5] and [10].

We also formulate the corresponding corollaries in the autonomous case, that is for semi-
groups. The results in the discrete case generalize the results in [2], [5], [7] and [8]. The
invariance of sets in the non-autonomous setting is a strictly weaker concept than the invari-
ance of a fixed set under the action of a semigroup. Our main result applied to time continuous
semigroups does not yield an exponential attractor in the usual sense, the attractor lacks the
property of semi-invariance. In [5] and [10] the union over a certain time interval of the image
of the discrete attractor is taken to construct the exponential attractor for continuous time
processes. Applied to autonomous evolution processes the construction yields an exponential
attractor for the semigroup, which is semi-invariant. However, to ensure the finite dimen-
sionality of the sections it requires strong regularity in time of the process and leads to an
artificial increase in the dimension estimates for the continuous attractor, when compared
to the discrete attractor. We suggest to weaken the semi-invariance property and introduce
the notion of exponential pullback attractors for time continuous semigroups. Exponential
pullback attractors exist under weaker hypothesis and satisfy the same dimension estimates
as exponential attractors of the associated discrete semigroup.
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In the final stage of our work we became aware that a similar construction for time-
continuous exponential attractors was developed in [9] based on the concept of forwards
attractors. However, the setting is different, the process is asymptotically compact in the
weaker space, and the construction is based on the existence of a fixed bounded absorbing set
for the process. The aim in this article was not to show the existence of forwards attractors in
general but to construct exponential forwards attractors if the uniform attractor (or kernel of
the process, cf. [4]) exists. The stated hypothesis immediately imply the boundedness of the
exponential forwards attractor and the existence and boundedness of the pullback attractor.

The unboundedness of pullback attractors is essential when considering unbounded non-
autonomous terms in the equation or random attractors. In a forthcoming paper we apply
our abstract results to an initial value problem for a non-autonomous Chaffee-Infante equation
and an evolution process generated by a non-linear damped wave equation.

2. Existence of Pullback Attractors and the Pullback Exponential

Attractor Constructed in [5] and [10]

2.1. Global Pullback Attractors. Let X be a metric space and {U(t, s)| t ≥ s} be an
evolution process in X as defined in the introduction. The following theorem characterizes
the evolution processes possessing a global pullback attractor (see [1]).

Theorem 1. Let {U(t, s)| t ≥ s} be an evolution process in a complete metric space X. Then,
the following statements are equivalent:

(a) The evolution process {U(t, s)| t ≥ s} possesses a global pullback attractor.
(b) There exists a family of compact subsets {K(t)| t ∈ R} of X such that for all t ∈ R

the set K(t) pullback attracts all bounded subsets of X at time t.

Furthermore, the pullback global attractor is given by

A(t) =
⋃

D ⊂ X
bdd

ω(D, t),

where ω(D, t) denotes the pullback ω-limit set of D ⊂ X at time instant t ∈ R.

The pullback ω-limit set of D ⊂ X at time instant t ∈ R is defined as

ω(D, t) :=
⋂
r≥0

⋃
s≥r

U(t, t− s)D.

Note that by Theorem 1 the existence of a pullback exponential attractor immediately implies
the existence of the global pullback attractor, which is contained in the pullback exponential
attractor and possesses finite dimensional sections.



PULLBACK EXPONENTIAL ATTRACTORS 7

To show the existence of global (pullback) attractors in applications one generally derives
a-priori estimates to prove the existence of a bounded absorbing set. For evolution processes,
which are not eventually compact, it is then generally difficult to apply Theorem 1 directly.
To conclude the existence of the global pullback attractor in problems with asymptotically
compact processes it is often shown that the process satisfies a stronger pullback absorbing
property (cf. [1]).

Definition 5. Let {U(t, s)| t ≥ s} be an evolution process in a metric space X. A family
of bounded subsets {B(t)| t ∈ R} is said to be strongly pullback absorbing all bounded

subsets of X, if for all bounded D ⊂ X and s ≤ t there exits TD,s ≥ 0 such that

U(s, s− r)D ⊂ B(t) for all r ≥ TD,s.

Processes possessing a family of bounded strongly pullback absorbing subsets are called pullback

strongly bounded dissipative.

In other words, at a given time t ∈ R the absorbing set B(t) is also a pullback absorbing set
for all earlier times s ≤ t. Processes that are pullback asymptotically compact and pullback
strongly bounded dissipative possess a global pullback attractor (see [1]).

Definition 6. An evolution process {U(t, s)| t ≥ s} in a metric space X is called pullback

asymptotically compact if for every t ∈ R, every sequence {sn}n∈N, sn ≥ 0, and bounded
sequence {xn}n∈N ⊂ X such that

lim
n→∞

sn =∞ and {S(t, t− sn)xn| n ∈ N} is bounded

the sequence {S(t, t− sn)xn}n∈N has a convergent subsequence.

Theorem 2. Let {U(t, s)| t ≥ s} be an evolution process in a complete metric space X that
is pullback asymptotically compact. If there exists a family {B(t)| t ∈ R} of bounded sets that
strongly pullback absorb all bounded subsets of X, then there exists the global pullback attractor
{A(t)| t ∈ R}. Moreover,

⋃
s≤tA(s) is bounded for all t ∈ R and the global pullback attractor

is given by

A(t) = ω(B(t), t).

This theorem extends the respective result for semigroups (cf. Theorem 1.1, Chapter 1
in [13]). The global pullback attractor of strongly bounded dissipative processes however, is
always bounded in the past. To be more precise, for every t ∈ R the union⋃

s≤t
A(s)

is bounded.
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2.2. Exponential Pullback Attractors. In the sequel we shortly summarize the results
in [5] and [10], where pullback exponential attractors for time continuous processes, which
satisfy a certain smoothing property, were constructed. We assume {U(t, s)| t ≥ s} is an
evolution process in V and the phase space (V, ‖ · ‖V ) is a Banach space. The construction
of the exponential attractor is based on the compact embedding of the phase space into an
auxiliary normed space.

(H0) We assume (W, ‖ · ‖W ) is another normed space such that the embedding V ↪→↪→ W

is compact and

‖v‖W ≤ µ‖v‖V for all v ∈ V,

where the constant µ > 0.

Moreover, it was assumed that the process is strongly bounded dissipative. To be more precise,
for some t0 ∈ R the following assumptions were made:

(H1) For the process {U(t, s)| t ≥ s} there exists a bounded set B ⊂ V , that uniformly
pullback absorbs all bounded subsets of V for all t ≤ t0: For all bounded subsets
D ⊂ V there exists TD ≥ 0 such that⋃

t≤t0

U(t, t− s)D ⊂ B for all s ≥ TD.

(H2) The evolution process {U(t, s)| t ≥ s} satisfies within the absorbing set the following
smoothing property

‖U(t, t− TB)u− U(t, t− TB)v‖V ≤ κ‖u− v‖W for all u, v ∈ B, t ≤ t0,

where TB denotes the absorbing time in (H1) corresponding to the absorbing set B.
(H3) The evolution process {U(t, s)| t ≥ s} is Lipschitz continuous: For every t ∈ R and

s ≤ t exists a constant Lt,s ≥ 0 such that

‖U(t, s)u− U(t, s)v‖V ≤ Lt,s‖u− v‖V for all u, v ∈ B.

(H4) The evolution process is Hölder continuous in time: There exist constants λ1, λ2 > 0

and exponents 0 < θ1, θ2 ≤ 1 such that

sup
t≤t0
‖U(t, t− TB)u− U(t− s, t− s− TB)u‖W ≤ λ1sθ1 for all s ∈ [0, TB], u ∈ B,

sup
t≤t0
‖U(t, t− s1)u− U(t, t− s2)u‖W ≤ λ2|s1 − s2|θ2 for all s1, s2 ∈ [TB, 2TB], u ∈ B.

Remark 2.

• Hypothesis (H1) not only implies that the process is pullback strongly bounded dissi-
pative, but also that the absorbing time corresponding to a bounded subset D ⊂ V is
independent of the time instant t ≤ t0. We generalize these uniform assumptions in
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the next section. The pullback exponential attractor may be unbounded in the future,
but it is always bounded in the past, which in turn implies the boundedness of the global
pullback attractor. Indeed, for every t ∈ R, the union

⋃
s≤t
A(t) ⊂

⋃
s≤t
M(t)

is bounded.
• The smoothing property (H2) implies the (eventual) compactness of the evolution pro-
cess in V . Moreover, by Theorem 2 the global pullback attractor exists and for all
t ≤ t0

A(t) = ω(B, t).

• The Hölder continuity in time of the process was needed for the construction of the time
continuous attractor and is typical for parabolic problems. It is a restrictive assumption
and generally not satisfied, for instance for hyperbolic equations. Moreover, to apply the
result to hyperbolic problems requires the extension of the construction to asymptotically
compact processes.
• The assumptions (H0) − (H4) are taken from [5]. In [10] the hypothesis are similar,
but less general (for instance, the process is assumed to be Hölder continuous in the
metric of V ).
• The absorbing time TB, the smoothing time in (H2) and the interval, where the pro-
cess is Hölder continuous coincide. This is not necessary for the construction of the
exponential attractor (cf. Section 3).

For further details and the proof of the following result, see [5] and [10]. In the sequel we
denote by BX

r (a) the ball of radius r > 0 and center a ∈ X in a metric space X.

Theorem 3. Let {U(t, s)| t ≥ s} be an evolution process in a Banach space V and the
assumptions (H0) − (H4) be satisfied. Then, for every ν ∈ (0, 12) there exists a pullback
exponential attractor {Mν(t)| t ∈ R}, and the fractal dimension of its sections is uniformly
bounded

sup
t∈R

dimf(Mν(t)) ≤ max{ 1

θ1
,

1

θ2
}(1 + log 1

2ν
(1 + µκ)) + log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
,

where NX
ε (A) denotes the minimal number of ε-balls in a metric space X with centers in A

needed to cover the subset A ⊂ X.
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3. Pullback Exponential Attractors for Asymptotically Compact Evolution

Processes

We assume (V, ‖ · ‖V ) is a Banach space and {U(t, s)| t ≥ s} is an evolution process in V .
The construction of the exponential attractor is based on the compact embedding (H0) of the
phase space into an auxiliary normed space. Moreover, we assume that the process U can be
represented as U = S+C, where {S(t, s)| t ≥ s} and {C(t, s)| t ≥ s} are families of operators
satisfying the following properties:

(H1) For the process {U(t, s)| t ≥ s} there exists a family of bounded sets B(t) ⊂ V , t ∈ R,
that pullback absorbs all bounded subsets of V ; that is, for all bounded subsets D ⊂ V
and all t ∈ R there exists TD,t > 0 such that

U(t, t− s)D ⊂ B(t) for all s ≥ TD,t.

(H2) There exists t̃ > 0 such that {S(t, s)| t ≥ s} satisfies within the absorbing set the
following smoothing property

‖S(t, t− t̃)u− S(t, t− t̃)v‖V ≤ κ‖u− v‖W for all u, v ∈ B(t− t̃), t ∈ R.

(H3) The family of operators {C(t, s)| t ≥ s} are contractions within the absorbing sets,

‖C(t, t− t̃)u− C(t, t− t̃)v‖V ≤ λ‖u− v‖V for all u, v ∈ B(t− t̃), t ∈ R,

where the contraction constant 0 ≤ λ < 1
2 .

(H4) The process {U(t, s)| t ≥ s} is Lipschitz continuous within the absorbing sets; that is,
for all t ∈ R and s ∈]t, t+ t̃] there exists a constant Lt,s > 0 such that

‖U(s, t)u− U(s, t)v‖V ≤ Lt,s‖u− v‖V for all u, v ∈ B(t), t ∈ R.

In order to construct the pullback exponential attractor we need to impose additional
assumptions regarding the uniformity of the absorbing time in hypothesis (H1).

(A1) The family of absorbing sets is positively semi-invariant for the process {U(t, s)| t ≥ s},
that is

U(t, s)B(s) ⊂ B(t) for all t ≥ s, t, s ∈ R.

(A2) For a bounded subsetD ⊂ V and t ∈ R the corresponding absorbing times are bounded
in the past; that is, for all t ∈ R there exists TD,t > 0 such that

U(s, s− r)D ⊂ B(s) for all s ≤ t, r ≥ TD,t.

Our main result is the following.

Theorem 4. Let {U(t, s)| t ≥ s} be an evolution process in V and the assumptions (H0),
(H1)- (H4), (A1) and (A2) be satisfied. Moreover, we assume that the diameter of the family
of absorbing sets {B(t)} growths at most sub-exponentially in the past. Then, for any ν ∈
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(0, 12 − λ) there exists a pullback exponential attractor {Mν(t)| t ∈ R} ≡ {M(t)| t ∈ R} for
the evolution process {U(t, s)| t ≥ s}, and the fractal dimension of its sections can be estimated
by

dimV
f (M(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.

Remark 3.

• The uniform pullback absorbing assumption (H1) in the previous section immediately
implies hypothesis (H1), (A1) and (A2).
• For our construction the Hölder continuity in time (H4) of the process is not required.
Moreover, we essentially improve the dimension estimates in Theorem 3.
• We generalized the construction for asymptotically compact operators in the space V . A
similar result for discrete evolution processes has been obtained in [8], however, under
hypothesis that are difficult to verify in applications (cf. Theorem 2.3). In the articles
[2], [7] and [9] processes that are asymptotically compact in the weaker space W were
considered; that is, the operator C is a contraction in W , not in V .
• Time-dependent absorbing sets were also considered in [9], where forwards exponential
attractors were constructed. However, it was assumed that the diameter of the absorb-
ing sets B(t) is uniformly bounded and the absorbing time is independent of the time
instant. Hence, the union

⋃
t∈RB(t) is a bounded absorbing set for the process and

satisfies the uniform hypothesis in Section 2. Furthermore, the aim was not to prove
the existence of forwards attractors in general, but knowing the existence of the uniform
attractor, to show the existence of time-dependent forwards exponential attractors (or
kernel sections).

We remark that in applications the family of contraction operators often forms an evolution
process in V . In this case, and if the contraction property (H3) is globally satisfied, the
smoothing time and the contraction time can be arbitrary, and it suffices that the evolution
process C is a strict contraction. To be more precise we could replace Assumptions (H2)-(H4)

by the following:

(H̃2) The family {S(t, s)| t ≥ s} satisfies the following smoothing property within the ab-
sorbing sets: There exists t̃ > 0 such that for all s ≥ t̃

‖S(t+ s, t)u− S(t+ s, t)v‖V ≤ κs‖u− v‖W for all u, v ∈ B(t), t ∈ R,

for some constant κs > 0.
(H̃3) The family {C(t, s)| t ≥ s} is an evolution process and a strict contraction in V : There

exists t̂ > 0 such that

‖C(t+ t̂, t)u− C(t+ t̂, t)v‖V ≤ λ‖u− v‖V for all u, v ∈ V, t ∈ R,
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where the contraction constant 0 ≤ λ < 1.
(H̃4) The evolution process {U(t, s)| t ≥ s} satisfies the Lipschitz continuity in (H4) for all

t ∈ R and t ≤ s ≤ t+ t̂.

Indeed, let k ∈ N be such that λk < 1
2 and kt̂ ≥ t̃. Then, Property (H̃3) implies

‖C(t+ t̂k, t)u− C(t+ t̂k, t)v‖V ≤ λk‖u− v‖V for all u, v ∈ B(t), t ∈ R.

Furthermore, by the smoothing property (H̃2) follows

‖S(t+ t̂k, t)u− S(t+ t̂k, t)v‖V ≤ κ‖u− v‖W for all u, v ∈ B(t), t ∈ R,

where κ := κt̂k. Consequently, the assumptions (H2)-(H3) are satisfied if we replace t̃ by t̂k
and the smoothing and contraction constants by λ̃ = λk and κ̃ = κt̂k.

3.1. Discrete Evolution Processes. We first construct exponential pullback attractors for
discrete processes. Let {U(n,m)| m,n ∈ Z, n ≥ m} be a discrete evolution process in a
Banach space V . Without loss of generality we assume that t̃ = 1 in assumptions (H2) and
(H3). In this case, the discrete process is certainly Lipschitz continuous in V by properties
(H2) and (H3), and assumption (H4) is automatically satisfied.

Theorem 5. Let {U(n,m)| n ≥ m} be a discrete evolution process in V and the assumptions
(H0), (H1) - (H3), (A1) and (A2) with t̃ = 1 be satisfied for discrete times t, s ∈ Z. Moreover,
we assume that the diameter of the family of absorbing sets {B(t)}, t ∈ Z, growths at most
sub-exponentially in the past. Then, for any ν ∈ (0, 12 − λ) there exists a pullback exponential
attractor {M(k)| k ∈ Z} ≡ {Mν(k)| k ∈ Z} for the evolution process {U(n,m)| n ≥ m}, and
the fractal dimension of its sections can be estimated by

dimV
f (M(k)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all k ∈ Z.

Proof. Coverings of U(k, k − n)B(k − n)

Let ν ∈ (0, 12 − λ) be fixed, Rk > 0 and vk ∈ B(k) be such that B(k) ⊂ BV
Rk

(vk) for all
k ∈ Z. Moreover, we choose elements w1, . . . wN ∈ V such that

BV
1 (0) ⊂

N⋃
i=1

BW
ν
κ

(wi),

where N := NW
ν
κ

(BV
1 (0)). We define W 0(k) := {vk} and construct by induction in n ∈ N sets

Wn(k), n ∈ N, that depend on the time instant k and satisfy for all k ∈ Z

(W1) Wn(k) ⊂ U(k, k − n)B(k − n) ⊂ B(k),
(W2) ]Wn(k) ≤ Nn,
(W3) U(k, k − n)B(k − n) ⊂

⋃
u∈Wn(k)B

V
(2(ν+λ))nRk−n

(u).
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To construct a covering of the image U(k, k−1)B(k−1), k ∈ Z, we note that v ∈ BV
Rk−1

(vk−1)

implies
1

Rk−1
(v − vk−1) ∈ BV

1 (0) ⊂
N⋃
i=1

BW
ν
κ

(wi)

and consequently,

BV
Rk−1

(vk−1) ⊂
N⋃
i=1

BW
Rk−1

ν
κ
(Rk−1wi + vk−1).

Due to the smoothing property (H2) we obtain

‖S(k, k − 1)ũ− S(k, k − 1)ṽ‖V ≤ κ‖ũ− ṽ‖W < 2νRk−1

for all ũ, ṽ ∈ BW
Rk−1

ν
κ
(Rk−1wi + vk−1) ∩B(k − 1), which yields

S(k, k − 1)
(
BV
Rk−1

(vk−1) ∩B(k − 1)
)
⊂

N⋃
i=1

BV
2Rk−1ν

(zi),

for some z1, . . . , zN ∈ S(k, k− 1)B(k− 1). In particular, we can choose y1, . . . , yN ∈ B(k− 1)

such that zi = S(k, k − 1)yi, where i = 1, . . . , N . For u ∈ B(k − 1) the contraction property
(H3) now implies

‖C(k, k − 1)u− C(k, k − 1)yi‖V ≤ λ‖u− yi‖V < 2λRk−1,

for all i = 1, . . . , N , and we conclude

C(k, k − 1)B(k − 1) ⊂ BV
2λRk−1

(C(k, k − 1)yi).

Finally, we obtain the covering

U(k, k − 1)B(k − 1) = (S(k, k − 1) + C(k, k − 1))B(k − 1)

⊂
N⋃
i=1

BV
2νRk−1

(
(S(k, k − 1)yi) ∪BV

2λRk−1
(C(k, k − 1)yi)

)
⊂

N⋃
i=1

BV
2(ν+λ)Rk−1

(U(k, k − 1)yi),

with centres U(k, k−1)yi ∈ U(k, k−1)B(k−1), i = 1, . . . , N . Denoting the new set of centers
by W 1(k) follows

U(k, k − 1)B(k − 1) ⊂
⋃

u∈W 1(k)

BV
2(ν+λ)Rk−1

(u),

with W 1(k) ⊂ U(k, k − 1)B(k − 1) ⊂ B(k) and ]W 1(k) ≤ N .
Let us assume that the sets W l(k) are already constructed for all l ≤ n and k ∈ Z, which

yields the coverings

U(k, k − n)B(k − n) ⊂
⋃

u∈Wn(k)

BV
(2(ν+λ))nRk−n

(u) for k ∈ Z.
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In order to construct a covering of
U(k, k − (n+ 1))B(k − (n+ 1)) = U(k, k − 1)U(k − 1, k − 1− n)B(k − 1− n)

⊂
⋃

u∈Wn(k−1)

U(k, k − 1)BV
(2(ν+λ))nRk−n−1

(u)

let u ∈ Wn(k − 1). We proceed as before and use the covering of the unit ball BV
1 (0) by

ν
κ -balls in W to conclude

BV
(2(ν+λ))nRk−1−n

(u) ⊂
N⋃
i=1

BW
(2(ν+λ))nRk−1−n

ν
κ
((2(ν + λ))nRk−1−nwi + u).

By the smoothing property (H2) then follows

S(k, k − 1)
(
U(k − 1, k − 1− n)B(k − 1− n) ∩BV

(2(ν+λ))nRk−1−n
(u)
)

⊂
N⋃
i=1

BV
(2(ν+λ))n2νRk−1−n

(S(k, k − 1)yui ),

for some yu1 , . . . , yuN ∈ U(k− 1, k− 1−n)B(k− 1−n). Furthermore, the contraction property
(H3) implies

C(k, k − 1)
(
U(k − 1, k − 1− n)B(k − 1− n) ∩BV

(2(ν+λ))nRk−1−n
(u)
)

⊂ BV
(2(ν+λ))n2λRk−1−n

(C(k, k − 1)yui ),

for all i = 1, . . . , N . Consequently, we obtain the covering

U(k, k − 1)
(
U(k − 1, k − 1− n)B(k − 1− n) ∩BV

(2(ν+λ))nRk−1−n
(u)
)

=
(
S(k, k − 1) + C(k, k − 1)

) (
U(k − 1, k − 1− n)B(k − 1− n) ∩BV

(2(ν+λ))nRk−1−n
(u)
)

⊂
N⋃
i=1

(
BV

(2(ν+λ))n2νRk−1−n
(S(k, k − 1)yui ) +BV

(2(ν+λ))n2λRk−1−n
(C(k, k − 1)yui )

)
⊂

N⋃
i=1

BV
(2(ν+λ))n+1Rk−1−n

(
S(k, k − 1)yui + C(k, k − 1)yui

)
=

N⋃
i=1

BV
(2(ν+λ))n+1Rk−1−n

(
U(k, k − 1)yui

)
,

with centres U(k, k−1)yui ∈ U(k, k−1−n)B(k−1−n), for 1 = 1, . . . , N . Constructing in the
same way for every u ∈Wn(k − 1) such a covering by balls with radius (2(ν + λ))n+1Rk−1−n

in V we obtain a covering of the set U(k, k − (n+ 1))B(k − (n+ 1)) and denote the new set
of centres by Wn+1(k). This yields ]Wn+1(k) ≤ N]Wn(k − 1) ≤ Nn+1, by construction the
set of centres Wn+1(k) ⊂ U(k, k − (n+ 1))B(k − (n+ 1)), and

U(k, k − (n+ 1))B(k − (n+ 1)) ⊂
⋃

u∈Wn+1(k)

BV
(2(ν+λ))n+1Rk−1−n

(u),
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which concludes the proof of the properties (W1)-(W3).
Definition of the Pullback Exponential Attractor

We define E0(k) := W 0(k) for all k ∈ Z, and set En(k) := Wn(k)∪U(k, k−1)En−1(k−1),
n ∈ N. Then, the family of sets En(k), n ∈ N0, satisfies for all k ∈ Z

(E1) U(k, k − 1)En(k − 1) ⊂ En+1(k), En(k) ⊂ U(k, k − n)B(k − n) ⊂ B(k),
(E2) En(k) =

⋃n
l=0 U(k, k − l)Wn−l(k − l), ]En(k) ≤

∑n
l=0N

l,
(E3) U(k, k − n)B(k − n) ⊂

⋃
u∈En(k)B

V
(2(ν+λ))nRk−n

(u).

These relations are immediate consequences of the definition of the sets En(k), the properties
of the sets Wn(k) and the semi-invariance of the absorbing family {B(k)| k ∈ Z}, and can be
proved by induction.

Using the family of sets En(k) we define M̃(k) :=
⋃
n∈N0

En(k), for all k ∈ Z, and show

that its closure {M(k)| k ∈ Z} := {M̃(k)
‖·‖V
| k ∈ Z} yields an exponential pullback attractor

for the process {U(n,m)| n ≥ m}.
Semi-invariance of the Exponential Attractor

The family {M̃(k)| k ∈ Z} is positively semi-invariant: Indeed, for all l ∈ N, k ∈ Z, we
obtain by applying the property (E1)

U(k + l, k)M̃(k) :=
⋃
n∈N0

U(k + l, k)En(k) ⊂
⋃
n∈N0

En+l(k + l) ⊂
⋃
n∈N0

En(k + l) = M̃(k + l).

Since the process is continuous follows also semi-invariance of the family {M(k)| k ∈ Z}

U(k + l, k)M(k) = U(k + l, k)M̃(k)
‖·‖V
⊂ U(k + l, k)M̃(k)

‖·‖V
⊂ M̃(k + l)

‖·‖V
=M(k + l),

for all l ∈ N, k ∈ Z.
Compactness and Finite Dimensionality of the Exponential Attractor

We first prove that for all k ∈ Z the sets M̃(k) are non-empty, precompact and of finite
fractal dimension in V . Note, that for any m ∈ N and n ≥ m holds

En(k) ⊂ U(k, k − n)B(k − n) = U(k, k −m)U(k −m, k − n)B(k − n)

⊂ U(k, k −m)B(k −m),

since the family of absorbing sets is positively semi-invariant. Consequently, for all m ∈ N we
obtain

M̃(k) =

m⋃
n=0

En(k) ∪
∞⋃

n=m+1

En(k) ⊂
m⋃
n=0

En(k) ∪ U(k, k −m)B(k −m).

Let ε > 0 and m ∈ N be sufficiently large such that (2(ν + λ))mRk−m ≤ ε < (2(ν +

λ))m−1Rk−m+1 holds, then

U(k, k −m)B(k −m) ⊂
⋃

u∈Wm(k)

BV
ε (u).
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Hence, we can estimate the number of ε-balls in V needed to cover M̃(k) by

NV
ε (M̃(k)) ≤ ](

m⋃
n=0

En(k)) + ]Wm(k) ≤ (m+ 1)]Em(k) +Nm

≤ (m+ 1)2Nm +Nm ≤ 2(m+ 1)2Nm,

for all k ∈ Z, where we used properties (W2) and (E2). This proves the precompactness of

M̃(k) in V . As V is a Banach space, taking the closureM(k) := M̃(k)
‖·‖V

of the precompact
sets M̃(k) we obtain a family of compact subsets in V .

For the fractal dimension of the sets M̃(k) we conclude

dimV
f (M̃(k)) = lim sup

ε→0

ln(NV
ε (M̃(k)))

ln 1
ε

≤ lim sup
ε→0

ln(2) + 2 ln(m+ 1) +m ln(N)

ln 1
ε

≤ log 1
2(ν+λ)

(N).

Consequently, the fractal dimension of the sectionsM(k) is uniformly bounded by the same
value, since

dimV
f (M(k)) = dimV

f (M̃(k)
‖·‖V

) = dimV
f (M̃(k)).

Exponential Pullback Attraction

We are left to show that the setM(k) exponentially pullback attracts all bounded subsets
of V at time k ∈ Z. By assumptions (H1) and (A2) for any bounded subset D ⊂ V and k ∈ Z
there exists an nD,k ∈ N such that U(l, l − n)D ⊂ B(l) for all n ≥ nD,k and l ≤ k.

If n ≥ nD,k + 1, that is n = nD,k + n0 with some n0 ∈ N, then

distVH(U(k, k − n)D,M̃(k)) ≤ distVH(U(k, k − n0)U(k − n0, k − n0 − nD,k)D,
∞⋃
n=0

En(k))

≤ distVH(U(k, k − n0)B(k − n0),
∞⋃
n=0

En(k))

≤ distVH(U(k, k − n0)B(k − n0), En0(k))

≤ (2(ν + λ))n0Rk−n0 ≤ ce−ωn,

for some constants c ≥ 0 and ω > 0. Finally, the sets M(k) = M̃(k)
‖·‖V

certainly pullback
attract all bounded subsets D ⊂ V at time k ∈ Z exponentially, since

distVH(U(k, k − n)D,M(k)) = distVH(U(k, k − n)D,M̃(k)
‖·‖V

)

≤ distVH(U(k, k − n)D,M̃(k)),

and the exponential pullback attraction property of {M(k)| k ∈ Z} follows from the exponen-
tial pullback attraction property of the family {M̃(k)| k ∈ Z}.
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This shows that {M(k)| k ∈ Z} is an exponential pullback attractor for the evolution
process {U(n,m)| n ≥ m} with compact sectionsM(k) in V . �

3.2. Continuous Time Evolution Processes. Using the results of the previous section we
now construct pullback exponential attractors for time continuous asymptotically compact
processes in V .

Proof of Theorem 4. We consider the discrete process {Ũ(n,m)| n ≥ m} in V , where Ũ(n,m) :=

U(nt̃,mt̃) for all n ≥ m, which satisfies the assumptions (H0) and (H1) − (H3) of the
previous subsection. Theorem 5 implies the existence of a pullback exponential attractor

{Md(k)| k ∈ Z} for the discrete process {Ũ(n,m)| n ≥ m}, whereMd(k) = M̃d(k)
‖·‖V

.
To obtain a pullback exponential attractor for the continuous time process we define

M̃(t) := U(t, kt̃)M̃d(k) for t ∈ [kt̃, (k + 1)t̃[,

and take its closure in V ,M(t) := M̃(t)
‖·‖V

for all t ∈ R. Due to the Lipschitz-continuity of
the process, the sets M̃(t) are compact in V , and we obtain the same (uniform) bound on the
fractal dimension of the sectionsM(t),

dimV
f (M(t)) = dimV

f (M̃(t)) = dimV
f (U(kt̃+t, kt̃)M̃d(k)) ≤ dimV

f (M̃d(k)) t ∈ [kt̃, (k+1)t̃[.

Moreover, {M(t)| t ∈ R} is positively semi-invariant: Let t, s ∈ R and t ≥ s. Then, s = kt̃+s1

and t = lt̃+ t1 for some k, l ∈ Z, k ≤ l and s1, t1 ∈ [0, t̃[.
If l ≥ k + 1 we observe

U(t, s)M̃(s) = U(lt̃+ t1, kt̃+ s1)M̃(kt̃+ s1) = U(lt̃+ t1, kt̃+ s1)U(kt̃+ s1, kt̃)M̃(kt̃)

= U(lt̃+ t1, lt̃)U(lt̃, kt̃)M̃(kt̃) ⊂ U(lt̃+ t1, lt̃)M̃(lt̃) = M̃(lt̃+ t1) = M̃(t),

where we used the semi-invariance of the family {M(kt̃)| k ∈ Z} under the action of the
process {Ũ(n,m)| n ≥ m}.

On the other hand, if l = k, then s = kt̃+ s1 and t = kt̃+ t1 for some s1, t1 ∈ [0, t̃[ and

U(t, s)M̃(s) = U(kt̃+ t1, kt̃+ s1)M̃(kt̃+ s1) = U(kt̃+ t1, kt̃+ s1)U(kt̃+ s1, kt̃)M̃(kt̃)

= U(kt̃+ t1, kt̃)M̃(kt̃) = M̃(kt̃+ t1) = M̃(t).

By the continuity of the process we obtain the semi-invariance of the family {M(t)| t ∈ R}.
Finally, the set M(t) exponentially pullback attracts all bounded subsets of V at time

t ∈ R. This follows immediately from the exponential pullback attracting property of the
discrete attractor {M(kt̃)| k ∈ Z}.

�

An immediate consequence is the existence and finite dimensionality of the global pullback
attractor. If the hypothesis of Theorem 4 are satisfied, the existence of the global pullback



18 ALEXANDRE N. CARVALHO(1) AND STEFANIE SONNER(2)

attractor actually follows from Corollary 6 in [12], where the assumptions are even weaker.
However, our result also implies that the fractal dimension of the sections of the pullback
attractor is uniformly bounded, which has been an open problem for global pullback attractors
that are not uniformly bounded in the past (cf. [10] and [11])

Corollary 1. Under the assumptions of Theorem 4, the global pullback attractor {A(t)| t ∈ R}
of the evolution process {U(t, s)| t ≥ s} exists, is contained in the pullback exponential attractor
constructed in Theorem 4, and the fractal dimension of its sections is uniformly bounded by

dimV
f (A(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.

Proof. This follows immediately from Theorem 4 and the characterization of processes pos-
sessing a global pullback attractor in Theorem 1. �

Theorem 4 in the special case that λ = 0 yields the result for processes, which satisfy the
smoothing property with respect to the spaces V and W .

Corollary 2. Let {S(t, s)| t ≥ s} be an evolution process in V and the assumptions (H0)

and (H2) be satisfied. Moreover, we assume that properties (H1), (H4), (A1) and (A2) hold
with {U(t, s)| t ≥ s} replaced by {S(t, s)| t ≥ s}, where it suffices that the absorbing family is
bounded in the metric of W , and the diameter of the family of absorbing sets {B(t)} growths at
most sub-exponentially in the past. Then, for any ν ∈ (0, 12) there exists a pullback exponential
attractor {M(t)| t ∈ R} ≡ {Mν(t)| t ∈ R} for the evolution process {S(t, s)| t ≥ s}, and the
fractal dimension of its sections can be estimated by

dimV
f (M(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.

We could also consider processes in the weaker phase space W as analyzed in [2] and [7]
for semigroups and in [9] for evolution processes. Such attractors are also called bi-space
attractors or (V,W ) attractors.

Theorem 6. Let {U(t, s)| t ≥ s} be an evolution process in W and the assumptions (H0),
(H2), (A1) and (A2) be satisfied. Moreover, we assume that (H1) holds for a bounded pullback
absorbing family in W , properties (H3) and (H4) are satisfied with V replaced by W and the
diameter of the family of absorbing sets {B(t)} growths at most sub-exponentially in the past
(with respect to the metric of W ). Then, for any ν ∈ (0, 12 − λ) there exists a pullback
exponential attractor {Mν(t)| t ∈ R} ≡ {M(t)| t ∈ R} for the evolution process {U(t, s)| t ≥
s} in W , and the fractal dimension of its sections can be estimated by

dimW
f (M(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.
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The pullback exponential attractor for time continuous processes constructed in the proof of
Theorem 4 differs from the pullback exponential attractor constructed in [5] and [10]. In both
articles the union over a certain time interval of the image of the discrete attractor is taken to
construct the continuous attractor. To obtain finite-dimensionality of the sections it requires
strong regularity assumptions of the process. We take the time evolution instead and prove
under significantly weaker assumptions the existence of a pullback exponential attractor. If
the assumptions of [5] and [10] are satisfied, the pullback exponential attractor of Theorem 4
is contained in the pullback exponential attractor constructed in [5] and [10].

4. A Pullback Exponential Attractor for Time Continuous Semigroups

We also formulate the corresponding results for semigroups, that is for autonomous pro-
cesses. The results are similar and generalize the results in [8] for discrete semigroups, differ
however in the time continuous case. The invariance property in the non-autonomous setting
is a weaker concept than the invariance of a (fixed) set under the action of a semigroup. In
[2], [5] and [10] the union over a certain time interval of the image of the discrete attractor
is taken to obtain semi-invariance of the exponential attractor for continuous processes, semi-
groups respectively. It requires certain regularity properties of the process in time and leads
to weaker estimates for the fractal dimension.

Instead of constructing exponential attractors for continuous time semigroups we consider
pullback exponential attractors, or non-autonomous exponential attractors (forwards and pull-
back convergence are equivalent in this case). They coincide with exponential attractors in
the discrete case, and the pullback exponential attractors for time continuous semigroups sat-
isfy the same dimension estimates as exponential attractors of discrete semigroups. In other
words, weakening the semi-invariance property of the exponential attractor we avoid the arti-
ficial increase in the fractal dimension of the attractor. Moreover, we do not need such strong
regularity assumptions as Hölder continuity in time of the semigroup (cf. [8], [5], [2]) to obtain
finite dimensionality of the attractor.

Let V be a Banach space and {U(t, s)| t ≥ s} be an autonomous evolution process in V ,
that is the operators U(t, s) : V → V only depend on the elapsed time t− s. In this case, the
family of operators T (t − s) := U(t − s, 0), t ≥ s, forms a semigroup in V . The definition of
an exponential attractor for semigroups was given in the introduction.

Due to the mentioned drawbacks of exponential attractors for time continuous semigroups
we propose to weaken the semi-invariance property of the exponential attractor and to consider
pullback exponential attractors instead. Applied to autonomous processes Definition 4 leads
to the following:
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Definition 7. We call the family M = {M(t)| t ∈ R} a pullback exponential attractor

for the semigroup {T (t)| t ≥ 0} in V if there exists 0 < a <∞ such thatM(t) =M(a+ t)

for all t ∈ R,

(i) the subsetsM(t) ⊂ V are non-empty and compact in V for all t ∈ R,
(ii) the family is positively semi-invariant, that is

T (t)M(s) ⊂M(t+ s) for all t ≥ 0, s ∈ R,

(iii) the fractal dimension of the setsM(t), t ∈ R, is uniformly bounded and
(iv) the family exponentially attracts all bounded subsets of V uniformly, that is there exists

a positive constant ω > 0 such that for any bounded subset D ⊂ V

lim
s→∞

sup
t∈[0,a]

eωsdistVH(T (s)D,M(t)) = 0.

Definition 7 implies that M̃ =M(a) is an exponential attractor of the associated discrete
semigroup T̃ (n) := T (na). Any memberM(t) of the family satisfies all the properties of an
exponential attractor except the semi-invariance.

Remark 4. As in the non-autonomous case, if the exponential attractor exists, the global
attractor A is contained in the exponential attractor of the semigroup and has finite fractal
dimension. The same holds in the case of pullback exponential attractors for semigroups: Any
member of the family {M(t)| t ∈ R} contains the global attractor A.

4.1. Discrete Semigroups. We consider semigroups that satisfy the smoothing property
asymptotically, that is, semigroups that can eventually be represented as a sum T = S + C,
where T satisfies the smoothing property and C is a contraction. To be more precise, let
{T (n)| n ∈ N} be a discrete semigroup in V such that T (n) = S(n) +C(n), where {S(n)| n ∈
N} is a family (need not to be a semigroup) and {C(n)| n ∈ N} is a semigroup which satisfy:

(S1) There exists a bounded absorbing set B ⊂ V for the semigroup {T (n)| n ∈ N}; that
is, for all bounded subsets D ⊂ V there exists nD ∈ N such that

T (n)D ⊂ B for all n ≥ nD.

(S2) The family {S(n)| n ∈ N} satisfies within the absorbing set the smoothing property:
There exists ñ ∈ N such that

‖S(n)u− S(n)v‖V ≤ κn‖u− v‖W for all u, v ∈ B, n ≥ ñ,

where the constant κn > 0.
(S3) The family {C(n)| n ∈ N} forms a semigroup in V . Moreover, there exists n̂ ∈ N such

that C(n)B ⊂ B for all n ≥ n̂ and

‖C(n̂)u− C(n̂)v‖V ≤ λ‖u− v‖V for all u, v ∈ B,
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where the constant 0 ≤ λ < 1
2 .

Lemma 1.

(i) If {T (n)| n ∈ N} is a discrete semigroup in V such that property (S1) is satisfied, then
there exists a bounded absorbing set B̃ which is positively semi-invariant and properties
(S2) and (S3) hold with B replaced by B̃.

(ii) Without loss of generality we can assume that the smoothing time in (S2) and the
contraction time in (S3) coincide, that is ñ = n̂.

(iii) Taking iterates it suffices in assumption (S3) that C(n) is (eventually) a contraction
with contraction constant λ ∈ [0, 1).

Proof. (i) Indeed, taking

B̃ :=

nB−1⋃
k=0

T (nB + k)B,

it is a bounded absorbing set for the semigroup with corresponding absorbing time n
B̃

= 1.
It is bounded since T (nB + k)B ⊂ B for all k ∈ N0, by Property (S1). Moreover, if D ⊂ V is
bounded, there exists nD ∈ N such that T (n)D ⊂ B for all n ≥ nD. Hence, for all n ≥ nD+nB

we obtain

T (n)D = T (n− nD − nB)T (nB)T (nD)D ⊂ T (n− nD − nB)T (nB)B ⊂ B̃

and

T (1)B̃ =

nB−1⋃
k=0

T (1)T (nB + k)B ⊂ B̃.

Properties (S2) and (S3) certainly hold for all u, v ∈ B̃ ⊂ B.
(ii) Let n0 = ln̂ and l ∈ N be such that ln̂ ≥ ñ. By the smoothing property (S2) follows

‖S(n0)u− S(n0)v‖V = ‖S(n̂l)u− S(n̂l)v‖V ≤ κn̂l‖u− v‖W for all u, v ∈ B,

and Property (S3) implies

‖C(n0)u− C(n0)v‖V = ‖C(n̂l)u− C(n̂l)v‖V ≤ λl‖u− v‖V for all u, v ∈ B.

Hence, modifying the constants we can assume n̂ = ñ.
(iii) Taking iterates, the semigroup {C(n)| n ∈ N} is a contraction with contraction constant

less than 1
2 , which leads to a modification of n̂ and the constant λ in (S3). �

The following theorem generalizes the results in [8], where exponential attractors for dis-
crete semigroups, that satisfy the smoothing property, were constructed under the assumption
that the absorbing time and smoothing time coincide and nB = ñ = 1. Theorem 1.3 of the
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cited article yields the existence of exponential attractors for asymptotically compact semi-
groups, but under different and more restrictive assumptions, which are difficult to verify in
applications.

Theorem 7. If the conditions (H0), (S1), (S2) and (S3) are satisfied, then, for any ν ∈
(0, 12−λ̃) there exists an exponential attractorM≡Mν in V for the semigroup {T (n)| n ∈ N},
and its fractal dimension can be estimated by

dimV
f (Mν) ≤ log 1

2(ν+λ̃)

(
NW

ν
κ̃

(BV
1 (0))

)
,

where λ̃ := λl, κ̃ := κln̂ and l ∈ N is the smallest integer such that ln̂ ≥ ñ.

Proof. If necessary we replace n̂ and ñ by n0 = ln̂ and λ and κñ by λ̃ and κ̃. Then, due
to Lemma 1 without loss of generality we can assume that the absorbing set is positively
semi-invariant and the contraction time in (S2) and smoothing time in (S3) coincide, that is
ñ = n̂. We only give a sketch of the proof and indicate, where the proof of Theorem 5 has to
be modified, or where it simplifies in the autonomous setting.
Coverings of T (nñ)B

Let ν ∈ (0, 12 − λ) be fixed, R > 0 and v0 ∈ B be such that B ⊂ BV
R (v0). Moreover, we

choose w1, . . . wN ∈ V such that

BV
1 (0) ⊂

N⋃
i=1

BW
ν
κ

(wi),

where N := NW
ν
κ

(BV
1 (0)) and κ = κñ. We define W 0 := {v0} and inductively construct sets

Wn, n ∈ N, such that

(W1’) Wn ⊂ T (nñ)B ⊂ B,
(W2’) ]Wn ≤ Nn,
(W3’) T (nñ)B ⊂

⋃
u∈Wn BV

(2(ν+λ))nR(u).

As in the proof of Theorem 5 the coverings of the iterates T (nñ)B are constructed using
the properties (S2) and (S3) and the covering of the unit ball BV

1 (0) inW . The sets of centers
Wn are now independent of time.
Definition of the Exponential Attractor
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In order to obtain semi-invariance of the exponential attractor, we modify the construction
of the sets En and define

E0 := W 0, E1 := W 1 ∪ T (1)W 0 ∪ T (2)W 0 ∪ · · · ∪ T (ñ)W 0

E2 := W 2 ∪ T (1)W 1 ∪ · · · ∪ T (ñ)W 1 ∪ T (ñ+ 1)W 0 ∪ · · · ∪ T (2ñ)W 0

...

En := Wn ∪ T (1)Wn−1 ∪ · · · ∪ T (ñ)Wn−1 ∪ · · · ∪ T (ñ(n− 1) + 1)W 0 ∪ · · · ∪ T (ñn)W 0

= Wn ∪
n⋃
k=1

ñ⋃
l=1

T ((k − 1)ñ+ l)Wn−k.

Due to the semi-invariance of the absorbing set B follows

T (n)B ⊂ T (m)B for all n ≥ m,

and for all n ∈ N the sets En satisfy the properties

(E1’) T (1)En ⊂ En ∪ En+1, E0 ⊂ B, En ⊂ T ((n− 1)ñ)B ⊂ B,
(E2’) ]En ≤ ñ(n+ 1)Nn,
(E3’) T (nñ)B ⊂

⋃
u∈En B

V
(2(ν+λ))nR(u).

From the first relation immediately follows T (k)En ⊂ En ∪ En+1 ∪ · · · ∪ En+k, for all k ∈ N.
We now define

M :=
⋃
n∈N0

En.

Semi-invariance, Pre-compactness and Finite-dimensionality

For all k ∈ N we obtain by using property (E1′)

T (k)M :=
⋃
n∈N0

T (k)En ⊂
⋃
n∈N0

(En ∪ · · · ∪ En+k) ⊂
⋃
n∈N0

En =M.

Furthermore, as En ⊂ T ((m− 1)ñ)B for all n ≥ m we conclude

M =
m⋃
n=0

En ∪
∞⋃

n=m+1

En ⊂
m⋃
n=0

En ∪ T (mñ)B.

Properties (E2’) and (W3’) now imply

](
m⋃
n=0

En) ≤ (m+ 1)]Em ≤ (m+ 1)2ñNm

and T (mñ)B ⊂
⋃
u∈Wm BV

(2(ν+λ))mR(u). For arbitrary ε > 0 we choose m sufficiently large
such that

(2(ν + λ))mR ≤ ε < (2(ν + λ))m−1R
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holds. An estimate for the number of ε-balls needed to coverM is then given by

NV
ε (M) ≤ ](

m⋃
n=0

En) + ]Wm ≤ (m+ 1)2ñNm + ñNm ≤ 2(m+ 1)2ñNm,

where we used properties (W2’) and (E2’). This proves the pre-compactness ofM in V , and
the fractal dimension ofM can be estimated as in the proof of Theorem 5.

We are left to show that M exponentially attracts all bounded subsets of V . If D ⊂ V

is bounded there exists nD ∈ N such that T (n)D ⊂ B for all n ≥ nD. If n ≥ nD + ñ, then
n = nD + ñk0 + k for some k0 ∈ N, k ∈ N0 and

distVH(T (n)D,M) = distVH(T (k0ñ)T (nD + k)D,
∞⋃
n=0

En) ≤ distVH(T (k0ñ)B,
∞⋃
n=0

En)

≤ distVH(T (k0ñ)B,W k0) ≤ (2(ν + λ))k0R = (2(ν + λ))
n−nD−k

ñ R = e−ωnc,

for some constant c ≥ 0 and all n ≥ nD + ñ, where ω := ln( 1
2(ν+λ))

1
ñ .

Compactness of the Exponential Attractor

As V is a Banach space and the semigroup is continuous, taking the closure M̂ :=M‖·‖V

of the precompact setM we obtain a compact subset of V . The semi-invariance, finite fractal
dimension and exponential attraction property of M̂ can be shown as in the non-autonomous
case. �

4.2. Time Continuous Semigroups. We now construct pullback exponential attractors for
time continuous semigroups. In addition to the hypothesis of the previous section we assume
Lipschitz continuity of the semigroup.

(S1)′ There exists a bounded absorbing set B ⊂ V for the semigroup {T (t)| t ≥ 0} , that is
for all bounded subsets D ⊂ V there exists TD ≥ 0 such that

T (s)D ⊂ B for all s ≥ TD.

(S2)′ The family of operators {S(t)| t ≥ 0} satisfies within the absorbing set the smoothing
property: There exists t̃ > 0 such that

‖S(t̃)u− S(t̃)v‖V ≤ κ‖u− v‖W for all u, v ∈ B,

where the constant κ > 0.
(S3)′ The family {C(t)| t ≥ 0} is a contraction within the absorbing set:

‖C(t̃)u− C(t̃)v‖V ≤ λ‖u− v‖V for all u, v ∈ B,

where the constant 0 ≤ λ < 1
2 .
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(S4)′ The semigroup {T (t)| t ≥ 0} is Lipschitz continuous in V within the absorbing set:
There exists s0 ≥ 0 such that for all t ≥ s0

‖T (t)u− T (t)v‖V ≤ Lt‖u− v‖V for all u, v ∈ B,

for some constant Lt > 0.

Remark 5. In order to apply Theorem 4 directly we assume that the absorbing and contracting
times coincide. However, if the family of contractions forms a semigroup in V we could
generalize the hypothesis similarly as in the discrete case and replace t̃ in (S4)′ by an arbitrary
contraction time t̂ 6= t̃. Moreover, it suffices that C is (eventually) a strict contraction with
contraction constant λ ∈ [0, 1) (cf. the remark in Section 3).

Theorem 8. If the conditions (H0), (S1)′ - (S4)′ are satisfied, then, for any ν ∈ (0, 12 − λ)

there exists a pullback exponential attractor M ≡ Mν ≡ {M(t)| t ∈ R} for the semigroup
{T (t)| t ≥ 0}, the sections are compact subsets of V for all t ∈ R, and their fractal dimension
can be estimated by

dimV
f (Mν(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
.

Proof. As in the discrete case without loss of generality we can assume that the absorbing set
is positively semi-invariant. Indeed, if necessary we replace B by the bounded absorbing set

B̃ :=
⋃

s∈[0,TB ]

T (TB + s)B.

The absorbing assumptions (H1), (A1) and (A2) in Section 3.2 are certainly satisfied. Theorem
4 applied to the autonomous process U(t, s) := T (t− s) yields the existence of a pullback ex-
ponential attractor for the semigroup {T (t)| t ≥ 0}, which satisfies the properties in Definition
7 with a = t̃.

�

Corollary 3. Under the assumptions of Theorem 8 the global attractor A of the semigroup
{T (t)| t ≥ 0} is contained in any member of the pullback exponential attractor {M(t)| t ∈ R},
and its fractal dimension is bounded by

dimV
f (A) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
.

Proof. This follows by Theorem 1.1, Chapter 1 in [13]. �

Like in the non-autonomous case, as a corollary we obtain the existence of exponential
pullback attractors for semigroups that satisfy the smoothing property.
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Corollary 4. Let {S(t)| t ≥ 0} be a Lipschitz continuous semigroup in V and the assumptions
(H0) and (S2)′ be satisfied. Moreover, we assume that (S1)′ holds with {T (t)| t ≥ 0} replaced
by {S(t)| t ≥ 0}. Here, it suffices that the absorbing set is bounded in the metric of W . Then,
for any ν ∈ (0, 12) there exists a pullback exponential attractor {M(t)| t ∈ R} ≡ {Mν(t)| t ∈ R}
for the semigroup {S(t)| t ≥ 0}, and the fractal dimension of its sections can be estimated by

dimV
f (M(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.

Proof. This is a direct consequence of Corollary 2. �

We could also consider asymptotically compact semigroups in the weaker phase space W ,
and obtain the existence of exponential pullback attractors in W as studied in [2], and for
discrete semigroups in [7].

Theorem 9. Let {T (t)| t ≥ 0} be a semigroup in W and the assumptions (H0) and (S2)′

be satisfied. Moreover, we assume that (S1)′ holds for a bounded absorbing set in W and
properties (S3)′ and (S4)′ are satisfied with V replaced by W . Then, for any ν ∈ (0, 12 − λ)

there exists a pullback exponential attractor {Mν(t)| t ∈ R} ≡ {M(t)| t ∈ R} for the semigroup
{T (t)| t ≥ 0} in W , and the fractal dimension of its sections can be estimated by

dimW
f (M(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.

Proof. It follows from Theorem 6 applied to the autonomous process U(t, s) := T (t − s),
t ≥ s. �

Remark 6.

• The construction of exponential attractors for discrete semigroups in the proof of Theo-
rem 7 slightly generalizes the construction in [8] for semigroups satisfying the smoothing
property and for the case that nB = ñ = 1.
• To construct the exponential attractor for time continuous semigroups {T (t)| t ≥ 0}
generally the union

M̃ :=
⋃

t∈[t̃,2t̃]

T (t)Md,

is taken, whereMd denotes the exponential attractor for the associated discrete semi-
group {T (nt̃)| n ∈ N} (cf. [2], [5]). If the semigroup is Hölder continuous in time,

‖T (t1)u− T (t2)u‖V ≤ c|t1 − t2|θ for all t1, t2 ∈ [t̃, 2t̃], u ∈ B

for some constant c ≥ 0 and 0 < θ ≤ 1, the exponential attractor M̃ is finite dimen-
sional, and a bound for its fractal dimension is given by

dimV
f (M̃) ≤ 1

θ
+ dimV

f (Md).
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This is a stronger estimate than in Corollary 2.6 in [5], but can easily be deduced
from the construction. The bounds on the fractal dimension of the attractors in [2] are
weaker.

Certainly, any member of the pullback exponential attractor for time continuous
semigroups constructed in Theorem 8 is contained in the exponential attractor,M(t) ⊂
M̃ for all t ∈ R.
• The exponential pullback attractor constructed in [5] and [10] (cf. Section 2) applied to
non-autonomous processes yields an exponential attractor in the original sense, that is
it satisfies all properties in Definition 1.

5. Concluding Remarks

We constructed pullback exponential attractors for asymptotically compact evolution pro-
cesses in Banach spaces assuming that the process possesses a family of time-dependent pull-
back absorbing sets that possibly grow in the past. In a forthcoming paper we discuss prop-
erties and consequences of the construction and apply the theoretical results to prove the
existence of pullback exponential attractors in two applications. In both cases, previous re-
sults are not applicable and the generalizations we developed in this article are required.

First, we consider a non-autonomous Chafee-Infante initial boundary value problem in a
bounded domain Ω ⊂ Rn, n ∈ N,

ut(x, t) = 4u(x, t) + λu(x, t)− β(t)
(
u(x, t)

)3
x ∈ Ω, t > s,

u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x) x ∈ Ω,

where s ∈ R, λ ∈ R and the initial data us ∈ C0(Ω). The non-autonomous term β : R→ R+

is strictly positive, continuously differentiable, bounded when time t tends to ∞ and vanishes
when t goes to −∞. We show that the generated evolution process satisfies the smoothing
property and possesses a semi-invariant family of pullback absorbing sets. The diameter of the
absorbing sets grows in the past since the non-autonomous term β vanishes when t tends to
−∞. Our results yield the existence of a pullback exponential attractor, which in turn implies
the existence of the global pullback attractor for the generated evolution process. In particular,
we obtain an example for an unbounded pullback attractor of finite fractal dimension, which
has been an open problem (see the introduction in [10] and Remark 3.2 in [11]).
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Another application is the non-autonomous dissipative wave equation

utt(x, t) + β(t)ut(x, t) = ∆u(x, t) + f(u(x, t)) x ∈ Ω, t > s,

u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x) x ∈ Ω,

ut(x, s) = vs(x) x ∈ Ω,

where s ∈ R and Ω ⊂ Rn, n ∈ N, n ≥ 3, is a bounded domain. We assume that the non-
linearity f : R → R is continuously differentiable and is of sub-critical growth. Furthermore,
the function β : R→ R+ is Hölder continuous and bounded from above and below by positive
constants.

The initial value problem generates an asymptotically compact evolution process U in the
space V := H1

0 (Ω) × L2(Ω). We prove that the evolution process can be represented as sum
U = S+C, where the family of operators S satisfies the smoothing property with respect to V
and an auxiliary normed spaceW such that V ↪→↪→W , and C is a family of contractions in the
stronger space V . Our main result implies the existence of a pullback exponential attractor.
This setting was not considered in previous constructions of exponential attractors, where it
was always assumed that the family C is a contraction in the weaker space W (among others
see [7], [8] and [9]). Moreover, former existence results for pullback exponential attractors
require the Hölder continuity in time of the evolution process (cf. [5] and [10]).
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