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Abstract In this paper we present and analyze a variational model in nonlinear elas-

ticity that allows for cavitation and fracture. The main idea to unify the theories of

cavitation and fracture is to regard both cavities and cracks as phenomena of cre-

ation of new surface. Accordingly, we define a functional that measures the area of

the created surface. This functional has relationships with the theory of Cartesian cur-

rents. We show that the boundedness of that functional implies the sequential weak

continuity of the determinant of the deformation gradient, and that the weak limit of

one-to-one a.e. deformations is also one-to-one a.e. We then use these results to ob-

tain existence of minimizers of variational models that incorporate the elastic energy

and this created surface energy, taking into account the orientation-preserving and the

non-interpenetration conditions.
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1 Introduction

The fundamental problem in elastostatics is to ascertain whether the elastic energy

Z

Ω

W (x,Du(x)) dx (1)
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of a deformation u : Ω → R
3 has a minimum in a suitable class of deformations

satisfying certain invertibility and boundary conditions. Here Ω is an open bounded

subset of R
3 representing the reference configuration of the body, and W : Ω×R

3×3 →
R ∪ {∞} is the elastic stored-energy function of the material. The usual approach for

finding such minimizers is the direct method of the calculus of variations. As shown

in the pioneering paper of Ball [6], the sequential weak continuity of the determinant

of the deformation gradient Du is an important ingredient to make the direct method

work. This continuity property states that if a sequence uj of deformations weakly

converges to u in some Sobolev space, and some further conditions hold, then the

sequence detDuj weakly converges to detDu in L1.

Ball’s result and many of its refinements (e.g., [10,32,27,33,35]) are unable to deal

with the phenomenon of cavitation, since in their functional setting any deformation

that exhibit cavitation has infinite elastic energy. This is due to the strong coercivity

assumptions on the stored-energy function W . To illustrate this, we mention that in

Müller, Tang and Yan [35] the existence of minimizers is proved under the coercivity

assumption

W (x,F) ≥ c1|F|2 + c1| cof F|
3
2 − c2, x ∈ Ω, F ∈ R

3×3,

for some c1, c2 > 0. These growth conditions are incompatible with the radial defor-

mation u : B(0, 1) → R
3 defined as u(x) := r(|x|) x

|x|
, which produces a cavity at the

origin of radius r(0). Here, r : [0,∞) → (0,∞) is a given C1 function. Indeed, it is

immediate to check that this u is in W 1,p for all p < 3, whereas cof Du is in Lq for all

q < 3
2 , but fails to belong to L

3
2 . In fact, Ball and Murat [10] showed that if cavitation

is energetically favourable, then the weak continuity of the determinant fails, and so

does the weak lower semicontinuity of the energy (1). Hence the direct method of the

calculus of variations is inapplicable.

The first mathematical theory for cavitation in the context of nonlinear elasticity

is due to Ball [8], where he worked in the restricted framework of radial cavitations.

The full three-dimensional case was treated by Müller and Spector [34]. The starting

point of their approach is that the total energy of a deformation must be the sum of

the elastic energy and a surface energy due to the formation of cavities. Thus, they

proposed to minimize the energy
Z

Ω

W (x,Du(x)) dx + Per u(Ω), (2)

where Per denotes the perimeter of a set. Despite some drawbacks, the term Peru(Ω)

measures somehow the area of the created cavities (together with the area of the

image of ∂Ω). They proved the existence of minimizers satisfying, in addition, some

invertibility conditions.

The theory of brittle fracture, within the variational context of nonlinear elasticity,

was proposed by Francfort and Marigo [22], and based on Griffith’s classic theory.

Fracture (like cavitation) is a genuinely time-dependent problem. There has been a

huge development and consequent understanding of the theory of brittle fracture in

the last decade, mainly in the quasistatic case (see, e.g., [18,17,21,15,12,16] or the

review paper [11]), but many fundamental problems remain unsolved. In short, the

problem in the static case is to find minimizers of the energy
Z

Ω

W (x,∇u(x)) dx + H2(Ju). (3)



Invertibility and continuity of the determinant for cavitation and fracture 3

The novelty is the term H2(Ju), which measures the area of the set of jump discontinu-

ities of u, and accounts for the energy due to fracture. The deformation u is typically

supposed to lie in the space SBV or GSBV , so that the matrix ∇u denotes the approx-

imate differential of u, and not its distributional derivative. The existence of minimizers

for (3) has been proved in SBV under the extra assumption of an L∞ a priori bound

on the class of admissible deformations, or in GSBV under L1 coercivity of the energy

(see [2,23]). In this paper, we start from the SBV theory of static fracture, and try to

conciliate this theory with that of cavitation.

Our desire to build a theory that encompasses cavitation and fracture was partly

motivated by the experimental observations of Petrinic et al. [37,38] on ductile fracture

of titanium alloys. In their experiments, the material was subjected to a tensile stress,

and they show that fracture is preceded by the growth and coalescence of voids. In

addition, cavitation and fracture are also related in elastomers. In particular, the works

of Williams and Schapery [42] and of Gent and Wang [25] (see also the review paper

[24]) suggest that the strains at the cavity surface produced during cavitation are so

large that fracture occurs at the same time.

If one wishes to propose a theory within the variational context of nonlinear elas-

ticity that allows for both cavitation and fracture, one cannot just put the two theories

together. Indeed, an important ingredient in the theory of cavitation of [34] is that

the admissible deformations must satisfy condition (INV). This condition roughly ex-

presses that cavities produced in one part of the body cannot be filled by material

from elsewhere. It turns out that the mere formulation of condition (INV) requires

some properties of continuity of the deformation; in loose terms, that the restriction

of the deformation to almost every surface is continuous. This continuity property is

satisfied if, for example, the deformation lies in W 1,p for some p > 2. In contrast, when-

ever fracture occurs, condition (INV) cannot even be formulated, since that continuity

property is clearly false. Consequently, it seems that a previous step in the construction

of a theory that allows for cavitation and fracture is the development of a theory of

cavitation that makes no use of condition (INV). Since, as shown in [34], condition

(INV) was essential to rule out some pathological examples, perhaps the first task to

do is to define a surface energy, in the spirit of Peru(Ω), that measures the area of the

created surface and is able to rule out those counterexamples.

Our idea to unify fracture and cavitation is to regard both as processes of creation

of surface. For a deformation u : Ω → R
3, we will define the surface energy E(u) as

the supremum, when f ∈ C∞
c (Ω × R

3,R3) and ‖f‖∞ ≤ 1, of the quantity
Z

Ω

[cof ∇u(x) ·Dxf(x,u(x)) + det∇u(x) divy f(x,u(x))] dx.

It is not easy to motivate the definition of E as a surface energy in just a few lines,

so we postpone this motivation until Sections 3 and 4. In fact, the full proof that

the functional E accounts for the area of the surface created by u will be given in a

forthcoming paper [30]. For the moment, let us accept that E measures the area of

the new surface created by the deformation u. It makes sense, therefore, to propose a

model based on the minimization of the energy
Z

Ω

W (x,∇u(x)) dx + E(u). (4)

Section 5 will show that this functional has indeed a minimum. The term E(u), more-

over, is such that it is not necessary to use condition (INV) in order to obtain the
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existence of minimizers: the natural condition of invertibility a.e. (introduced by Ball

[7]) can be used instead.

The main ingredient in the proof of the existence result mentioned above is the

following theorem (see Theorems 2 and 3 for a stronger formulation), which states

that both the weak continuty of the determinant and the stability of the property of

invertibility a.e. under weak limits can be obtained as a consequence of the boundedness

of the surface energy.

Theorem 1 For each j ∈ N, let uj ,u : Ω → R
3 be approximately differentiable in

almost all Ω. Suppose that there exists θ ∈ L1(Ω) such that θ > 0 a.e., and

uj → u a.e., cof ∇uj ⇀ cof ∇u in L1(Ω,R3×3), det∇uj ⇀ θ in L1(Ω)

as j → ∞. Assume that for each j ∈ N, the function uj is one-to-one a.e., det∇uj > 0

a.e., and

sup
j∈N

E(uj) <∞.

Then u is one-to-one a.e., and θ = det∇u a.e.

With Theorem 1, the existence of minimizers of the energy functional (4) becomes then

a standard task.

We finally mention that the functional E has some connections with the theory of

Cartesian currents. This relationship will be explained in Section 4, but we also remark

that no knowledge of the theory of currents is needed in this paper.

The plan of the paper is as follows. Section 2 introduces the general notation of the

paper and recall some important preliminary results, such as the change of variables

formula. Section 3 starts with a motivation of the definition of surface energy. We

then define a tentative surface energy Ē and study some of its properties, the most

important one being that its boundedness guarantees that the limit of a sequence of

one-to-one a.e. maps is also one-to-one a.e. In Section 4 we define the surface energy

E mentioned above, which is a stronger energy than Ē . Then we show, using ideas of

Müller [32] and of Giaquinta, Modica and Souček [28], that its boundedness implies a

property on the weak continuity of the determinant. In Section 5 we use the result on

the stability under the limit of the injectivity property proved in Section 3, together

with the result on the continuity of the determinant proved in Section 4, in order to

prove the results on the existence of minimizers for our model of elastic solids that may

undergo cavitation and fracture. In Section 6 we prove that Ē and E do not coincide,

and show by means of an example that Ē does not correspond to a physical quantity.

Finally, in Section 7 we make some comments on other models related to ours that

have been previously proposed.

2 Notation and preliminaries

In this section we set the general notation of this paper, and state some important

preliminary results.

We will work in dimension n, and tacitly assume that n ≥ 2. Our body will be

represented by a bounded open set Ω of R
n. Sometimes, Ω is assumed to have a

strongly Lipschitz boundary, so that the trace of a Sobolev function on the topological

boundary ∂Ω of Ω is defined. The closure of Ω is denoted by Ω̄.
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Unless otherwise stated, expressions like measurable or a.e. refer to the Lebesgue

measure in R
n, which is denoted by Ln. The m-dimensional Hausdorff measure will be

indicated by Hm. Usually, m will be n− 1.

Our basic object (the deformation) will be a measurable map u : Ω → R
n. Vector-

valued quantities will be written in boldface. Coordinates in the reference configuration

will generically be denoted by x, while coordinates in the deformed configuration by

y. The divergence operator in the reference configuration (so with respect to the x co-

ordinates) is denoted by Div, while div is the divergence in the deformed configuration

(with respect to y).

The open ball of radius r > 0 centred at x ∈ R
n is denoted by B(x, r), whereas

the closed ball is B̄(x, r).

If u is a Sobolev function, Du denotes the distributional derivative of u. Note that

we do not identify functions that are equal almost everywhere.

We will say that x0 ∈ Ω is a Lebesgue point of the measurable map u : Ω → R
n

when

lim
rց0

−
Z

B(x0,r)
|u(x) − u(x0)| dx = 0.

As usual, −
R
A

denotes 1
Ln(A)

R
A

for any measurable set A. We will say that u is approx-

imately differentiable at x0 ∈ Ω if there exists L ∈ R
n×n such that

lim
rց0

−
Z

B(x0,r)

˛̨
˛̨u(x) − u(x0) − L(x − x0)

r

˛̨
˛̨ dx = 0.

This L is uniquely determined, will be called the approximate differential of u at x0,

and will be denoted by ∇u(x0). Note that if u is approximately differentiable at x0,

then x0 is a Lebesgue point of u. We will say that a map u : Ω → R
n is approximately

differentiable in almost all Ω when it is measurable and approximately differentiable at

almost each point of Ω. It is worthwhile to recall that the Calderón-Zygmund theorem

asserts that if u is a BVloc function, then it is approximately differentiable in almost

all its domain, and ∇u is the density of the absolutely continuous part of the measure

Du. In particular, if u is a Sobolev function then Du = ∇u a.e., but the notation Du

will be preferred. The set of approximate differentiability points of u is usually called

Ωd.

Let us recall the classic area formula of Federer [19], which will play a fundamental

role in this paper; the formulation is taken from [34, Prop. 2.6].

Proposition 1 Let u : Ω → R
n be approximately differentiable in almost all Ω and

call Ωd the set of points of approximate differentiability of u. Then, for any measurable

set A ⊂ Ω and any measurable functions ϕ : R
n → R and ψ : A → R, the function

ψ̃ : u(Ωd ∩A) → R given by

ψ̃(y) :=
X

x∈Ωd∩A
u(x)=y

ψ(x)

is measurable and satisfies

Z

A

ψ(ϕ ◦ u)|det∇u|dx =

Z

u(Ωd∩A)
ψ̃ϕ dy

whenever the integral on the left-hand side exists.
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The Lebesgue Lp and Sobolev W 1,p spaces are defined in the usual way. So are the

set of smooth functions C∞, of bounded variation BV and of special bounded variation

SBV ; see [5], if necessary, for the definitions. The set C∞
c (Ω,Rn) denotes the space

of C∞ functions with compact support in Ω. We will always indicate the domain and

target space, as in, for example, Lp(Ω,Rn), except if the target space is R, in which

case we will simply write Lp(Ω). Weak convergence in Lebesgue or Sobolev spaces is

denoted by ⇀, whereas any other type of convergence (for example, strong or a.e.) is

denoted by →.

Given a measurable set A ⊂ R
n, its characteristic function will be denoted by χA,

and its perimeter by Per(A), which is defined as

Per(A) := sup

Z

A

div g(y) dy : g ∈ C∞
c (Rn,Rn), ‖g‖∞ ≤ 1

ff
.

It is well-known that if A is an open set with Lipschitz boundary then Per(A) =

Hn−1(∂A).

The identity matrix is denoted by 1. Given a square matrix A ∈ R
n×n, its transpose

is denoted by AT , its determinant by detA, its cofactor matrix by cof A and is the

matrix that satisfies (detA)1 = AT cof A, and its adjoint matrix adjA is the transpose

of cof A. If A is invertible, its inverse is denoted by A−1, and the transpose of its inverse

by A−T .

Let u : Ω → R
n be approximately differentiable in almost all Ω, and consider the

set Ωd of approximate differentiability points of Ω. For every measurable set A ⊂ Ω we

define, following [34], the geometric image of A under u as u(A∩Ωd). It is denoted by

imG(u, A). Although this definition depends of the representative of u, the following

property holds: if ũ is a function that coincides a.e. with u, and Ã is a set that coincides

a.e. with A, then imG(u, A) and imG(ũ, Ã) also coincide a.e. This can be easily proved

by noting that the area formula (Proposition 1) implies the general property

Ln(u(N ∩ Ωd)) = 0 whenever Ln(N) = 0. (5)

Given a measurable set A ⊂ R
n and a point x ∈ R

n, we will say that the density

of A at x is 1 when

lim
rց0

Ln(B(x, r) ∩A)

Ln(B(x, r))
= 1.

We shall make use of the following result of [34, Lemma 2.5].

Lemma 1 Let u be approximately differentiable in almost all Ω and suppose that

det∇u(x) 6= 0 a.e. Then there exists a set Ω0 ⊂ Ω of full measure in Ω such that

for every x ∈ Ω0 and every measurable set A ⊂ Ω, the density of imG(u, A) at u(x) is

1 whenever the density of A at x is 1.

3 Surface energy and invertibility of limits of a.e. one-to-one maps

As was shown in the seminal paper of Ball [6], the weak continuity of the determinant

of the deformation gradient is crucial for establishing the existence of minimizers in

nonlinear elasticity. However, when the functional space where the problem is formu-

lated allows for cavitation, it is known from the counterexample of Ball and Murat [10]

that the above continuity property does not hold. Müller and Spector [34] pointed out

that their counterexample, which consists of a sequence of deformations that create
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more and more cavities, could be prevented by including an extra term in the energy

that penalizes the creation of new surface. More precisely, they added to the elastic

energy a constant multiple of the perimeter of the geometric image of the deformation,

which in the case of cavitation should measure the area of the surface of all the cavities

created. This, together with other considerations regarding invertibility, allowed them

to establish their existence theory of cavitation.

As can be seen in the main convergence result of Müller and Spector [34, Lemma

4.1], in order to prove the weak continuity of the determinants, they require to know

that not only all deformations of the sequence have to be one-to-one a.e., but also

their limit. One might expect that the weak limit u of a sequence {uj}j∈N of one-

to-one a.e. maps satisfying det∇uj > 0 and det∇u > 0 a.e. is also one-to-one a.e.,

but they constructed a counterexample showing that this is not true. To overcome this

difficulty, they introduced a new invertibility condition, called (INV) and based on the

topological degree, upon which their existence theory is built.

In the above-mentioned counterexample, as well as in that of Ball and Murat [10],

the total surface energy due to the creation of cavities goes to infinity as j → ∞. The

addition of a surface energy term alone, therefore, should rule out this new counterex-

ample too, without invoking an extra invertibility property. Unfortunately, the surface

energy proposed in [34], namely, the perimeter of the geometric image, although it is

able to detect the surface of all the cavities created in the example of [10], it fails to do

so in the example of [34]. The reason for that is, intuitively, that in the latter example

the cavities created are subsequently filled with material from elsewhere in the body,

in such a way that their surfaces are no longer part of the reduced boundary of the

image of the deformation. (For an exposition of the concept of reduced boundary and

other properties of sets of finite perimeter, see, e.g., [19,43,5]).

In the following paragraphs we introduce a new surface energy term that overcomes

the difficulties mentioned above (we ought to indicate that [34] already points out

a functional that detects the created surface, namely, the mass of the boundary of

the current; see Section 7 for a discussion). In order to motivate our definition, let

u : Ω → R
n be an approximately differentiable function in almost all Ω, and let us

start by writing down the definition of the perimeter of the set imG(u, Ω):

Per(imG(u, Ω)) = sup

(Z

imG(u,Ω)
div g(y) dy : g ∈ C∞

c (Rn,Rn), ‖g‖∞ ≤ 1

)
.

Suppose det∇u > 0 a.e. and u is one-to-one a.e., and consider now the previous

expression in the reference configuration

sup

Z

Ω

div g(u(x)) det∇u(x) dx : g ∈ C∞
c (Rn,Rn), ‖g‖∞ ≤ 1

ff
. (6)

Suppose for a moment that ∂Ω is regular enough and that u : Ω → R
n is a diffeomor-

phism; then, integrating by parts and using the identity

Div [adj∇u(x) g(u(x))] = div g(u(x)) det∇u(x), (7)
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expression (6) becomes

sup

Z

Ω

Div [adj∇u(x) g(u(x))] dx : g ∈ C∞
c (Rn,Rn), ‖g‖∞ ≤ 1

ff

= sup

Z

∂Ω

g(u(x)) · (cof ∇u(x))ν(x) dHn−1(x) : g ∈ C∞
c (Rn,Rn), ‖g‖∞ ≤ 1

ff

= sup

(Z

u(∂Ω)
g(y) · ν(y) dHn−1(y) : g ∈ C∞

c (Rn,Rn), ‖g‖∞ ≤ 1

)
,

where ν denotes the outward normal to Ω in the first instance, and to u(Ω) in the

second one. Consequently,

Hn−1(∂u(Ω)) = Per(u(Ω)) = Hn−1(u(∂Ω)).

Of course, this is because in this case ∂u(Ω) = u(∂Ω). In contrast, when cavities

or cracks are created, this does not hold, because, as well as the image of ∂Ω, the

boundary of imG(u, Ω) also contains the surface of the created cavities and the cracks,

i.e., the newly created surface.

When singularities are allowed, what fails in the previous argument is that identity

(7) does not hold. In fact, the expression of the left-hand side is not even well-defined.

Nevertheless, under mild assumptions on u, it is meaningful in the sense of distribu-

tions. This gives rise to the following definition.

Definition 1 Let u : Ω → R
n be approximately differentiable in almost all Ω. Suppose

that det∇u ∈ L1
loc(Ω) and cof ∇u ∈ L1

loc(Ω,R
n×n). For every g ∈ C∞

c (Rn,Rn) and

φ ∈ C∞
c (Ω), define

Ēu(φ,g) :=

Z

Ω

[g(u(x)) · (cof ∇u(x)) Dφ(x) + det∇u(x) φ(x) (div g)(u(x))] dx

and

Ē(u) := sup
˘
Ēu(φ,g) : g ∈ C∞

c (Rn,Rn), φ ∈ C∞
c (Ω), ‖φ‖∞ ≤ 1, ‖g‖∞ ≤ 1

¯
.

Following the notation of Definition 1, note that

−Ēu(φ,g) = 〈Div(adj∇u) g ◦ u − (div g) ◦ u det∇u, φ〉

in the sense of distributions. Therefore, the energy Ē(u), which quantifies the failure

of condition (7), also quantifies the failure of equality ∂u(Ω) = u(∂Ω), thus detecting

the creation of new surface.

Clearly, Ē(u) = 0 if u is smooth. In fact, the following two propositions hold.

Proposition 2 is proved in Müller [32, Lemma 2], whereas Proposition 3 is due to

Müller, Tang and Yan [35, Th. 3.2].

Proposition 2 Let u ∈ W 1,p(Ω,Rn) satisfy cof Du ∈ Lq(Ω,Rn×n) for some p ≥
n− 1 and q ≥ p

p−1 . Then Ē(u) = 0.

Proposition 3 Let u ∈ W 1,p(Ω,Rn) satisfy cof Du ∈ Lq(Ω,Rn×n) for some p ≥
n− 1 and q ≥ n

n−1 . Then detDu ∈ L
q(n−1)

n (Ω) and Ē(u) = 0.
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To give an interpretation of Ē as a surface energy, in the following result we compute

Ē(u) when u is a deformation that has cracks and creates cavities, but it is smooth

elsewhere.

Proposition 4 Let Ω be a bounded open set of R
n. Let K1, . . . ,KM be a finite number

of disjoint compact subsets of Ω of zero measure. Define

Ω1 := Ω \
M[

i=1

Ki.

Let u : Ω1 → R
n be a C1 diffeomorphism such that detDu > 0. Suppose also that

i) u can be extended continuously to ∂Ω ∪Ω1, and call u its extension.

ii) u−1 : u(Ω1) → R
n can be extended continuously to u(Ω1), and call u−1 its

extension.

iii) u(∂Ω) ∩ u(Ω1) = ∅.

iv) u(Ω1) has a Lipschitz boundary.

For each i = 1, . . . ,M define Γi := {y ∈ ∂u(Ω1) : u−1(y) ∈ Ki}. Then

∂u(Ω1) = u(∂Ω) ∪
M[

i=1

Γi, (8)

the union being disjoint. Moreover, denoting by ν the outward normal to u(Ω1), we

have that for all φ ∈ C∞
c (Ω) and g ∈ C∞

c (Rn,Rn),

Ēu(φ,g) =

MX

i=1

Z

Γi

φ(u−1(y)) g(y) · ν(y) dHn−1(y), (9)

and

Ē(u) ≤
MX

i=1

Hn−1(Γi) = Per (imG(u, Ω)) −Hn−1(u(∂Ω)). (10)

If, in addition, u(Ω1) has a C2 boundary then

Ē(u) = Per (imG(u, Ω)) −Hn−1(u(∂Ω)) . (11)

Proof First we prove that (8) holds. The set u(∂Ω) is contained in ∂u(Ω1) by i), iii)

and the fact that u(Ω1) is open. The inclusion ∂u(Ω1) ⊂ u(∂Ω) ∪ SM
i=1 Γi can be

proved similarly by using also ii) and the equality ∂Ω1 = ∂Ω ∪ SM
i=1Ki. The union of

the right-hand side of (8) is disjoint because so are K1, . . . ,KM , ∂Ω.

Let Ωd denote the set of approximately differentiable points of u. Since u is dif-

ferentiable in Ω1, clearly Ω1 ⊂ Ωd. Moreover, Ωd \ Ω1 is contained in Ω \ Ω1, which

has zero measure. Thus, the sets u(Ω1) and imG(u, Ω) coincide a.e., and consequently

they have the same perimeter.
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x1

S2

Ω

u

u(Ω)

Γ1

Γ2

Fig. 1 Deformation u that is smooth except for a crack and the creation of a cavity.

Now let φ ∈ C∞
c (Ω) and g ∈ C∞

c (Rn,Rn). Changing variables (i.e., using Propo-

sition 1) and integrating by parts (which is possible thanks to iv)), we obtain

Z

Ω

g(u(x)) · (cof ∇u(x)) Dφ(x) dx

=

Z

u(Ω1)
g(y) ·

“
Du(u−1(y))

”−T
Dφ(u−1(y)) dy

=

Z

u(Ω1)
g(y) ·D(φ ◦ u−1)(y) dy

= −
Z

u(Ω1)
φ(u−1(y)) div g(y) dy +

Z

∂u(Ω1)
φ(u−1(y)) g(y) · ν(y) dHn−1(y),

(12)

where ν is the outward normal to u(Ω1). A further change of variables and (8) show

(9). Taking suprema in (9) in functions that satisfy ‖φ‖∞ ≤ 1 and ‖g‖∞ ≤ 1, we

obtain the inequality of (10). The equality of (10) is due to iv), (8) and the fact that

Per(u(Ω1)) = Per(imG(u, Ω)).

Finally, if u(Ω1) has a C2 boundary, then the normal ν in (9) is of class C1 inSM
i=1 Γi. Consequently, we can find a φ̄ ∈ C∞

c (Ω) and a ḡ ∈ C1
c (Rn,Rn) such that

‖φ̄‖∞ = ‖ḡ‖∞ = 1, the function φ̄ equals 1 in
SM

i=1Ki, and ḡ equals ν in
SM

i=1 Γi.

Since the supremum in the definition of Ē(u) (Definition 1) does not change when we

take test functions g in C1
c (Rn,Rn), we conclude that

Ē(u) ≥ Ēu(φ̄, ḡ) =

MX

i=1

Hn−1(Γi),

so showing (11). ⊓⊔

An instructive example in Proposition 4 is a deformation u that creates cavities at

x1, . . . ,xp and has cracks along the surfaces Sp+1, . . . , SM , but it is smooth elsewhere.

Then the natural choice of Ki is

Ki = {xi}, i = 1, . . . , p; Ki = Si, i = p+ 1, . . . ,M.

This is illustrated in Figure 1 in the particular case where p = 1 and M = 2.

As equation (11) shows, Ē(u) provides the area of the surface created by u. Conse-

quently, the term Ē(u), unlike Per(imG(u, Ω)), does not include Hn−1(u(∂Ω)), which

in fact we believe should not be part of the surface energy, since it does not corre-

spond to the creation of new surface. The main difference, though, between Ē(u) and

Per(imG(u, Ω)) is that the former gives correctly the area of the created surface, even
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Fig. 2 Deformation gj .

(a) (b)

Fig. 3 Deformations bj and uj .

in those situations where two pieces of created surface are put in contact. In particular,

it measures the (1-dimensional) ‘surface’ created by the deformations in the example

of Müller and Spector [34, Sect. 11], as we shall see in the following paragraphs.

Fix L ≫ 1 and define Ω := (−L − 1, L + 1) × (−1, 1). In the before-mentioned

example a function uj : Ω → R
2 is constructed, for each j odd, such that uj ∈

W 1,p(Ω,R2) and det∇uj ∈ Lp(Ω) for all p ∈ [1, 2). Each uj is the composition

of two maps: uj = bj ◦ gj . The map gj is depicted in Figure 2, and deforms the

rectangle Ω into a rectangle with holes. In the subrectangle (−L+ 1, L− 1) × (−1, 1)

the deformation gj is the identity, while in the square (−L− 1,−L+ 1) × (−1, 1) the

deformation creates j2 square-shaped cavities, as shown in Figure 2. An analogous

construction occurs in the square (L− 1, L+ 1)× (−1, 1). This deformation gj is then

composed with a Lipschitz transformation bj (shown in Figure 3(a)), which bends the

rectangle of Figure 2 from the ends. In the deformed configuration of uj (depicted

in Figure 3(b)), the holes created in one end of the deformation have been filled by

material from the other end.

We are going to see that Ē(uj) equals the sum of the perimeters of the 2j2 squares

created by cavitation. This is an essential difference with Per(imG(uj , Ω)), which equals

H1(∂uj(Ω)), and hence has two parts: the H1 measure of uj(∂Ω), which is not created

surface, and the H1 measure of ∂uj(Ω) \ uj(∂Ω), which is a small part of the created

surface due to the special way that the end squares of Figure 3(b) have been interlaced.

Thus, Per(imG(uj , Ω)) does not detect the surface created by cavitation.

Fix j and define the sets Nj , A
−
j and A+

j as

Nj :=


− j − 1

j
, . . . ,−2

j
, 0,

2

j
,
4

j
, . . . ,

j − 1

j

ff
, A±

j :=
˘
(±L+ p, q) : p, q ∈ Nj

¯
.

The function uj is locally Lipschitz and one-to-one in Ω1 := Ω \ (A−
j ∪ A+

j ). Let

φ ∈ C∞
c (Ω) and g ∈ C∞

c (R2,R2). As in (12),

Z

Ω

g(uj(x)) · (cof ∇uj(x)) Dφ(x) dx =

Z

uj(Ω1)
g(y) ·D(φ ◦ u−1

j )(y) dy.
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Now define Ω−
1 := Ω1 ∩ [(−∞, 0) × R] and Ω+

1 := Ω1 ∩ [(0,∞) × R], let u±
j be the

restriction of uj to Ω±
1 , and note that (u±

j )−1 : uj(Ω
±
1 ) → R

2 can be extended

continuously to uj(Ω
±
1 ). Reasoning again as in (12), we have that

Ēuj (φ,g) =

Z

∂uj(Ω
−

1 )
φ((u−

j )−1(y)) g(y) · ν−(y) dH1(y)

+

Z

∂uj(Ω
+
1 )
φ((u+

j )−1(y)) g(y) · ν+(y) dH1(y),

where ν
± is the outward normal to u(Ω±

1 ).

Define Γ := ∂u(Ω−
1 ) ∩ ∂u(Ω+

1 ) and note that (u−
j )−1 and (u+

j )−1 coincide in Γ ,

whereas ν
− = −ν

+ in Γ ; consequently,

Ēuj (φ,g) =

Z

∂uj(Ω
−

1 )\Γ

φ((u−
j )−1(y)) g(y) · ν−(y) dH1(y)

+

Z

∂uj(Ω
+
1 )\Γ

φ((u+
j )−1(y)) g(y) · ν+(y) dH1(y).

For each z ∈ A±
j , define C±

j,z := {y ∈ ∂uj(Ω
±
1 ) : (u±

j )−1(y) = z}, and observe that

C±
j,z intuitively corresponds to the surface of the cavity created at the point z. As φ

vanishes on ∂Ω, its is easy to see that

Ēuj (φ,g)

=
X

z∈A
−

j

φ(z)

Z

C
−

j,z

g(y) · ν−(y) dH1(y) +
X

z∈A
+
j

φ(z)

Z

C
+
j,z

g(y) · ν+(y) dH1(y). (13)

Now we note that

ν
−(y) = −ν

+(y), y ∈
„ [

z∈A
−

j

C−
j,z

«
∩

„ [

z∈A
+
j

C+
j,z

«
. (14)

From expressions (13) and (14), we can easily see that the supremum in the definition

of Ē (Definition 1) is not attained, but its value can be approximated in the following

way. Remove from the square C±
j,z a small neighbourhood of its vertices, and call this

set D±
j,z. Take functions φ̄ ∈ C∞

c (Ω) and ḡ ∈ C∞
c (R2,R2) such that ‖φ̄‖∞ = ‖ḡ‖∞ = 1

and

φ̄(z) = ±1, for z ∈ A±
j ; ḡ(y) = ±ν(y), for y ∈ D±

j,z and z ∈ A±
j .

Thus, we conclude that

Ē(uj) =
X

z∈A
−

j

H1(C−
j,z) +

X

z∈A
+
j

H1(C+
j,z) = 8

√
2j,

as desired.

As Müller and Spector [34] pointed out, the sequence uj converges weakly in W 1,p

for all p ∈ [1, 2) to a function that is not one-to-one a.e., despite every uj being

one-to-one a.e. In order to prevent that undesirable behaviour, they introduced the

topological condition (INV). In the following theorem, whose proof uses several ideas

of [34], we show that, without the need of any topological condition, this behaviour is

also prevented if the energy Ē of the sequence is bounded.
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Theorem 2 For each j ∈ N, let uj ,u : Ω → R
n be approximately differentiable in

almost all Ω,

cof ∇uj ∈ L1(Ω,Rn×n), det∇uj ∈ L1(Ω)

and

sup
j∈N

‚‚cof ∇uj

‚‚
L1(Ω,Rn×n)

<∞, sup
j∈N

Ē(uj) <∞.

Suppose that there exists θ ∈ L1(Ω) such that θ > 0 a.e., and

uj → u a.e. and det∇uj ⇀ θ in L1(Ω)

as j → ∞. Assume that for each j ∈ N, the function uj is one-to-one a.e. with

det∇uj > 0 a.e. Then

i) θ = |det∇u| a.e.

ii) u is one-to-one a.e.

iii) For every x ∈ Ω there exists Rx ⊂ (0, dist(x, ∂Ω)) such that

L1((0, dist(x, ∂Ω)) \Rx) = 0

and for each r ∈ Rx,

Per (imG(u, B(x, r))) ≤ lim inf
j→∞

Per
`
imG(uj , B(x, r))

´
<∞

and there exists a subsequence {jk}k∈N such that

χimG(ujk
,B(x,r)) → χimG(u,B(x,r)) in L1

loc(R
n)

as k → ∞.

Proof Without loss of generality, uj and u are the precise representatives of themselves;

that is, if for an x0 ∈ Ω there exists a ∈ R
n such that

lim
rց0

−
Z

B(x0,r)
|u(x) − a|dx = 0

then a = u(x0), and analogously for uj .

Fix x0 ∈ Ω and let s0 := dist(x0, ∂Ω). For each j ∈ N, define the function fj :

(0, s0) → R as

fj(r) :=

Z

∂B(x0,r)
| cof ∇uj |dHn−1, r ∈ (0, s0).

By Fubini’s theorem, for a.e. r0 ∈ (0, s0) and every j ∈ N,

a) uj is approximately differentiable at Hn−1-a.e. point of ∂B(x0, r0),

b) fj(r0) is well defined and finite,

c) lim
ε→0

−
Z r0−

ε
2

r0−ε

|fj(r) − fj(r0)|dr = 0.



14 D. Henao, C. Mora-Corral

Property c) follows, of course, from a version of Lebesgue’s differentiation theorem,

a proof of which can be found, for example, in [39, Th. 8.8]. By Fatou’s lemma and

Fubini’s theorem,
Z s0

0
lim inf
j→∞

fj(r) dr ≤ lim inf
j→∞

‖ cof ∇uj‖L1(Ω,Rn×n) <∞.

Therefore, there exists R0 ⊂ (0, s0) such that L1((0, s0) \ R0) = 0, and for each

r ∈ R0, properties a)–c) above hold for all j ∈ N, and, in addition,

lim inf
j→∞

fj(r) <∞. (15)

Fix any r0 ∈ R0. For each ε ∈ (0, r0), choose any C∞ function ϕε : [0,∞) → [0, 1]

such that

ϕε(t) = 1 for each t ∈ [0, r0 − ε) and each ε ∈ (0, r0),

ϕε(t) = 0 for each t ∈ [r0 − ε

2
,∞) and each ε ∈ (0, r0),

ε‖ϕ′
ε‖∞ ≤ 4 for each ε ∈ (0, r0).

Call, for simplicity, B := B(x0, r0). For each ε ∈ (0, r0), consider the function φε ∈
C∞

c (Ω) defined as φε(x) = ϕε(|x − x0|) for x ∈ B, and φε = 0 in Ω \ B̄. Clearly,

φε → χB pointwise as ε→ 0.

Take now a g ∈ C∞
c (Rn,Rn) with ‖g‖∞ ≤ 1. Then, for each j ∈ N, by Lebesgue’s

dominated convergence theorem and Proposition 1,

lim
ε→0

Z

Ω

φε(x) div g(uj(x)) det∇uj(x) dx =

Z

imG(uj ,B)
div g(y) dy.

According to Definition 1, for each ε ∈ (0, r0) and j ∈ N,
Z

Ω

φε(x) div g(uj(x)) det∇uj(x) dx

=Ēuj (φε,g) −
Z

Ω

g(uj(x)) · cof ∇uj(x)Dφε(x) dx,

and hence, taking limits when ε→ 0,
Z

imG(uj ,B)
div g(y) dy ≤ Ē(uj) + lim inf

ε→0

˛̨
˛̨
Z

Ω

g(uj(x)) · cof ∇uj(x)Dφε(x) dx

˛̨
˛̨ .

Now for each ε ∈ (0, r0) and j ∈ N, by Fubini’s theorem,
˛̨
˛̨
Z

Ω

g(uj(x)) · (cof ∇uj(x))Dφε(x) dx

˛̨
˛̨

≤−
Z r0−

ε
2

r0−ε

ε

2
|ϕ′

ε(r)|
˛̨
˛̨
˛

Z

∂B(x0,r)
g(uj(x)) · cof ∇uj(x)

x − x0

|x − x0|
dHn−1(x)

˛̨
˛̨
˛ dr

≤2−
Z r0−

ε
2

r0−ε

fj(r) dr,

and hence

lim sup
ε→0

˛̨
˛̨
Z

Ω

g(uj(x)) · (cof ∇uj(x))Dφε(x) dx

˛̨
˛̨ ≤ 2fj(r0).
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Thus, Z

imG(uj ,B)
div g(y) dy ≤ Ē(uj) + 2fj(r0)

and, hence, according to the definition of perimeter,

Per(imG(uj , B)) ≤ Ē(uj) + 2fj(r0).

Taking limits when j → ∞, thanks to (15), we obtain that

lim inf
j→∞

Per(imG(uj , B)) <∞.

Thus, by the compact embedding of BVloc into L1
loc, for a subsequence (not relabelled),

there exists a measurable set V ⊂ R
n such that χimG(uj ,B) → χV in L1

loc(R
n) as

j → ∞, and Per(V ) ≤ lim infj→∞ Per(imG(uj , B)).

Let ϕ ∈ C(Rn) have compact support. By Proposition 1, for all j ∈ N,

Z

imG(uj ,B)
ϕ(y) dy =

Z

B

ϕ(uj(x)) det∇uj(x) dx.

Using a standard convergence result (see, e.g., [40, Lemma 6.7]), we obtain

Z

Rn

ϕ(y)χV (y) dy =

Z

B

ϕ(u(x))θ(x) dx. (16)

The latter equality, which is true for any ϕ ∈ C(Rn) of compact support, is also valid

for any Borel function ϕ : R
n → R.

Now we show that det∇u(x) 6= 0 for a.e. x ∈ Ω. Let Ωd be the set of approximate

differentiablity points of u, which by assumption has full measure in Ω. Let Z be the

set of x ∈ Ωd such that det∇u(x) = 0. Property (5) shows that Ln(u(Z)) = 0. Thus,

there exists a Borel set U containing u(Z) such that Ln(U) = 0. Applying (16) with

ϕ = χU , we obtain that
R
B∩Z

θ dx = 0 and Ln(B ∩Z) = 0. Define B := {B(x, r) : x ∈
Ω, r ∈ Rx}. We have thus shown that Ln(B ∩Z) = 0 for all B ∈ B, hence Ln(Z) = 0.

Consider the set Ω0 of Lemma 1, and define Ω1 as the set of x ∈ Ωd ∩Ω0 such that

det∇u(x) 6= 0 and θ(x) > 0. We have shown that Ω1 has full measure in Ω. Again by

Proposition 1, the function ψ̃ : R
n → R defined by

ψ̃(y) :=
X

x∈B∩Ω1

u(x)=y

θ(x)

|det∇u(x)| , y ∈ R
n

satisfies that for any measurable function ϕ : R
n → R,

Z

B

ϕ(u(x))θ(x) dx =

Z

Rn

ϕ(y)ψ̃(y)χimG(u,B)(y) dy (17)

Equalities (16) and (17) show that χV = ψ̃χimG(u,B) a.e. Since θ > 0 a.e., necessarily

χV = χimG(u,B) a.e. and

ψ̃(y) = 1 a.e. y ∈ imG(u, B). (18)

This finishes the proof of part iii) of the theorem.
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Now let B1 and B2 be two disjoint balls in B. By iii), there exists a subsequence

(not relabelled) such that χimG(uj ,Bi) → χimG(u,Bi) a.e. as j → ∞, for i = 1, 2. Since,

for each j ∈ N, the function uj is one-to-one a.e., we have that

χimG(uj ,B1)(y) + χimG(uj ,B2)(y) ≤ 1 (19)

for a.e. y ∈ R
n; indeed, let Vj be the set of differentiability points of uj , and Uj a

set of full measure in Ω in which uj is one-to-one. We claim that (19) is true for all

y ∈ R
n \ uj(Vj \ Uj), and hence for a.e. y ∈ R

n, since by (5) the set uj(Vj \ Uj) has

measure zero. Let y ∈ imG(uj , B1) ∩ imG(uj , B2), so y = uj(x1) = uj(x2) for some

xi ∈ Vj ∩ Bi (i = 1, 2). Since uj is one-to-one in Uj , at least one of x1,x2 does not

belong to Uj , and hence y ∈ uj(Vj \ Uj). Passing to the limit in (19), we obtain

χimG(u,B1)(y) + χimG(u,B2)(y) ≤ 1

for a.e. y ∈ R
n, and hence

Ln (imG(u, B1) ∩ imG(u, B2)) = 0. (20)

Now we show that u is one-to-one in Ω1. Let x1,x2 ∈ Ω1 be two different points,

and assume, for a contradiction, that u(x1) = u(x2). For each i = 1, 2 take Bi ∈ B
such that xi ∈ Bi and B1 ∩ B2 = ∅. Then the set Bi ∩ Ω1 has density 1 at xi, so by

Lemma 1, the set u(Bi ∩ Ω1) has density 1 at u(x1) = u(x2), a contradiction with

(20).

Let B ∈ B. Since u is one-to-one in Ω1, from the definition of ψ̃ and (18), we

conclude that θ(x) = |det∇u(x)| for a.e. x ∈ B. Since this is true for any B ∈ B, then

θ = | det∇u| a.e. ⊓⊔

We remark that, in Theorem 2iii), the subsequence {jk}k∈N depends on x and r.

Theorem 2 improves the results by Ciarlet and Nečas [13] and Tang [41] on the

stability of the invertibility condition under the weak limit. It is related, in addition,

to the results of Giacomini and Ponsiglione [26, Th. 4.4].

4 Weak continuity of the determinant

In Section 3 we derived the energy functional Ē as a refinement of the surface energy

term Peru(Ω) that is, in addition, capable of detecting all the created surface in the

counterexample of Müller and Spector [34]. We obtained that functional from the

identity

(div g)(u(x)) detDu(x) = Div((adjDu(x))g(u(x))) (21)

by interpreting the divergence on the right-hand side in a distributional sense. Of

course, (21) is itself a generalization of the well-known formula detDu = 1
n Div((adjDu)u).

We begin this section by pointing out that our energy functional, apart from having

the above interpretation, is also related to a well-known object in the theory of currents

(see, e.g., [19,28,29]). Let φ ∈ C∞
c (Ω) and g ∈ C∞

c (Rn,Rn), and consider the (n− 1)-

differential form ω defined by

ω(x,y) :=
nX

j=1

(−1)j−1φ(x)gj(y)ddyj , (22)
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where the functions gj stand for the coordinates of g. Then, denoting by Gu the current

carried by the graph of u, we have that Ēu(φ,g) = 〈∂Gu, ω〉. For an exposition of

differential forms and the theory of currents, as well as for the notation and terminology

used, we refer the reader to [28,29].

One of the main features of the theory of currents (in fact, one reason for its success)

is that it offers a unified treatment for the reference and the deformed configuration

associated to a deformation. This is achieved by using test functions depending in both

the x and the y variables. Given any f ∈ C∞
c (Ω×R

n,Rn), define the differential form

ωf (x,y) :=
nX

j=1

(−1)j−1fj(x,y)ddyj ,

where the functions fj denote the coordinates of f . It is clear that the differential form ω

defined in (22) is a particular case of ωf corresponding to the choice f(x,y) = φ(x)g(y).

From the point of view of the theory of currents, therefore, our functional Ēu(φ,g) is

just a particular case of a more general object acting really on functions of 2n variables,

namely, the linear functional f 7→ 〈∂Gu, ωf 〉. This motivates the following definition.

Definition 2 Let u : Ω → R
n be approximately differentiable in almost all Ω. Suppose

that det∇u ∈ L1
loc(Ω) and cof ∇u ∈ L1

loc(Ω,R
n×n). For every f ∈ C∞

c (Ω × R
n,Rn),

define

Eu(f) :=

Z

Ω

[cof ∇u(x) ·Dxf(x,u(x)) + det∇u(x) divy f(x,u(x))] dx

and

E(u) := sup
˘
Eu(f) : f ∈ C∞

c (Ω × R
n,Rn), ‖f‖∞ ≤ 1

¯
.

Naturally, the notation Dxf(x,y) refers to the derivative of the map f(·,y) eval-

uated at x, while divy f(x,y) denotes the divergence of the map f(x, ·) evaluated at

y.

In order to motivate further Definition 2, suppose that u is as in Proposition 4.

Then, the same proof that led to (9) also yields

Eu(f) =
MX

i=1

Z

Γi

f(u−1(y),y) · ν(y) dHn−1(y).

Analogously, for the deformations uj depicted in Figure 3(b), the new energy functional

is given by

Euj (f) =
X

z∈A
−

j

Z

C
−

j,z

f(z,y) · ν−(y) dHn−1(y) +
X

z∈A
+
j

Z

C
+
j,z

f(z,y) · ν+(y) dHn−1(y),

which is the counterpart of (13).

The functional E is related to the identities

(div(f ◦ (u−1 ⊲⊳ id)))(u(x)) detDu(x)

=Dxf(x,u(x)) · cofDu(x) + (divy f)(x,u(x)) detDu(x)

=Div ((adjDu(x)) f(x,u(x)))
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in the same way that Ē is related to (21). Here, u−1 ⊲⊳ id is the function defined by

(u−1 ⊲⊳ id)(y) := (u−1(y),y).

Finally, we mention that Eu corresponds naturally to the n− 1 vertical part of the

boundary of the current Gu, which is denoted by (∂Gu)(n−1). In particular our surface

energy E(u) coincides with M((∂Gu)(n−1)).

As for the relation between Ē and E , we clearly have that Ē ≤ E . In addition, since

the linear space spanned by the functions of the form Ω×R
n ∋ (x,y) 7→ φ(x)g(y) with

φ ∈ C∞
c (Ω) and g ∈ C∞

c (Rn,Rn) is dense in C∞
c (Ω × R

n,Rn) in the C1 topology, it

is easy to show that E(u) = 0 whenever Ē(u) = 0. In particular, Propositions 2 and

3 provide sufficient conditions for the vanishing of E , which generalize that of [28, Rk.

3.2.3.3].

In spite of the fact that the boundedness of Ē alone allows us to obtain the important

results of Theorem 2, it has been necessary to introduce the functional E for a number

of reasons. In the first place, it is possible to construct examples (see Section 6) in

which the energy Ē does not give the area of the created surface, as one would desire.

On the other hand, we do not know whether the boundedness of Ē alone implies the

full continuity of the determinant of the deformation gradient, that is, whether we can

complement Theorem 2 with a result showing that the positive sign of the determinants

of the gradients in a weakly converging sequence remains positive in the limit. In

contrast, the boundedness of E does yield the weak continuity of the determinant, and

we present it in Theorem 3 below. In addition, it can be proved (see [30]) that E(u)

corresponds to the area of the created surface, as expected.

Before stating the above mentioned result, we write a few words on the relation

between our theorem and previous results on this problem. Our proof follows that of

[28, Th. 3.3.2.2], which in turn is based on [32]. In that paper, Müller [32] gave a

simpler proof of a result by Giaquinta, Modica and Souček [27], which states that,

in the Sobolev case, the vanishing of the boundary of the current (which implies the

vanishing of E(u)) implies the weak continuity of all minors. The original proof was

based on the Federer-Fleming [20] closure theorem, whereas Müller’s more direct proof

followed a blow-up argument. In [28, Th. 3.3.2.2] Giaquinta, Modica and Souček noted

that both Müller’s proof and their original proof could be extended to the case when

the mass of the boundary of the current is bounded (not necessarily zero).

In our Theorem 3 we show that if the cofactors are weakly continuous then it is not

necessary to control the whole of the boundary of the graph of u, but rather it suffices

to control its n − 1 vertical part. Since for this purpose we cannot assume that the

mass of ∂Gu is bounded, we follow the extension by Giaquinta, Modica and Souček of

the simpler proof by Müller using a blow-up argument.

Theorem 3 For each j ∈ N, let uj ,u : Ω → R
n be measurable functions that are

approximately differentiable in almost all Ω,

cof ∇uj , cof ∇u ∈ L1(Ω,Rn×n), det∇uj ∈ L1(Ω).

Suppose that there exists θ ∈ L1(Ω) such that

uj → u a.e., cof ∇uj ⇀ cof ∇u in L1(Ω,Rn×n), det∇uj ⇀ θ in L1(Ω)

as j → ∞. Assume that

sup
j∈N

E(uj) <∞. (23)
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Then θ = det∇u a.e. and

E(u) ≤ lim inf
j→∞

E(uj). (24)

Proof Let f ∈ C∞
c (Ω × R

n,Rn) satisfy ‖f‖∞ ≤ 1. A standard convergence result (see,

e.g., [40, Lemma 6.7]) yields

lim
j→∞

Euj (f) =

Z

Ω

[cof ∇u(x) ·Dxf(x,u(x)) + θ(x) divy f(x,u(x))] dx.

Since Euj (f) ≤ E(uj) for each j ∈ N, thanks to Riesz’ representation theorem, we

obtain that the linear functional Λ : C∞
c (Ω × R

n,Rn) → R given by

Λ(f) :=

Z

Ω

[cof ∇u(x) ·Dxf(x,u(x)) + θ(x) divy f(x,u(x))] dx

can be identified with an R
n-valued measure inΩ×R

n, and |Λ|(Ω×R
n) ≤ lim infj→∞ E(uj).

Here, |Λ| denotes the total variation of the Λ, and is of course a measure too.

Now we claim that a.e. x0 ∈ Ω satisfies

cof ∇u(x0 + εz) → cof ∇u(x0) in L1
loc(R

n,Rn×n),

θ(x0 + εz) → θ(x0) in L1
loc(R

n),

u(x0 + εz) − u(x0)

ε
→ ∇u(x0)z in L1

loc(R
n,Rn)

(25)

as ε→ 0 (where of course z ∈ R
n denotes the independent variable), and

lim sup
rց0

|Λ| (B((x0,u(x0)), r))

rn
<∞. (26)

Indeed, (25) is satisfied for any x0 that is a Lebesgue point of cof ∇u and of θ, and a

point of approximate differentiability of u. To show (26) we use that, as Λ is a Radon

measure, the set

{(x,y) ∈ Ω × R
n : lim sup

rց0

|Λ| (B((x,y), r))

rn
= ∞}

has zero Hn-measure (see for example [5, Th. 2.56]). In particular, the set

{(x,u(x)) ∈ Ωd × R
n : lim sup

rց0

|Λ| (B((x,u(x)), r))

rn
= ∞}

and its orthogonal projection onto Ωd are Hn-null sets, where Ωd is the set of approxi-

mate differentiability of u. Hence (26) holds a.e. x0. We fix, until the end of the proof,

an x0 ∈ Ωd such that (25) and (26). We shall prove that θ(x0) = det∇u(x0).

Given any f ∈ C∞
c (Rn × R

n,Rn) and ε > 0 small enough, the set Ω−x0
ε × R

n

contains spt f . Hence, the function fε : Ω × R
n → R

n defined by

fε(x,y) := f

„
x − x0

ε
,
y − u(x0)

ε

«
, (x,y) ∈ Ω × R

n
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is compactly supported in Ω × R
n. Then

Λ(fε) = ε−1
Z

Ω

»
cof ∇u(x) ·Dxf

„
x− x0

ε
,
u(x) − u(x0)

ε

«

+ θ(x) divy f

„
x− x0

ε
,
u(x) − u(x0)

ε

«–
dx

= εn−1
Z

Ω−x0
ε

»
cof ∇u(x0 + εz) ·Dxf

„
z,

u(x0 + εz) − u(x0)

ε

«

+ θ(x0 + εz) divy f

„
z,

u(x0 + εz) − u(x0)

ε

«–
dz.

Therefore, first extracting sequences εk ց 0, and then observing that the expression

in the limit is independent of the sequence extracted, we may pass to the limit (see,

e.g., [40, Lemma 6.7] for the details, if necessary) and obtain

lim
ε→0

Λ(fε)

εn−1
=

Z

Rn

[cof ∇u(x0) ·Dxf(z,∇u(x0)z) + θ(x0) divy f(z,∇u(x0)z)] dz.

Now observe that the limit function R
n ∋ z 7→ ∇u(x0)z is linear (hence regular), so,

as explained at the beginning of this section,
Z

Rn

[cof ∇u(x0) · ∇xf(z,∇u(x0)z) + det∇u(x0) divy f(z,∇u(x0)z)] dz = 0. (27)

Therefore

lim
ε→0

Λ(fε)

εn−1
= (θ(x0) − det∇u(x0))

Z

Rn

divy f(z,∇u(x0)z) dz.

Thus, in order to show that θ(x0) = det∇u(x0), it suffices to prove that

lim
ε→0

Λ(fε)

εn−1
= 0 for every f ∈ C∞

c (Rn × R
n,Rn). (28)

Indeed assuming (28) to be true, we choose g ∈ C∞
c (Rn,Rn) such that div g is not

identically zero on ∇u(x0)(R
n), and define f : R

n × R
n → R

n as

f(x,y) := div g(∇u(x0)x)g(y), (x,y) ∈ R
n × R

n;

then Z

Rn

divy f(z,∇u(x0)z) dz =

Z

Rn

(div g)2 (∇u(x0)z) dz 6= 0

and so θ(x0) = det∇u(x0).

In order to prove (28), we exploit the fact that Λ is a measure in Ω × R
n. Thus,

for any f ∈ C∞
c (Rn × R

n,Rn) we can write

Λ(fε) =

Z

Ω×Rn

fε(x,y) dΛ(x,y).

Let R > 0 satisfy spt f ⊂ B((0,0), R); then spt fε ⊂ B((x0,u(x0)), εR) and

|Λ(fε)| ≤ ‖f‖∞|Λ| (B((x0,u(x0)), εR)).

Therefore
|Λ(fε)|
εn−1

≤ εRn‖f‖∞ |Λ| (B((x0,u(x0)), εR)

(εR)n
,

and (28) is obtained as a consequence of (26). ⊓⊔
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Related to Theorems 2 and 3 is the following result, where we show that the weak

continuity of the cofactor is implied by that of the determinant, provided that the

energy E of the sequence is bounded.

Proposition 5 For each j ∈ N, let uj ,u : Ω → R
n be measurable functions that are

approximately differentiable in almost all Ω, and

cof ∇uj ∈ L1(Ω,Rn×n), det∇uj , det∇u ∈ L1(Ω). (29)

Suppose that there exists ϑ ∈ L1(Ω,Rn×n) such that

uj → u a.e., cof ∇uj ⇀ ϑ in L1(Ω,Rn×n), det∇uj ⇀ |det∇u| in L1(Ω)

as j → ∞. Assume that det∇u(x) 6= 0 for a.e. x ∈ Ω, and that (23) holds. Then

ϑ = (sgn det∇u) cof ∇u a.e.

Proof The same argument of the proof of Theorem 3 shows that for a.e. x0 ∈ Ω and

every f ∈ C∞
c (Rn × R

n,Rn),

Z

Rn

[ϑ(x0) ·Dxf(z,∇u(x0)z) + |det∇u(x0)|divy f(z,∇u(x0)z)] dz = 0.

As (27) holds too,

(ϑ(x0) − (sgn det∇u(x0)) cof ∇u(x0)) ·
Z

Rn

Dxf(z,∇u(x0)z) dz = 0. (30)

Fix an x0 ∈ Ω such that (30) holds and det∇u(x0) 6= 0. The proof will be finished

as soon as we show that the set
Z

Rn

Dxf(z,∇u(x0)z) dz : f ∈ C∞
c (Rn × R

n,Rn)

ff

contains a basis of R
n×n. Taking functions f of the form φ(x)g(y) with φ ∈ C∞

c (Rn)

and g ∈ C∞
c (Rn,Rn), and arguing with the coordinates of g, it suffices to show that

the set Z

Rn

Dφ(z) g(∇u(x0)z) dz : φ ∈ C∞
c (Rn), g ∈ C∞

c (Rn)

ff

contains a basis of R
n. Choose any φ ∈ C∞

c (Rn) such that the partial derivatives

∂φ

∂z1
, . . . ,

∂φ

∂zn

are linearly independent. As L2(Rn) is a Hilbert space, for each j ∈ {1, . . . , n} there

exists h̃j ∈ L2(Rn) such that

〈 ∂φ
∂zi

, h̃j〉 = δij , j ∈ {1, . . . , n},

where δij denotes Kronecker’s delta, and 〈·, ·〉 the duality product in L2(Rn). By mol-

lification, there exists hj ∈ C∞
c (Rn) such that the vectors

„
〈 ∂φ
∂z1

, h1〉, . . . , 〈
∂φ

∂z1
, hn〉

«
, . . . ,

„
〈 ∂φ
∂zn

, h1〉, . . . , 〈
∂φ

∂zn
, hn〉

«
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are linearly independent. Finally, for each j ∈ {1, . . . , n} define the function gj :=

hj ◦ ∇u(x0)−1. We have then shown that the vectors
Z

Rn

Dφ(z) g1(∇u(x0)z) dz, . . . ,

Z

Rn

Dφ(z) gn(∇u(x0)z) dz

form a basis of R
n. This concludes the proof. ⊓⊔

Theorem 2 and Proposition 5 yield the following corollary.

Corollary 1 For each j ∈ N, let uj ,u : Ω → R
n be approximately differentiable in

almost all Ω, and assume that (29) holds. Suppose that there exist ϑ ∈ L1(Ω,Rn×n)

and θ ∈ L1(Ω) such that θ > 0 a.e., and

uj → u a.e., cof ∇uj ⇀ ϑ in L1(Ω,Rn×n), det∇uj ⇀ θ in L1(Ω)

as j → ∞. Assume that (23) holds, and that for each j ∈ N, the function uj is one-

to-one a.e. with det∇uj > 0 a.e. Then u is one-to-one a.e., ϑ = (sgn det∇u) cof ∇u

a.e., and θ = |det∇u| a.e.

This corollary provides us with a result of a different nature to the classic results

on weak continuity of the determinant. Indeed, in Ball’s [6] theory and all its many

refinements, the weak continuity of the determinant is proved by induction: from the

minors of order 2 to the determinant. The passage from the minors of order i to

those of order i + 1 uses the Piola identities. The theory of Giaquinta, Modica and

Souček [28] (as well as our Theorem 3) can be then regarded as a generalization of

that methodology: the key idea being that it is not necessary to have the exact Piola

identities, but, rather, that a control on how they fail is enough to make the induction

step work. In contrast, Corollary 1 shows that, using the idea of Müller and Spector

[34], the continuity (up to a sign) first of the determinant and then of the cofactor

can be proved just from a bound on the surface energy. We do not know whether the

full continuity of the determinant can be proved with this method without using the

topological condition (INV) of [34].

5 Existence of minimizers

Once we have established the weak continuity of the determinant (Theorem 3), and the

property that the weak limit of a sequence of one-to-one a.e. maps is one-to-one a.e.

(Theorem 2), proving existence of minimizers is then standard. In this section we prove

the existence of those minimizers for functionals in the context of nonlinear elasticity

with cavitation and, perhaps, fracture. In order to simplify the exposition, we let n = 3.

The first result concerns a model in which the elastic energy and the surface energy

E are taken into account.

Theorem 4 Let p ≥ 2. Let Ω be a bounded open set of R
3 with (strongly) Lipschitz

boundary. Let ΓD ⊂ ∂Ω be a 2-rectifiable set with H2(ΓD) > 0. Let b : ΓD → R
3 be a

measurable map. Define

A :=
n
u ∈ W 1,p(Ω,R3) : detDu > 0 a.e., u is one-to-one a.e., u|ΓD

= b
o
,

the equality on ΓD being in the sense of traces. Let R := R
3×3 × R

3×3 × (0,∞). Let

the function W : Ω × R
3 × R

3×3 → R satisfy the following properties:
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i) There exists a function Φ : Ω × R
3 ×R → R such that for a.e. x ∈ Ω and every

y ∈ R
3, the function Φ(x,y, ·) is convex and

W (x,y,F) = Φ(x,y, (F, cof F,detF)) for all F ∈ R
3×3 such that detF > 0.

ii) Φ(x, ·, ·) : R
3 × R → R is continuous for a.e. x ∈ Ω, and Φ(·,y,D) : Ω → R is

measurable for every (y,D) ∈ R
3 ×R.

iii) There exist a ∈ L1(Ω), a constant c > 0, an increasing function h1 : (0,∞) →
[0,∞) and a convex function h2 : (0,∞) → R such that

lim
t→∞

h1(t)

t
= lim

t→∞

h2(t)

t
= lim

t→0+
h2(t) = ∞

and

W (x,y,F) ≥ a(x) + c|F|p + h1(| cof F|) + h2(detF)

for a.e. x ∈ Ω, all y ∈ R
3 and all F ∈ R

3×3 with detF > 0.

Assume that A 6= ∅, and define I : A → R ∪ {∞} as

I(u) :=

Z

Ω

W (x,u(x),Du(x)) dx + E(u), u ∈ A.

Then there exists a minimizer of I in A.

Proof If I is identically +∞, the result is trivial. Assume otherwise and note that iii)

implies that I is bounded below.

Let {uj}j∈N be a minimizing sequence for I in A. Assumption iii) implies that the

sequence {Duj}j∈N is bounded in Lp(Ω,R3), whereas {cof Duj}j∈N and {detDuj}j∈N

are equiintegrable by De La Vallée Poussin criterion. Thus, by the boundary con-

dition and the Poincaré inequality, we obtain that there exist u ∈ W 1,p(Ω,R3),

ϑ ∈ L1(Ω,R3×3) and θ ∈ L1(Ω) such that, for a subsequence (not relabelled),

uj ⇀ u in W 1,p(Ω,R3), uj → u a.e.,

cofDuj ⇀ ϑ in L1(Ω,R3×3), detDuj ⇀ θ in L1(Ω).

as j → ∞. Clearly, θ ≥ 0 a.e. If θ were zero in a set A of positive measure, then we would

have (for a subsequence) detDuj → 0 in L1(A) and a.e. in A; hence by assumption

iii), we obtain h2(detDuj) → ∞ a.e. in A, as j → ∞. Again by assumption iii) and

Fatou’s lemma, we get I(uj) → ∞ as j → ∞, which is a contradiction. Therefore,

θ > 0 a.e.

As cof Duj converges weakly to ϑ in L1, and supj∈N ‖Duj‖L2 <∞, by a standard

result on weak continuity of minors (see, e.g., Ball, Currie and Olver [9, Th. 4.11], or

by Lemma 2 below), we obtain ϑ = cof Du a.e. Thus, by Theorem 3, θ = detDu a.e.

and (24). Theorem 2, on the other hand, shows that u is one-to-one a.e. Since the

boundary condition is also preserved under the limit, we conclude that u ∈ A. We are

then in a position to apply the lower semicontinuity theorem of [9, Th. 5.4], according

to which
Z

Ω

W (x,u(x),Du(x)) dx ≤ lim inf
j→∞

Z

Ω

W (x,uj(x),Duj(x)) dx.

This inequality and (24) conclude that I(u) ≤ lim infj→∞ I(uj), and hence u is a

minimizer of I in A. ⊓⊔
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In Theorem 4, as we have explained, elastic and surface energy are taken into

account. Fracture, in contrast, is not allowed, since Sobolev functions cannot have jump

discontinuities over a 2-dimensional surface. To allow for fracture, the usual framework

is a functional space modelled over SBV . Typical existence results are set in SBV

under an L∞ a priori bound on the deformations, or in GSBV under an L1 coercivity

property of the energy; see, e.g., the approaches of [2,4,23,26]. In our formulation, we

have chosen the SBV setting with an L∞ a priori bound on the deformation. As for

the Dirichlet conditions, we permit the possibility of disagreement with the boundary

condition at the expense of a penalization in the energy (as in [4,15]).

The existence theory in SBV requires, in addition, the following preliminary result

on the weak continuity of the cofactor. This is the SBV counterpart (essentially due

to Ambrosio [3]) of a better-known result in the Sobolev setting. We will not provide

a proof, since it is identical to that of [3, Cor. 4.9] (see also [5, Cor. 5.31]).

Lemma 2 For each j ∈ N, let uj ,u ∈ SBV (Ω,R3) satisfy that the sequences {‖∇uj‖L2}j∈N

and {H2(Juj )}j∈N are bounded. Assume that uj → u in L1(Ω,R3) as j → ∞, and the

sequence {| cof ∇uj |}j∈N is equiintegrable. Then

cof ∇uj ⇀ cof ∇u in L1(Ω,R3×3) as j → ∞.

We are then in a position to prove the second existence theorem of this paper. It

concerns a model in which the elastic energy, the surface energy E and the fracture

energy are taken into account.

Theorem 5 Let p ≥ 2 and λ1, λ2 > 0. Let Ω be a bounded open set of R
3 with

(strongly) Lipschitz boundary. Let ΓD ⊂ ∂Ω be a 2-rectifiable set, and let K ⊂ R
3 be

compact. Let Ω′ be an open set containing Ω∪ΓD such that H2(∂Ω \ (∂Ω′ ∪ΓD)) = 0.

Let b ∈ SBV (Ω′,R3) satisfy b(x) ∈ K for a.e. x ∈ Ω′\Ω, and denote by b+ the lateral

trace of b on ∂Ω corresponding to Ω′ \ (Ω ∪ ΓD). Assume that H2(Jb ∩Ω′ \ Ω̄) < ∞.

Define A as the set of functions u ∈ SBV (Ω,R3) such that

∇u ∈ Lp(Ω,R3×3), det∇u > 0 a.e., u is one-to-one a.e., u(x) ∈ K a.e. x ∈ Ω,

Let the function W : Ω × R
3 × R

3×3 → R satisfy properties i)–iii) of Theorem 4.

Assume that A 6= ∅, and define I : A → R ∪ {∞}, for each u ∈ A, as

I(u) :=

Z

Ω

W (x,u(x),∇u(x)) dx

+ λ1E(u) + λ2H2(Ju) + λ2H2({x ∈ ΓD : b+(x) 6= u(x)}),

the value of u in ΓD being in the sense of traces. Then there exists a minimizer of I

in A.

Proof If I is identically +∞, the result is trivial. Assume otherwise and note that iii)

implies that I is bounded below.

Let {uj}j∈N be a minimizing sequence for I in A. Assumption iii) and the defini-

tions of I and A imply that

sup
j∈N

h
‖uj‖L∞ + ‖∇uj‖Lp + H2(Juj )

i
<∞.
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Therefore, by the compactness theorem of Ambrosio [1, Prop. 4.3] (see also [5, Th.

4.8]), there exists u ∈ SBV (Ω,R3) such that, for a subsequence (not rellabelled),

uj → u in L1(Ω,R3) and a.e., ∇uj ⇀ ∇u in Lp(Ω,R3×3) as j → ∞.

Moreover, H2(Ju) ≤ lim infj→∞ H2(Juj ) and u(x) ∈ K a.e. x ∈ Ω. Now, for each j ∈
N, define the functions ũj , ũ : Ω′ → R

3 as the extensions by b to Ω′\Ω of uj ,u, respec-

tively. Repeating the above argument, we obtain that H2(Jũ) ≤ lim infj→∞ H2(Jũj
).

Now note that the assumptions on Ω, Ω′ and ΓD imply that

H2(Jũ) = H2(Ju) + H2(Jb ∩Ω′ \ Ω̄) + H2({x ∈ ΓD : b+(x) 6= u(x)}).

Since an analogous inequality holds for uj (replacing u), we conclude that

H2(Ju) + H2(ΓD ∩ {b+ 6= u}) ≤ lim inf
j→∞

h
H2(Juj ) + H2(ΓD ∩ {b+ 6= uj})

i
. (31)

On the other hand, assumption iii) and De La Vallée Poussin criterion imply the

existence of ϑ ∈ L1(Ω,R3×3) and θ ∈ L1(Ω) such that, for a subsequence (not rela-

belled),

cof ∇uj ⇀ ϑ in L1(Ω,R3×3), det∇uj ⇀ θ in L1(Ω) as j → ∞

As in the proof of Theorem 4, θ > 0 a.e. Now, Lemma 2 shows that ϑ = cof ∇u a.e.,

Theorem 3 shows that θ = det∇u a.e. and (24), and Theorem 2 shows that u is one-

to-one a.e. We thus conclude that u ∈ A. Now, by the lower semicontinuity theorem

of [9, Th. 5.4],

Z

Ω

W (x,u(x),∇u(x)) dx ≤ lim inf
j→∞

Z

Ω

W (x,uj(x),∇uj(x)) dx.

This inequality, together with (31) and (24), concludes that I(u) ≤ lim infj→∞ I(uj),

and hence u is a minimizer of I in A. ⊓⊔

We observe that the energy I of Theorem 5 penalizes the formation of cracks both in

the reference configuration (through E(u)) and in the deformed configuration (through

H2(Ju)). A possible justification is that the energy H2(Ju) measures the breaking of

atomic bonds, while E(u) accounts for the stretching of a fracture surface (the latter

would be negligible, due to the assumption of small deformations, in the context of

classical fracture mechanics). That both energies should be taken into account has

been hypothesized by Gent and Wang [25]. In any case, Corollary 1 suggests that

it might be possible to build an existence theory for cavitation and fracture without

including the term H2(Ju). Of course, extra conditions guaranteeing the full continuity

of the determinant (not only of its absolute value) and the compactness in SBV are

necessary.

As we said at the beginning of the section, Theorems 2 and 3, together with stan-

dard minimization techniques in nonlinear elasticity with or without fracture, provide

results on existence of minimizers, of which Theorems 4 and 5 are two examples. In

Section 7 we will make some comments on related models.
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6 Ē versus E

It is easy to check that Ē(u) = E(u) when u satisfies the assumptions of Proposition

4, or when u equals any of the deformations uj depicted in Figure 3(b). In this section

we prove, by means of an example, that Ē and E do not coincide, and, moreover, we

show that Ē(u) is not a physical quantity and exhibits a sensitive dependence on u.

The constructions is as follows. Let Ω be the ball B(0, 2) in R
2, let 0 < θ0 < 2π,

let R ∈ R
2×2 be the rotation matrix corresponding to an angle of θ0, and consider the

function u : Ω → R
2 defined as

u(x) :=


Rx if |x| < 1,

x if 1 ≤ |x| < 2.
(32)

First we show that E(u) = 4π, and then we show that Ē(u) has a sensitive dependence

on the rotation angle θ0. Thus, in this example, E measures the (1-dimensional) ‘area’

of the created (1-dimensional) ‘surface’. Indeed, the created surface is ∂B(0, 1), but

counted twice: as the surface created in B(0, 1) plus the surface created in Ω \ B̄(0, 1).

It may help the reader to consider the map ũ : Ω → R
2 defined as ũ(x) = Rx for

|x| < 1, and ũ(x) = x + a for 1 ≤ |x| < 2 and some a ∈ R
2. It then becomes clearer

why the surface ∂B(0, 1) created by u must be counted twice.

In order to calculate E(u) we take f ∈ C∞
c (Ω × R

2,R2), and use the divergence

theorem to obtain

Eu(f) =

"Z

B(0,1)
+

Z

B(0,2)\B̄(0,1)

#
Div [adj∇u(x) f(x,u(x))] dx

=

Z

∂B(0,1)

h
RT f(x,Rx) − f(x,x)

i
· xdH1(x).

(33)

Therefore, E(u) ≤ 4π. Considering now any f̄ ∈ C∞
c (Ω × R

2,R2) such that ‖f̄‖∞ = 1

and

f̄(x,x) = −x, f̄(x,Rx) = Rx, x ∈ ∂B(0, 1),

we conclude that

E(u) ≥ Eu(f̄) =

Z

∂B(0,1)
2x · xdH1(x) = 4π.

Therefore, E(u) = 4π.

The sensitive dependence of Ē(u) upon the rotation angle θ0 is described in the

following proposition.

Proposition 6 Consider the function u defined in (32). Then the following statements

are equivalent:

i) Ē(u) = 4π.

ii) For each j ∈ N there exist εj > 0 and aj , bj ∈ N with aj odd such that

˛̨
˛̨θ0 − aj

bj
π

˛̨
˛̨ ≤ εj and lim

j→∞
εjbj = 0.

iii) θ0/π is either irrational or of the form a
b

with a odd and b ∈ N.
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Proof First, we assume that ii) holds and show that i) holds.

For all φ ∈ C∞
c (Ω) and g ∈ C∞

c (R2,R2), as in (33),

Ēu(φ,g) =

Z

∂B(0,1)

h
RTφ(x)g(Rx) − φ(x)g(x)

i
· xdH1(x)

=

Z

∂B(0,1)

h
φ(RT x) − φ(x)

i
g(x) · xdH1(x).

(34)

For j ∈ N large enough, define the sets

Aj :=

8
<
:(cos θ, sin θ) : θ ∈

bj−1[

i=0

»
2iπ + εj

bj
,
(2i+ 1)π − εj

bj

–9
=
; ,

Bj :=

8
<
:(cos θ, sin θ) : θ ∈

bj[

i=1

»
(2i− 1)π + εj

bj
,
2iπ − εj

bj

–9
=
; .

Define θj :=
aj

bj
π, and denote by Rj the rotation matrix corresponding to an angle of

θj . Note that RT
j Aj = Bj and RT

j Bj = Aj . In addition,

RAj =

8
<
:(cos θ, sin θ) : θ ∈

bj[

i=1

»
(2i− 1)π + εj

bj
+ θ0 − θj ,

2iπ − εj
bj

+ θ0 − θj

–9
=
; ,

and

RBj =

8
<
:(cos θ, sin θ) : θ ∈

bj−1[

i=0

»
2iπ + εj

bj
+ θ0 − θj ,

(2i+ 1)π − εj
bj

+ θ0 − θj

–9
=
; .

Note that

H1(Aj ∩ RBj) = H1(RAj ∩ Bj) = π − 2εj − bj |θj − θ0|. (35)

For each j ∈ N large enough, choose functions φj ∈ C∞
c (Ω) and gj ∈ C∞

c (R2,R2)

such that ‖φj‖∞ = ‖gj‖∞ = 1 and

φj(x) = −1, gj(x) = x for x ∈ Aj ; φj(x) = 1, gj(x) = −x for x ∈ Bj .

Then, using (34) and (35), for j large enough,

Ēu(φj ,gj) ≥2H1(Aj ∩ RBj) + 2H1(RAj ∩ Bj)

− 2H1(∂B(0, 1) \ [(Aj ∩ RBj) ∪ (RAj ∩ Bj)])

≥4π − 16εj − 8εjbj .

Taking limits as j → ∞ we conclude that Ē(u) = 4π.

Now we prove that i) implies iii). Indeed, suppose, looking for a contradiction, that

Ē(u) = 4π and θ0
π = a

b
for some a, b ∈ N with a even and b odd. From (34), for every

ε > 0 there exists φ ∈ C∞
c (Ω) with ‖φ‖∞ ≤ 1 such that

Z

∂B(0,1)
|φ(RT x) − φ(x)|dH1(x) ≥ (4 − ε)π.
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Since Rb = 1 and b is odd, from the triangular inequality we obtain that
Z

∂B(0,1)
|φ(RT x) − φ(x)|dH1(x) ≤ 2

Z

∂B(0,1)
|φ(x)|dH1(x)

=

Z

∂B(0,1)
|φ(Rbx) + φ(x)|dH1(x)

≤
Z

∂B(0,1)

bX

j=1

|(−1)j−1φ(Rjx) + (−1)j−1φ(Rj−1x)|dH1(x)

= b

Z

∂B(0,1)
|φ(RT x) + φ(x)|dH1(x),

where the last equality follows from a change of variables. Since

|φ(RT x) − φ(x)| + |φ(RT x) + φ(x)| = 2max{|φ(RT x)|, |φ(x)|} ≤ 2

for x ∈ ∂B(0, 1), it follows that
Z

∂B(0,1)
|φ(RT x) + φ(x)|dH1(x) ≤ επ.

Altogether we have

(4 − ε)π ≤
Z

∂B(0,1)
|φ(RT x) − φ(x)|dH1(x) ≤ 2

Z

∂B(0,1)
|φ(x)|dH1(x) ≤ bεπ.

For ε small enough this is a contradiction.

Finally, we show that iii) implies ii). The conclusion is trivial if θ0/π is of the form
a
b with a odd and b ∈ N. Assume, then, that θ0/π is irrational. The proof of this will

use Farey fractions, which is a standard tool in rational approximation. Their definition

and elementary properties can be found, e.g., in [36, Ch. 6].

For each j ∈ N, there exist pj , qj , rj , sj ∈ N (uniquely determined) such that
pj

qj

and
rj

sj
are Farey fractions of order j, no other Farey fraction of order j lies between

them, and
pj

qj
< θ0

π <
rj

sj
. By [36, Th. 6.4], qj ≤ qj+1 and sj ≤ sj+1. Moreover, the

sets {qi : i ∈ N} and {si : i ∈ N} are infinite, since otherwise θ0/π would be rational.

It follows that limi→∞ qi = limi→∞ si = ∞. By [36, Th. 6.1], one of the fractions
pj

qj
,

rj

sj
has odd numerator; call aj its numerator, bj its denominator, and

εj :=
rj
sj

− pj

qj
.

By [36, Th. 6.1], in fact εj = 1
qjsj

, and so limi→∞ εibi = 0. ⊓⊔

In fact, one can calculate the energy Ē of u when the rotation angle is a
b
π with

a even and b odd, although Proposition 6 shows that, in this case, Ē(u) does not

correspond to any physical quantity. For example, based on the equality

max {|a− b| + |b− c| + |c− a| : a, b, c ∈ [−1, 1]} = 4,

we can easily show that Ē(u) = 8
3π if the rotation angle θ0 in the definition (32) of u

is 2
3π.

The fact that E measures the area of the created surface will be shown in a forth-

coming paper [30].
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7 Discussion

In this final section we comment on other models for cavitation, with or without frac-

ture, that have been previously proposed. We discuss, in particular, some models sug-

gested by Müller and Spector [34], Giaquinta, Modica and Souček [29], and Mucci

[31].

In what follows we use Gu to denote the current carried by the graph of u, and

M(∂Gu) to denote the mass of its boundary, as is customary in the theory of currents.

Apart from proving the existence of minimizers and analyzing their model of cavi-

tation based on the minimization of (2), Müller and Spector mentioned [34, p. 6] that

penalty terms more general that Peru(Ω) could be considered, and proposed M(∂Gu)

as an example. As they indicated, the existence of minimizers for the resulting model

follows from the Federer-Fleming [20] closure theorem. They also pointed out [34, p. 54]

that “the mass of the boundary of the current accounts for all newly created surface,

whether or not the surface is in contact with other pieces of surface”. This latter feature

(that two pieces of created surface have been put together) is the main characteristic

of their example [34, Sect. 11], which we have recalled in Section 3.

In the particular setting of Sobolev deformations, that observation of Müller and

Spector corresponds to our derivation of the energy functional E as a correct expression

for the area of the created surface; this was obtained in Section 3 for the case of

deformations that are smooth except for the formation of cavities and closed cracks,

and will be proved in [30] in its full generality. Indeed, as we mentioned in Section

4, our energy E(u) coincides with the mass M((∂Gu)(n−1)) of the n− 1 vertical part

of the boundary of Gu, and in the case of deformations u in W 1,n−1, the currents

(∂Gu)(n−1) and ∂Gu coincide (see, e.g., [28, Rk. 3.2.3.3]). In the more general case

of cavitation and fracture, however, our results differ. What we have obtained in this

paper is that it is not necessary to control the mass of the whole boundary of Gu,

but, rather, that it is sufficient to control its n − 1 vertical part in order to build an

existence theory (see Theorems 2 and 3). Furthermore, in this more general setting,

the quantity E(u) retains its interpretation as the area of the surface created by u.

The idea that a term related to the mass of the boundary of Gu could be added to

the elastic energy also appeared in the monograph by Giaquinta, Modica and Souček

[28, Sect. 2.6]. They mentioned that one can add to the elastic energy any lower semi-

continuous functional that is coercive with respect to the mass of the boundary of

the current (such as M(∂Gu) itself, as suggested in [34]). Thus, this is a valid model

for elastic energy with a generalized concept of ‘fracture’. However, in their book this

was mentioned only briefly, and the sense in which that functional could measure a

‘fracture’ was not made precise. They did not pursue this argument further, except for

the analysis of radial cavitation.

Finally, we discuss the work of Mucci [31]. His model is based on the minimization

of Z

Ω

W (x,∇u(x)) dx +

n−1X

k=0

Hk(Sk(u))

in the class of functions u that are approximately differentiable, ∇u and its minors

of all orders are in Lp, and the quantities ‖u‖L∞ and M(∂Gu) satisfy an a priori

bound. The set Sk(u) is defined as the union of the supports of the singular part of the

distributional minors of order n−k (see, e.g., [6,33,28] for the definition and properties

of the distributional determinant and the distributional minors).
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In the above model, the set Sk(u) is presented as a k-dimensional fracture set.

This interpretation requires the previous result that Sk(u) is countably Hk-rectifiable.

However, this latter result (which is one of the claims of [31, Prop. 4.9]) is not valid.

Indeed, consider for example the deformation u : (−1, 1)2 → R
2 defined by

u(x) :=

(
x if x ∈ (−1, 0) × (−1, 1),

x + (1, 0) if x ∈ (0, 1) × (−1, 1).
(36)

We have that ∇u = 1 a.e., and it is easy to check that

〈Det∇u − (det∇u)L2, φ〉 =

Z

(−1,1)2

»
−1

2
u · (cof ∇u)Dφ− φ det∇u

–
dx

= − 1

2

"Z

(−1,0)×(−1,1)
+

Z

(0,1)×(−1,1)

#
Div[φ(adj∇u)u] dx =

1

2

Z 1

−1
φ(0, x2) dx2

for every φ ∈ C∞
c ((−1, 1)2). Therefore,

Det∇u = (det∇u)L2 +
1

2
H1 Ju, (37)

where the jump set Ju of u is given by {0} × (−1, 1). Consequently, in this example,

the support S0(u) of the singular part of the distributional Jacobian determinant is

{0}×(−1, 1), so S0(u) does not correspond to cavities (i.e., to 0-dimensional fractures),

and it is not countably H0-rectifiable.

In the case of Sobolev deformations satisfying some invertibility conditions, Müller

and Spector [34, Th. 8.4] proved that the support of the singular part of the distribu-

tional Jacobian determinant is countably H0-rectifiable, and corresponds precisely to

the cavities created by the deformation u. However, the example above shows that this

is not true for maps with fractures. This is because the set Sk(u) does not only detect

fracture surfaces of dimension k, but, in fact, all created surfaces of dimensions k and

above.

The proof in [31, Prop. 4.9] that Sk(u) is countably Hk-rectifiable rests upon [31,

Prop. 4.2], where the result is obtained for the case k = 0. The proof of [31, Prop. 4.2],

in turn, is based on the isoperimetric inequality [31, Prop. 3.1], which is presented as

a generalization of the isoperimetric inequality in the proof of [34, Th. 8.4].

The claim of [31, Prop. 3.1] is that for every x0 ∈ Ω and a.e. r > 0 such that

B̄(x0, r) ⊂ Ω,

|〈(∂Gu) (B̄(x0, r) × R
n), ωn〉| ≤ cnM((∂Gu)(n−1) (B̄(x0, r) × R

n))
n

n−1 , (38)

where cn is the isoperimetric constant, and ωn is a differential form of compact support

such that

ωn(x,y) =
1

n

nX

j=1

(−1)j−1yj ddyj

for x ∈ B̄(x0, r) and y ∈ B̄(0, ‖u‖∞) (we refer the reader to [31] for an exposition of

the concepts and the notation employed). The term

M((∂Gu)(n−1) (B̄(x0, r) × R
n)),
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which coincides with our E(u), corresponds to the area of the surface created by u in

the ball B(x0, r). On the other hand, for all g ∈ C∞
c (Rn,Rn) and a.e. r > 0 small, it

can be seen that

〈(∂Gu) (B̄(x0, r) × R
n), ωg〉 =

Z

B(x0,r)
div g(u(x)) det∇u(x) dx

−
Z

∂B(x0,r)
g(u(x)) · cof ∇u(x)

x − x0

|x − x0|
dHn−1(x),

(39)

where ωg is the differential form

ωg(x,y) :=
nX

j=1

(−1)j−1gj(y)ddyj . (40)

Therefore,

|〈(∂Gu) (B̄(x0, r) × R
n), ωn〉| = |(Det∇u − (det∇u)Ln)(B̄(x0, r))|, (41)

where Det∇u denotes the distributional Jacobian determinant of u. Mucci’s isoperim-

etric inequality, then, states that the singular part of the distributional determinant is

controlled by the area of the created surface raised to the power of n/(n− 1).

If u is a Sobolev map satisfying condition (INV) then (41) provides the total volume

of the cavities generated in B(x0, r), whereas the area of the created surface coincides

with the area of the boundary of those cavities. In this case, therefore, inequality (38)

makes sense (see [34, Lemma 8.1] and [14, Lemma 4.3]), as it is truly an isoperimetric

inequality. In contrast, in the more general case of deformations having discontinuities

along (n − 1)-dimensional surfaces, inequality (38) is not valid. This is because we

cannot define a notion analogous to that of a cavity created; in other words, the created

surface does not necessarily correspond to the boundary of an enclosed volume. As

Det∇u− (det∇u)Ln cannot be interpreted any more as a measure giving the volume

of the cavities, it cannot be dominated by the area of the created surface raised to

some exponent. An explicit example is given by the function u defined in (36). Indeed,

if 0 < r < 1 then, thanks to (37) and (41), we have that

|〈(∂Gu) (B̄(0, r) × R
2), ω2〉| = r,

while

M((∂Gu)(1) B̄(0, r) × R
2) = 4r,

so (38) is not true.

The proof of [31, Prop. 3.1] is based on the equality

〈(∂Gu) (B̄(x0, r) × R
n), ωg〉 = 〈∂(Gu (B(x0, r) × R

n)), ωg〉, (42)

where g is any given function in C∞
c (Rn,Rn), and ωg is the differential form (40).

That equality is incorrect, since it is inconsistent with equations (39) and

〈∂(Gu (B(x0, r) × R
n)), ωg〉 =

Z

B(x0,r)
div g(u(x)) det∇u(x) dx.
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