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Abstract. We propose a new model for segmenting piecewise constant images with irregular
object boundaries: a variant of the Chan-Vese model [10], where the length penalization of the
boundaries is replaced by the area of their neighborhood of thickness ε. Our aim is to keep fine
details and irregularities of the boundaries while denoising additive Gaussian noise. For the numerical
computation we revisit the classical BV level set formulation [24] considering suitable Lipschitz level
set functions instead of BV ones.
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1. Introduction. One of the most well known variational segmentation models
is the one proposed by Mumford and Shah in [21], based on the minimization of the
following functional:

Ems[u,Γ|u0] = H1(Γ) + α

∫

Ω\Γ
|∇u|2dx + λ

∫

Ω

(u − u0)
2dx. (1.1)

Here Ω is a bounded Lipschitz domain (e.g., a rectangle), u0 : Ω → R+ ∪ {0} is
the given image, Γ ∈ Ω denotes the edge set of the ideal image u, and H1 denotes
the 1-dimensional Hausdorff measure, extending the classical notion of length. This
functional is well defined on the pairs (u,Γ) with u ∈ W 1,2(Ω \ Γ), H1(Γ) < ∞, and
Γ being relatively closed in Ω, provided that the given image u0 belongs to L2(Ω).

One other well-known work includes the Chan-Vese model [10], which success-
fully implemented the piecewise constant segmentation (i.e., a constrained version of
the Mumford-Shah functional where only functions taking two values are taken into
account), using the level-set method. In the context of two-phase segmentation the
corresponding energy looks like

Ecv[v,Γ|u0] = H1(Γ) + λ
2∑

i=1

∫

Ui

|u0 − ci|2, (1.2)
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Moro 2, 00185 Roma, Italy (ponsigli@mat.uniroma1.it).

1



2

where v : Ω → {0, 1} is discontinuous on Γ and divides Ω in two sets U1 := {v = 1}
and U2 := {v = 0}, and c1 and c2 are the averages of u0 on U1 and U2, respectively.
The function u := c1χU1 + c2χU2 represents the segmented image.

Following these variational segmentation models, numerous extensions and prop-
erties have been studied, such as [4, 7, 11, 16, 18, 19, 20, 25, 26, 27, 28].

In this paper, as an attempt to segment objects with irregular boundaries, we
propose and study a variant of the Mumford-Shah functional (1.1) (following the
Chan-Vese approach (1.2) for piecewise constant segmentation), replacing the length
term H1(Γ) with the area of the set

ε - Γ :=
⋃

x∈Γ

Bε(x). (1.3)

We call this set the ε-neighborhood of the edge set Γ. By introducing this new length-
scale parameter ε in the model, we aim to capture rough boundaries of the main
objects in the image u0, while achieving at the same time the denoising effect. The
heuristic behind this feature is that, on dilute noise, the area of the ε-neighborhood
acts as an additive measure, while on fine oscillatory boundaries it is strictly sub-
additive. In view of this behavior, the ε-neighborhood term penalizes the presence of
isolated connected components in the segmented picture, thus removing dilute noise,
while preserving finely oscillating boundaries of the main objects in the picture, even
allowing for infinite perimeter segmentations.

We analyze the properties of the proposed model focusing on two-phase segmen-
tation. We propose numerical approximations of the model, based on the use of
Lipschitz level set functions, and present various experiments.

Let L2 be the 2-dimensional Lebesgue measure. In order to approximate the
ε-neighborhood, we first notice that the term L2(ε - Γ) can be rewritten as

L2(ε - Γ) =

∫

Ω

f0

(
dist(x,Γ(v))

ε

)
dx,

where f0 := χ[0,1]. A natural way of approximating this penalization term is given by
replacing the discontinuous function χ[0,1] with a smoother function f . This leads to
the following functional

Ef (v) :=
∫

Ω

f

(
dist(x,Γ(v))

ε

)
dx+ λ

2∑

i=1

∫

Ui

|u0 − ci|2,

where f is a positive decreasing function. Examples of f include

f(t) = e−tk , or f(t) =
1

1 + tk
, for k ≥ 1.

Now, the idea of our Lipschitz level set approach consists in working with level set
functions φ that are signed distance functions from their zero level set Γ, so that

f

(
dist(·,Γ))

ε

)
= f

( |φ|
ε

)
. (1.4)

In order to force φ to look like a signed distance function, we add the penalization

1

p

∫

Ω

|∇φ|pdx.



3

This term, as p → ∞, enforces |∇φ| ≤ 1 (this power-law approximation has been
proposed also in [17] as a model for dielectric breakdown), and in combination with
the fitting term and the perimeter penalization ensures that any minimizing φ stays
as a signed distance function from Γ.

The paper is organized as follows. In Section 2 we introduce our variational model
and study its main properties. In particular we provide the relaxed energy functional
and prove the existence of a minimizer of the original problem. One of the difficulties
in this step is that minimizing sequences have in general unbounded perimeters, and
may converge to a function which is not a characteristic function. To overcome this
lack of compactness, we prove that any minimizer of the relaxed functional can be
suitably modified to produce a minimizing characteristic function. Note that the
minimizing set needs not be of finite perimeter, and this is indeed in agreement with
the main goal of keeping most of the fine details of the original image while performing
denoising. In the last part of the section we collect some heuristic computations to
highlight the main features of our model as a comparison to the Chan-Vese model.

In Section 3 we present some approximations useful to the numerical implemen-
tation of the model. In the first one, we present our revisited Lipschitz level set
method. The main novelty with respect to the classical BV level set formulation [24],
is that our method involves Lipschitz continuous level set functions, with uniformly
bounded Lipschitz constant. These Lipschitz level set functions turn out to be useful
in implementing the ε-neighborhood of the level set (see (1.4)). The second one is
a phase-field approximation, inspired by the classical Ambrosio-Tortorelli functional
[1], the novelty being again in the use of uniformly Lipschitz phase-field functions.
Finally, we consider a variant of our variational model, involving the infinite Laplace
operator, already used in [11] to deal with regularizations effect of the signed dis-
tance function φ. The corresponding level set functions are still Lipschitz, but with
Lipschitz constant determined by a suitable variational problem. This variant is an
attempt of automatically selecting the length-scale ε. For all these approximations
we perform a rigorous Γ-convergence analysis (we refer the reader to the monographs
[5] and [15] devoted to the notion of Γ-convergence).

In Section 4 we present some numerical results. In particular, we compare the
results obtained using our Lipschitz level set method with those obtained using the
Chan-Vese implementation, based on the classical BV level set formulation [24].

2. The proposed model. In this section we present our model and we show
the existence of an optimal segmentation of Ω corresponding to the given image u0.
Moreover, we explore various properties of the model.

2.1. The set-up of the model. Let Ω ⊂ R
2 be a bounded Lipschitz open set

representing the image domain, and u0 ∈ L2(Ω;R+ ∪ {0}) be a given image. We
propose the following functional for piecewise constant two-phase segmentation with
irregular boundaries (using the intensity fitting term from the Chan-Vese model):

E [v|u0] := L2(ε - Γ(v)) + λ

[∫

U

(u0 − c1)
2 +

∫

Ω\U
(u0 − c2)

2

]
, (2.1)

where ε, λ > 0 are two parameters, v = χU ∈ L∞(Ω; {0, 1}) is a segmentation of Ω,
Γ = Γ(v) is the edge set of v, and c1 and c2 are the averages of u0 on U and Ω \ U ,
respectively. If v = χU minimizes the functional (2.1), then we call {U,Ω \ U} a
minimal partition (with respect ε, λ and u0). The segmented image is represented by
the function u := c1v + c2(1 − v).
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Remark 1. Note that the averages c1 and c2 minimize the expression
∫
U
(u0 −

c1)
2 +

∫
Ω\U (u0 − c2)

2 among all c1, c2 ∈ R.

In order to give a suitable definition of the edge set Γ = Γ(v), we need to take
into account that v is defined up to a negligible set (with respect to L2). Therefore
we cannot merely set Γ := ∂U \ ∂Ω. Indeed, the ε-neighborhood of Γ as defined
in (1.3) is sensitive to negligible modifications: for instance supposing U open and
removing from it a point, we introduce new boundary and ε - Γ changes. Consequently,
with such definition of Γ, the functional (2.1) is not well posed on the class of the
segmentations in L∞(Ω). To avoid any ambiguity, we need to consider a precise
representative within the Lebesgue equivalence class of the given function. To this
end, we recall that x ∈ Ω is a Lebesgue point of a given locally integrable function v
if there exists Lv(x) ∈ [0, 1] such that

lim
r→0

1

r2

∫

B(x,r)

|v(y)− Lv(x)| dy = 0.

In this case, Lv(x) is called the Lebesgue value of v at x. Moreover, given v, almost
every x ∈ Ω is a Lebesgue point for v, and satisfies v(x) = Lv(x). Therefore, it is well
defined the Lebesgue representative ṽ of v, given by

ṽ(x) :=

{
Lv(x) if x is a Lebesgue point for v;

0 elsewere.

Definition 2.1. The edge set of v = χU is defined as

Γ(v) = ∂{ṽ−1(1)} \ ∂Ω, (2.2)

where ṽ is the Lebesgue representative of v. In this way, ε -Γ(v) is independent on
the choice of the representative of v.

For the readers familiar with geometric measure theory, we mention that ∂{ṽ−1(1)}
coincides with the relative closure of the so-called essential boundary of U . Our choice
of the precise representative ṽ yields that ∂{ṽ−1(1)} ⊆ ∂{w−1(1)} for any other rep-
resentative w of v. In other words, our definition gives the minimal boundary corre-
sponding to U . Note also that, when U is Lipschitz, then ∂{ṽ−1(1)} coincides with
the usual topological boundary ∂U .

Remark 2 (The Minkowski content). Let Γ be a subset of Ω. Then the quantity

lim
ε→0

L2(ε -Γ)

2ε
,

if exists, is called the Minkowski content of Γ. It is well known that if Γ is regular (e.g.
a smooth curve) then the Minkowski content of Γ exists and coincides with the usual
1-dimensional measure H1(Γ). Hence, the first term in our model (2.1) represents
(as ε→ 0, and rescaled by 2ε) a good approximation of the classical perimeter.

Therefore, defining

Eε[v|u0] =
1

2ε
L2(ε -Γ(v)) + λ

[∫

U

(u0 − c1)
2 +

∫

Ω\U
(u0 − c2)

2

]
dx,

we expect that for small ε the functionals Eε behave like the Chan-Vese functional Ecv
defined in (1.2). Indeed, by the analysis done in [6] it is possible to prove that the
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functionals Eε Γ-converge to Ecv as ε → 0 (we refer also to [22] and to [14] for a
similar analysis in the framework of fracture mechanics).

On the other hand, for fixed ε, L2(ε -Γ) turns out to be much smaller than
2εH1(Γ) whenever Γ presents fine oscillations at scales smaller than ε (see Exam-
ple 1). This relaxation in the perimeter penalization for small oscillations represents
the main difference of our model with respect to the CV-model.

Example 1. Let Ω = (0, 1)2 and let u0 be defined for all (x, y) ∈ Ω as

u0(x, y) =

{
1 y < 1 + x

2 sin( 1x ),
0 otherwise.

In this case, Γ = {(x, y) : y = 1+ x
2 sin( 1x)}. A simple calculation shows that H1(Γ) =

∞. On the other hand, L(ε -Γ) ≤ 1 for all ε > 0.
Another motivation to consider L2(ε -Γ) is the case when Γ corresponds to fractal

boundaries. For instance, consider a Koch snowflake (we refer the reader to [13] for its
definition). Its boundary Γ clearly satisfies H1(Γ) = ∞, while for any ε > 0, L2(ε -Γ)
is finite. Finally, we notice that also the Minkowski content of Γ is infinite, and indeed
the asymptotic behavior of L2(ε -Γ) as ε → 0 is related to the fractal dimension (the
so called Minkowski dimension) of Γ. It would be interesting to understand if there
is a natural way of tuning the parameters λ and ε in our model, related to the fractal
dimension of Γ. However, this is beyond the scope of the present paper.

2.2. Existence of a minimizer . In this part we prove that the energy E in
(2.1) admits a minimal partition {U,Ω \ U} of Ω. Our approach follows the lines
of the direct method of the calculus of variations. However, since the model allows
for oscillatory boundaries, the minimizing sequence may not have finite perimeter,
and hence we can not apply standard compactness arguments for sets with finite
perimeter. The minimal partition itself could have infinite perimeter, and this is
indeed the main feature of our model. In the following, to simplify the notation we
neglect the dependence on u0.

The main ingredient in the proof of the existence of a minimizer is given by
providing a relaxation formula for the functional E . For this purpose, we define the
relaxation E : L∞(Ω; [0, 1]) → R of E as

E(v) := inf
{
lim inf

n
E(vn), vn ∈ L∞(Ω; {0, 1}), vn ∗

⇀ v in L∞(Ω; [0, 1])
}
. (2.3)

Since L∞(Ω; [0, 1]) is compact with respect to the weak∗ topology, it is a standard
fact (we refer the reader to [8]) that the relaxation E of E admits a minimizer, and
that

inf
v∈L∞(Ω;{0,1})

E(v) = min
v∈L∞(Ω;[0,1])

E(v). (2.4)

In order to give an explicit formula for the functional E , we need to generalize the
definition of Γ(v) introduced in (2.2) to functions v ∈ L∞(Ω; [0, 1]):

Γ(v) :=
(
∂{ṽ−1(0)} ∪ ∂{ṽ−1(1)} ∪ ṽ−1((0, 1))

)
\ ∂Ω, (2.5)

where we recall that ṽ is the Lebesgue representative of v. Denoting by A0 the interior
of ṽ−1(0) and by A1 the interior of ṽ−1(1), we have Γ(v) = Ω\(A0∪A1). In particular,
the set Γ(v) turns out to be relatively closed in Ω. Observe that if v ∈ L∞(Ω; {0, 1}),
then the notions of Γ(v) defined in (2.2) and (2.5) agree. We finally mention that
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again this definition provides the minimal edge set within the Lebesgue equivalence
class of v.

In the following, we will need a stability result for the penalization term L2(ε -K)
with respect to the Hausdorff convergence. To this end, we recall that a sequence of
closed sets Kn converges to a closed set K in the sense of Hausdorff convergence if
the following two properties hold:

i) for every positive δ > 0, and for n large enough (depending on δ), we have
Kn ⊆ δ -K;

ii) for every positive δ > 0, and for n large enough (depending on δ), we have
K ⊆ δ -Kn.

It is well known (see [13]) that any sequence of equibounded closed sets Kn admits a
convergent subsequence. The following stability result is a direct consequence of the
definition of Hausdorff convergence.

Lemma 2.2. Let Kn be a sequence of closed sets converging to a closed set K in
the sense of Hausdorff convergence. Then L2(ε -Kn) → L2(ε -K) as n→ ∞.

We are in a position to give an explicit formula for the relaxation E of E .
Proposition 2.3. For all v ∈ L∞(Ω; [0, 1]) the following relaxation formula

holds

E(v) = L2(ε -Γ(v)) + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx, (2.6)

with c1(v) and c2(v) defined by

c1(v) :=

∫
Ω
vu0 dx∫
Ω v dx

and c2(v) :=

∫
Ω
(1− v)u0 dx∫
Ω(1 − v) dx

. (2.7)

Remark 3. Note that the values c1(v) and c2(v) are obtained by minimizing the
expression

∫
Ω
[v(u0 − c1)

2 + (1− v)(u0 − c2)
2] in c1, c2 ∈ R.

Proof. We will divide the proof into two steps, where we will prove that (2.6)
holds with the equality replaced by the inequalities “ ≤ ” and “ ≥ ” respectively.

Step 1 (≤). Let A0 be the interior of ṽ−1(0), A1 the interior of ṽ−1(1), so that
Γ(v) = Ω \ (A0 ∪ A1). By standard arguments, it is possible to construct a sequence

wn ∈ L∞(Γ(v); {0, 1}) such that wn
∗
⇀ v|Γ(v) in L∞(Γ(v); [0, 1]). Define

vn(x) :=





0 if x ∈ A0;

1 if x ∈ A1;

wn if x ∈ Γ(v).

(2.8)

Clearly, we have vn
∗
⇀ v in L∞(Ω; [0, 1]), and hence by definition E(v) ≤ lim inf E(vn).

Notice that by the very definition of vn, we have Γ(vn) ⊆ Γ(v), and in particular

L2(ε - Γ(vn)) ≤ L2(ε - Γ(v)). (2.9)
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Let U(vn) := v−1
n (1). In view of (2.9) and of Remark (1), we have

E(v) ≤ lim inf E(vn)

≤ lim inf
n

(
L2(ε - (Γ(vn)) + λ

[∫

U(un)

(u0 − c1(v))
2dx+

∫

Ω\U(un)

(u0 − c2(v))
2dx

])

≤ lim
n

(
L2(ε - (Γ(v)) + λ

∫

Ω

[
vn

(
u0 − c1(v))

2 + (1 − vn)
(
u0 − c2(v))

2
]
dx

)

= L2(ε - Γ(v)) + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx.

Step 2 (≥). Let vn be a sequence in L∞(Ω; {0, 1}) such that vn
∗
⇀ v and E(v) =

lim E(vn). Up to a subsequence (that we will not relabel) we can assume that Γ(vn) →
Γ in the sense of Hausdorff for some closed set Γ. First let us show that Γ(v) ⊆ Γ.
Indeed, let x ∈ Ω \ Γ. Therefore, by the definition of Hausdorff convergence there
exists δ > 0 such that Γ(vn) ∩Bδ(x) = ∅ for n large enough. This implies that either
vn ≡ 0, or vn ≡ 1 on Bδ(x), and these properties are clearly inherited by v. In
conclusion, we have that x is in the interior of the set {v−1(0)}∪{v−1(1)}, and hence
x does not belong to Γ(v). By Lemma 2.2 we deduce that

lim
n

L2(ε - Γ(vn)) = lim
n

L2(ε - Γ(vn)) = L2(ε - Γ) ≥ L2(ε - Γ(v)). (2.10)

By the continuity with respect to the weak∗ topology of the coefficients c1(·) and
c2(·), and in view also of (2.10), we get

E(v) = limL2(ε - (Γ(vn)) + λ

∫

Ω

[
vn(u0 − c1(vn))

2 + (1− vn)(u0 − c2(vn))
2
]
dx

= L2(ε - (Γ)) + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1− v)(u0 − c2(v))
2
]
dx

≥ L2(ε - (Γ(v))) + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1− v)(u0 − c2(v))
2
]
dx.

This concludes the proof of the proposition.
We are in a position to give the main result of the Section.
Theorem 2.4. For any given original image u0 in L2(Ω;R+ ∪ 0), the functional

E defined in (2.1) admits a minimizer.
Proof. Let v be a minimizer for E . Setting

v(x) :=





v(x) on v−1({0} ∪ {1}),
0 on x ∈ Ω : |u0(x) − c1(v)| ≤ |u0(x) − c2(v)|,
1 on x ∈ Ω : |u0(x) − c1(v)| > |u0(x) − c2(v)|,

it is easy to see that v is also a minimizer of E (since, passing from v to v, both addends
in (2.6) do not increase). Finally, in view of (2.4) we conclude that v minimizes E .

Remark 4 (The instability of segmentation in Γ). A theoretical drawback of our
model is that a minimizer v̄ of E could in general exhibit a diffuse region I(v̄) := {x ∈
Ω : 0 < v̄ < 1} ⊆ Γ(v̄). In the proof of Theorem 2.4 we have seen that we can always
modify v̄ on I(v̄) into a characteristic function keeping its minimality. On the other
hand, we expect in I(v̄) to have instability of the minimization process, since in this
region the minimizer is not unique. Therefore, two natural questions arise:
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1) How large could the instability region be?
2) Are there natural assumptions on the original image u0 ensuring that I(v̄) =

∅, i.e., that any minimizer of E takes two values?
Concerning the first question, we observe that by minimality we always deduce the
following bound for Γ(v):

L2(Γ(v)) ≤ L2(ε - (Γ(v))) ≤ E(v) ≤ E(χΩ) ≤ λ‖u0‖22,
that clearly gives a bound for I(v) ⊆ Γ(v). Passing to the second question, we notice
that by minimality we necessarily have

I(v) ⊆
{
x ∈ Ω : |u0(x)−c2(v)| = |u0(x)−c1(v)|

}
=

{
x ∈ Ω : u0(x) =

c2(v) + c1(v)

2

}
.

Therefore, if for instance u0 does not have flat parts, i.e., u−1
0 (t) has measure zero

for every t ∈ R, then we deduce that I(v) = ∅. Another relevant assumption ensuring
I(v) = ∅ is that u0 takes only two values (because in this case none of these values
can coincide with (c2(v) + c1(v))/2).

More in general, we expect that the presence of the instability region I(v) is indeed
a very rare event, and it should not be an obstacle for practical purposes.

Remark 5 (A smooth variant of the proposed model). Here we discuss a pos-
sible variant of the proposed model. Let us observe that the relaxation E of E can be
rewritten as

Ef0(v) :=
∫

Ω

f0

(
dist(x,Γ(v))

ε

)
dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx,

(2.11)
where f0 := χ[0,1]. A natural variant of our model, which could be convenient for
numerical purposes, consists in replacing the discontinuous function χ[0,1] with a
smoother function f . This leads to the following functional in L∞(Ω; [0, 1]):

Ef (v) :=
∫

Ω

f

(
dist(x,Γ(v))

ε

)
dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1 − v)(u0 − c2(v))
2
]
dx,

(2.12)
where c1(v), c2(v) are defined in (2.7) and f is a positive non-increasing lower semi-
continuous function. Examples of f include

f(t) = e−tk , or f(t) =
1

1 + tk
, for k ≥ 1.

For large k, f behaves more like f0. The proof of the existence in L∞(Ω; {0, 1}) of a
minimizer for Ef goes along the lines of the proof given for the functional Ef0 .

Remark 6 (Invisible points for ε - Γ(v)). Let v ∈ L∞(Ω; [0, 1]) and set

N(v) := {x ∈ Ω : Bε(x) ⊆ ε -Γ(v)}.
Then by construction we have L2(ε - (Γ(v) ∪ N(v)) = L2(ε - (Γ(v)). Therefore,

one can modify the function v on N(v) increasing the set Γ but without changing the
corresponding ε - neighborhood. The presence of such region could be a source of noise,
since formation of boundaries are not penalized there. Moreover, the presence of N(v),
together with the set I(v) discussed in Remark 4, may be a source of instability in our
model.

Since the presence of N(v) is made possible by the fact that the graph of the
function f0 in (2.11) has flat zones, a way to avoid the set N(v) is then to consider
the variant Ef in (2.12), with f strictly decreasing.
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2.3. Features and properties of our model. In this section we compare the
properties of our model with the ones by Chan-Vese, focusing, in particular, on the
following features.

• The denoising effect: for simplicity we will consider additive noise given by
the presence in u0 of many small isolated components, and we will compare
the capability of the two models to remove them.

• The cornering effect: it is well known that the Chan-Vese model does not keep
corners and tends to give them a round shape; we will compare the analogous
effect with our proposed model.

• Resolution: namely the capability to distinguish between two close objects,
instead of considering them as a single one.

• Oscillatory boundary: we will compare the capability of the two models of
keeping finely oscillatory parts of the boundaries.

In Chan-Vese model, decreasing the parameter λ allows to increase the denoising
effect, although to the detriment of cornering, resolution and capability of keeping
fine oscillations (and vice versa). The possibility of tuning on two parameters, ε and
λ, could result in a more performing model. In the following examples we try to
clarify this point with some heuristic computations. More precisely we will link the
parameter λcv in the Chan-Vese model and the parameters λ and ε in our model
to make the denoising effect of the same magnitude. Then, with this choice of the
parameters, we will compare the cornering effect, the resolution and the capability of
keeping oscillations.

We illustrate the situation with four examples. In the following Ω is a rectangle
and u0 = χU0 for a certain U0 ⊂ Ω. We will compare the energy functionals (2.1) and
(1.2) on simple segmentations corresponding to some v = χU , with U ⊂ Ω Lipschitz.
Moreover, considering a slight simplification of the model, we will not optimize the
constant c1 and c2, fixing instead c1 = 1, c2 = 0. In this case, the energy (1.2) reduces
to the functional

Ecv[U |U0] := H1(∂U \ ∂Ω) + λcvL2(U △ U0), (2.13)

while the energy in our model (2.1) reduces to

E [U |U0] := L2(ε - (∂U \ ∂Ω)) + λL2(U △ U0). (2.14)

Critical size for noise removal. Here we heuristically compute the critical size of
the noise removed by the two models. Then we will link the corresponding parameters
by enforcing the same critical size. To simplify matter we will assume that the noise
is given by the union of many small balls, and we are looking for the critical radius
δ (depending on the parameters) such that any ball of radius smaller than δ will be
removed. Since we are interested in keeping fine details of the boundary of the given
image, we assume the fidelity parameters λcv and λ to be very large. Finally, as a
further simplification, we will assume that the mutual distance of these balls is larger
than 2ε, so that their ε - neighborhoods are not overlapping; this allows us to reduce
to the case of a single ball (see Fig. 2.1).

Consider U0 = Bδ(x) ⊂ Ω. In this situation the model (2.13) removes the ball
Bδ(x) if and only if δ < 2/λcv. Indeed, in terms of perimeter a ball of size δ weighs
2πδ, while in terms of area it weighs λcvπδ

2.
In our proposed model, assuming δ ≤ ε, we have L2(ε - ∂Bδ(x)) = π(ε + δ)2.

Therefore, after some elementary computations it turns out that, for the proposed



10

ε

Figure 2.1. Denoising.

model (2.14), the critical size δ satisfies δ ≈ cε/
√
λ, with 1 < c ≤ 2 (the extremal

cases corresponding to δ → 0 and to δ = ε, respectively).
Now, enforcing the same denoising effect for the two models, i.e, the same critical

size δ, we deduce the relation between the parameters

1

λcv
≈ c

ε√
λ
. (2.15)

Cornering. Here we compare the smoothing effect of the two models, assuming they
perform the same denoising, i.e., that (2.15) holds. For this purpose, we take U0 = Q,
with Q the unitary cube, and we consider the one-parameter family of competitors
Uδ (with δ > 0) obtained by U0 replacing the corners with circular arcs of radius δ
(see Fig. 2.2).

δ

Figure 2.2. Cornering.

Then minimizing the corresponding energy functionals with respect to δ gives the
magnitude of the smoothing effect for the two models.

An elementary computation leads to the following expression:

Ecv[Uδ|U0] = 4− 2(4− π)δ + λcv(π − 4)δ2.

Minimizing with respect to δ, we obtain the smoothing radius δcv = 1/λcv.
Passing to our proposed model, we have

E [Uδ|U0] = (1 + 2ε)2 + (1− 2ε)2 − (4− π)(δ + ε)2 + λ(4 − π)δ2.
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Minimizing in δ, we obtain the smoothing radius for our proposed model δ = ε/(λ−1).
Finally, enforcing (2.15) we deduce for λ large

δ =
ε

λ− 1
≈ ε

λ
=

1

2λcv

1√
λ
= δcv

1

2
√
λ
.

Summarizing, the above heuristic computation shows that our model seems to better
preserve corners while performing the same denoising.

Resolution. Let U0 be a strip of unitary height and length l with a crevice of size
δ ≪ 1 (see Fig. 2.3). Moreover, let U be the rectangle obtained by filling the crevice
of U0.

δ

Figure 2.3. Resolution.

We will compare now the resolution of the two models, understood as the capa-
bility of keeping the crevice without filling it. To this end, we compare the energy of
U and U0 for the two models, obtaining in this way the critical size δ of the crevice.
Concerning the Chan-Vese model we have

Ecv[U |U0] = 2l+ λcvδ, Ecv[U0|U0] = 2(l− δ) + 2.

Therefore, the critical δ is given by

δcv =
2

λcv + 2
≈ 2

λcv
.

Passing to our model, assuming δ < 2ε a straightforward computation gives

E [U |U0] = 4εl+ 2πε2 + λδ, E [U0|U0] = 4εl+ 2πε2 + δ + 2ε+O(εδ),

where O(εδ) is such that O(εδ)/(εδ) ≤ C. By comparison, the critical δ in our model
is given by δ ≈ 2ε/(λ− 1) ≈ 2ε/λ. Finally, enforcing (2.15), we get

δ ≈ 2ε

λ
≈ 2

λcv
√
λ
≈ δcv√

λ
.

This computation shows that on equal denoising, our model should guarantee a better
resolution.
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δ

h

(a)

h

ε

(b)

Figure 2.4. Oscillatory boundary.

Fine oscillatory boundaries. Finally, we compare the capability of preserving fine
oscillatory boundaries for the two models. Let U be a strip of unitary height and
length l. Moreover, let U0 be the previous strip with in addition, along one of the
sides of length l, a saw-toothed set constituted by triangles of base δ and height h as
in Fig. 2.4(a).

We assume δ small compared to l. Since the number of the triangles of the
saw-toothed region is approximately l/δ, we have

Ecv[U |U0] ≈ l +
λcvhl

2
, Ecv[U0|U0] ≈

2l

δ

√
h2 +

(δ
2

)2

,

from which we easily deduce that the critical size of the frequency of the oscillations
is given by

δcv ≈ 4h√
3 + 4λcvh+ λ2cvh

2
.

This suggests that, in the case of the fidelity parameter λcv quite larger than the
inverse of the amplitude h of the oscillation (λcvh≫ 1), the sets close to U0 are ener-
getically favorable in the Chan-Vese model when the frequency δ of oscillation is larger
than 4/λcv. For δ < 4/λcv we have instead that the set U is energetically favorable,
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Model Chan-Vese Proposed

Denoising δcv = 2
λcv

δ = δcv

Cornering δcv = 1
λcv

δ = 1
2
√
λ
δcv

Resolution δcv = 2
λcv

δ = 1√
λ
δcv

Oscillatory boundaries δcv = 4
λcv

every δ << ε

Table 2.1
Comparison with 1

λcv
≈

ε√
λ
.

and indeed we expect that the minimal segmentation cuts-off the vertical oscillations,
decreasing the scale h and smoothing the saw-toothed set. In the case λh ≪ 1, the
sets close to U0 are energetically favorable when the frequency of oscillation is at least
larger than 4h/

√
3, that is the same order of the amplitude h.

Passing to our model the picture changes drastically, since we have

E [U |U0] ≈ 2εl+
λhl

2
, E [U0|U0] ≈ (2ε+ h)l.

Therefore, for any given λ ≥ 2 we could expect that the minimum of our model
is closer to U0 than to U . Moreover, when the oscillatory parts of the boundary
are at a scale smaller than ε, we aspect that the saw-toothed set is substantially
kept because each perturbation flattening the boundary does not modify substantially
the ε-neighborhood. Similarly, the closeness of the minimum to U0 should not be
dependent by the frequency δ of the oscillation, because the ε-neighborhood remains
almost the same (see Fig. 2.4(b)). This fact is indeed one of the main features of our
model.

Remark 7 (Features of our model). In Table 1 we have summarized the features
of our model. In particular, assuming that the parameters in our model and in the
Chan-Vese model are chosen to perform similar denoising, then our model turns out
to perform better concerning the capability of keeping fine details of the boundary. We
stress anyway that such heuristic computations have been performed on ideal images,
and through an asymptotic analysis assuming λ very big and the noise very dilute.

On the other hand, in our simulations we will see that for real images we can fix
the parameters of our model in order to perform at the same time stronger denoising
than Chan-Vese model, keeping finer details of the boundaries.

Remark 8 (Dense noise). The link between the parameters (2.15) has been ob-
tained by heuristic computations assuming that the noise is made of balls of radius δ
whose mutual distance is greater than or equal to 2ε. Under this assumption we have
compared our model with Chan-Vese model, summarizing the results in Table 1.

Here we observe that the same heuristic computations can be repeated assuming
that the the mutual distance is greater than some ε̃ with δ < ε̃ ≤ ε. In this case we
obtain the new link 1/λcv = cε̃/

√
λ, and it turns out that the comparative analysis

summarized in Table 1 still holds true in this case.

3. Approximated models for numerical computation. In this section we
present our approximations of the proposed model (2.1) that will be used in our
numerical experiments.
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3.1. The Lipschitz level set function approach. Here we propose a level set
approach to our model, in the spirit of the successful method introduced by Chan-Vese
[10] within the context of two-phase segmentation, following the level set formulation
[24]. The main novelty of our method consists in the use of Lipschitz level set func-
tions, with uniformly bounded Lipschitz constant (instead of BV level set functions).

We recall that the main idea in [10] is to consider the gradient flow of the following
functional:

Hcv(φ) =

∫

Ω

|∇H(φ)|dx + λ
[∫

Ω

|u0 − c1(H(φ))|2H(φ))dx

+

∫

Ω

|u0 − c2(H(φ))|2(1 −H(φ))dx
]
,

(3.1)

where H is the Heaviside function defined by H(z) = 1 for z ≥ 0 and H(z) = 0
otherwise, φ is the so-called level set function, with {φ = 0} representing the unknown
interface, and c1(H(φ)), c2(H(φ)) are defined as in (2.7) with v replaced by H(φ).

One of the benefits of using the level set method is its efficiency even if initial
conditions are chosen far from the original objects. Moreover, topological changes are
automatically taken care of during the evolution of the level set function.

We are in a position to introduce the level set approximation of our model, working
with the general formulation introduced in (2.12). Suppose φ be the signed distance
function from the zero level set Γ. Thus, we have

f

(
dist(·,Γ))

ε

)
= f

( |φ|
ε

)
.

In order to force φ to look like a signed distance function, we add the penalization

1

p

∫

Ω

|∇φ|pdx. (3.2)

This term, as p→ ∞, enforces |∇φ| ≤ 1, and in combination with the fitting term and
the perimeter penalization ensures that any minimizing φ stays as a signed distance
function from Γ. Other penalizations could be considered for this purpose, as for
instance p

∫
Ω(|∇φ| − 1)2dx. The advantage of our penalization lies in the fact that

it is convex and the corresponding Euler-Lagrange equations involve the well-known
p-Laplacian.

Summarizing, we propose the following functional to be minimized:

Hp(φ) =

∫

Ω

f

( |φ|
ε

)
+

1

p

∫

Ω

|∇φ|pdx+ λ
[∫

Ω

|u0 − c1(H(φ))|2H(φ)dx

+

∫

Ω

|u0 − c2(H(φ))|2(1 −H(φ))dx
]
,

(3.3)

where c1(H(φ)) and c2(H(φ)) are defined as for (3.1).
In order to show the relation between (3.3) and (2.12), it is convenient to rewrite

the functional Hp in the following equivalent way. We define

H̃p : L∞(Ω; [0, 1])×L∞(Ω; [−diam(Ω), diam(Ω)]) → [0,+∞]

(v, φ) 7→
{
Hp(φ) if v = H(φ),

+∞ otherwise.
(3.4)
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In order to describe the Γ-limit of H̃p, as p → ∞, we introduce the functional Jf :
L∞(Ω; [0, 1])× L∞(Ω; [0, diam(Ω)]) 7→ [0,+∞] defined by

Jf (v, φ) :=

∫

Ω

f

(
φ

ε

)
dx+ λ

∫

Ω

[v(u0 − c1(v))
2 + (1− v)(u0 − c2(v))

2] dx. (3.5)

Note that when φ is the distance function d from Γ(v), then Jf (v, d) = Ef (v). Thus,
observing that

dist(x,Γ(v)) = sup{|φ(x)| : φ ∈W 1,∞(Ω) , |∇φ| ≤ 1 a.e. in Ω, Γ(v) ⊆ φ−1(0)},
(3.6)

and taking into account the monotonicity of f , the following relation between Jf and
Ef is easily established:

Ef (v) = min{Jf (v, φ) : φ ∈W 1,∞(Ω) , |∇φ| ≤ 1 a.e. in Ω, Γ(v) ⊆ φ−1(0)}. (3.7)

Let us introduce the Γ-limit

H : L∞(Ω; [0, 1])× L∞(Ω; [−diam(Ω), diam(Ω)]) → [0,+∞]

(v,φ) 7→






Jf (v, |φ|) if φ ∈ W 1,∞(Ω), |∇φ| ≤ 1 a.e. in Ω,

v = 0 in {φ < 0} and v = 1 in {φ > 0};
+∞ otherwise,

(3.8)

where Jf is defined in (3.5).
We endow the space L∞(Ω; [0, 1])×L∞(Ω; [−diam(Ω), diam(Ω)]) with the follow-

ing metrizable convergence τ

(vn, φn)
τ→ (v, φ) if and only if

{
vn

∗
⇀ v weakly∗ in L∞(Ω; [0, 1]),

φn → φ uniformly in Ω.
(3.9)

We are ready to state the Γ-convergence result.
Theorem 3.1. The functionals H̃p defined in (3.4) are equicoercive and Γ-

converge, as p → ∞, to the functional H defined in (3.8) with respect to the τ-
convergence (3.9).

Proof. First of all we prove the equicoercivity property. Let pn → ∞, and let
(vn, φn) be such that H̃pn

f (vn, φn) ≤ C < +∞. Then, in particular, 1
pn

∫
Ω |∇φn|pn ≤

C, and thus

‖∇φn‖pn
≤ C

1
pn p

1
pn
n → 1 as n→ ∞. (3.10)

By the monotonicity of p 7→ ‖ · ‖p, it follows that the functions φn are uniformly
bounded in W 1,p for every fixed p > 1. We conclude by Sobolev embedding that the
sequence φn is precompact with respect to the uniform convergence. The precompact-
ness of the sequence vn with respect to the weak∗ convergence follows immediately
from the bound 0 ≤ vn ≤ 1.

Let us pass to the proof of the Γ-liminf inequality. let (vn, φn)
τ→ (v, φ) and

assume, without loss of generality, that H̃pn

f (vn, φn) is uniformly bounded. Note that
the first integral in (3.5) is lower semicontinuous with respect to the uniform conver-
gence in φ, while the second one is continuous with respect to the weak∗ convergence
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in v, thanks also to (2.7). Hence, the Γ-liminf inequality will be proven once we show
that |∇φ| ≤ 1 a.e. in Ω, v = 0 a.e. in {φ < 0}, and v = 1 a.e. in {φ > 0}.

In order to check that |∇φ| ≤ 1 a.e. in Ω, fix q > 1, and observe that by
semicontinuity

‖∇φ‖q ≤ lim inf
n

‖∇φn‖q ≤ lim inf
n

‖∇φn‖pn
= 1,

where we used the monotonicity of p 7→ ‖ · ‖p and (3.10). Letting q → ∞ in the
above inequality we deduce that ‖∇φ‖∞ ≤ 1. The constraint v = 1 in {φ > 0} is a
consequence of the fact that for every fixed δ > 0, φn > 0 in {φ > δ} for n large
enough, so that vn and in turn v are equal to 1 on {φ ≥ δ}. Analogously we deduce
v = 0 in {φ < 0}.

In order to prove the Γ-limsup inequality let pn → ∞ and fix (v, φ) such that
H(v, φ) = Jf (v, |φ|) < +∞. We may also assume Γ(v) 6= ∅ since otherwise the
construction is trivial. Let {An} be a sequence of open sets such that An ⊂⊂ 1

n - Γ(v)

and χAn

∗
⇀ vχΓ(v) and define

vn :=






0 in A0 \ 1
n - Γ(v),

1 in A1 \ 1
n - Γ(v),

χAn
otherwise,

where A0 and A1 denote as usual the interior of ṽ−1(0) and ṽ−1(1), respectively.
Finally, setting dn := dist(·, ∂{vn = 0} ∩Ω), we define

φn := [(vndn) ∧ φ] ∨
vndn
n

+ [((vn − 1)dn) ∨ φ] ∧
(vn − 1)dn

n
.

By construction φn ∈ W 1,∞(Ω) and |∇φn| ≤ 1 almost everywhere. Moreover, since
on the open set {vn = 1} we have dn > 0, it follows from the definition of φn that
{vn = 1} ⊆ {φn > dn/n > 0}. On the other hand, again from the definition of
φn we have {vn = 0} ⊆ {φn ≤ 0}. Hence, necessarily {vn = 1} = {φn > 0} and
{vn = 0} = {φn ≤ 0} and thus

vn = H(φn).

We now show that φn → φ uniformly. As ∂{vn = 0}∩Ω ⊆ 1
n - Γ(v)∩Ω, we may assume

(passing to a subsequence if necessary) that ∂{vn} → Γ ⊆ Γ(v) in the Hausdorff
convergence. Hence, setting d := dist(·,Γ), we have

d ≥ dist(·,Γ(v)) (3.11)

and dn → d uniformly. In turn, since vn
∗
⇀ v and {vndn} is still a sequence of bounded

equi-Lipschitz functions, we have vndn → vd uniformly. We conclude

φn → ψ := [(vd) ∧ φ] ∨ 0 + [((v − 1)d) ∨ φ] ∧ 0 uniformly.

On {φ > 0} we have v = 1 and, in turn, ψ = d ∧ φ = φ, where the last equality
follows from (3.7) and (3.11). Analogously, on {φ < 0} we have v = 0 and, in turn,
ψ = −d ∨ φ = φ. Moreover, from the very definition of ψ, ψ = 0 on {φ = 0}.
Summarizing, ψ = φ and (vn, φn)

τ→ (v, φ). Therefore, we have
∫

Ω

f

(
φn
ε

)
dx+ λ

∫

Ω

[
vn(u0 − c1(vn))

2 + (1 − vn)(u0 − c2(vn))
2
]
dx→ H̃f (v, d).
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Since ‖∇φn‖ ≤ 1 a.e., also 1
pn

∫
Ω
|∇φn|pn dx → 0 as n → ∞. This establishes the

Γ-limsup inequality.
Since the Γ-convergence of equicoercive functionals implies the convergence of

minimizers (we refer the reader to [5], [15]), taking into account (3.4), (3.6), and
(3.7), we have the following corollary which clarifies the relation between (3.3) and
(2.12).

Corollary 3.2. Let pn → +∞ and let φn ∈ L∞(Ω; [−diam(Ω), diam(Ω)]) be
a minimizer for the functional Hpn defined in (3.3). Then, up to a subsequence,

(H(φn), φn)
τ→ (v, φ) with v a minimizer for Ef , |φ| = dist(·,Γ(v)), v = 0 on {φ < 0},

and v = 1 on {φ > 0}.
Remark 9 (Relation with the Chan-Vese model). Consider a one-parameter

family (Hρ)ρ>0 of smeared versions of the Heaviside function, where the sharp dis-
continuity is replaced by a continuous transition on an interval of order ρ. More
precisely, we let h : R → [0, 1] be any Lipschitz continuous non-decreasing function
satisfying

limt→−∞ h(t) = 0 , limt→+∞ h(t) = 1 , and

h′ is an even l.s.c. function, non-increasing in [0,+∞),
(3.12)

and for all t ∈ R we set

Hρ(t) := h

(
t

ρ

)
.

In the Chan-Vese model, the regularization term
∫
Ω
|∇H(φ)| dx is approximated

by
∫

Ω

|∇Hρ(φ)| dx =

∫

Ω

|H ′
ρ(φ)||∇φ| dx,

which is precisely the weighted total variation of φ concentrated at its zero level set.
In our approach we think of φ as a signed distance function, so that |∇φ| = 1.

Hence, we replace the above regularization term by
∫
Ω
|H ′

ε(φ)| dx and the approxima-
tion of L2(ε -Γ) looks like

∫

Ω

f

( |φ|
ε

)
dx = ε

∫

Ω

|H ′
ε(φ)|dx =

∫

Ω

h′
(
φ

ε

)
dx. (3.13)

The presence of the gradient penalization in (3.2) in the proposed model (3.3) en-
forces φ to be the signed distance function and represents the main difference with the
classical Chan-Vese approach (3.1).

Remark 10. Note the appearance of ε in front of the perimeter penalization
in (3.13). This is mainly motivated by notational consistency with (2.12) (see also
Remark 2). Of course there is no loss of generality in writing the functional in this
way, since ε and λ are independent parameters.

One example of smooth function h that satisfies (3.12) is given by

h(x) :=
1√
π

∫ x

−∞
e−t2 dt,

so that the nonlocal perimeter penalization becomes

ε

∫

Ω

|H ′
ε(φ)|dx =

∫

Ω

h′
(
φ

ε

)
dx =

1√
π

∫

Ω

e−
φ2

ε2 dx.
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Note that here we normalize h so that
∫
R
h(x) dx = 1, but this normalization is

indeed unnecessary. Other examples of h such that h′(xε ) better approximate the

characteristic function of the interval [−1, 1] include hk(x) =
∫ x

−∞ e−tk dt, for large
even k. In other words, we have

L2(ε - Γ) ≈
∫

Ω

e−
φ(x)k

εk dx.

Such a function will be used in the numerical computations presented in the next
section.

In order to approximate a local minimizer of Hp, in our simulations we will
introduce an artificial time t and project to the gradient descent direction, thus solving

∂φ

∂t
=

k

εk
φk−1e−(φ/ε)k + div(|∇φ|p−2∇φ)− λδ(φ)

[
(u0 − c1)

2 − (u0 − c2)
2
]

and updating the constants c1 and c2 at each time step according to the formulas

c1 =

∫
ΩH(φ)u0 dx∫
Ω
H(φ)dx

and c2 =

∫
Ω(1 −H(φ))u0 dx∫
Ω
(1 −H(φ))dx

.

Here, δ(φ) represents the Dirac delta function centered at 0. Numerically, we
approximate δ(φ) by

δγ(φ) =
1

1 + (φ/γ)2
, for some small γ > 0.

3.2. Ambrosio-Tortorelli type approximation. Here we discuss a phase field
approximation of our proposed functional, based on classical Ambrosio-Tortorelli ap-
proximation of free discontinuity problems (see [1]). The main feature of such ap-
proximation is that it allows for discontinuity sets that are not boundary of some
other set. Even if we do not need to treat such general discontinuity sets, we aim to
show that also in this context it can be easily obtained a diffused transition region,
enforcing some Lipschitz regularity on the phase-field function. We believe indeed
that such approach could be useful also in other contexts, as in fracture mechanics,
where recently a model for smeared crack set has been proposed by B. Schmidt, F.
Fraternali, and M. Ortiz. in [14].

We will work with the general formulation of our model introduced in (2.12).
We now introduce the approximating functionals. For n ∈ N and p > 1 let Jn,p

f :
L∞(Ω; [0, 1])× L∞(Ω, [0, diam(Ω)]) 7→ [0,+∞] be defined by

Jn,p
f (v, d) =

∫

Ω

f

(
d

ε

)
dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1− v)(u0 − c2(v))
2
]
dx

+ n

∫

Ω

v2(1 − v)2 dx+ n

∫

Ω

d2|∇v|2 dx+
1

p

∫

Ω

|∇d|p dx,
(3.14)

if v ∈ W 1,2(Ω) and d ∈ W 1,p(Ω), and +∞ otherwise. Here f is as in Remark 5 a
positive non increasing lower semicontinuous summable function and c1(v), c2(v) are
as in (2.7).

The heuristics behind such approximation is the following: for n and p tending to
infinity, the last three terms in (3.14) force the segmentation v to be a characteristic
function, Γ(v) to coincide with the level set {d = 0}, and d to approximate the distance
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function from Γ(v), respectively. In turn, the first two addends will approximate the
perimeter penalization and the fidelity term, respectively.

The main difference between the level set and the Ambrosio Tortorelli approx-
imation is that here v and the distance function are independent variables and the
coupling Γ(v) ⊆ {d = 0} is enforced only in the limit, while in the definition of H̃p in
(3.4), v and the signed function φ are coupled by the relation v = H(φ).

In order to state the Γ-convergence result for Jn,p
f , we introduce the functional

Jf : L∞(Ω; [0, 1])× L∞(Ω; [0, diam(Ω)]) → [0,+∞] defined by

Jf (v, d) :=

∫

Ω

f

(
d

ε

)
dx+ λ

∫

Ω

[
v(u0 − c1(v))

2 + (1− v)(u0 − c2(v))
2
]
dx,

Note that when d is the distance function from Γ(v), then Jf (v, d) = Ef (v). Thus,
observing that

dist(x,Γ(v)) = sup{d(x) : d ∈W 1,∞(Ω) , |∇d| ≤ 1 a.e. in Ω, Γ(v) ⊆ d−1(0)}, (3.15)

and taking into account the monotonicity of f , the following relation between Jf and
Ef is easily established:

Ef (v) = min{Jf(v, d) : d ∈ W 1,∞(Ω) , |∇d| ≤ 1 a.e. in Ω, Γ(v) ⊆ d−1(0)}. (3.16)

We endow the space L∞(Ω; [0, 1])×L∞(Ω; [0, diam(Ω)]) with the following (metriz-
able) convergence τ :

(vn, dn)
τ→ (v, d) if and only if

{
vn

∗
⇀ v weakly∗ in L∞(Ω; [0, 1])

dn → d uniformly in Ω.
(3.17)

We are in a position to state the Γ-convergence theorem.
Theorem 3.3. The functionals Jn,p

f defined in (3.14) are equicoercive and Γ-
converge (as n, p → +∞, with respect to the τ-convergence defined in (3.17)) to the
functional Gf (v, d) defined as Jf (v, d) if |∇d| ≤ 1 a.e. in Ω and Γ(v) ⊆ d−1(0), and
+∞ otherwise.

Proof. First of all we prove the equicoercivity property. Let pn → ∞, and let
(vn, dn) be such that Jn,pn

f (vn, dn) ≤ C < +∞. Then, in particular, 1
pn

∫
Ω
|∇dn|pn ≤

C , and thus

‖∇dn‖pn
≤ C

1
pn p

1
pn
n → 1 as n→ ∞. (3.18)

By the monotonicity of p 7→ ‖ · ‖p, it follows that the functions dn are uniformly
bounded in W 1,p for every fixed p > 1. We conclude by Sobolev embedding that the
sequence dn is precompact with respect to the uniform convergence. The precompact-
ness of the sequence vn with respect to the weak∗ convergence follows immediately
from the bound 0 ≤ vn ≤ 1.

We now prove the Γ-convergence result. In order to establish the Γ-liminf inequal-
ity, let (vn, dn)

τ→ (v, d) and assume, without loss of generality, that Jn,pn

f (vn, dn) is
uniformly bounded.

Note that the first integral in (3.14) is lower semicontinuous with respect to the
uniform convergence in d, while the second one is continuous with respect to the weak∗

convergence in v, thanks also to (2.7). Hence, since the remaining terms in (3.14) are
positive, the Γ-liminf inequality will be proven once we show that |∇d| ≤ 1 a.e. in Ω
and Γ(v) ⊆ d−1(0).
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In order to check that |∇d| ≤ 1 a.e. in Ω, fix q > 1, and observe that by
semicontinuity

‖∇d‖q ≤ lim inf
n

‖∇dn‖q ≤ lim inf
n

‖∇dn‖pn
= 1,

where we used the monotonicity of p 7→ ‖ · ‖p and (3.18). Letting q → ∞ in the above
inequality we deduce that ‖∇d‖∞ ≤ 1.

In order to show that Γ(v) ⊆ d−1(0), let Ω+ := {x ∈ Ω : d(x) > 0}. By uniform
convergence, on any compact subset K ⊂ Ω+ we have limn minK dn = minK d > 0.
Then, by the fact that n

∫ +

Ω
d2n|∇vn|2 dx is uniformly bounded it follows that vn → v

strongly in W 1,2
loc (Ω

+) and ∇v = 0 in Ω+. In turn, since n
∫ +

Ω
v2n(1 − vn)

2 dx is
uniformly bounded, we deduce that v restricted to Ω+ is a characteristic function,
constant on each connected component of Ω+. In particular, Ω+ is contained in the
union of the interior of v−1(0) and the interior of v−1(1), and hence Γ(v) ⊆ Ω \Ω+ =
d−1(0). As observed before, this establishes the Γ-liminf inequality.

Let us pass now to the proof of the Γ-limsup inequality. Let (v, d) be such that
Gf (v, d) < +∞ and consider the sequence vn defined as in (2.8). Then, with an argu-
ment similar to that used in the proof of Proposition 2.3, we have Jf (vn, d) → Jf (v, d).
This observation, combined with a standard diagonalization procedure, shows that it
is enough to prove the Γ-limsup inequality assuming that v is a characteristic function.
Hence, fix (v, d) with v a characteristic function and Jf (v, d) < +∞, let hn → ∞ and
ρn be a sequence of standard mollifiers with support in B1/hn

(0). We set

vn := ρn ∗ v, dn(x) := dist(x, 2
hn

- Γ(v)) ∧ d.

Then we clearly have that vn → v strongly in L1 and dn → d uniformly, so that

∫

Ω

f

(
dn
ε

)
dx+ λ

∫

Ω

[
vn(u0 − c1(vn))

2 + (1 − vn)(u0 − c2(vn))
2
]
dx→ Jf (v, d).

Moreover, by construction supp∇vn ⊆ {dn = 0}, and thus n
∫
Ω d

2
n|∇vn|2 dx = 0.

Since ‖∇dn‖ ≤ 1 a.e., also 1
pn

∫
Ω |∇dn|pn dx→ 0 as n→ ∞. Finally, we can suitably

choose hn going to infinity so fast that n
∫
Ω v

2
n(1 − vn)

2 dx→ 0, and this establishes
also the Γ-limsup inequality.

Since the Γ-convergence of equicoercive functionals implies the convergence of
minimizers, taking into account (3.15) and (3.16), we have the following immediate
corollary of the previous theorem.

Corollary 3.4. Let pn → +∞ and for every n ∈ N let (vn, dn) be a minimizer

for Jn,pn

f . Then, up to a subsequence, (vn, dn)
τ→ (v, d) with d = dist(·,Γ(v)) and v a

minimizer for Ef .
In order to minimize the functional Jn,p

f with respect to each of its variable,
in our numerical experiments we project to the gradient descent direction and, by
introducing an artificial time t, we solve the following time dependent system of
equations

vt = = −λ
[
(u0 − c1)

2 − (u0 − c2)
2
]

− 2n
[
v(1 − v)2 − v2(1 − v) + div(d2|∇v|)

]
,

dt = = k
dk−1

εk
e−

dk

εk − 2nd|∇v|2 + div(|∇φ|p−2∇φ).
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At each time step we update the constants c1 and c2 according to the formulas

c1 =

∫
Ω
vu0dx∫
Ω
vdx

and c2 =

∫
Ω
(1 − v)u0dx∫
Ω
(1− v)dx

.

3.3. The infinite Laplacian to select the length-scale ε. Here we propose a
variant of our model in the attempt of automatically select the length-scale ε through
a minimization procedure. To this end, consider our proposed functional Ef defined
in (2.12) where ε in not anymore a parameter, but a variable of the functional. We
clearly have that such an energy is minimized for ε → 0. For this reason, in order to
have a non trivial variational problem we could think of adding a term penalizing too
small ε. These considerations lead to the following basic definition

Ef (v, ε) :=
∫

Ω

f

(
dist(x,Γ(v))

ε

)
dx+λ min

c1, c2∈R

∫

Ω

[
v(u0−c1)2+(1−v)(u0−c2)2

]
dx+

1

ε
.

(3.19)
The main motivation to consider such a functional is that it leads indeed to very
natural approximations, based on the use of the infinite laplacian. On the other
hand, we stress out that at the present we don’t have theoretical motivations or
experimental evidence that such a variant of our model represents an efficient way of
selecting the length-scale ε. Exploiting this point is not the purpose of this paper but
of future interests, and would need a specific interesting analysis.

To approximate the energy functional (3.19) in the Lipschitz level set method we
fix an ε > 0, and replace the term 1

pn

∫
Ω |∇φ|pn by ‖∇φ‖p, or equivalently with its

Γ-limit ‖∇φ‖∞ (see [17]), obtaining in this way the following functional

H∞(φ) =

∫

Ω

f (|φ|) dx+ ‖∇φ‖L∞(Ω) + λ
[∫

Ω

|u0 − c1(H(φ))|2H(φ)dx

+

∫

Ω

|u0 − c2(H(φ))|2(1−H(φ))dx
]
.

Analogously, we could consider also the Ambrosio-Tortorelli approximation, ob-
tained by minimization of the following energy

Jn,∞
f (v, d) =

∫

Ω

f (d) dx + λ

∫

Ω

[
v(u0 − c1(v))

2 + (1− v)(u0 − c2(v))
2
]
dx

+ n

∫

Ω

v2(1− v)2 dx+ n

∫

Ω

d2|∇v|2 dx+ ‖∇d‖L∞(Ω).

We refer the interest readers to Aronsson [2] and Aronsson-Crandall-Juutinen [3]
and references therein for a thorough study of the problem of absolutely minimiz-
ing Lipschitz extension, and to [17] for the corresponding power law approximation.
Here, we just mention that the corresponding Euler-Lagrange equation is the so-called
infinite laplacian, defined by

∆∞φ =
1

|∇φ|2
[
φ2x1

φx1x2 + 2φx1dx2φx1x2 + φ2x2
φx2x2

]
= 0.

The time dependent equation

∂φ

∂t
= ∆∞φ, and φ(0, x) = φ0(x)
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u0 u ε - Γ(u) φ

Figure 4.1. The segmented fingerprint using our presented model, approximated through the
Lipschitz level set method, with λ = 20 and ε = 40.

with Neumann boundary condition has been applied to image interpolation by Caselles-
Morel-Sbert [9] and most recently by Elion-Vese [12] to image decomposition. In [23],
Oberman proposed a convergent scheme for ∆∞. It is this scheme with 4-point-
neighbor that we’ll use for the numerical computations based on Lipschitz level set
method, solving

∂φ

∂t
=

k

εk
φk−1e−(φ/ε)k +∆∞φ− λδ(φ)

[
(u0 − c1)

2 − (u0 − c2)
2
]
,

and updating at each time step the constants c1 and c2 according to the following
formulas

c1 =

∫
Ω
H(φ)u0 dx∫
ΩH(φ)dx

and c2 =

∫
Ω
(1 −H(φ))u0 dx∫
Ω(1 −H(φ))dx

.

4. Numerical results. In this section we show some numerical results for our
proposed model. We will focus on the level set approximation, based on the use
of Lipschitz functions, comparing the results with those obtained implementing the
classical Chan-Vese model [10].

We begin by showing the result of our model on a fingerprint with noise. In Figure
4.1 we see that our model is capable to preserve all the details of the fingerprint,
removing almost all the noise from the picture. We fix p = 15 and we approximate
the ε-neighborhood of Γ(u) with f(φε ) := e−(φ/ε)8 . Moreover we chose λ = 20, ε = 40.

In the next experiment we will see the effect of tuning the parameter ε on the
segmented image. In Figure 4.2 we take λ = 20, and ε = 10, 20, 30, 40. Increasing
ε we increase the penalization effect on the dilute noise, so that the denoising effect
increases. For ε = 40 we get an almost complete denoising.

On the other hand, our model predicts that near the boundaries of the finger print
penalization effect is relaxed, and indeed increasing ε does not affect the details of
the finger print. This relaxation effect of our model can be understood looking at the
ε-neighborhood of Γ(u): for ε = 20, 30, 40, the set ε - Γ(u) covers all the fingerprint,
and therefore in this region the penalization of the boundaries is indeed independent
of ε.

Toning λ in our model clearly increases the amount of details in the pictures. We
show this aspect in Figure 4.3, where we fix ε = 20, and we chose λ = 10, 50, 500.
Increasing λ we get more details of the branch of the three, while (for this specific
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ε=10 ε=20 ε=30 ε=40

Figure 4.2. The segmented fingerprint u and the ε-neighborhood of Γ(u), approximated through
the Lipschitz level set method, with λ = 20 and ε = 10, 20, 30, 40.

u0 u, λ=10 u, λ=50 u, λ=500

Figure 4.3. The segmented tree with ε = 20 and λ = 10, 50, 500.

picture) the denoising is almost complete. Only for λ = 500 some pixel assimilable to
noise appears.

In order to compare our model with Chan-Vese model, we implement a picture
representing a nebula, surrounded by stars. We consider here the stars as noise to
be removed, while we want to identify the contours of the nebula. in Figure 4.4 we
show the results with ε = 20 and with λ = 80, 100, 120, and we compare the results
with the Chan-Vese model with λcv = λ− 60. With this choice of the parameters, we
have that our model exhibit slight finer details of the contour of the nebula, while the
denoising effect if largely better.

The difference between the two models can be clearly understood looking at the
level set functions, that are very sharp in the Chan-Vese model (approximating a
characteristic BV function), and diffused in our model (being a Lipschitz function).

In Figure 4.5 we compare the segmented nebula for very big λ’s. We have that
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u0

u, ε=20, λ=80 φ, λ=80 ε - Γ(u), λ=80 ucv, λcv=20 φcv, λcv=20

u, ε=20, λ=100 φ, λ=100 ε - Γ(u), λ=100 ucv, λcv=40 φcv, λcv=40

u, ε=20, λ=120 φ, λ=120 ε - Γ(u), λ=120 ucv, λcv=60 φcv, λcv=60

Figure 4.4. Comparison between the proposed model and Chan-Vese model. Here we chose
λcv = λ− 60, for λ = 80, 100, 120, and ε = 20.

both model preserve very fine details of the nebula, while the denoising is very weak.
The proposed model performs a little better.

In Figure 4.6 we show the effect of tuning the parameter ε in the nebula: we fix
λ = 50, and we consider ε = 10, 20, 30, 40. We see that increasing ε, the denoising
effect in the regions far from the nebula increases: isolated stars disappear increasing ε.
At the same time, the details of the contour of the nebula increase. This effect
is particularly evident on the top of the picture. On the other hand, increasing ε
increases also the number of stars around the contour of the nebula: toning ε we
determine the length-scale of the region were we want to keep fine oscillations of
the boundary, and this region turns out to attract also some noise, according with
Remark 6, assimilated to fine oscillations of the boundary of the segmented image. At
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u0 u, ε=20, λ=200 ucv, λcv=100

Figure 4.5. The segmented image u and ucv for big λ.

ε=10 ε=20 ε=30 ε=40

Figure 4.6. The segmented nebula u and the ε-neighborhood of Γ(u), approximated through the
Lipschitz level set method, with λ = 50 and ε = 10, 20, 30, 40.

u0 u ε - Γ(u) v

Figure 4.7. The segmented fingerprint using the Ambrosio-Tortorelli approximation with λ =
1000 and ε = 15.
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u0 u ε - Γ(u) φ

Figure 4.8. The segmented fingerprint using the infinite laplacian approximation with λ = 20.

uls, ε=40, λ=20 ucv, ε=20, λ=30 uat, ε=15, λ=1000 u∞, λ=20

Figure 4.9. The segmentation results of the fingerprints for the different models.

the same time, tuning ε we determine the intensity of the denoising effect on dilute
noise.

Finally, in Figure 4.7 and Figure 4.8 we show some results concerning the Ambrosio-
Tortorelli approximation and the infinite laplacian approximation. In Figure 4.9 we
compare some segmented fingerprint using the Chan-Vese model and our presented
model approximated through the Lipschitz level set method, its variant based on the
infinite laplacian and the Ambrosio-Tortorelli method.
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