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Abstract
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1 Introduction

Consider the following controlled parabolic equation with equivalued surface boundary conditions:

yt −
n∑

i, j=1

(aij(x)yxi)xj = f(x, t)χωχE , in Q,

y|Γ1 = 0, y|Γ0 = k(t) (an unknown function),∫
Γ0

n∑
i, j=1

aijyxiνjdΓ = 0,

y(x, 0) = y0, in Ω.

(1.1)

Here, Q = Ω × [0, T ], the time T > 0 is given, and Ω ⊂ Rn(n ∈ N) is a bounded domain with a

C3 boundary Γ = Γ1 ∪ Γ0, such that Γ0 ∩ Γ1 = ∅. The coefficients aij(x) ∈ C2(Ω) (i, j = 1, · · · , n)

satisfy that aij = aji and, for some positive constant Λ,

n∑
i, j=1

aijξiξj ≥ Λ|ξ|2, ∀ (x, ξ) ∈ Ω× Rn. (1.2)

Let ω be an arbitrarily given nonempty open subset of Ω and E ⊂ [0, T ] with positive measure.

Denote by χω the characteristic function of ω, and by ν = (ν1, ν2, · · · , νn) the unit outward normal

vector of Ω. In equation (1.1), y = y(x, t) is the state variable, y0(·) ∈ L2(Ω) is the initial

datum, k(·) ∈ L2(0, T ) is unknown but determined by the state y = y(x, t) itself, and f(x, t) ∈
L∞(0, T ;L2(Ω)) is a control function. Thanks to [2, 10], it is easy to show that system (1.1) is

well-posed in Y , where Y is defined by

Y =
{
y ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))

∣∣∣ y|Γ1×(0,T ) = 0,Γ0 is the equivalued surface of y
}
.

System (1.1) is a controlled parabolic equation with equivalued surface boundary condition for

which y|Γ0(= k(t)) is a constant for each t ∈ (0, T ) and therefore Γ0 is said to be the equivalued

surface of the state y = y(x, t).

This paper is addressed to establishing the L∞−null controllability for equation (1.1). The

controlled equation (1.1) is said to be L∞− null controllable in Y at time T if for any y0 ∈ L2(Ω),

there is a control f ∈ L∞(0, T ; L2(Ω)) such that the solution of equation (1.1) with this control

satisfies

y(x, T ) = 0, x ∈ Ω. (1.3)

To our best knowledge, there are only a few papers (published or not) concerning the control-

lability of the parabolic equation with equivalued surface boundary conditions. In [8], the null

controllability was considered but with a technical condition and the insensitizing control problem

was described in [9].

Our main result in this paper is the following theorem:
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Theorem 1.1 For any y0 ∈ L2(Ω), there is control f ∈ L∞(0, T ;L2(Ω)) such that y, which solves

(1.1), can be driven by f to zero at time T , i.e., y(x, T ) = 0. The control f has the estimate

‖f‖2L∞(0,T ;L2(Ω)) ≤ L ‖y0‖2L2(Ω)

with L a constant independent of y0.

The constant L appeared in Theorem 1.1 will be given in Section 3 explicitly. The control

in Theorem 1.1 is associated to the set E × ω, but not as in most published papers depends on

the set (0, T )× ω for the null controllability of linear parabolic equations. We complete the proof

of Theorem 1.1 by using the Lebeau-Robianno-type iteration, according to a special result in the

measure theory in [6] and the observability estimate on the partial sums of eigenfunctions of the

elliptic operator with equivalued surface boundary conditions (we state this result in Section 2 and

give its proof based on two lemmas, which are proven in the appendix.) It is remarkable that we

assume only that the boundary of Ω is C3 regular, not C∞ as in [3].

The rest of this paper is organized as follows. In Section 2, we give some preliminaries. In

Section 3, we give the proof of Theorem 1.1. Finally, in the Appendix, we give the proofs of the two

lemmas based on which the estimate for the eigenfunctions of the elliptic operator with equivalued

surface boundary condition is established, which also has independent interest.

2 Some Preliminaries

In this section, we give some auxiliary results, which will be used in the proof of Theorem 1.1.

Define an unbounded operator A on L2(Ω) as follows
D(A) =

u ∈ H2(Ω)
∣∣∣u|Γ1 = 0,

∫
Γ0

n∑
i, j=1

aijuxiνj dΓ = 0, u|Γ0 = c (unknown)

 ,

Au = −
n∑

i, j=1

(aijuxi)xj , ∀ u ∈ D(A).

(2.1)

Let {λi}∞i=1, 0 ≤ λ1 ≤ λ2 ≤ · · · , be the eigenvalues of A defined in (2.1) and let {ei}∞i=1

be the corresponding eigenfunctions such that ‖ei‖L2(Ω) = 1(i = 1, 2, 3, · · · ), which serves as an

orthonormal basis of L2(Ω). We have an estimate of the eigenfunctions of operator A as follows:

Theorem 2.1 There exist two positive constants C1, C2 such that∑
λi≤r
|ai|2 ≤ C1e

C2
√
r

∫
ω

∣∣∣ ∑
λi≤r

aiei

∣∣∣2dx (2.2)

for every finite r > 0 and every choice of {ai}λi≤r with ai ∈ C.

In [3], Lebeau and Zuazua addressed a sketch presentation for the case of Direchlet boundary

conditon and based on which they analyzed the null controllability of a linear system of thermoelas-

ticity. As for the case with equivalued surface boundary condition, things are different. Due to the
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special boundary condition, in order to obtain a global Carleman estimate, we need to construct a

special corresponding weight function, which plays a crucial role in the proof of obtaining Theorem

2.1.

Proof of Theorem 2.1. First, we introduce two lemmas for the following elliptic equation with

equivalued surface boundary conditions:
utt +

n∑
i, j=1

(aijuxi)xj = 0 in Q,

u|Γ1 = 0,

∫
Γ0

n∑
i, j=1

aijuxiνj dΓ = 0, u|Γ0 = c(t) (unknown).

(2.3)

Lemma 2.1 Let 0 < γ < T
2 , γ < T ′ < T ′′ < T −γ, then there exists a constant µ ∈ (0, 1) such that

for any u ∈ H2(Q), which solves equation (2.3), satisfies

‖u‖L2(Ω×(T ′,T ′′)) ≤ C ‖u‖
τ
L2(ω×(γ,T−γ)) ‖u‖

1−τ
H1(Q) . (2.4)

Lemma 2.2 Let 0 < γ < T
2 , then there exists a constant δ ∈ (0, 1) such that for any u ∈ H2(Q),

which solves equation (2.3), satisfies

‖u‖H1(ω×(γ,T−γ)) ≤ C
(
‖u(0)‖L2(ω) + ‖ut(0)‖L2(ω) + ‖∇u(0)‖L2(ω)

)δ
‖u‖1−δH1(Q) . (2.5)

The proofs of these two lemmas is very long, we leave it to the Appendix for simplicity.

Second, we adopt the standard method (see [3, 4]) to complete the proof. For simplicity of no-

tations, we take T = 4, T ′ = 1, T ′′ = 3. Following Lemma 2.1 and Lemma 2.2, we have respectively,

for u ∈ H2(Q) solving equation (2.3), that

‖u‖L2(Ω×(1,3)) ≤ C ‖u‖
τ
L2(ω×(γ,4−γ)) ‖u‖

1−τ
H1(Q) , (2.6)

and

‖u‖H1(ω×(γ,T−γ)) ≤ C
(
‖u(0)‖L2(ω) + ‖ut(0)‖L2(ω) + ‖∇u(0)‖L2(ω)

)δ
‖u‖1−δH1(Q) , (2.7)

which conclude that

‖u‖L2(Ω×(1,3)) ≤ C
(
‖u(0)‖L2(ω) + ‖ut(0)‖L2(ω) + ‖∇u‖L2(ω)

)τδ
‖u‖1−τδH1(Q) . (2.8)

Let bj =
√
λj and

y(x, t) =
∑
λi≤r

sh tbj
bj

ajej , (2.9)

and sh(tb)
b = t for b = 0. It is a straightforward calculation to show that y given as above solves

equation (2.3), which vanishes when (x, t) ∈ ω × {0}. It is obvious that both Re y and Im y satisfy

(2.8). Applying (2.8) to Re y gives that

‖Re y‖L2(ω0×(1,3)) ≤ C ‖Re yt(0)‖τδL2(ω) ‖Re y‖1−τδH1(Q) . (2.10)
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Next, we do some estimate on both sides of (2.10). First, we have that

‖Re y‖2L2(ω0×(1,3)) =

∫ 3

0

∫
ω0

∣∣∣ ∑
λj≤r

sh tbj
bj

Re ajej

∣∣∣2dxdt
=
∑
λj≤r
|Re aj |2

∫ 3

1

∫
ω0

∣∣∣sh tbj
bj

∣∣∣2dxdt
≥
∑
λj≤r
|Re aj |2

∫ 3

1
t2dt =

8

3

∑
λj≤r
|Re aj |2.

(2.11)

Second, for the right hand side of (2.10), we have that
∂tRe y(x, 0) =

∑
λj≤r

Re ajej ,

‖Re y‖2H1(Q) ≤ C
8
√
r(1 + r)

∑
λj≤r
|Re aj |2 ≤ Ce9

√
r
∑
λj≤r
|Re aj |2.

(2.12)

This together with (2.11) gives that∑
λj≤r
|Re aj |2 ≤ C1e

C2
√
r

∫
ω

∣∣∣ ∑
λj≤r

Re ajej

∣∣∣2dx. (2.13)

By the same manner, we have for the imaginary part Im y that∑
λj≤r
|Im aj |2 ≤ C1e

C2
√
r

∫
ω

∣∣∣ ∑
λj≤r

Im ajej

∣∣∣2dx. (2.14)

Combing (2.13) and (2.14), we complete the proof with∑
λj≤r
|aj |2 ≤ C1e

C2
√
r

∫
ω

∣∣∣ ∑
λj≤r

ajej

∣∣∣2dx (2.15)

as in desire.

Let Xr be the finite dimensional space spanned by {ei(x)}λi≤r and Pr : L2(Ω) → Xr the

projection operator from L2(Ω) to Xr. In the sequel, the symbol m(·) represents the Lebesgue

measure of a measurable set.

Lemma 2.3 For each r > 0, there corresponds a control fr ∈ L∞(0, T ;L2(Ω)) with

‖fr‖L∞(0,T ;L2(Ω)) ≤
C1e

C2
√
r

|m(E)|2
‖y0‖2L2(Ω) (2.16)

such that Pr(y(·, T )) = 0, where y solves system (1.1) with f = fr and C1, C2 are two constants

appeared in (2.2).

Proof. The idea of the proof is as follows: First, we prove an estimate with respect to q(x, 0),

then we deduce the expected result by dual argument and Riesz Representation Theorem.
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Let q(x, t) be the solution of the following equation:

qt +
n∑

i, j=1

(aij(x)qxi)xj = 0, in Ω× (0, T ),

q|Γ1 = 0, q|Γ0 = c1(t) (an unknown function), in (0, T ),∫
Γ0

n∑
i, j=1

aijqxiνjdΓ = 0,

q(x, T ) ∈ Xr.

(2.17)

For that Xr is of finite dimension, q(x, T ) has representation of the form

q(x, T ) =
∑
λi≤r

aiei

for a sequence {ai}λi≤r. It is easy for one to verify that the solution of equation (2.17) has the

representation as

q(x, t) =
∑
λ≤r

aie
−λi(T−t)ei(x), ∀ t ∈ [0, T ].

Then thanks to (2.2), we have that∫
Ω
q2(x, 0)dx =

∑
λi≤r

a2
i e
−2λiT

≤
∑
λi≤r

∣∣∣aie−λi(T−t)∣∣∣2
≤ C1e

C2
√
r

∫
ω

∣∣∣ ∑
λi≤r

(
aie
−λi(T−t)

)
ei

∣∣∣2dx
= C1e

C2
√
r

∫
ω
q2(x, t)dx, ∀ t ∈ [0, T ].

(2.18)

As a result, it follows that∫
E

[∫
Ω
q2(x, 0)dx

] 1
2

dt ≤
(
C1e

C2
√
r
) 1

2

∫
E

[∫
ω
q2(x, t)dx

] 1
2

dt.

We therefore arrive at the necessary inequality needed later, i.e.,∫
Ω
q2(x, 0)dx ≤ C1e

C2
√
r

|m(E)|2

{∫ T

0

[∫
Ω
|χEχωq(x, t)|2dx

] 1
2

}2

=
C1e

C2
√
r

|m(E)|2
‖χEχωq‖2L1(0,T ;L2(Ω)) .

(2.19)

Next, Let y(x, t) be the solution of system (1.1) and multiply system (1.1) by q(x, t), which

solves equation (2.17), then integration by parts gives that∫
Ω
y(x, T )q(x, T )dx−

∫
Ω
y0(x)q(x, 0)dx =

∫ T

0

∫
Ω
χEχωf(x, t)q(x, t)dxdt, q(x, T ) ∈ Xr.
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It is clear that if we can find a fr(x, t) ∈ L∞(0, T ;L2(Ω)) such that Pr(y(·, T )) = 0, then the first

term in the above equation can be deserted. In what follows, we are to shows the existence of

such control function fr(x, t) with the help of Riesz-type Representation Theorem (See [1, Page 98,

Theorem 1]). Define

Yr =
{
χE (t)χω(x)q(x, t) | q(x, t) solves equation (2.17)

}
,

which is a linear subspace of L1(0, T ;L2(Ω)). Define Fr : Yr → R by

Fr(χEχωq) = −
∫

Ω
y0(x)q(x, 0)dx,

then following from (2.19) we have that

|Fr(χEχωq)|2 ≤ ‖y0‖2L2(Ω) ‖q(x, 0)‖2L2(Ω) ≤
C1e

C2
√
r

|m(E)|2
‖y0‖2L2(Ω) ‖χEχωq‖

2
L1(0,T ;L2(Ω)) ,

which tells that Fr is a bounded linear functinal on Yr. According to the Hahn-Banach theorem,

one can extend F to the whole space L1(0, T ;L2(Ω)) as a bounded linear functional with norm

preserved. We use F to denote this extension. By means of Riesz representation theorem, there

must be some fr ∈ L∞(0, T ;L2(Ω)) satisfying

F (g) =

∫ T

0

∫
Ω
gfrdxdt, ∀ g ∈ L1(0, T ;L2(Ω))

with

‖fr‖2L∞(o,T ;L2(Ω)) = ‖F‖2L(L(0,T ;L2(Ω));R) ≤
C1e

C2
√
r

|m(E)|2
‖y0‖2L2(Ω) .

In particular, take g = χEχωq and then we complete the proof.

We also need the following lemma:

Lemma 2.4 [6, Page 256-257] For almost all t̃ ∈ E, there is a sequence of real numbers {tn}∞n=1 ⊂
[0, T ] with the properties

(a) tn < tn+1 < t̃ and tn → t̃ as n→∞;

(b) m(E ∩ [tn, tn+1]) ≥ ρ(tn+1 − tn);

(c)
tn+1 − tn
tn+2 − tn+1

≤ C0, n = 1, 2, · · · ,

(2.20)

where C0, ρ are two positive numbers depending only on the set E itself.

3 Proof of the Theorem 1.1

Now we turn to the proof of Theorem 1.1. We use the Lebeau-Robianno-type iteration to do this

and borrow some idea from [5] and [7].
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Proof of Theorem 1.1. To make use of Lemma 2.4, we take t̃ ∈ E with t̃ < T and {tN}∞N=1 ⊆
(0, T ) such that (b) and (c) of Lemma 2.4 hold for some ρ and C0 and such that

t̃− t1 ≤ min{1, λ1}.

We present 
[t1, t̃ ) =

∞⋃
N=1

(IN ∪ JN ),

IN = [t2N−1, t2N ], JN = [t2N , t2N+1], N ∈ N.

Based on Lemma 2.4, it is clear that m(E ∩ IN ) > 0 for all N ∈ N.

Step 1. In this step, we prove that for any ỹ0 ∈ L2(Ω), there exists a control f̃ ∈ L∞(t1, t̃; L
2(Ω))

with ||f̃ ||2
L∞(t1, t̃; L2(Ω))

≤ L ‖ỹ‖2L2(Ω), where L is some constant to be determined but independent

of ỹ0, so that the solution ỹ of equation (1.1) satisfying ỹ(x, t̃ ) = 0 in L2(Ω), where ỹ(x, t) solves

the following equation:

ỹt −
n∑

i, j=1

(aij(x)ỹxi)xj = χ̃Eχωf(x, t), in Ω× (t1, t̃ ),

ỹ|Γ1 = 0, ỹ|Γ0 = k(t) (an unknown function), t ∈ (t1, t̃ ),∫
Γ0

n∑
i, j=1

aij ỹxiνjdΓ = 0,

ỹ(x, t1) = ỹ0, in Ω.

(3.1)

We shall verify this claim by induction.

Consider the following two kind of equations:

yNt −
n∑

i, j=1

(aij(x)yNxi)xj = χEχωfN (x, t), in Ω× (t2N−1, t2N ),

yN |Γ1 = 0, yN |Γ0 = k(t) (an unknown function),∫
Γ0

n∑
i, j=1

aijyNxiνjdΓ = 0,

yN (x, t2N−1) = zN−1(x, t2N−1), in Ω,

(3.2)

on the interval IN , and on the interval JN we have that

zNt −
n∑

i, j=1

(aij(x)zNxi)xj = 0, in Ω× (t2N , t2N+1),

zN |Γ1 = 0, zN |Γ0 = k(t) (an unknown function),∫
Γ0

n∑
i, j=1

aijzNxiνjdΓ = 0,

zN (x, t2N ) = yN (x, t2N ), in Ω,

(3.3)
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with z0 = ỹ0(x) ∈ L2(Ω) be given in advance. We will prove by deduction that for each rN > 0,

there exists some certain control fN ∈ L∞(IN , ; L
2(Ω)) satisfying

∥∥yN (·, t2N )
∥∥2

L2(Ω)
≤ 2N

(
C1

ρ2(t2 − t1)2

)N
C

4
N(N−1)

2
0

N∏
i=1

αi ‖ỹ0‖2L2(Ω) ,

∥∥zN (·, t2N+1)
∥∥2

L2(Ω)
≤ e−2rN (t2N+1−t2N )

∥∥yN (x, t2N )
∥∥2

L2(Ω)
,

‖fN‖2L∞(IN ; L2(Ω)) ≤ 2N−1

(
C1

ρ2(t2 − t1)2

)N
C

4(
N(N−1)

2
)

0

N∏
k=1

αk ‖ỹ0‖2L2(Ω)

= C̃ N(N−1)
N∏
k=1

αk ‖ỹ0‖2L2(Ω)

with

αN =


eC2
√
r1 , N = 1

eC2
√
rN e−2rN−1(t3−t2)C

−2(N−2)
0 , N ≥ 2

(3.4)

and such that PrN (yN (·, t2N )) = 0 and C̃ = 2C1
ρ2(t2−t1)2 C

2
0 .

In what follows, we do this step by step. First, consider on the time interval I1 = [t1, t2] the

following controlled parabolic equation

y1
t −

n∑
i, j=1

(aij(x)y1
xi)xj = f1(x, t)χωχE , in Ω× (t1, t2),

y1|Γ1 = 0, y1|Γ0 = k(t) (an unknown function),∫
Γ0

n∑
i, j=1

aijy1
xiνjds = 0,

y1(x, t1) = ỹ0, in Ω,

(3.5)

Making use of Lemma 2.3, for any r1 > 0, there is a control f1 ∈ L∞(t1, t2;L2(Ω)) with the

property

‖f1‖2L∞(t1,t2;L2(Ω)) ≤
C1e

C2
√
r1

|m(E ∩ [t1, t2])|2
‖ỹ0‖2L2(Ω)

such that Pr1(y1(·, t2)) = 0. Then by (b) and (c) of (2.20) in Lemma 2.4, one has that

‖f1‖2L∞(t1,t2;L2(Ω)) ≤
C1e

C2
√
r1

ρ2(t2 − t1)2
‖ỹ0‖2L2(Ω) =

C1

ρ2(t2 − t1)2
α1 ‖ỹ0‖2L2(Ω)

by letting α1 = eC2
√
r1 . Furthermore, multiplying (3.5) by y1 and integration by parts shows that

d

dt

∥∥y1(·, t)
∥∥2

L2(Ω)
≤ −2λ1

∥∥y1(·, t)
∥∥2

L2(Ω)
+ 2

∫
Ω
y1(x, t)χEχωf1(x, t)dx.
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Integrating this equality from t1 to t2 with respect to the time variable t, one finds that∥∥y1(·, t2)
∥∥2

L2(Ω)
≤

∥∥y1(t1)
∥∥2

L2(Ω)
− 2λ1

∫ t2

t1

∥∥y1(t)
∥∥2

L2(Ω)
dt

+2

∫ t2

t1

∫
Ω
y1(x, t)χEχωf1(x, t)dxdt

≤
∥∥y1(·, t1)

∥∥2

L2(Ω)
− 2λ1

∫ t2

t1

∥∥y1(t)
∥∥2

L2(Ω)
dt+ λ1

∫ t2

t1

∥∥y1(t)
∥∥2

L2(Ω)
dx

+
t2 − t1
λ1

‖f1‖2L∞(t1, t2;L2(Ω))

≤ ‖ỹ0‖2L2(Ω) +
t2 − t1
λ1

‖f1‖2L∞(t1, t2;L2(Ω))

≤ 2
C1

ρ2(t2 − t1)2
α1 ‖ỹ0‖2L2(Ω) .

On the other hand, on the interval J1 = [t3, t4], we consider the following equation but without

control: 

z1
t −

n∑
i, j=1

(aij(x)z1
xi)xj = 0, in Ω× (t2, t3),

z1|Γ1 = 0, z1|Γ0 = k(t) (an unknown function),∫
Γ0

n∑
i, j=1

aijz1
xiνjdΓ = 0,

z1(x, t3) = ỹ1(x, t2), in Ω.

(3.6)

Recalling that Pr1(y(·, t2)) = 0, we have that

d

dt

∥∥z1(·, t)
∥∥2

L2(Ω)
≤ −2

∥∥∥∥∥∥
n∑

i,j=1

aijz1
xi(·, t)z

1
xj (·, t)

∥∥∥∥∥∥
2

L2(Ω)

≤ −2r1 ‖z1(·, t)‖2L2(Ω) .

Utilizing Gronwall inequality, we obtain that∥∥z1(·, t3)
∥∥2

L2(Ω)
≤ e−2r1(t3−t2) ‖y1(·, t2)‖2L2(Ω)

≤ 2
C1

ρ2(t2 − t1)2
α1e
−2r1(t3−t2) ‖ỹ0‖2L2(Ω) .

For I2 = [t3, t4], we consider the following controlled equation:

y2
t −

n∑
i, j=1

(aij(x)y2
xi)xj = f2(x, t)χωχE , in Ω× (t3, t4),

y2|Γ1 = 0, y2|Γ0 = k(t) (an unknown function),∫
Γ0

n∑
i, j=1

aijy2
xiνjdΓ = 0,

y2(x, t3) = z1(x, t3), in Ω.
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With the similar argument to that for I1 = [t1, t2], there exists a control f2 ∈ L∞(t3, t4;L2(Ω))

which having the estimate

‖f2‖2L∞(t3, t4;L2(Ω)) ≤
C1e

C2
√
r2

|m(E ∩ [t3, t4])|2
∥∥z1(·, t3)

∥∥2

L2(Ω)

≤ 2

(
C1

ρ2(t2 − t1)2

)2

C4
0α1α2 ‖ỹ0‖2L2(Ω)

with α2 = eC2
√
r2e−2r1(t3−t2) and Pr2(y2(·, t4)) = 0. Furthermore, as the argument on the interval

I1, we have estimate for y2(x, t) that∥∥y2(·, t4)
∥∥2

L2(Ω)
≤

∥∥y2(·, t3)
∥∥2

L2(Ω)
− 2λ1

∫ t4

t3

∥∥y2(·, t)
∥∥2

L2(Ω)
dt

+2

∫ t4

t3

∫
Ω
y2(x, t)χEχωf2(x, t)dxdt

≤
∥∥z1(·, t3)

∥∥2

L2(Ω)
− 2λ1

∫ t4

t3

∥∥y2(·, t)
∥∥2

L2(Ω)
dt+ λ1

∫ t4

t3

∫
Ω
|y2(x, t)|2dx

+
t4 − t3
λ1

‖u‖2L∞(t3, t4;L2(Ω))

≤
∥∥z1(·, t3)

∥∥2

L2(Ω)
+
t4 − t3
λ1

‖f2‖2L∞(t3, t4;L2(Ω))

≤ 22

(
C1

ρ2(t4 − t3)2

)
C4

0 α1 α2 ‖ỹ0‖2L2(Ω) .

Thus, we proved the cases for N = 1, 2. Now suppose that we had proved the case for N , we

consider the case for N + 1.

Consider

yN+1
t −

n∑
i, j=1

(aij(x)yN+1
xi )xj = fN+1(x, t)χEχω, in Ω× (t2N+1, t2N+2),

yN+1|Γ1 = 0, yN+1|Γ0 = k(t) (an unknown function),∫
Γ0

n∑
i, j=1

aijyN+1
xi νjdΓ = 0,

yN+1(x, t2N+1) = zN (x, t2N+1), in Ω,

on the interval IN+1 and

zN+1
t −

n∑
i, j=1

(aij(x)zN+1
xi )xj = 0, in Ω× (t2N+2, t2N+3),

zN+1|Γ1 = 0, zN+1|Γ0 = k(t) (an unknown function),∫
Γ0

n∑
i, j=1

aijzN+1
xi νjdΓ = 0,

zN+1(x, t2N+2) = yN (x, t2N+2), in Ω,

(3.7)
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on the interval JN+1.

First, by Lemma 2.3, we have that there exists fN+1 ∈ L∞(t2N+1, t2N+2; L2(Ω)) such that

PrN+1(y(·, t2N+2)) = 0 and that fN+1 satisfies the following estimate

‖fN+1‖2L∞(t2N+1,t2(N+1); L
2(Ω))

≤ C1e
C2
√
rN+1

|m(E ∩ [t2N+1, t2N+2])|2
∥∥zN (·, t2N+1)

∥∥2

L2(Ω)

≤ C1e
C2
√
rN+1

ρ2(t2N+2 − t2N+1)2
e−2rN (t2N+1−t2N )

∥∥yN (x, t2N )
∥∥2

L2(Ω)

≤ C1e
C2
√
rN+1

ρ2(t2N+2 − t2N+1)2
e−2rN (t2N+1−t2N ) 2N

(
C1

ρ2(t2 − t1)2

)N
C

4
N(N−1)

2
0

N∏
i=1

αi ‖ỹ0‖2L2(Ω)

≤ 2N
(

C1

ρ2(t2 − t1)2

)N+1

C
4
N(N−1)

2
0 C 4N

0 eC2
√
rN+1e−2rN (t2N+1−t2N )

N∏
i=1

αi ‖ỹ0‖2L2(Ω)

≤ 2N
(

C1

ρ2(t2 − t1)2

)N+1

C
4

(N+1)N
2

0

N+1∏
i=1

αi ‖ỹ0‖2L2(Ω)

with αn+1 = eC2
√
rN+1e−2rN (t3−t2)C

−2(N−1)
0 .

Then similar to the argument for N = 1, we have that∥∥yN+1(·, t2(N+2))
∥∥2

L2(Ω)

≤
∥∥yN+1(·, t2N+1)

∥∥2

L2(Ω)
− 2λ1

∫ t2(N+1)

t2N+1

∥∥yN+1(·, t)
∥∥2

L2(Ω)
dt

+2

∫ t2(N+1)

t2N+1

∫
Ω
yN+1(x, t)χEχωfN+1(x, t)dxdt

≤
∥∥yN+1(·, t2N+1)

∥∥2

L2(Ω)
− 2λ1

∫ t2(N+1)

t2N+1

∥∥yN+1(·, t)
∥∥2

L2(Ω)
dt+ λ1

∫ t2N+1

t2(N+1)

∥∥yN+1(x, t)
∥∥2

L2(Ω)
dx

+
t2(N+1) − t2N+1

λ1
‖fN+1‖2L∞(t1, t2;L2(Ω))

≤
∥∥yN+1(·, t2N+1)

∥∥2

L2(Ω)
+
t2(N+1) − t2N+1

λ1
‖fN+1‖2L∞(t1, t2;L2(Ω))

≤ 2N
(

C1

ρ2(t2 − t1)2

)N
C

4
N(N+1)

2
0

N+1∏
i=1

αi ‖ỹ0‖2L2(Ω) .

By means of PrN+1(y(·, t2N+2)) = 0, utilizing the energy decay of the solution to equation (3.7),

we have easily get that∥∥zN+1(x, t2N+3)
∥∥2

L2(Ω)
≤ e−2rN+1(t2N+3−t2N+1)

∥∥yN (x, t2N+2)
∥∥2

L2(Ω)
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Therefore, we proved the claim by deduction.

In what follows, we choose suitable L such that ‖fN‖2L∞(IN ; L2(Ω)) ≤ L ‖ỹ0‖2L2(Ω). To this end,

we let

rN =

(
2C̃N−1

t3 − t2

)4

≡
(
A C̃N−1

)4
, N ≥ 1. (3.8)

Noticing that C̃ > C2
0 > 1 and t3 − t2 < 1, we obtain that

24 < r1 < r2 < · · · < rN < rN+1 < · · · and rN →∞ as N →∞

and that

r
1
4
N−1(t3 − t2)C

−2(N−2)
0 ≥ 2, N ≥ 2.

As a result, it follows that

e−2rN−1(t3−t2)C
−2(N−2)
0 ≤ e−4r

3
4
N−1 , N ≥ 2. (3.9)

From that

C̃N(N−1)e
−r

3
4
N =

C̃ N(N−1)

(er
1
4
N−1)r

1
2
N−1

≤ C̃ N(N−1)

(e2C̃ (N−1)
)r

1
2
N−1

≤ C̃ N(N−1)

C̃2(N−1)r
1
2
N−1

, N ≥ 2,

we get from the definition of rN that there exists a N1 ∈ N with N1 ≥ 2 such that

C̃ N(N−1)e−r
3
4
N−1 ≤ 1, N ≥ N1. (3.10)

Again, by the definition of rN , one finds that

eC2
√
rN e−r

3
4
N−1 = eC2A2C̃ 2(N−1)

e−A
3C̃ 3(N−2)

, N ≥ 2. (3.11)

As a result, there is a natural number N2 ≥ 2 such that

eC2
√
rN e−r

3
4
N−1 ≤ 1, N ≥ N2. (3.12)

Next, Let

N0 = max{N1, N2}. (3.13)

It is easy for one to verify that

αN ≤ 1, N ≥ N0, (3.14)

and from (3.9), (3.10) and (3.11) that

C̃ N(N−1)αN = C̃ N(N−1)eC2
√
rN e−2rN−1(t3−t2)C

−2(N−2)
0

≤ C̃N(N−1)eC2
√
rN e−4r

3
4
N−1

≤ e−2r
3
4
N−1 .

(3.15)
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Now, we let

L = max

{
C̃N(N−1)

N∏
i=1

αi, 1 ≤ N ≤ N0

}
.

Thus, we proved that

‖fN‖2L∞(IN ; L2(Ω)) ≤ L ‖ỹ0‖2L2(Ω) . (3.16)

Furthermore, we take the control f̃ to be such that

f̃(x, t) =


fN (x, t), x ∈ Ω, t ∈ IN , N ≥ 1,

0, x ∈ Ω, t ∈ JN , N ≥ 1.

(3.17)

Now, let ỹ be the solution of equation (3.1), then from the argument before, it is easy to see

that ỹ(·, t) = yN (·, t) on IN . Again, noting that PrN (yN (·, t2N )) = 0 holding for N ≥ 1 and

{rN}∞N=1 is strictly increasing, together with the construction of f̃ , we conclude that

PrN (ỹ(·, t2M )) = 0, M ≥ N. (3.18)

Since t2M → t̃ as M →∞, we can also obtain that

ỹ(·, t2M )→ ỹ(·, t̃ ) in L2(Ω) as M →∞.

These two results tells that PrN (ỹ(·, t̃ )) = 0 holding for all N ≥ 1. It follows that ỹ(·, t̃ ) = 0 for

that rN →∞ as N →∞.

Until now, we have proved that there exists a control f̃ ∈ L∞(t1, t̃; L
2(Ω)) with the estimate

||f̃ ||2
L∞(t1,t̃; L2(Ω))

≤ L ‖ỹ0‖2L2(Ω), where L is claimed as before, such that ỹ, which solves (3.1),

vanishes at t̃, in other words, ỹ(x, t̃ ) = 0 in Ω.

Step 2. We complete the proof in this step. To this end, we specify ỹ0(x). Let ψ be the solution

of 

ψt −
n∑

i, j=1

(aij(x)ψxi)xj = 0, in Ω× (0, t1),

ψ|Γ1 = 0, ψ|Γ0 = k(t) (an unknown function), t ∈ (0, t1),∫
Γ0

n∑
i, j=1

aijψxiνjdΓ = 0,

ψ(x, 0) = y0(x), in Ω.

Let ỹ0(x) = ψ(x, t1) and set

f(x, t) =


0, (x, t) ∈ Ω× (0, t1),

f̃(x, t), (x, t) ∈ (t1, t̃ ),

0, (x, t) ∈ Ω× (t, T ).

(3.19)
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It is easy for one to verify that f given as above lies in L∞(0, T ; L2(Ω)), which drives the

solution y of (1.1) to zero at time T . That is, y(x, T ) = 0, x ∈ Ω and f has the estimate same to

f̃ , i.e.,

‖f‖2L∞(0,T ; L2(Ω)) ≤ L ‖y0‖2L2(Ω)

with L claimed as before.

4 Appendix

In this appendix, we give a proof of Lemmas 2.1–2.2.

Let m ∈ N, for any ϕ ∈ C2(Rm) and positive numbers λ and µ, let

α = eµϕ, θ = eλα. (4.1)

Assume that (bij)1≤i,j≤m is a symmetric matrix with entries bij ∈ C1(Rm), i, j = 1, 2, · · · ,m. We

first recall the following result, whose proof can be found in [4].

Lemma 4.1 Assume that v ∈ C2(Rm). Let w = θv, then we have the following point-wise estimate:

θ 2

∣∣∣∣∣∣
m∑

i,j=1

bijvxixj

∣∣∣∣∣∣
2

+2λµα
m∑

i,j=1

2µ
m∑

k,`=1

bk`ϕxkϕx`b
ijwxiw + λ2µ2α2

m∑
k,`=1

bk`ϕkϕ`b
ijϕxiw

2

+ 2
m∑

k,`=1

bk`ϕxkw`b
ijwxi −

m∑
k,`=1

bk`wxkwx`b
ijϕxi


xj

≥
m∑

i,j=1

cijwxiwxj +Bw2 + 4λµ2
m∑

i,j=1

α( m∑
k,`=1

bk`ϕxkϕx`

)
bij


xj

wxiw (4.2)

+ 4λµα

m∑
i,j=1

m∑
k,`=1

(bk`ϕxkb
ij)jwx`wxi + 4λµ2α

( m∑
i,j=1

bijϕxiwxj

)2
,

where

B =

2λ3µ4α3
( m∑
i,j=1

bijϕxiϕxj

)2
+ 2λ3µ3α3

m∑
i,j=1

m∑
k,`=1

(bijϕxjb
k`ϕxkϕx`)xi

−4λ2µ2α2
( m∑
i,j=1

bijϕxixj

)2
− 4λ2µ4α2

( m∑
i,j=1

bijϕxiϕxj

)2


= 2λ3µ4α3

( m∑
i,j=1

bijϕxiϕxj

)2
− λ3α3O(µ3)− λ2α2O(µ4), (4.3)

cij =

m∑
k,`=1

[
2λµ2αbk`ϕxkϕx`b

ij − 2λµαbk`ϕxkb
ij
x`
− 2λµα(bk`ϕxk)x`b

ij
]

=

m∑
k,`=1

2λµ2αbk`ϕxkϕx`b
ij − λαO(µ). (4.4)
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Proof of Lemma 2.1. We borrow some idea from [4]. First, noticing that we put only par-

tial boundary condition on equation (2.3), we transform equation (2.3) to an equation with full

boundary condition. Let

b =
T

2
− γ, b0 =

T − T ′ − γ
2

. (4.5)

Some straightforward calculation shows that

T

2
− T ′ < b0 < b <

T

2
.

We introduce φ(t) ∈ C∞0
(
T
2 − b,

T
2 + b

)
which enjoys the following properties

0 ≤ φ(t) ≤ 1,
∣∣t− T

2

∣∣ ≤ b,
φ(t) = 1,

∣∣t− T
2

∣∣ ≤ b0. (4.6)

Let u1 = φu, then u1, according to (2.3), verifies

u1
tt +

n∑
i, j=1

(aiju1
xi)xj = φttu+ 2φtut, in Q,

u1|Γ1 = 0,

∫
Γ0

n∑
i, j=1

aiju1
xiνj dΓ = 0,

u1|Γ0 = c φ(t) (c is unknown),

u1 = 0, in (Ω× {0}) ∪ (Ω× {T}).

(4.7)

In what follows, we apply Lemma 4.2 to equation (4.7) with

m = n+ 1, xn+1 = t, (bij)1≤i,j≤n+1 =

(
M 0

0 1

)
,

where M = (aij)1≤i,j≤n, v replaced by u1, and the weight function θ given in (4.1) and w = θu1.

From [9], we know that there exists a ψ ∈ C2(Ω) which enjoys the following properties:

ψ > 0 in Ω,

ψ = 0 on Γ,

|∇ψ| > 0 in Ω \ ω0,

∂ψ

∂ν
= −

[ n∑
i,j=1

aijνiνj

]− 1
2

on Γ0,

(4.8)

where ω0 ⊂⊂ ω.

Let

% =
1

‖ψ‖L∞(Ω)

min
x∈Ω\ω

|∇ψ(x)|. (4.9)
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It is clear that % > 0 following the construction of ψ.

Without loss of generality, we assume that T ′ ≤ T − T ′′. Otherwise, we can reverse the time

variable t to T − t in equation (2.3).

Let 
ϕ(x, t) = (c1 − c2)

ψ(x)

‖ψ‖L∞(Ω)

+ b2 −
(
t− T

2

)2

+ κ,

ϕ̃(x, t) = (c2 − c1)
ψ(x)

‖ψ‖L∞(Ω)

+ b2 −
(
t− T

2

)2

+ κ,

(4.10)

where c1 = b2 −
(
T
2 − T

′)2 , c2 = 1
2

(
c1 + b2 − b20

)
and κ is chosen to be so large to make ϕ̃ > 0. It

is clear that c1 > c2.

Let α(x, t) = eµϕ(x,t), θ = eλα. According to the definition of α, it is easy to verify that
α(·, t) ≥ ec1µ,

∣∣∣∣t− T

2

∣∣∣∣ ≤ T

2
− T ′,

α(·, t) ≤ ec2µ, b0 ≤
∣∣∣∣t− T

2

∣∣∣∣ ≤ b. (4.11)

According to that M is uniformly positive with all elements being C1 and ϕ ∈ C2(Rn), some

simple calculation gives that

4λµα

m∑
i,j=1

m∑
k,`=1

(bk`ϕxkb
ij)xjwx`wxi ≤ Cλµα

( n∑
i, j=1

aijwxiwxj + |wt|2
)
, (4.12)

and that

4λµ2
m∑

i,j=1

α( m∑
k,`=1

bk`ϕxkϕ`b
ij
)

xj

wxiw

≤ Cλµ2α
( n∑
i, j=1

aijwxiwxj + |wt|2
) 1

2 |w|

≤ C

λ2µ2α|w|2 + µ2α
( n∑
i, j=1

aijwxiwxj + |wt|2
) .

(4.13)

With the help of the construction of the function ψ and the property of (aij)1≤i,j≤n, one finds

that
n∑

i, j=1

aijψxiψxj ≥ C|∇ψ|2 > 0, in Ω \ ω0.

This together with the definition of ϕ given in (4.10) and the properties given in (4.8), implies that

there exists a positive number µ0 > 1 such that for all µ ≥ µ0 there corresponds a positive number
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λ0 > 1 so that 

m∑
i,j=1

cijwxiwxj − C(λµα+ µ2)
( n∑
i, j=1

aijwxiwxj + |wt|2
)

≥ %2λµ2α
( n∑
i, j=1

aijwxiwxj + |wt|2
)
,

Bw2 − Cλ2µ4αw2 ≥ %4λ3µ4α3w2,

(4.14)

for λ ≥ λ0 and (x, t) ∈ Ω× (2− b, 2 + b) \ ω × (2− b0, 2 + b0).

Now integrating the point-wise estimate (4.2) over Q, together with (4.14), we have that

λµ2

∫
Q
α
( n∑
i, j=1

aijwxiwxj + |wt|2
)
dxdt+ λ3µ4

∫
Q
α3w2dxdt

≤ C


∫
Q
θ2
∣∣∣u1
tt +

n∑
i, j=1

aiju1
xixj

∣∣∣2dxdt+ λ3µ4

∫ T

0

∫
ω0

α3w2dxdt

+ λµ2

∫ T

0

∫
ω0

α
( n∑
i, j=1

aijwxiwxj + |wt|2
)
dxdt+

∫
Q
Ddxdt

 ,

(4.15)

where

D = 2λµα
m∑

i,j=1

2µ
m∑

k,`=1

bk`ϕxkϕx`b
ijwxiw + λ2µ2α2

m∑
k,`=1

bk`ϕxkϕx`b
ijϕxiw

2

+ 2
m∑

k,`=1

bk`ϕxkwx`b
ijwxi −

m∑
k,`

bk`wxkwx`b
ijϕxi


xj

.

(4.16)

It is clear that
∫
QDdxdt represents the boundary integral with sign not determined. Next, we will

deal with this tiresome term with the appropriate choice of function ψ enjoying property (4.8) and

the construction of ϕ given in (4.10). Denote by Vi, i = 1, 2, 3, 4 the integrals combining
∫
QDdxdt

in order. First, we have that

V1 =

∫
Σ

4λµ2α
( n∑
k,`=1

ak`ϕxkϕx` + ϕ2
t

) n∑
i, j=1

aijwwxiνjdΣ

=

∫
Σ

{
4λ2µ3α2

( n∑
k,`

ak`ϕxkϕx` + ϕ2
t

) n∑
i, j=1

aijϕxiνjw
2

+ 4λµ2αθ
( n∑
k,`=1

ak`ϕxkϕx` + ϕ2
t

) n∑
i, j=1

aiju1
xiνjw

}
dΣ

= V11 + V12.

(4.17)

Noticing that ϕxi =
c1 − c2

‖ψ‖L∞(Ω)

ψxi , this together with the property of ψ shows that

n∑
i, j=1

aijϕxiνj ≤

0. Also noticing that the other factors of the integrand in V11 are all positive, then V11 ≤ 0. It is
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straightforward that

n∑
k,`=1

ak`ϕxkϕx` =

(
c1 − c2

‖ψ‖L∞(Ω)

)2 n∑
k,`=1

ak`ψxkψ` =

(
c1 − c2

‖ψ‖L∞(Ω)

)2 ∣∣∣∣∂ψ∂ν
∣∣∣∣2 n∑
k,`=1

ak`νkν`

holds constant according to the property of ψ and u1
xi = φ(t)uxi . This together with that all other

factors of the integrand in V12 depending on the variable t = xn+1 makes us conclude from the

boundary condition of equation (2.3) that V12 = 0. Then, it holds that

V1 ≤ 0. (4.18)

With the similar argument, it follows that

V2 =

∫
Σ

2λ3µ3α3
( n∑
k,`=1

ak`ϕxkϕx` + ϕ2
t

) n∑
i, j=1

aijϕxiνjw
2dΣ ≤ 0. (4.19)

Next, we have that

V3 =

∫
Σ

4λµα
( n∑
k,`=1

ak`ϕxkϕx` + ϕtwt

) n∑
i, j=1

aijwxiνjdΣ

=

∫
Σ

{
4λ3µ3α3

( n∑
k,`=1

ak`ϕxkϕx` + ϕ2
t

) n∑
i, j=1

aijνiϕxjw
2

+ 4λ2µ2α2θ
n∑

k,`=1

ak`ϕxkϕx`w
n∑

i, j=1

aijuxiνj + 4λ2µ2α2ϕtθ
2

n∑
i, j=1

aijϕxiνju
1u1
t

− 2λµαϕttθw
n∑

i, j=1

aijuxiνj + 4λµαθ2∂ϕ

∂ν

( n∑
i, j=1

aijuxiνj

)2}
dΣ

= V31 + V32 + V33 + V34 + V35.

(4.20)

Some straightforward calculation shows that

V4 =

∫
Σ

2λµα
m∑

k,`=1

ak`wxkwx`

m∑
i,j=1

aijϕxiνjdΣ

=

∫
Σ

{
2λ3µ3α3

n∑
k,`=1

ak`ϕxkϕx`

n∑
i,j=1

aijϕxiνjw
2 + 4λ2µ2α2θ

n∑
i, j=1

aijϕxiϕxjw
∑
k,`=1

ak`uxkν`

+2λµαθ2
n∑

i, j=1

aijϕxiνj
∑
k,`=1

ak`u1
xk
u1
x`

+ 2λµα
(
λµαϕtw + θu1

t

)2
n∑

i, j=1

aijϕxiνj

}
dΣ

= V41 + V42 + V43 + V44.

(4.21)

Now some tedious calculation shows that the sign of the third term of the integrand in V3, which

involves ϕt and u1
t , can not be determined, thus we can not determine the sign of

∫
QDdxdt. To

19



get around this difficulty, we introduce α̃(x, t) = eµϕ̃(x,t), θ̃ = eλα̃, where ϕ̃ is given in (4.10), and

then apply Lemma 4.1 to equation (4.7) by letting w̃ = θ̃u1.

From the definition of ϕ, α, ϕ̃ and α̃, it is easy to verify that 0 < ϕ̃ ≤ ϕ and that

ϕ|Σ = ϕ̃|Σ,
n∑

i, j=1

aijϕxiνj

∣∣∣
Σ

= −
n∑

i, j=1

aijϕ̃xiνj

∣∣∣
Σ
, α|Σ = α̃|Σ, w|Σ = w̃|Σ. (4.22)

With the same argument of getting (4.15), some straightforward calculation tells us that

λµ2

∫
Q
α̃
( n∑
i, j=1

aijw̃xiw̃xj + |w̃t|2
)
dxdt+ λ3µ4

∫
Q
α̃3w̃2dxdt

≤ C
{∫

Q
θ2
∣∣∣u1
tt +

n∑
i, j=1

aiju1
xixj

∣∣∣2dxdt+ λ3µ4

∫ T

0

∫
ω0

α̃3w̃2dxdt

+λµ2

∫ T

0

∫
ω0

α̃
( n∑
i, j=1

aijw̃xiw̃xj + |w̃t|2
)
dxdt+

∫
Q
D̃dxdt

}
,

(4.23)

where

D̃ = 2λµα̃

m∑
i,j=1

[
2µ

m∑
k,`=1

bk`ϕ̃xk ϕ̃x`b
ijw̃xiw̃ + λ2µ2α̃2

m∑
k,`=1

bk`ϕ̃xk ϕ̃x`b
ijϕ̃xiw̃

2

+2
m∑

k,`=1

bk`ϕ̃xkw̃x`b
ijw̃xi −

m∑
k,`

bk`w̃xkw̃x`b
ijϕ̃xi

]
xj

.

(4.24)

Similarly,
∫
Q D̃dxdt can be transformed into a boundary integral according to Gaussian Diver-

gence theorem. We use Ṽi, i = 1, 2, 3, 4 to denote the integrals combining
∫
Q D̃dxdt in their natural

order as in (4.24). With the similar argument applied to Vi, i = 1, 2, 3, 4, it follows that

Ṽ1 =

∫
Σ

4λµ2α̃
( n∑
k,`=1

ak`ϕ̃xk ϕ̃x` + ϕ̃2
t

) n∑
i, j=1

aijw̃w̃xiνjdΣ

=

∫
Σ

{
4λ2µ3α̃2

( n∑
k,`

ak`ϕ̃xk ϕ̃x` + ϕ̃2
t

) n∑
i, j=1

aijϕ̃xiνjw̃
2

+ 4λµ2α̃
( n∑
k,`=1

ak`ϕ̃xk ϕ̃x` + ϕ̃2
t

) n∑
i, j=1

aiju1
xiνjθw̃

}
dΣ

= Ṽ11 + Ṽ12.

(4.25)

Noticing that ϕ̃xi = c1−c2
‖ψ‖L∞(Ω)

ψxi , then from the construction of ψ, we find that
∑n

i, j=1 a
ijϕ̃xiνj > 0.

Also noticing that the other factors of the integrand in V11 are all positive, we conclude then that

V11 ≤ 0. Some simple calculation shows that

n∑
k,`=1

ak`ϕ̃xk ϕ̃x` =

(
c1 − c2

‖ψ‖L∞(Ω)

)2 n∑
k,`=1

ak`ψxkψ` =

(
c1 − c2

‖ψ‖L∞(Ω)

)2 ∣∣∣∣∂ψ∂ν
∣∣∣∣2 n∑
k,`=1

ak`νkν`

20



is constant according to the property of weight function ψ and u1
xi = φ(t)uxi . This together with

that all other factors of the integrand in V12 depends on the variable t = xn+1, then we conclude

from the boundary condition of equation (2.3) that Ṽ12 = 0. As a result, we conclude that

Ṽ1 ≥ 0. (4.26)

Using the similar argument, we have that

Ṽ2 =

∫
Σ

2λ3µ3α̃3
( n∑
k,`=1

ak`ϕ̃xk ϕ̃x` + ϕ̃2
t

) n∑
i, j=1

aijϕ̃xiνjw̃
2dΣ ≥ 0. (4.27)

Next, we have that

Ṽ3 =

∫
Σ

4λµα̃
( n∑
k,`=1

ak`ϕ̃xk ϕ̃x` + ϕ̃tw̃t

) n∑
i, j=1

aijw̃xiνjdΣ

=

∫
Σ

{
4λ3µ3α̃3

( n∑
k,`=1

ak`ϕ̃xk ϕ̃x` + ϕ̃2
t

) n∑
i, j=1

aijνiϕ̃xj w̃
2

+ 4λ2µ2α̃2θ̃
n∑

k,`=1

ak`ϕ̃xk ϕ̃x`w̃
n∑

i, j=1

aijuxiνj + 4λ2µ2α̃2ϕ̃tθ̃
2

n∑
i, j=1

aijϕ̃xiνju
1u1
t

− 2λµα̃ϕ̃ttθ̃w̃

n∑
i, j=1

aijuxiνj + 4λµα̃θ̃2∂ϕ̃

∂ν

( n∑
i, j=1

aijuxiνj

)2
}
dΣ

= Ṽ31 + Ṽ32 + Ṽ33 + Ṽ34 + Ṽ35.

(4.28)

Some straightforward calculation shows that

Ṽ4 =

∫
Σ

2λµα̃

m∑
k,`=1

ak`w̃xkw̃x`

m∑
i,j=1

aijϕ̃xiνjdΣ

=

∫
Σ

{
2λ3µ3α̃3

n∑
k,`=1

ak`ϕ̃xk ϕ̃x`

n∑
i,j=1

aijϕ̃xiνjw̃
2 + 4λ2µ2α̃2θ̃

n∑
i, j=1

aijϕ̃xiϕ̃xj w̃
∑
k,`=1

ak`uxkν`

+2λµα̃θ̃2
n∑

i, j=1

aijϕ̃xiνj
∑
k,`=1

ak`u1
xk
u1
x`

+ 2λµα̃
(
λµα̃ϕ̃tw̃ + θ̃u1

t

)2
n∑

i, j=1

aijϕ̃xiνj

}
dΣ

= Ṽ41 + Ṽ42 + Ṽ43 + Ṽ44.

(4.29)

According to (4.8), (4.22) and the boundary integral condition with respect to u, which solves

equation (2.3), comparing V1 with Ṽ1, it follows V11 = −Ṽ11, V12 = Ṽ12 = 0. Similarly, we find

V2 = −Ṽ2 and V31 = −Ṽ31, V32 = Ṽ32 = 0, V33 = −Ṽ33, V34 = −Ṽ34, V35 = −Ṽ35 and V41 =

−Ṽ41, V42 = Ṽ42 = 0, V43 = −Ṽ43, V44 = −Ṽ44. As a result, it follows that∫
Q
Ddxdt+

∫
Q
D̃dxdt = 0. (4.30)
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Adding (4.15) to (4.23) and applying (4.30), it follows that

λµ2

∫
Q

[
α
( n∑
i, j=1

aijwxiwxj + |wt|2
)

+ α̃
( n∑
i, j=1

aijw̃xiw̃xj + |w̃t|2
)]
dxdt

+λ3µ4

∫
Q

(
α3w2 + α̃3w̃2

)
dxdt

≤ C

{∫
Q

(
θ2
∣∣∣u1
tt +

n∑
i, j=1

aiju1
xixj

∣∣∣2 + θ̃ 2
∣∣∣u1
tt +

n∑
i, j=1

aiju1
xixj

∣∣∣2)dxdt
+λ3µ4

∫ T

0

∫
ω0

(
α3w2 + α̃3w̃2

)
dxdt

+λµ2

∫ T

0

∫
ω0

α
( n∑
i, j=1

aijwxiwxj + |wt|2
)
dxdt

}
.

(4.31)

Up to now, the inequality (4.31) we got involves w and w̃, which is not expected for our

purpose. We in the following recover w and w̃ to u1. Recalling that w = θu1 and w̃ = θ̃u1, some

straightforward calculation gives that

1

C
θ2
( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2 + λ2µ2α2|u1|2
)

≤
n∑

i, j=1

aijwxiwxj + |wt|2 + λ2µ2α2w2

≤ Cθ2
( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2 + λ2µ2α2|u1|2
)
.

(4.32)

Similarly, it follows that

1

C
θ̃ 2
( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2 + λ2µ2α̃2|u1|2
)

≤
n∑

i, j=1

aijw̃xiw̃xj + |w̃t|2 + λ2µ2α̃2w̃2

≤ Cθ̃ 2
( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2 + λ2µ2α̃2|u1|2
)
.

(4.33)

We also need to get ride of α̃ and θ̃ appeared in (4.31). By means of the definition of α, α̃, θ, θ̃,
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it is easy to verified that α ≥ α̃ ≥ 1 and θ ≥ θ̃ > 1, which in turn gives that

α̃θ̃ 2
( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2
)
≤ αθ2

( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2
)
,

θ̃ 2

∣∣∣∣∣∣
n∑

i, j=1

aiju1
xixj

∣∣∣∣∣∣
2

≤ θ2

∣∣∣∣∣∣
n∑

i, j=1

aiju1
xixj

∣∣∣∣∣∣
2

,

α̃ 3θ̃ 2|u1|2 ≤ α3θ2|u1|2.

(4.34)

By means of (4.31)– (4.34), it follows that

λµ2

∫
Q
αθ2
( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2
)

+ λ3µ4

∫
Q
α3θ2|u1|2dxdt

≤ C

{∫
Q
θ2
∣∣∣u1
tt +

n∑
i, j=1

aiju1
xixj

∣∣∣2dxdt+ λ3µ4

∫ T

0

∫
ω0

α3θ2|u1|2dxdt

+λµ2

∫ T

0

∫
ω0

αθ2
( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2
)
dxdt

}
.

(4.35)

Noticing that u1 solves equation (4.7), it is easy for one to verify that∣∣∣∣∣∣
n∑

i, j=1

aiju1xixj + u1
tt

∣∣∣∣∣∣
2

≤ 2|φttu+ 2φtut|2 + 2

∣∣∣∣∣∣
n∑

i, j=1

aijxju
1
xi

∣∣∣∣∣∣
2

≤ 2|φttu+ 2φtut|2 + C|∇u1|2.

(4.36)

Based on that M is uniformly positive, it follows that

n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2 ≥ C
(
|∇u1|2 + |u1

t |2
)
. (4.37)

Take χ ∈ C∞0 (ω) to be such that 0 ≤ χ ≤ 1 and χ = 1 in ω0. Multiplying equation (4.7) from

both sides by χθ2αu1 and then integrating by parts, we arrive at∫ T

0

∫
ω0

αθ2
( n∑
i, j=1

aiju1
xiu

1
xj + |u1

t |2
)
dxdt

≤ C

[
λµ2

∫ T

0

∫
ω
α2θ2|u1|2dxdt+

∫
Q
θ2|φttu+ 2φtut|2dxdt

]
.

(4.38)

By means of (4.35)– (4.38), it follows that

λµ2

∫
Q
αθ2

(
|∇u1|2 + |u1

t |2
)
dxdt− C

∫
Q
θ2|∇u1|2dxdt+ λ3µ4

∫
Q
α3θ2|u1|2dxdt

≤ C

{∫
Q
θ2|φttu+ 2φtut|2dxdt+ λ3µ4

∫ T

0

∫
ω
α3θ2|u1|2dxdt

}
.

(4.39)
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It is easy to see that there must be some µ1 ≥ µ0, such that for any µ ≥ µ1, we have the

following inequality

λ3µ4

∫
Q
α3θ2|u1|2dxdt

≤ C

{∫
Q
θ2|φttu+ 2φtut|2dxdt+ λ3µ4

∫ T

0

∫
ω
α3θ2|u1|2dxdt

}
.

(4.40)

We need do some estimates on each term in both sides of (4.40). With the help of (4.11) and (4.6),

one finds that the term in the left hand side of (4.40) is given as follows:

λ3µ4

∫
Q
α3θ2|u1|2dxdt ≥ λ3µ4e3µ(c1+κ)e2λeµ(c1+κ)

∫ T ′′

T ′

∫
Ω
u2dxdt. (4.41)

Similarly, we have the estimates for the two terms in the right hand side of (4.40) respectively as

follows: ∫
Q
θ2|φttu+ 2φtut|2dxdt

=

∫ T
2

+b

T
2
−b

∫
Ω
θ2|φttu+ 2φtut|2dxdt

≤ Ce2λeµ(c2+κ)

{∫ T
2
−b0

T
2
−b

∫
Ω

(u2 + u2
t )dxdt+

∫ T
2

+b

T
2

+b0

∫
Ω

(u2 + u2
t )dxdt

}
≤ Ce2λeµ(c2+κ) ‖u‖2H1(Q) ,

(4.42)

and

λ3µ4

∫ T

0

∫
ω
α3θ2|u1|2dxdt = λ3µ4

∫ T
2

+b

T
2
−b

∫
ω
α3θ2|u1|2dxdt

≤ λ3µ4e3µ(T
2

4
+c1−c2+κ)e2λeµ(T

2

4 +c1−c2+κ)
∫ T

2
+b

T
2
−b

∫
ω
u2dxdt.

(4.43)

Putting the estimates (4.41) – (4.43) into (4.40), we conclude that

λ3µ4e3µ(c1+κ)e2λeµ(c1+κ)

∫ T ′′

T ′

∫
Ω
u2dxdt

≤ λ3µ4e3µ(T
2

4
+c1−c2+κ)e2λeµ(T

2

4 +c1−c2+κ)
∫ T

2
+b

T
2
−b

∫
ω
u2dxdt+ Ce2λeµ(c2+κ) ‖u‖2H1(Q) .

(4.44)

Noticing by definition that c1 > c2, it follows that e2λeµ(c1+κ)
> e2λeµ(c2+κ)

. Fixing µ = µ1,

letting 
ε =

e2λeµ1(c2+κ)

λ3µ4
1e

3µ1(c1+κ)e2λeµ1(c1+κ)
, k =

eµ1(T
2

4
+c1−c2+κ) − eµ1(c1+κ)

eµ1(c1+κ) − eµ1(c2+κ)
,

ε0 =
e2λ0eµ1(c2+κ)

λ3
0µ

4
1e

3µ1(c1+κ)e2λ0eµ1(c1+κ)
,
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thus based on (4.44), one finds that for any ε ∈ (0, ε0] the following inequality holds:

‖u‖L2(Ω×(T ′,T ′′) ≤ ε
−k ‖u‖L2(ω×(γ,T−γ)) + Cε ‖u‖H1(Q) . (4.45)

Therefore, (4.45) holds for all ε > 0. Further, if we let τ = 1
1+k , ε =

(
‖u‖L2(ω×(γ,T−γ))

‖u‖1−τ
H1(Q)

)2τ

, (4.45) in

turn gives that

‖u‖L2(Ω×(T ′,T ′′)) ≤ C ‖u‖
τ
L2(ω×(γ,T−γ)) ‖u‖

1−τ
H1(Ω×(0,T )) (4.46)

as desired. We then complete the proof of Lemma 2.1.

Proof of Lemma 2.2. Here and thereafter, we use the symbol dist((x, t), ω0×{0}) to denote the

distance between the point (x, t) and the set ω0 × {0}. Let

N(τ) =
{

(x, t) | (x, t) ∈ Q, dist((x, t), ω0 × {0}) < τ
}
.

Let τi(i = 1, 2, 3) be such that 0 < τ1 < τ2 < τ3 and N(τ3) ⊂ Q and N(τ3) ∩ (Ω × {0}) ⊂
(ω × {0}). We take a C2 function h(x, t) with 3 < h < 4 when (x, t) ∈ N(τ1) but 0 < h < 1

when (x, t) ∈ N(τ3) \ N(τ2) and |∇h| > 0 in N(τ3). The proof of the existence of such function

can be found in [4]. But for easy reference, we give it here. Let g : R → R be such that: g′ < 0;

3 < g(s) < 4 for s ∈ (0, τ2
1 ); 0 < g(s) < 1 for s ∈ (τ2

2 , τ
2
3 ). Let h(x, t) = g(dist2((x, t), ω0 × {0})),

which is expected.

Now we take χ ∈ C∞(N(τ3)) with the properties 0 ≤ χ ≤ 1 and χ = 1 in N(τ2) and vanishes

in the intersection of N(τ3) and a neighborhood, which is very small, of ∂N(τ3) \ (ω × {0}).
For any u ∈ H2(Q), which solves equation (2.3), we let u = χu, then u solves

utt +

n∑
i, j=1

(aijuxi)xj = χttu+ 2χtut +

n∑
i, j=1

aijχxixju

+2
n∑

i, j=1

aijχxiuxj +
n∑

i, j=1

aijxjχxju, (x, t) ∈ N(τ3),

|∇u| = u = 0, (x, t) ∈ ∂N(τ3) \ (ω × {0}).

(4.47)

Like the procedure for proving Lemma 2.1, we also let m = n + 1, xn+1 = t and (bij)1≤i,j≤n+1

be given in the same manner. To apply Lemma 4.1 to equation (4.47), we here let θ = eλe
µh

and

replace v by u, that is, w = θu.

Some straightforward calculation gives that

λµ2

∫
N(τ3)

α
( n∑
i, j=1

aijwxiwxj + w2
t

)
dxdt+ λ3µ4

∫
N(τ3)

α3w2dxdt

≤ C


∫
N(τ3)

θ2
∣∣∣utt +

n∑
i, j=1

aijuxixj

∣∣∣2dxdt+

∫
N(τ3)

D1dxdt

 ,

(4.48)
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where

D1 = 2λµα

m∑
i,j=1

2µ
∑
k,`

bk`hxkhx`b
ijwxkwx` + λ2µ2α2

m∑
k,`=1

bk`hxkhx`b
ijhxiw

2

+ 2

m∑
k,`=1

bk`hxkwx`b
ijwxi −

m∑
k,`=1

bk`wxkwx`b
ijhxi


xj

.

(4.49)

Of course,
∫
N(τ3)D1dxdt stands for the boundary integral according to Gaussian Divergence

theorem, which is not welcome here. We in what follows to estimate this integral term by term

so that we can transform it to some term suitable for our purpose. For simplicity, we adopt

V i, i = 1, 2, 3, 4 to denote the integral consisting
∫
N(τ3)D1dxdt in their natural order as given in

(4.49). Remember the definition of w, it follows that
w|∂N(τ3)\(ω×{0}) = u∂N(τ3)\(ω×{0}) = 0,

∇w|∂N(τ3)\(ω×{0}) = ∇u∂N(τ3)\(ω×{0}) = 0,

(4.50)

which in turn inspires that

V 1 =

∫
∂N(τ3)

4λµ2α
m∑

k,`=1

bk`hxkhx`

m∑
i,j=1

bijwxiνjwd∂N(τ3)

≤ C
∫
∂N(τ3)

{
λµα(|∇w|2 + w2

t ) + λµ3αw2
}
dN(τ3)

≤ C
∫
ω×{0}

{
λµα(|∇w|2 + w2

t ) + λµ3w2
}
dx.

(4.51)

By the same manner, we have

V 2 =

∫
∂N(τ3)

2λ3µ3α3
m∑

k,`=1

bk`hxkhx`

m∑
i,j=1

bijhxiνjw
2dN(τ3) ≤ C

∫
ω×{0}

λ3µ3α3w2dx, (4.52)

V 3 =

∫
∂N(τ3)

4λµα
m∑

k,`=1

bk`hxkwx`

m∑
i,j=1

bijwxiνjdN(τ3) ≤ C
∫
ω×{0}

λµα(|∇w|2 + w2
t )dx (4.53)

and

V 4 =

∫
∂N(τ3)

2λµα

m∑
k,`=1

bk`wxkwx`

m∑
i,j=1

bijhxiνjdN(τ3) ≤ C
∫
ω×{0}

λµα(|∇w|2 + w2
t )dx. (4.54)

Combining (4.51) – (4.54), one finds that∫
N(τ3)

D1dx = V 1 + V 2 + V 3 + V 4

≤ C
∫
ω×{0}

{
λµα(|∇w|2 + w2

t ) + λ3µ3α3w2
}
dx.

(4.55)
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Returning back to (4.48), we have that

λµ2

∫
N(τ3)

α
( n∑
i, j=1

aijwxiwxj + w2
t

)
dxdt+ λ3µ4

∫
N(τ3)

α3w2dxdt

≤ C


∫
N(τ3)

θ2
∣∣∣utt +

n∑
i, j=1

aijuxixj

∣∣∣2dxdt+

∫
ω×{0}

[
λµα(|∇w|2 + w2

t ) + λ3µ3α3w2
]
dx

 .

(4.56)

Next, we are to recover u from w. Based on w = θu, it is easy to show that

1

C
θ2
( n∑
i, j=1

aijuxiuxj + u2
t + λ2µ2α2u 2

)

≤
n∑

i, j=1

wxiwxj + w2
t + λ2µ2α2w2

≤ Cθ2
( n∑
i, j=1

aijuxiuxj + u 2
t + λ2µ2α2u 2

)
.

(4.57)

For that M is uniformly positive, it gives that

n∑
i, j=1

aijuxiuxj + u 2
t ≥ C

(
|∇u|2 + u 2

t ). (4.58)

On the other hand, for u solves equation (4.47), one can show that∣∣∣ n∑
i, j=1

aijuxixj + utt

∣∣∣2
≤ 2

∣∣∣χttu+ 2χtut + 2
n∑

i, j=1

aijχxiuxj +
n∑

i, j=1

aijχxixju
∣∣∣2 + 2

∣∣∣ n∑
i, j=1

aijxjuxi

∣∣∣2
≤ 2

∣∣∣χttu+ 2χtut + 2

n∑
i, j=1

aijχxiuxj +

n∑
i, j=1

aijχxixju
∣∣∣2 + C

∣∣∣∇u∣∣∣2.
(4.59)

Then (4.57) — (4.59) together with (4.56) gives that

λµ2

∫
N(τ3)

(|∇u|2 + u2
t )dxdt− C

∫
N(τ3)

θ2|∇u|2dxdt+ λ3µ4

∫
N(τ3)

α3θ2u 2dxdt

≤ C

{∫
N(τ3) θ

2
∣∣∣χttu+ 2χtut + 2

∑n
i, j=1 a

ijχxiuxj +
∑n

i, j=1 a
ijχxixju

∣∣∣2
+

∫
ω×{0}

[
λµα(|∇w|2 + w2

t ) + λ3µ3α3w2
]
dx

}
.

(4.60)
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As a result, there must be some µ2 > 0 such that for any µ ≥ µ2, it holds that

λµ2

∫
N(τ3)

αθ2(|∇u|2 + u 2
t )dxdt+ λ3µ4

∫
N(τ3)

α3θ2u 2dxdt

≤ C


∫
N(τ3)

θ2
∣∣∣χttu+ 2χtut + 2

n∑
i, j=1

χxiuxj +
n∑

i, j=1

χxixju
∣∣∣2dxdt

+

∫
ω×{0}

[
λµα(|∇u|2 + u 2

t ) + λ3µ3θ2u2
]
dx

}
.

(4.61)

Furthermore, noticing that u = u as (x, t) ∈ N(τ3), χt = 0, xxi = 0 as (x, t) ∈ N(τ2) and

α > e3µ, θ > eλe
3µ

as (x, t) ∈ N(τ1) but α < eµ, θ < eλe
µ

as (x, t) ∈ N(τ3) \N(τ2), we can conclude

that the following several inequalities:∫
N(τ3)

λµ2αθ2(|∇u|2 + u 2
t )dxdt ≥ λµ2e3µe2λe3µ

∫
N(τ3)

(|∇u|2 + u 2
t )dxdt, (4.62)

∫
N(τ3)

λ3µ4α3θ2u2dxdt ≥ λ3µ4e9µe2λe3µ
∫
N(τ1)

u2dxdt, (4.63)

∫
N(τ3)

θ2
∣∣∣χttu+ 2χtut + 2

n∑
i, j=1

aijχxiuxj +

n∑
i, j=1

aijχxixju
∣∣∣2dxdt

≤ Ce2λeµ
∫
N(τ3)

(u2 + |∇u|2 + u2
t )dxdt,

(4.64)

∫
ω×{0}

λ3µ3α3θ2u 2dx ≤ λ3µ3e12µe2λe4µ
∫
ω×{0}

u2dx, (4.65)

∫
ω×{0}

λµαθ2(|∇u|2 + u 2
t )dx ≤ λµe4µe2λe4µ

∫
ω×{0}

(|∇u|2 + u2
t )dx. (4.66)

Then (4.62) — (4.66) together with (4.61) gives that

λµ2e3µe2λe3µ
∫
N(τ1)

(|∇u|2 + u 2
t ) + λ3µ4e9µe2λe3µ

∫
N(τ1)

u2dxdt

≤ C

{∫
N(τ3)

(u2 + |∇u|2 + u2
t ) + λ3µ3e12µe2λe4µ

∫
ω×{0}

u2dx

+λµe4µe2λe4µ
∫
ω×{0}

(|∇u|2 + u2
t )dx

} (4.67)

With the similar argument for (4.45), some straightforward calculation shows that there must

be some β > 0 and ε0 > 0 such that for any ε ∈ (0, ε0] it follows that

‖u‖2H1(N(τ1)) ≤ ε
−β(‖u(0)‖L2(ω) + ‖ut‖L2(ω) + ‖∇u‖L2(ω)) + Cε ‖u‖H1(Q) , (4.68)
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which implies (4.68) itself holding for any ε > 0.

Next, noticing that τ1 > 0, there therefore must be some open ball B ⊂ N(τ1). It follows from

(4.68) that

‖u‖2H1(B) ≤ ε
−β(‖u(0)‖L2(ω) + ‖ut‖L2(ω) + ‖∇u‖L2(ω)) + Cε ‖u‖H1(Q) . (4.69)

In the above inequality, if we let

δ′ =
1

1 + β
, ε =

‖u(0)‖L2(ω) + ‖ut‖L2(ω) + ‖∇u‖L2(ω)

‖u‖H1(Q)

,

then it follows that

‖u‖H1(B) ≤ C
(
‖u(0)‖L2(ω) + ‖ut‖L2(ω) + ‖∇u‖L2(ω)

)δ′
‖u‖1−δ

′

H1(Q) . (4.70)

We now do the following assertion: for any K ⊂⊂ Q, there must be some δ′′ with 0 < δ′′ < 1

such that

‖u‖H1(K) ≤ C ‖u‖
δ′′

H1(B)

∥∥H1(Q)
∥∥1−δ′′

. (4.71)

We will prove this assertion later. According to the assertion (4.71) together with (4.70), taking

K = ω × (γ, T − γ) ⊂⊂ Q, it follows that

‖u‖H1(ω×(γ,T−γ)) ≤ C
(
‖u(0)‖L2(ω) + ‖ut‖L2(ω) + ‖∇u‖L2(ω)

)δ
‖u‖1−δH1(Q) (4.72)

with δ = δ′δ′′. Thus, we complete the proof of Lemma (2.2).

We now prove the assertion (4.71).

Let Bi, i = 1, 2, 3 be three open balls with the properties B1 ⊂⊂ B2 ⊂⊂ B3 ⊂⊂ Q. Take

η ∈ C∞0 (Q) be valued in (0, 1) and η = 1 in B3.

Let y = ηu, then y solves

ytt +
n∑

i, j=1

(aijyxi)xj = ηtt + 2ηtut +
n∑

i, j=1

aijηxixju

+2

n∑
i, j=1

aijηxiuxj +

n∑
i, j=1

aijxjχxju, (x, t) ∈ Q,

∇y = y = 0 (x, t) ∈ Σ.

(4.73)

Denote P the center of B1 and let r(x, t) = dist2((x, t), P ), then substitute ϕ by r in θ. By the

same argument to the proof of Lemma (2.1), there must be some δ̃ with 0 < δ̃ < 1 such that

‖u‖H1(B2) ≤ C ‖u‖
δ̃
H1(B1) ‖u‖

1−δ̃
H1(Q) . (4.74)

For any open ball B′ ⊂⊂ Q, there is a finite natural number m and two sequences of open balls

{Bi}ni=1 and {B̃i}mi=1 such that
B′ ⊂ B1, B̃i ⊂⊂ Bi ∩Bi+1, i = 1, · · · ,m− 1,

B̃m ⊂⊂ Bm, B̃m ⊂ B.
(4.75)
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By means of (4.74), there must be a sequence {δ̃i}mi=1 with 0 < δ̃i < 1, i = 1, 2, · · · ,m such that

‖u‖H1(B′) ≤ ‖u‖H1(B1) ≤ C ‖u‖
δ̃1
H1(B̃1)

‖u‖1−δ̃1H1(Q) ≤ C ‖u‖
δ̃1
H1(B̃2)

‖u‖1−δ̃1H1(Q)

≤ C ‖u‖δ̃1δ̃2
H1(B̃2)

‖u‖1−δ̃1δ̃2H1(Q) ≤ · · · ≤ C ‖u‖
δ̃1δ̃2···δ̃m
H1(B̃m)

‖u‖1−δ̃1δ̃2···δ̃mH1(Q) .
(4.76)

Adopting
˜̃
δ = δ̃1δ̃2 · · · δ̃m, it follows

‖u‖H1(B′) ≤ C ‖u‖
˜̃
δ
H1(B) ‖u‖

1−˜̃δ
H1(Q) . (4.77)

For that for any K ⊂⊂ Q, there must be a finite subcover of open balls, then from (4.77) we know

there is a constant 0 < δ′′ < 1 such that

‖u‖H1(K) ≤ C ‖u‖
δ′′

H1(B) ‖u‖
1−δ′′
H1(Q) (4.78)

as just claimed.
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