Minimization of length and curvature on planar curves

Ugo Boscain, Grégoire Charlot and Francesco Rossi

Abstract—In this paper we consider the problem of recon-
structing a curve that is partlally hidden or corrupted by
minimizing the functional vvf v1+ K?ds, depending both on
length and curvature K. We fix starting and ending points as
well as initial and final directions.

For this functional we discuss the problem of existence of
minimizers on various functional spaces. We find non-existence
of minimizers in cases in which initial and final directions are
considered with orientation. In this case, minimizing sequences
of trajectories can converge to curves with angles.

We instead prove existence of minimizers for the ‘time-
reparameterized” functional I5¥@®))+/1+ K2dt for all
boundary conditions if initial and final directions are considered
regardless to orientation.
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I. PROBLEMS STATEMENTS AND MAIN RESULTS

Consider a smooth function g : [a,b]U[c,d] — R? (with
a < b < ¢ < d) representing a curve that is partially hidden
or deleted in (b, c). We want to find a curve «y : [b,¢] — R?
that completes 7o in the deleted part and that minimizes a
cost depending both on length . () and curvature K.

The fact that v completes vy means that y(b) = ~(b),
~v(c) = 7o(c). Tt is also reasonable to require that the
directions of tangent vectors (with orientation) coincide, i.e.

¥() ~ 9o(b), Y(c) ~ Yo(c) where
v1 ~ vy if it exists & € RT such that v; = a vs. (1)

We call these conditions boundary conditions with orien-
tation. Throughout this paper we assume that starting and
ending points never coincide, i.e. vy(b) # 7o(c), and that
initial and final directions are nonvanishing.

In the literature this problem has been deeply studied
for its application to problems of segmentation of images
(see e.g. [2], [7], [12], [13]) and for the construction of
spiral splines [9]. The cost studled 1r1 [7] [9], [12] is the
total squared curvature F [v fo VK, (s)|2 ds where
s is the arclength. The cost studied in [2] is E2[y] =
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JZO (141K, (5)]%) ds, while in [13] it is E3[y] =
fof(v) (n+ |K,(s)[*) ds with n — 0. Depending on the
cost, minimizers may present angles.

In this paper we study the following cost:

Tl = A RO + FO K2 d. @

It is an extension of Es [v], see Remark 2 below. Using this
cost one can study the existence of minimizers with angles
without involving sophisticated functional spaces. Moreover,
this cost naturally arises in problems of geometry of vision
[8], [16], [17]. This problem has also been studied in [5],
where it is defined on the sphere S? instead of R2.

Remark 1: The cost J is invariant both by rototranslation
and reparametrization of the curve. Notice also that the min-
imization of the cost Jz[y] := [, [|7(¢)]l\/1 + B2K2(t) dt
with a fixed 8 # 0 is equlvalent to the minimization of J
with a suitable change of boundary conditions.

The first question we address in this paper is the choice
of a set of smooth curves on which this cost is well-defined.
We want 4(t) and K., (t) = —20=4

— well-defined, thus it is
L @24g7)2

reasonable to look for minimizers in

P = {ye C(b,d,R?) st 4(t) £ 0Vt € b,

Y(0)=70(b) 7 () =70(c) 7 (b)~40 (b) 5 () ~0(c) } -

Moreover, 4(b) and 4(c) are well-defined in this case.

Under this assumption, one of the main results of the paper
is the nonexistence of minimizers for J.

Proposition 1: There exist boundary conditions
Y0(b),7(c) € R with () # () and
F0(b), “o(c) € R2\ {0} such that the cost (2) does
not admit a minimum over the set ;.

To get existence of minimizers one can choose to enlarge
the set of admissible curves. Here we choose

7y = {ye C*(bd) st yFOPATEI®) € L' (b, d),
7(0)=70(6),7()=70 ()4 (b)~40a (b) 5 (c)~0(e) }

on which the cost J [7] is defined and always finite.
Remark 2: The cost J [y] on the set Z; coincides with
the cost Es [7]. Instead, Es [] is not well defined on 25,
since it is not possible in general to perform an arclength
parametrization. Then J [y] is an extension of Ej [7].
Also on 95 we have non-existence of minimizers for J.



Proposition 2: There exist boundary conditions
Y0(b),70(c) € R?> with () # () and
j0(b), Ao(c) € R2\ {0} such that the cost (2) does
not admit a minimum over the set %s.

The basic problem is that we can have a sequence of
minimizing curves converging to a non admissible curve. In
particular, we can have that each curve -, satisfies given
boundary conditions with orientation but the limit curve ¥
doesn’t satisfy them. See Figure 1.
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Fig. 1. Minimizing sequence converging to a non-admissible curve (angles
at the beginning/end).

The main result of the paper is the existence of min-
imizers for the cost (2) taking again curves for which
\/ [7()[I2(1 + K2(t)) is integrable, but changing boundary
conditions. We only impose conditions on the direction of ¥
regardless of its orientation.

As before, fix a starting point zy with a direction vy and an
ending point x; with a direction v;. Consider planar curves
satisfying the following boundary conditions:

7(0) = z0, ¥(0) = vo, Y(T) = x1, Y(T) =~ vy,
where the identification rule = is
vy R vq if there exists & € R\ {0} such that v; = avs. (3)

We call them projective boundary conditions. As already
stated, we have the following existence result:

Proposition 3: For all boundary conditions xg,z; € R?
with g # 21, vo, v1 € R?\ {0}, the cost (2) has a minimizer
over the set

P5: = {ye C(b,d) st yFOFETRIM € L'([b,d)),

() =70(b),7(c)=70(c)¥(b)=0(b),¥(c)=0(c)}.
Notice that we can have minimizers with cusps, see Fig. 2.
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Fig. 2. A minimizer with a cusp.

All the previous results are obtained as consequences of
the study of two similar mechanical problems. For problems
with boundary conditions with orientation, we consider a
car on the plane that can move only forwards and rotate
on itself (it is the Dubins’ car, see [10]). Fix two points
(x0,Y0), (z1,y1) and two angles g, 01 in these points mea-
sured with respect to the positive z-semiaxis. Consider all

trajectories ¢(.) steering the car from the point (zg, yo) with
the angle 6 to the point (1, y;) with the angle 6. Our goal
is to find the cheapest trajectory with respect to a cost de-
pending both on the length of displacement on the plane and
on the angle of rotation on itself. The dynamics can be writ-
ten as the following control system on the group of motions
of the plane SE(2) := {(z,y,0) | (z,y) € R? 6 c R/2r}

(,9.6) = ua (cos(6),5in(6),0) +u2 (0,0,1), (@)

where x,y are coordinates on the plane and 6 represents
the angle of rotation of the car. Since we forbid backwards
displacements, we impose u; > 0. We want to minimize

€lg()] = / Vil + 3,

with the following boundary conditions:

q(O) = (xoay0790)7 q(T) = ([L‘1,y176‘1).

Remark 3: Any smooth planar curve can be naturally
transformed into an admissible trajectory of this control
system. Indeed, given () = (z(t), y(t)), we define

q(t) := (x(t),y (1), 0(1)),

where 6(t) is the angle of the tangent vector with respect
to the positive z-semiaxis. This is called the lift of v. We
then find suitable controls w; corresponding to ¢(t) defined
above. In this framework u; plays the role of |||, while us
is ||¥|| K. Hence, the cost (5) coincides with J [y] defined
in (2). Moreover, boundary conditions with orientation can
be easily translated to boundary conditions on SE(2).

Notice that, on the contrary, not all trajectories of (4) are
lifts of planar curves, for example a trajectory with u; = 0.

We will prove that for the optimal control problem (4)-(5)
on SE(2) we have existence of minimizers. Starting from a
minimizer of this problem, we will find counterexamples to
the existence of minimizers of J on %; and %s.

(&)

For problems with projective boundary conditions, we
study the dynamics given by (4) where we admit also
backwards displacements (it is the Reeds-Shepp car, see
[19]). In this case we don’t have to impose u; > 0 and
we identify (z,y,60) ~ (x,y,0 + 7). Hence this dynamics is
naturally defined on the quotient space PTR? := SE(2)/ ~.
We choose the same cost (5). Also in this case, it is
possible to lift planar curves to curves on PTR2. Projective
boundary conditions can be easily translated to conditions
on (z,y,6) € PTR2

For the optimal control problem (4)-(5) on PTR? we
have existence of minimizers with L! optimal controls. Its
consequence on the problem of planar curves is the existence
of minimizers of J in Zs.



For both optimal control problems, the basic tool we
use to compute minimizers is the Pontryagin Maximum
Principle (PMP in the following), see [18]. It gives a
necessary first-order condition for minimizers. Solutions of
PMP are called extremals, hence minimizers have to be
found among extremals. For details, see e.g. [1].

The structure of the paper is the following. In Section
Il we introduce the group SFE(2) and the space PTR?,
and we define the optimal control problems on these spaces
corresponding to the ones defined in Section I on the plane.
We then study the optimal control problems and find some
properties of minimizers.

Section III contains the main results of the paper: we
prove Propositions 1-2-3 using properties of minimizers of
problems studied in Section II.

II. SOLUTION OF OPTIMAL CONTROL PROBLEMS

In this section we recall the definition of the two optimal
control problems given above. In the first we consider the
Dubins’ car [10]: it can both move forwards and rotate on
itself. In the second we have the Reeds-Shepp car [19],
that can move forwards, backwards and rotate on itself.
Nevertheless, the problems we study are different than the
ones studied in [10], [19]. We don’t have constraints on
velocity and curvature. We want instead to minimize (in both
cases) a cost depending both on velocity and curvature.

A. Dubins’ car with length-curvature cost

The Dubins’ car is a car that can move both forwards and
rotate on itself. The dynamics of the car is given by the
following control system:

(4,9,0) = ux (cos(),sin(6),0) + uz (0,0,1), ug >0, (6)

with u1,us € LY([0,T],R). We impose u; > 0 to forbid
backwards displacements. Observe that u; is the planar
velocity of the car and wo is its angular velocity. The
controllability of this system can be checked by hand.

We fix a starting point g9 = (g, Yo, 00) and an ending
point ¢; = (x1,y1,01). We want to minimize the cost

ClO= [ Vi

over all trajectories of (6) steering qo to q;. Here the end
time 7' is fixed. After a suitable rototranslation, it is always
possible to fix g = (0,0,0). For this reason, from now on
we will study only problems starting from Id = (0, 0, 0).
We now transform our optimal control problem in a
minimum time problem, in which the dynamics is given
again by (6), the cost is the time (that is free) and the
constraint on the controls are u; > 0, u% + u% <1

)

We apply Filippov existence theorem for minimum time
problems, see e.g. [1, Cor 10.2], that gives a minimizer, hence
L' optimal controls. It is a standard fact to restrict to L
optimal controls. For details see e.g. [22].

1) Computation of extremals: We now apply the PMP to
the problem (6)-(7) transformed into a minimum time prob-
lem. For the expression of PMP for minimum time problems
see e.g. [1, Ch. 12]. The control-dependent Hamiltonian of
the system is

H(g,\,u) = (X, q) = urh1 + uzhs (®)

where hy = A; cos(0) + Ay sin(d), ha = Mg, and Az, Ay, Ag
are the components of the covector A in the dual basis with
respect to coordinates (z,y,6).

We don’t give a complete synthesis of the problem, since
we only need to find a particular minimizer to use in proofs
of Propositions 1-2. In particular, we don’t consider abnormal
extremals, for which we have H = 0.

We consider instead normal extremals, for which we can
choose H = 1. Let us denote o and p an angle and a positive
number in such a way that A\, = pcos(a) and A\, = psin(a).

Assume that at ¢ = to we have hy(tg) > 0. Then PMP
gives controls u; = hy, us = ho, after having normalized
[[(h1,h2)]| = 1. Dynamics is given by

& = hy cos(f), § = hysin(6), 6 = hy
Xe =Xy = 0, Xg = Ry (— Ay sin(@) + A, cos())
We have [0(to) — | < 5 in R/27 and the equation on 6 is

20 = p?sin(2(6 — «)).

&)

It is the equation of the pendulum with § = « being the
unstable equilibrium. This implies that when starting with
|0(to) —a| < § in R/2m, then 6 will reach a value such that
|0(to) — | > 5 in R/27. Hence the corresponding extremal
will have a time ¢; > to for which hy(¢;) < 0.

Assume now that at ¢ = to we have hy(tg) < 0. PMP
gives controls u; = 0 and us = sign(hs) and the extremal
is a rotation on itself. Indeed, the dynamics is given by

IO v (10)
0 = sign(ha).
Since A, and ), are constant, either A, = A, = 0 all

along the extremal (thus h; = 0) or at least one of them is
nonvanishing (thus there exists 1 > to such that (1) > 0).

As already stated, for an extremal satisfying hi(to) > 0
(resp h1(tp) < 0) there exists a time t; > ¢y such that
hi(t1) < 0 (resp hi(t1) > 0). Thus an extremal is the
concatenation of trajectories satisfying (10) and trajectories
satisfying (9). Consider an arc ([tg,t1]) satisfying (10)
between two arcs satisfying (9). Then the variation of 6
along this arc should be 7 because 0(tg) = o + § mod



and we should come back to 6(t1) = a + 5 mod at the
end with the dynamics 6=1. Moreover, one can prove that a
concatenation of dynamics (9), (10) and (9) is never optimal.

Remark 4: A consequence of this study to the planar
problem of minimization of J on %, is that planar curves
with cusps are extremal, but never minimizers.

2) An example of a minimizer: In this section we give
an example of a minimizer ¢(.) defined on a small interval
[0,2¢] and satisfying (10) on [0,£&] and (9) on [€,2¢]. This
trajectory is the basic example that we will use to prove
non-existence of minimizers of cost (2) both on &; and %s,
i.e. Propositions 1 and 2.

Consider a trajectory ¢'(t) starting from Id, with given
)\z.: —%7 Ay =0, \g = % All quantitie.s related to this
trajectory are denoted with superscript 1. Since hq1(0) < 0,
dynamics is given by (10) on an interval [0,¢'] and we have

1
gt =yt t) =20 =0, A1) =7
1
10,1
Ag(tH) 7
We choose t' = % and observe that hi(t') = 0. Recall that
on this interval controls are u} = 0, uj = 1.

Then dynamics is given by (9) on an interval [t', ' + s'].
Since \Aj is continuous, so uj is. Then 0*(t) = T+ (t—t')+
o(t—t") on (t',t' + s'), thus hy(t) > 0 on (t', ' + s') for
a sufficiently small choice of s!. As a consequence, x(t) # 0,
y(t) # 0 forall t € (t',t' + s'). Recall now that all normal
extremals are local minimizers, see e.g. [1, Cor 17.1]. We
apply this result to ¢'(¢) in ¢! and find a &' such that ¢!(¢)
is a minimizer over [t' —e', t! +¢'].

We now prove that for a small ¢ < ¢! the trajectory
q'(t) is not only a minimizer, but the unique minimizer
steering Qo = ¢'(t! — &) to Q1 = q(t! + &). We prove
it by contradiction. Assume that there exists another mini-
mizer ¢? steering Qo to Q1. In the following all quantities
related to this minimizer are denoted with superscript 2.
As a consequence of the existence of g2, we have another
minimizer ¢3(.) steering ¢'(t' — &') to ¢ (t! + &!), given
by the concatenation of ¢! on [t! —el,t! —¢], then ¢?

n [t' — &t +¢], then again ¢ on [t +&,¢" +€']. See
Figure 3. Since ¢° is a minimizer, then it is a solution of
PMP. As a consequence, its tangent covector is continuous.
For this reason, we have A'(t! — &) = A2(t! — €). Since
this covector satisfies h; < 0, then trajectory ¢* satisfies
dynamics given by (10) on a neighborhood of ¢! — &, hence
¢" and ¢2 coincide on this neighborhood due to uniqueness of
solution for (10). We can prove in the same way that ¢! and
q? coincide on the whole interval [t! — &, ¢!). Similarly, we
have A\!(t14&) = A2(t1 +£), hence ¢! and ¢? coincide in the

whole interval (¢!, + ¢] due to uniqueness of solution for
(9). Finally, they coincide also in ¢! due to continuity. Hence
¢*> = ¢" on the interval [t! —¢,t' + £]. Contradiction.

Fig. 3.

Construction of trajectory ¢3.

We now define the trajectory q in SFE(2), using ¢! defined
on the interval [t'—¢&,t' +¢&]. We first perform a left
multiplication of ¢! in order to have ¢'(t!) = Id, then a
time shift [t' — &, ¢! + £] — [0, 2¢]. The resulting trajectory
is q(t) := ((]1(751))71 qt(t +tt — &). We thus have that q is
the unique minimizer steering q(0) to q(2£), and it satisfies
dynamics (10) on [0,£] and (9) on [, 2¢].

B. Projective Reeds-Shepp car with length-curvature cost

The Reeds-Shepp car is a car that can move forwards,
backwards and rotate on itself. The set of configurations can
be identified with a quotient of the group of motions of the
plane PTR? := SE(2)/ ~ where (x,y,0) ~ (z,y,0 + 7).
For a better comprehension we use the same notation used
for SE(2), omitting the identification. We also omit checks
of good definitions of dynamics and cost given below.

The dynamics is given by the following control system:

(a'c,y, 9) = uy (cos(#),sin(6),0) + us (0,0,1), (11)

with u1,us € L([0,T],R). Fix starting and ending points
g0 = (%0, Y0, 60), ¢1 = (z1,y1,61). We want to minimize

¢ la()] = / NOERY

over all trajectories of (11) steering qo to q;. Here the end
time 7 is fixed. Also in this case, due to invariance by roto-
translation of both the dynamics and the cost, we specialize
to problems starting from Id = (0,0,0) = (0,0, 7).

Controllability is a direct consequence of Rashevsky-Chow
theorem (see e.g. [1]) for this problem.

1) Computation of extremals: In this section we compute
minimizers for our optimal control problem. We follow
procedure presented in Sections II-A.

First transform the optimal control problem (11)-(12) in
a minimal time problem where dynamics is given again by
(11) and controls are bounded by u? + u3 < 1. We then
prove that this problem admits a minimum for all pairs of
starting and ending points and we restrict ourselves to L™
optimal controls. We then apply PMP, using its expression
for minimal time problem. Since dynamics (11) on PTR?

12)



coincides locally with dynamics (6) on SE(2), we have the
same control-depending Hamiltonian

H(Q7 )\,U) = <)‘7q> = ulhl + U2h2

where hy = A, cos(0) + Ay sin(0), he = Ag, and Ay, Ay, Ag
are the components of the covector A in the dual basis with
respect to coordinates (x,y,0). We can neglect abnormal
extremals, since they are trajectories reduced to a point.

We fix H = 1 and observe that we don’t have condition
u; > 0 in this case. Hence solutions of the PMP are given
by wuy = hi, us = hy. We thus have

@ = hy cos(d), y = hysin(0), 6 = ho,
Xe =Xy = 0, Xg = hy (= Az sin(d) + A, cos(6)) .

13)

(14)

The explicit solution of this problem is given in [14], [20],
[21] in the case of SE(2). For our treatment, it is sufficient
to observe some properties of extremals. First of all, they
are completely determined by the initial covector A, due
to uniqueness of solution of (14). Moreover, the solution is
analytic. Hence we have only one of these possibilities:

o cither hy = 0, and the corresponding extremals are
q(t) = (0,0,0°(t)).

e or hy has only a finite number of times in which it is
vanishing, hence the corresponding trajectory ¢(.) has
only a finite number of points in which £ =y = 0.

Notice that trajectories of the second kind can be “well
projected” to the plane, i.e. it holds

Lemma 1: Let ¢(¢t) = (x(t),y(t),0(t)) be an extremal
for the optimal control problem (11)-(12) for which h; is
vanishing only for a finite number of times tq,...,¢,. Let
p(t) = T(q(t)) be the projection of ¢ on the plane via
II: (x,y,0) — (x,y). Then for each time t € [0,7] we
have either p(t) ~ (cos(0(t)),sin(0(t))) or p(to) = 0 and

lim, - 525y ~ e 55y & (cos(0(1)), sin(6(1)).
Proof: Notice that p = (ujcos(6),u;sin(6)) since ¢ sat-
(cos(6(1)),sin(0(2))) if u(t) #

isfies (11). Hence p(t) ~
0. If instead ui(t) = O, then there exists (f—¢,t+¢)
on which wuy(r) # 0 for all 7 # ¢ Thus 27 —

) Il
(M(T)COS(G(\TJEZ?)\(T) SO (cos(A(7)),sin(6(7))). Pas-

sage to limit gives the result in ¢. O

Remark 5: An interesting property (see [21]) of this sec-
ond family of extremals is that there are minimizers with
one or two points in which u; = 0, but trajectory with three
or more points in which u; = 0 are never minimizers. Thus
minimizers for J over the set 3 may present one or two
cusps, but not more than two.

We will use in the following these properties to prove
existence of a minimizer of J over all curves in %5. Notice
that Lemma 1 doesn’t hold for minimizers of the problem
on SE(2) defined in Section II-A.

III. SOLUTION OF PROBLEMS AND EXISTENCE OF
MINIMIZERS

This section contains the main results of the paper. We
first prove Propositions 1 and 2, i.e. the non-existence of
minimizers of J in &; and %,. On the contrary, we prove
Proposition 3, i.e. the existence of minimizer of J in 5.

A. Boundary conditions with orientation: non-existence of
minimizers

In this section we give a counterexample to the existence
of minimizers of J for boundary conditions with orientation.
We prove it both in the case in which curves are chosen to be
in 27 and in %5. The basic idea is to lift the planar problem
to the problem on SE(2), then solve the problem on SE(2)
and finally project it on the plane. But this last step doesn’t
work well, since in the case we present below the projection
of the solution of the problem on SE(2) doesn’t satisfy
boundary conditions with orientation fixed at the beginning.

Start considering the trajectory q(t) = (x(¢),y(t),0(t))
on SE(2) defined in Section II-A.2. Define its projection
p(t) := I (q(t)) via the map II : (z,y,0) — (z,y). As
already stated, p =0 on (0,£) and p # 0 on (¢, 2¢).

We then define a sequence of planar curves p™ on (0, 2¢),
each of them satisfying the following boundary conditions
with orientation: p"(0) = p(0), p™(2¢) = p(2¢), p™(0) ~
(cos(0(0)),sin(6(0))), p™(2¢) ~ p(2§). We also require that
p™ converges to p, while J[p"] converges to ¢ [q]. We
define the curve p™ with a geometric construction, see Figure
4. First define p" on [{ + %,25] coinciding with p. Then

define the point C' := p (f + %) and draw the line r that
is the tangent to p at C. Then draw the line s connecting
O = (0,0) and (cos(0(0)),sin(#(0))). Since r and s are not
parallel, they have an intersection point B.

Y

Fig. 4. Construction of the trajectory p™ (case .2 (OB) < .Z (BC)).

Then we have two cases:

o If Z(0OB) < Z(BC), fix point D on BC' such that
Z(0OB) = Z(BD) and define the arc OD that is
tangent to OB in O and to BC in D. Define p™ on
(0,5 + % as the concatenation of OD and DC.

o« If £(OB) > £ (BC), fix D on OB satisfying
Z (BD) = . (BC) and make the construction of the



arc DC. Define p™ on (0,5 + %) as the concatenation
of OD and DC.

Notice that all p™ satisfy boundary conditions with ori-
entations and that the sequence converges to p. Moreover,
J [p"] restricted to the interval [5 + %, 25] coincides with
J [p] on the same interval, that in turns coincides with % [q]
on the same interval (see Remark 3). Concerning the interval
[O,6+ %],WehaveC’ — B — O forn — oo, hence J [DC]]

or J[OD] tends to 0. Instead, .J [@7)] or J [DE’] tends
to —6(0). Indeed, assume that £ (OB) < £ (BC) and
compute J [O/-D\] parametrized by arclength. Here fab K, =
a(b) — ay(a) where o (t) is the angle of 4(t), thus

a= (D) —a=(0)= [, @)m < J[0D] <

@)(HK,Y) =2 (0D) + a5 (D) -

oD (0)-

<z
<,
The result follows recalling that a5 (D) — 0 (5 + %) —
0 (&) = 0. The case .£ (OB) > £ (BC) is similar.

We have thus defined a sequence of curves p" € 2 C Z»
minimizing the cost J but such that the limit curve p does not
satisfy boundary conditions with orientation, since p = 0 on
(0,¢) and p(£T) ~ (1,0). Hence p € Z5. We prove that it
implies the non-existence of a minimizer for these boundary
conditions. By contradiction, assume that a minimizer of J
exists in Z,. Thus its lift ¢ to SE(2) is a minimizer for €
between q(0) and q(2¢), that is impossible since q is the
unique minimizer between the two points. Contradiction.

b

B. Projective boundary conditions: existence of minimizers

In this section we prove existence of a minimizing curve in
95 for all choices of projective boundary conditions, i.e. we
prove Proposition 3. The basic idea is that also in this case
we can lift the problem of planar curves to the problem on
PTR? defined above, solve it and then project the solution to
the plane. But in this case the whole procedure works well.

Start fixing projective boundary conditions, i.e. fix a
starting point (xg,yo) with direction vy and an ending point
(1,y1) with direction vy. Assume that (xo,v0) # (21,y1)
and vy, v, are nonvanishing vectors. Recall that we want to
find a curve v € % such that v(0) = (zo,y0), ¥(0) =~ vp,
¥(T) = (x1,41), ¥(T) = vy and that is a minimizer of J.

Consider the optimal control defined on PTR? presented
in Section II-B with the following starting and ending point:
g = (%0,Y0,00) and q1 = (x1,y1,01) where each 0; is
the angle formed by the vector v; with respect to the x-
axis. Then solve the problem and call q(.) the minimizing
trajectory (that is not necessary unique). The basic remark
is that q is of the second kind (see Section II-B.1), since
(z0,Y0) # (x1,y1)- As proved in Lemma 1, in this case p =

(cos(),sin(6)) except for a discrete set of points ¢y,...,t,
on which we have the weaker property lim,_., ”%” ~
(cos(#),sin(f)). If we have at the starting point p(0) #
0, then p satisfies projective boundary conditions at the
beginning. Otherwise reparametrize p by arclength in an
interval [0, ¢], and find that p satisfies boundary conditions at
the beginning. The same result can be proved for the ending
point. Hence p satisfies projective boundary conditions.

We now prove that p is a minimizer of .J, by contradiction.
Assume that there exists p satisfying the same projective
boundary conditions and such that J [p] < J [p]. Thus its
lift  steers go to g1 and satisfies € [7] < € [q], hence q is
not a minimizer. Contradiction.
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