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Attractors for a class of semi-linear degenerate parabolic equations

Alessia E. Kogoj and Stefanie Sonner

Abstract. We consider degenerate parabolic equations of the form

∂t u = �λu + f (u)

u|∂� = 0, u|t=0 = u0

in a bounded domain � ⊂ R
N , where �λ is a subelliptic operator of the type

�λ :=
N∑

i=1

∂xi (λ
2
i ∂xi ), λ = (λ1, . . . , λN ).

We prove global existence of solutions and characterize their longtime behavior. In particular, we show the
existence and finite fractal dimension of the global attractor of the generated semigroup and the convergence
of solutions to an equilibrium solution when time tends to infinity.

1. Introduction

We study the global existence and longtime behavior of solutions of the problem

∂t u(x, t) = �λu(x, t)+ f (u(x, t)) x ∈ �, t > 0,

u(x, t) = 0 x ∈ ∂�, t ≥ 0, (1)

u(x, 0) = u0(x) x ∈ �,

in a bounded domain� ⊂ R
N , where�λ is the following degenerate elliptic operator

�λ :=
N∑

i=1

∂xi (λ
2
i ∂xi ), λ = (λ1, . . . , λN ) : R

N → R
N .

Operators of this kind were introduced by Franchi and Lanconelli in 1982 and stud-
ied in the articles [8,9] and [10]. Recently, in [14] they were named �λ-Laplacian
under the additional assumption that the operators are homogeneous of degree two
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with respect to a group of dilations in R
N , and existence, non-existence and regularity

results for solutions of the semilinear problem

�λu(x)+ f (u(x)) = 0 x ∈ �,
u(x) = 0 x ∈ ∂�,

were obtained. The class of �λ-operators contains for example operators of the form

∂2
x1

+ |x1|2α∂2
x2

+ |x1|2β |x2|2γ ∂2
x3
, x = (x1, x2, x3) ∈ R

3,

where α, β and γ are real positive constants, and, as a particular case, the Grushin
type operators (see Sect. 2.3). Problems involving Grushin type operators have been
widely studied over the years, see, e.g., [15], where the subelliptic equation with
critical nonlinearities was considered, and the references therein.

The existence of the global attractor for our problem (1) involving the Grushin oper-
ator was established in [3]. We extend the result for the �λ-Laplacian and show the
finite fractal dimension of the attractor. To prove the well-posedness of Problem (1)
we apply semigroup methods. In particular, we use a Poincaré type inequality and that
the�λ-Laplacian is self-adjoint to show that −�λ generates an analytic semigroup in
L2(�). The Sobolev embeddings obtained in [14] allow us to locally solve the semi-
linear problem under sub-critical growth restrictions on the non-linearity. The growth
restrictions are determined by the homogeneous dimension Q of R

N with respect to
the group of dilations corresponding to the �λ-operator. Q will play the same role as
the dimension N for the Laplacian in the functional setting naturally associated to�λ.
Comparing with the classical problem for the semilinear heat equation, the degeneracy
decreases the admissible growth of the nonlinearity. The global existence of solutions
can be established under certain dissipativity conditions on the non-linearity. To char-
acterize the longtime behavior of solutions of Problem (1) we apply methods from the
theory of infinite dimensional dynamical systems.

The structure of our paper is as follows: In Sect. 2 we introduce the �λ-Lapla-
cian, the associated functional setting and recall embedding results. We further give
examples for the class of �λ-operators. In Sect. 3 we summarize notions and results
from the theory of infinite dimensional dynamical systems that we need in the sequel.
Finally, we prove the global existence of solutions for Problem (1) and characterize
their longtime behavior in Sect. 4.

2. The �λ-Laplacian

2.1. Definition and properties

Throughout the paper� denotes an open bounded subset of R
N , N ≥ 2. As in [14],

we consider operators of the form
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�λ :=
N∑

i=1

∂xi (λ
2
i ∂xi ),

where ∂xi = ∂
∂xi
, i = 1, . . . , N . The functions λi : R

N → R are continuous, strictly

positive and of class C1 outside the coordinate hyperplanes1 and satisfy the following
properties:

(A1) λ1(x) ≡ 1, λi (x) = λi (x1, . . . , xi−1), i = 2, . . . , N .
(A2) For every x ∈ R

N the function λi (x) = λi (x∗), i = 1, . . . , N , where

x∗ = (|x1|, . . . , |xN |) if x = (x1, . . . , xN ).

(A3) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xkλi (x) ≤ ρλi (x) ∀k ∈ {1, . . . , i − 1}, i = 2, . . . , N ,

and for every x ∈ R
N+ := {

(x1, . . . , xN ) ∈ R
N : xi ≥ 0 ∀i = 1, . . . , N

}
.

(A4) There exists a group of dilations (δr )r>0

δr : R
N → R

N , δr (x) = δr (x1, . . . , xN ) = (rε1 x1, . . . , r
εN xN ), (2)

where 1 ≤ ε1 ≤ ε2 ≤ · · · ≤ εN , such that λi is δr -homogeneous of degree
εi − 1, i.e.,

λi (δr (x)) = rεi −1λi (x), ∀x ∈ R
N , r > 0, i = 1, . . . , N . (3)

This implies that the operator �λ is δr -homogeneous of degree two, i.e.,

�λ(u(δr (x))) = r2(�λu)(δr (x)) ∀u ∈ C∞(RN ).

We will denote by Q the homogeneous dimension of R
N with respect to the group

of dilations (δr )r>0, i.e.,

Q := ε1 + · · · + εN .

Q plays a crucial role, both, in the geometry and the functional setting naturally asso-
ciated to the operator �λ.

We remark that assumption (A1) allows us to write the operator in the form

�λ =
N∑

i=1

(λi∂xi )
2.

If the functions λi , i = 1, . . . , N , are smooth, the hypotheses (1) and (4) imply that
our �λ-Laplacian belongs to the general class of operators studied by Hörmander in
[13] and that it is hypoelliptic (see Remark 1.3, [14]).

1 λi > 0 in R
N \�, where � =

{
(x1, . . . , xN ) ∈ R

N : ∏N
i=1 xi = 0

}
.
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2.2. Functional setting and embedding properties

For a function of class C1 we define

�λu = (λ1∂x1u, . . . , λ1∂xN u), |�λu|2 :=
N∑

i=1

|λi∂xi u|2,

and denote by W̊ 1,2
λ (�) the closure of C1

0(�) with respect to the norm

‖u‖W̊ 1,2
λ (�)

:=
(∫

�

|�λu(x)|2dx

) 1
2

.

From Proposition 3.2 and Theorem 3.3 in [14] we obtain the following embedding
properties:

PROPOSITION 1. The embedding

W̊ 1,2
λ (�) ↪→ L p(�)

is continuous for p ∈ [1, 2∗
λ] and compact for every p ∈ [1, 2∗

λ), where 2∗
λ := 2Q

Q−2 .

REMARK 1. Since we assume λ1 ≡ 1 in (i), a Poincaré type inequality can be
obtained for the �λ-operator following the classical proof of the Poincaré inequality
in Theorem 6.30, [1]:

There exists a constant C > 0, such that

‖u‖L2(�) ≤ C‖u‖W̊ 1,2
λ (�)

∀u ∈ C1
0(�), (4)

and the optimal constant in the inequality is attained by 1√
μ1
, where μ1 > 0 denotes

the first eigenvalue of the operator −�λ on � with homogeneous Dirichlet boundary
conditions.

This inequality is in fact a particular case of the embedding results in Proposition 1.

2.3. Examples of �λ-Laplacians

In this subsection we use the following notations: We split R
N into

R
N = R

N1 × · · · × R
Nk ,

and write

x =
(

x (1), . . . , x (k)
)
, x (i) =

(
x (i)1 , . . . , x (i)Ni

)
∈ R

Ni , i = 1, . . . , k.

We denote the classical Laplace operator in R
Ni by

�x (i) =
Ni∑

j=1

∂2
x (i)j

,
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and write our operators in the form

�λ = (λ(1))2�x (1) + · · · + (λ(k))2�x (k) in R
N = R

N1 × · · · × R
Nk ,

where

λ =
(
λ(1), . . . , λ(k)

)
, λ(i) =

(
λ
(i)
1 , . . . , λ

(i)
Ni

)
,

and the functions λ(i) are continuous in R
Ni , i = 1, . . . , k.

EXAMPLE 1. Letα be a real positive constant and k = 2. We consider the operator

�λ = �x (1) + |x (1)|2α�x (2) ,

where λ = (λ(1), λ(2)), with λ(1)j (x) = 1, j = 1, . . . , N1 and λ(2)j (x) = |x (1)|α,
j = 1, . . . , N2. Using the relation (3) we find our group of dilations in (A4)

δr

(
x (1), x (2)

)
=

(
r x (1), rα+1x (2)

)
,

and the homogenous dimension with respect to (δr )r>0 is Q = N1 + N2(α + 1).
Operators of this form are commonly called Grushin type operators.2

More generally, for a given multi-index α = (α1, . . . , αk−1) with real constants
α j ≥ 0, j = 1, . . . , k − 1, we define

�λ = �x (1) + |x (1)|2α1�x (2) + · · · + |x (k−1)|2αk−1�x (k) .

Then, in our notation λ = (
λ(1), . . . , λ(k)

)
with

λ
(1)
j (x) ≡ 1, j = 1, . . . , N1,

λ
(i)
j (x) = |x (i−1)|αi−1 i = 2, . . . , k, j = 1, . . . , Ni ,

and the group of dilations such that λ satisfies (3) is given by

δr

(
x (1), . . . , x (k)

)
=

(
rε1 x (1), . . . , rεk x (k)

)

with ε1 = 1 and εi = αi−1εi−1 + 1 for i = 2, . . . , k. In particular, if α1 = · · · =
αk−1 = α, the dilations become

δr

(
x (1), . . . , x (k)

)
=

(
r x (1), rα+1x (2), . . . , rα

k−1+···+α+1x (k)
)
.

EXAMPLE 2. Let α, β and γ be nonnegative real constants. For the operator

�λ = �x (1) + |x (1)|2α�x (2) + |x (1)|2β |x (2)|2γ�x (3) ,

2 In 1970 Grushin [11] studied these operators assuming that α is a positive integer and provided a complete
characterization of the hypoellipticity for such operators when lower terms with complex coefficients are
added.
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where λ = (λ(1), λ(2), λ(3)) with

λ
(1)
j (x) ≡ 1, j = 1, . . . , N1,

λ
(2)
j (x) = |x (1)|α, j = 1, . . . , N2,

λ
(3)
j (x) = |x (1)|β |x (2)|γ , j = 1, . . . , N3,

we find the group of dilations

δr

(
x (1), x (2), x (3)

)
=

(
r x (1), rα+1x (2), rβ+(α+1)γ+1x (3)

)
.

Similarly, for operators of the form

�λ = �x (1) + |x (1)|2α1,1�x (2) + |x (1)|2α2,1 |x (2)|2α2,2�x (3)

+ · · · +
(

k−1∏

i=1

|x (i)|2αk−1,i

)
�x (k) ,

where αi, j ≥ 0, i = 1, . . . , k − 1, j = 1, . . . , i, are real constants, the group of
dilations is given by

δr

(
x (1), . . . , x (k)

)
=

(
rε1 x (1), . . . , rεk x (k)

)

with ε1 = 1 and ε j = 1 + ∑ j−1
i=1 α j−1,iεi , for i = 2, . . . , k.

In particular, if α1,1 = · · · = αk−1,k−1 = α, the dilations become

δr

(
x (1), . . . , x (k)

)
=

(
r x (1), rα+1x (2), . . . , r (α+1)k−1

x (k)
)
.

EXAMPLE 3. We assume p1, p2 : R
N1 −→ R are homogeneous polynomials

with positive coefficients of the variables |x (1)1 |, . . . , |x (1)N1
| and p3 : R

N2 −→ R is an

homogeneous polynomial with positive coefficients of the variables |x (2)1 |, . . . , |x (2)N2
|.

For the operator

�λ = �x (1) +
(

p1(x
(1))

)2
�x (2) +

(
p2(x

(1))
)2 (

p3(x
(2))

)2
�x (3)

we find the group of dilations

δr

(
x (1), x (2), x (3)

)
=

(
r x (1), rm1+1x (2), rm2+(m1+1)m3+1x (3)

)
,

where mi is the degree of the polynomial pi , i = 1, 2, 3.
More generally, let μ1, μ2 : R

N1 −→ R and μ3 : R
N2 −→ R be continuous

functions, positive and of class C1 outside the coordinate hyperplanes, that satisfy
(A2), (A3) and

μ1(sx (1))=sαμ1(x
(1)), μ2(sx (1))=sβμ2(x

(1)), μ3(sx (2))=sγ μ3(x
(2)), ∀s>0,
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where α, β and γ are nonnegative real constants. The group of dilations for the oper-
ator

�λ = �x (1) +
(
μ1(x

(1))
)2
�x (2) +

(
μ2(x

(1))
)2 (

μ3(x
(2))

)2
�x (3)

is given by

δr

(
x (1), x (2), x (3)

)
=

(
r x (1), rα+1x (2), rβ+(α+1)γ+1x (3)

)
.

REMARK 2. The last example generalizes Example 1.5 in [14],

�λ = �x (1) +
(
μ

(
x (1)

))2
�x (2) ,

where the authors missed to add that the function μ satisfies the hypotheses (A2) and
(A3).

As they mentioned in Note 2, if μ(x (1)) = 1
2 |x (1)| the operator �λ takes the form

�x (1) + 1

4
|x (1)|2�x (2) .

Furthermore, if the dimensions N1 and N2 verify the inequality N2 < ρ(N1), where
ρ is the so called Hurwitz-Radon function, then there exists a composition law ◦ in
R

N making HN := (RN , ◦, δλ) a group of Heisenberg type (see [5], Remark 3.6.7).
Denoting by �HN the canonical sub-Laplacian on HN , we have

(
�x (1) + 1

4
|x (1)|2�x (2)

)
u = �HN u,

for every smooth function u : R
N −→ R which is radially symmetric in the variable

x (1) (see [5], p. 251).

3. Global attractors of infinite dimensional dynamical systems:
some well-known properties

We summarize in this section notions from the theory of infinite dimensional dynam-
ical systems and recall a general existence result for global attractors. For further details
we refer to [16] or [4].

Let S(t) : V → V, t ≥ 0, be continuous operators in a Banach space (V, ‖ · ‖V ).
We call the family S(t), t ≥ 0, a semigroup if it satisfies the properties

S(t) ◦ S(s) = S(t + s) ∀t, s ≥ 0,

S(0) = Id,

(t, v) �→ S(t)v is continuous from [0,∞)× V → V,

where ◦ denotes the composition, and Id the identity operator in V .
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For a subset B ⊂ V we define the positive orbit of B by

γ+(B) :=
⋃

t≥0

S(t)B,

and more generally, for τ ≥ 0 we define the orbit of B after time τ by

γ+
τ (B) := γ+(S(τ )B).

The semigroup S(t), t ≥ 0, is asymptotically compact if for every bounded subset
B ⊂ V such that γ+

τ (B) is bounded for some τ ≥ 0, the set {S(tn + τ)vn, n ∈ N}, is
relatively compact for all sequences vn in B and tn ≥ 0 such that tn → ∞ as n → ∞.

We call a non-empty compact subset A ⊂ V the global attractor of the semigroup
S(t), t ≥ 0, if A is invariant, i.e.,

S(t)A = A ∀t ≥ 0,

and A attracts every bounded subset B ⊂ V under the action of the semigroup, i.e.,

lim
t→∞ distH (S(t)B,A) = 0.

Here, distH (·, ·) denotes the Hausdorff semi-distance in V , i.e.,

distH (B, A) := sup
b∈B

inf
a∈A

‖a − b‖V for subsets A, B ⊂ V .

A Lyapunov functional for the semigroup S(t), t ≥ 0, is a continuous function
� : V → R such that

�(S(t)v) ≤ �(v) ∀t ≥ 0,∀v ∈ V,

�(S(t)v) = �(v) ∀t ≥ 0 implies that v is an equilibrium point.

If S(t), t ≥ 0, possesses a Lyapunov functional we call it a gradient semigroup.
Moreover, we denote the set of equilibrium points of the semigroup S(t), t ≥ 0, by

E := {
v ∈ V : S(t)v = v ∀t ≥ 0

}
,

and the unstable set of E is

Wu(E)={
v ∈ V : S(t)x is defined for all t ∈ R, distH (S(−t)v, E) → 0 as t →∞}

.

For the proof of the following theorem about the existence of global attractors for
gradient semigroups we refer to Theorem 4.6 and Proposition 2.19, [16].

THEOREM 1. Let S(t), t ≥ 0, be an asymptotically compact gradient semigroup
such that for every bounded subset B ⊂ V there exists τ ≥ 0 such that the orbit
γ+
τ (B) is bounded. If the set of equilibrium points E is bounded, then the global

attractor exists, is connected and A = W u(E).
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The ω-limit set of an element v ∈ V is

ω(v) = {
y ∈ V : ∃ a sequence tn ≥ 0, n ∈ N, tn → ∞, such that

S(tn)v → y as n → ∞}
.

The invariance principle of LaSalle (see Proposition 4.2, [16]) characterizes the
longtime behavior of trajectories.

PROPOSITION 2. Let S(t), t ≥ 0, be a gradient semigroup in V with Lyapunov
functional � : V → R and let u ∈ V . If the orbit γ+

τ (u) is relatively compact in V
for some τ ≥ 0, then the limit limt→∞�(S(t)u) = a exists and �(v) = a for all
v ∈ ω(u). Moreover, ω(u) ⊂ E, E �= ∅ and

distH (S(t)u, E) →t→∞ 0.

4. Global existence of solutions and their longtime behavior

We consider the degenerate parabolic initial value problem

∂t u(x, t) = �λu(x, t)+ f (u(x, t)) x ∈ �, t > 0,

u(x, t) = 0 x ∈ ∂�, t ≥ 0, (5)

u(x, 0) = u0(x) x ∈ �,

where � ⊂ R
N is a bounded domain, and the initial data u0 ∈ W̊ 1,2

λ (�).
The non-linearity f : R → R is locally Lipschitz continuous and satisfies the

following growth restriction: There exist constants c ≥ 0 and 0 ≤ γ < 4
Q−2 such that

| f (u)− f (v)| ≤ c|u − v|(1 + |u|γ + |v|γ ) ∀u, v ∈ R. (6)

Moreover, to show the global existence of solutions we assume the following sign
condition:

lim sup
|u|→∞

f (u)

u
< μ1, (7)

where μ1 > 0 denotes the first eigenvalue of the operator −�λ on � with homoge-
neous Dirichlet boundary conditions.

This in particular implies that exist constants 0 ≤ c0 < μ1 and c1 ∈ R such that

u f (u) ≤ c1|u| + c0u2, u ∈ R.

DEFINITION 1. We call u a local weak solution of (5) if there exists T > 0 such
that

u ∈ C
(
[0, T ); W̊ 1,2

λ (�)
)
, u(0) = u0, u ∈ C1

(
(0, T ); (W̊ 1,2

λ (�))′
)
,
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where Y ′ indicates the dual space of a Banach space Y, and u satisfies the equation

d

dt
〈u(t), v〉L2(�) = −aλ(u(t), v)+ 〈 f (u), v〉L2(�) ∀v ∈ W̊ 1,2

λ (�), t ∈ (0, T ).

The bilinear form aλ in W̊ 1,2
λ (�) is defined as

aλ(u, v) :=
∫

�

�λu(x) · �λv(x)dx u, v ∈ W̊ 1,2
λ (�),

and · denotes the inner product in R
N .

4.1. Local and global existence of solutions

We consider the �λ-operator in L2(�) with domain

D(�λ) :=
{

u ∈ W̊ 1,2
λ (�) : ∃c ≥ 0 such that |aλ(u, v)|≤c‖v‖L2(�) ∀v∈ W̊ 1,2

λ (�)
}
,

− 〈�λu, v〉L2(�) = aλ(u, v) ∀u ∈ D(�λ), v ∈ W̊ 1,2
λ (�).

Since � is bounded and the functions λi , i = 1, . . . , N , are continuous on R
N , we

remark that

D(�D) = H1
0 (�) ∩ H2(�) ⊂ D(�λ),

where �D denotes the Laplace operator in � with homogeneous Dirichlet boundary
conditions.

PROPOSITION 3. The operator −�λ generates an analytic semigroup e�λt ,

t ≥ 0, in L2(�).

Proof. The�λ-Laplacian is densely defined and self-adjoint in L2(�). By Inequality
(4), −�λ is bounded from below by a positive constant C > 0,

−
∫

�

�λu(x)u(x)dx =
∫

�

|�λu(x)|2dx ≥ C‖u‖2
L2(�)

∀u ∈ D(−�λ).

which implies that −�λ is sectorial (see [12], p. 19). The proposition now follows
from Theorem 1.3.4 in [12]. �

The operator A := −�λ is positive and self-adjoint in L2(�) and has compact
inverse by Proposition 1. Consequently, there exists an orthonormal basis of L2(�)

of eigenfunctions ψ j ∈ W̊ 1,2
λ (�), j ∈ N, of A with eigenvalues

0 < μ1 ≤ μ2 ≤ . . . , μ j → ∞ as j → ∞.

We denote the fractional power spaces associated to A by Xα = (D(Aα) , 〈·, ·〉Xα ),

α ∈ R. The inner product in Xα is given by 〈u, v〉Xα = 〈Aαu, Aαv〉X0 , u, v ∈ D(Aα),
where

D(Aα) =
⎧
⎨

⎩ψ =
∑

j∈N

c jψ j , c j ∈ R

∣∣∣
∑

j∈N

μ2α
j c2

j < ∞
⎫
⎬

⎭
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and

Aαψ = Aα
∑

j∈N

c jψ j =
∑

j∈N

μαj c jψ j .

In this notation,

X1 = D(−�λ), X
1
2 = W̊ 1,2

λ (�), X0 = L2(�), X− 1
2 = (W̊ 1,2

λ (�))′.

The operator A in X0 can be extended or restricted, respectively, to a positive sec-
torial operator in Xα with domain Xα+1, α ∈ R, and the corresponding semigroups
e−At , t ≥ 0, in Xα are obtained from each other by natural restrictions and extensions.
Moreover, if β ≤ α we have e−At (Xβ) ⊂ Xα and

∥∥e−At
∥∥L(Xβ ;Xα) ≤ Cα,β

tα−β , t > 0, (8)

for some constant Cα,β ≥ 0, where ‖ · ‖L(V ;W ) denotes the norm of a linear operator
between the normed spaces V and W (e.g., see Section II.2.1. in [17] and Theorem
2.4 in [2]).

We formulate Problem (5) in the abstract form

ut = −Au + f(u),

u|t=0 = u0,
(9)

with initial data u0 ∈ X
1
2 . Here, we consider the operator A in X− 1

2 with domain X
1
2 ,

which is determined by the bilinear form aλ,

(Au, v)
X− 1

2
= aλ(u, v) ∀u, v ∈ X

1
2 ,

and f(u) ∈ X− 1
2 by

(f(u), v)
X− 1

2
:= 〈 f (u), v〉L2(�), u, v ∈ X

1
2 ,

where (·, ·)
X− 1

2
denotes the dual pairing between X

1
2 and X− 1

2 .

If u is a local weak solution in the sense of Definition 1, it satisfies the variation of
constants formula

u(t) = Tλ(t)u0 +
∫ t

0
Tλ(t − s) f (u(s))ds ∀t ∈ [0, T ),

where Tλ(t), t ≥ 0, denotes the analytic semigroup in X− 1
2 generated by the operator

A (see Lemma 2.2.1, [6]).
From now on the letter C will always denote a non-negative constant that may vary

in each occurrence and from line to line. To show the existence of solutions under the
growth restrictions (6) we need the following lemma.
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LEMMA 1. We assume the function f satisfies the growth restriction with 2
Q−2 <

γ < 4
Q−2 . Then, there exists 0 < α < 1

2 such that f : X
1
2 → X−α is locally Lipschitz.

Proof. Let p := 2∗
λ

2∗
λ−(γ+1) , then p ∈ (2, 2∗

λ). The identity E is a bounded linear

operator from X0 = L2(�) to L2(�) and from X
1
2 to L p∗

λ (�) by Proposition 1. By
complex interpolation we conclude that

E : [X0, X
1
2 ]2α = Xα → [L2(�), L2∗

λ(�)]2α = L p(�),
1

p
= 1 − 2α

2
+ 2α

2∗
λ

,

is linear and bounded, where α = 2∗
λ(p−2)

2p(2∗
λ−2) ∈ (

0, 1
2

)
(see Section II.2.1. in [17],

Example 7.56 in [1] and Proposition 1.3.9 in [6]).

Let now q := 2∗
λ

γ+1 . Then, q ∈ (1, 2), 1
p + 1

q = 1, and by duality we obtain

Lq(�) ↪→ X−α for some α ∈ (0, 1
2 ). To conclude the proof of the lemma we show

that f : X
1
2 → Lq(�) is locally Lipschitz continuous. Let u, v ∈ X

1
2 be such that

‖u‖
X

1
2
, ‖v‖

X
1
2
< r for some r > 0. Using the growth condition (6) and Hölder’s

inequality with r = 2∗
λ

qγ and s = 2∗
λ

q we obtain

‖ f (u)− f (v)‖q
Lq (�) ≤ C

(
‖u − v‖q

Lq (�) +
∫

�

(|u − v|q |u|qγ + |u − v|q |v|qγ )dx

)

≤C
(
‖u−v‖q

Lq (�)+‖u−v‖q
Lsq (�)

(
‖u‖qγ

Lrqγ (�) + ‖u‖qγ
Lrqγ (�)

))

=C

(
‖u−v‖q

Lq (�)+‖u − v‖q

L2∗
λ (�)

(
‖u‖qγ

L2∗
λ (�)

+ ‖u‖qγ

L2∗
λ (�)

))

≤ C‖u − v‖q

X
1
2
,

where we used in the last step the embedding X
1
2 ↪→ L p(�), for 1 ≤ p ≤ 2∗

λ. �

THEOREM 2. We assume the function f satisfies the growth restrictions (6). Then,

for every initial data u0 ∈ X
1
2 there exists a unique local weak solution of Problem

(5) defined on the maximal interval of existence [0, T ) and

u ∈ C([0, T ); X
1
2 ) ∩ C1((0, T ); Xβ) ∀β ∈ [−α, 1 − α).

The solution satisfies the variation of constants formula

u(t) = Tλ(t)u0 +
∫ t

0
Tλ(t − s) f (u(s)) ds,

and either T = ∞ or, if T < ∞, then

lim sup
t→T

‖u(t)‖
X

1
2

= ∞.
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Proof. Without loss of generality we can assume that f satisfies the growth restric-
tions (6) with exponent 2

Q−2 < γ < 4
Q−2 . Indeed, if 0 < γ ≤ 2

Q−2 we apply Young’s

inequality to increase the exponent in (6). Let now α ∈ (0, 1
2 ) be as in Lemma 1. If we

consider the operator A in X−α with domain X1−α in the abstract semilinear parabolic
problem (9), the theorem is an immediate consequence of Lemma 1, Theorem 2.1.1
and Corollary 2.3.1 in [6]. �

REMARK 3. If the non-linearity satisfies the growth restrictions (6) with exponent
0 ≤ γ ≤ 2

Q−2 , the proof of Theorem 2 simplifies and Lemma 1 is not needed. Indeed,
using Hölder’s inequality and the embedding result in Theorem 1 we can show that f

is locally Lipschitz continuous from X
1
2 to X0 (see also [16] for the proof in the clas-

sical case of the semilinear heat equation). The statement of Theorem 2 then follows
from Theorem 2.1.1 and Corollary 2.3.1 in [6], and

u ∈ C([0, T ); X
1
2 ) ∩ C1((0, T ); Xα) ∩ C((0, T ); X1) ∀α ∈ [0, 1).

To show the global existence of solutions we follow the arguments in [16] and

introduce the Lyapunov functional � : X
1
2 → R,

�(u) :=
∫

�

(
1

2
|�λu(x)|2 − F(u(x))

)
dx, u ∈ X

1
2 ,

where F(u) := ∫ u
0 f (s)ds denotes the primitive of f . We remark that if u is a

local weak solution of (5), then Theorem 2 implies that u ∈ C([0, T ); X
1
2 ) ∩

C1((0, T ); X
1
2 ). Furthermore, the Lyapunov functional satisfies�(u(·)) ∈ C([0, T );

R) ∩ C1((0, T ); R), and

d

dt
�(u(t)) = −‖ut (t)‖2

L2(�)
< ∞, t ∈ (0, T ).

Using the growth restriction (6) we obtain

�(u(t)) ≤ �(u0) ≤
∫

�

(
1

2
|�λu0(x)|2 + |F(u0(x))|

)
dx

≤ C

(
1 + 1

2
‖u0‖2

X
1
2

+ ‖u0‖γ+2
Lγ+2(�)

)
.

On the other hand, the sign condition (7) and Young’s inequality yield the estimate

�(u(0)) ≥ �(u(t)) =
∫

�

(
1

2
|�λu(x, t)|2 − F(u(x, t))

)
dx

≥ 1

2
‖u(t)‖2

X
1
2

− 1

2
c0‖u(t)‖2

L2(�)
−

∫

�

c1|u(x, t)|dx

≥ 1

2
‖u(t)‖2

X
1
2

− 1

2
(c0 + ε)‖u(t)‖2

L2(�)
− Cε

≥ 1

2
‖u(t)‖2

X
1
2

(
1 − c0 + ε

μ1

)
− Cε,
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for small ε > 0 and some constant Cε ≥ 0, where we used Poincaré’s inequality in

the last step. Since c0 < μ1 and Lγ+2(�) ↪→ X
1
2 , the above estimates imply that

the solution u is uniformly bounded in time t ∈ [0, T ) in X
1
2 , and therefore exists

globally, i.e., T = ∞.

4.2. Existence and finite fractal dimension of the global attractor

We verified in the previous subsection that Problem (5) generates a semigroup

Sλ(t), t ≥ 0, in X
1
2 ,

Sλ(t)u0 = u(t; u0), t ≥ 0,

where u( · ; u0) ∈ C([0, T ); X
1
2 ) ∩ C1((0, T ); X

1
2 ) denotes the unique global weak

solution of (5) corresponding to initial data u0 ∈ X
1
2 . Moreover, the semigroup

Sλ(t), t ≥ 0, is gradient with Lyapunov functional � : X
1
2 → R.

To prove the existence and finite dimensionality of the global attractor we formulate
two auxiliary results.

LEMMA 2. Let B ⊂ X
1
2 be a bounded subset. Then, for every T ∗ > 0 there exists

a constant κ > 0 such that

‖Sλ(T
∗)u − Sλ(T

∗)v‖
X

1
2

≤ κ‖u − v‖X0 ∀u, v ∈ B.

Proof. As in the proof of Theorem 2 we can assume that f satisfies the growth restric-
tions with 2

Q−2 < γ < 4
Q−2 . Given initial data u0, v0 ∈ B, the corresponding solu-

tions u(t) = Sλ(t)u0 and v(t) = Sλ(t)v0 satisfy the variation of constants formula.
By Lemma 1 and (8) we obtain for the difference

‖Sλ(t)u0 − Sλ(t)v0‖
X

1
2

≤ ‖e−A
1
2 t‖L(X0,X

1
2 )

‖u0 − v0‖X0

+
∫ t

0
‖e−A

1
2 t‖L(X−α,X

1
2 )

‖ f (u(s))− f (v(s))‖X−αds

≤ C

(
1√
t
‖u0 − v0‖X0 +

∫ t

0

1

(t − s)
1
2 +α ‖ f (u(s))− f (v(s))‖X−αds

)

≤ C

(
1√
t
‖u0 − v0‖X0 +

∫ t

0

1

(t − s)
1
2 +α ‖u(s)− v(s)‖

X
1
2

ds

)
.

Let T ∗ > 0, the singular Gronwall Lemma (see Lemma 1.2.9, [6]) now implies

‖Sλ(T
∗)u0 − Sλ(T

∗)v0‖
X

1
2

≤ C√
T ∗ ‖u0 − v0‖X0 .

�
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The smoothing property allows to estimate the fractal dimension of compact invari-
ant sets. We recall that the fractal dimension of a compact set A ⊂ V is defined
as

dim f (A) = lim
ε→0

ln(N V
ε (A))

− ln(ε)
,

where N V
ε (A) denotes the minimal number of balls in V with radius ε > 0 and centers

in A needed to cover the set A.

LEMMA 3. Let V and W be Banach spaces such that the embedding V ↪→ W is
dense and compact, and let Sλ(t), t ≥ 0, be a semigroup in V . We assume A ⊂ V
is a compact invariant set and the semigroup satisfies the smoothing property: There
exists T ∗ > 0 and a constant κ ≥ 0 such that

‖Sλ(T
∗)u − Sλ(T

∗)v‖V ≤ κ‖u − v‖W ∀u, v ∈ A.
Then, the fractal dimension of A in V is finite.

Proof. The statement can be deduced by slightly modifying the method developed in
[7] to construct exponential attractors for semigroups. �

Finally, we prove the existence and finite fractal dimension of the global attractor
for the semigroup Sλ(t), t ≥ 0, and show that all solutions of (5) converge to the set
of equilibrium solutions

E =
{

u ∈ X
1
2 : �λu + f (u) = 0

}

when time t tends to infinity. The existence of equilibrium solutions was obtained in
Theorem 3.1, [14].

THEOREM 3. The semigroup Sλ(t), t ≥ 0, possesses a global attractor A in
W̊ 1,2
λ (�), and its fractal dimension is finite. Furthermore, A is connected,

A = W u(E),
for every initial data u0 ∈ X

1
2 we have ω(u0) ⊂ E , and in particular,

lim
t→∞ distH (Sλ(t)u0, E) = 0.

Proof. Existence of the Global Attractor: We have shown that the semigroup Sλ(t), t ≥
0, is gradient and orbits of bounded sets are bounded. To apply Theorem 1 it remains

to prove that the set of equilibria is bounded in X
1
2 and that Sλ(t), t ≥ 0, is asymp-

totically compact. Let u ∈ E . Multiplying the equation by u and using Young’s and
Poincaré’s inequality we obtain

0 = −‖u‖2

X
1
2

+
∫

�

f (u(x))u(x)dx ≤ −‖u‖2

X
1
2

+
∫

�

(
c1|u(x)| + c0

2
|u(x)|2

)
dx

≤ −‖u‖2

X
1
2

(
1 − c0 + ε

μ1

)
+ Cε,
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for ε > 0 and some constant Cε ≥ 0. Since c0 < μ1 the estimate implies that the set

E is bounded in X
1
2 .

To prove the asymptotic compactness of Sλ(t), t ≥ 0, we assume the set

B ⊂ X
1
2 is bounded. Let T > 0 and xn ∈ B, tn ≥ 0, n ∈ N, be sequences such

that tn → ∞ as n → ∞. Since orbits of bounded sets are bounded in X
1
2 , the set

{Sλ(tn − T )xn : tn ≥ T, n ∈ N} is bounded in X
1
2 and consequently, there exists a

subsequence vk := Sλ(tnk − T )xnk converging weakly to v in X
1
2 and strongly to v

in X0. Applying Lemma 2 we obtain

‖Sλ(T )vk − Sλ(T )v‖
X

1
2

≤ κ‖vk − v‖X0 ,

which implies that Sλ(T )vk = Sλ(tnk )vnk converges to Sλ(T )v in X
1
2 , and shows the

asymptotic compactness of the semigroup Sλ(t), t ≥ 0.

Convergence to Stationary States: Let u0 ∈ X
1
2 . We deduce the last statement of

the theorem from the invariance principle of LaSalle (see Sect. 3). It suffices to show

that there exists τ ≥ 0 such that γ+
τ (u0) is relatively compact in X

1
2 . Let τ > 0, then

γ+
τ (u0) =

⋃

t≥0

Sλ(τ )Sλ(t)u0 = Sλ(τ )γ
+(u0).

Furthermore, if xn, n ∈ N, is a sequence in γ+
τ (u0), then

xn = Sλ(τ )yn with yn ∈ γ+(u0).

Since the orbit γ+(u0) is bounded in X
1
2 there exists a subsequence ynk converging

weakly to an element y in X
1
2 and strongly to y in X0. We again apply Lemma 2 to

conclude that the sequence Sλ(τ )ynk converges to Sλ(τ )y in X
1
2 , which proves the

precompactness of the orbit γ+
τ (u0).

Fractal Dimension of the Global Attractor: The global attractor A is compact and
invariant, and the semigroup Sλ(t), t ≥ 0, satisfies the smoothing property in A.

Lemma 3 applied to the semigroup Sλ(t), t ≥ 0, with V = X
1
2 and W = X0 implies

the finite fractal dimension of A. �
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