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Abstract

We consider the Schrödinger operator Aλ := −∆−λ/|x|2, λ ∈ R, when the singularity is located on the boundary
of a smooth domain Ω ⊂ RN , N ≥ 1

The aim of this Note is two folded. Firstly, we justify the extension of the classical Pohozaev identity for the
Laplacian to this case. The problem we address is very much related to Hardy-Poincaré inequalities with boundary
singularities. Secondly, the new Pohozaev identity allows to develop the multiplier method for the wave and the
Schrödinger equations. In this way we extend to the case of boundary singularities well known observability and
control properties for the classical wave and Schrödinger equations when the singularity is placed in the interior
of the domain (Vanconstenoble and Zuazua [17]).

Résumé

Nous allons considérer l’operateur de Schrödinger Aλ := −∆− λ/|x|2, λ ∈ R, lorsque l’origine est située sur la
frontiére d’un domaine borné et régulière Ω ⊂ RN , N ≥ 1.

Cette Note a deux objectifs. Premièrement, nous montrons l’extension de l’identité classique de Pohozaev pour
le Laplacien dans ce cas. Le problème que nous abordons est très lié aux inégalités de Hardy-Poincaré avec
des singularités sur la frontiére. En second lieu, la nouvelle identité de Pohozaev permet de dériver le methode
de multiplicateurs pour les équations des ondes et de Schrödinger. De cette façon, nous étendons au cas de la
singularité frontalière propriétés d’observabilité et contrôle pour les équations des ondes classique et de Schrödinger
bien connues dans le cas d’une singularité à l’interieur (Vancostenoble et Zuazua [17])
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Dans cette Note nous nous intéressons à l’opérateur Aλ := −∆ − λ/|x|2, λ ∈ R, lorsque l’origine
est située sur la frontière d’un domaine régulier Ω ⊂ RN , N ≥ 1. Il est connu que la valeur λ(N) :=
N2/4, qui est la meilleure constante dans les inégalités de Hardy ci-après, est critique lorsque l’on étudie
les propriétés qualitatives de Aλ. Dans la première partie de cette Note nous montrons que pour tout
λ ≤ λ(N), l’identité de Pohozaev (voir Théorème 2) est vérifiée dans le domaine de Aλ, défini par
D(Aλ) := {u ∈ Hλ | Aλu ∈ L2(Ω)}. Nous allons définir plus tard l’espace Hλ et quelques unes de
ses propriétés. Formellement, le Théorème 2 peut être obtenu par intégration directe. Cependant, la
singularité x = 0 engendre une perte de régularité de l’opérateur (Aλ, D(Aλ)) et les intégrations par
parties ne sont plus justifiées rigoureusement. De plus, la régularité L2 de la dérivée normale n’a plus
lieu car les estimations elliptiques standards ne s’appliquent plus puisque la singularité est localisée sur
le bord. Néanmoins, la trace d’un élément de D(Aλ) existe dans un espace L2 à poids, dont le poids
est généré à l’origine, comme il est montré dans le Théorème 1. Dans la deuxième partie de cette Note,
nous montrons plusieurs applications des Théorèmes 1, 2. D’abord des solutions non-triviales d’une EDP
singulière sont traitées dans le Théorème 3. Ensuite, nous dérivons des techniques de multiplicateurs afin
de prouver ”la régularité cachée” de la dérivée normale dans le cas de l’équation des ondes et de l’équation
de Schrödinger, correspondant à Aλ (voir le Théorème 4). En particulier, nous répondons à la question
concernant la controlabilité des systèmes conservatifs. Le résultat principal est donné par le Théorème 5
et est dû à l’identité des multiplicateurs (10), en combinaison avec une inégalité forte de Hardy, formulée
dans le Théorème 6. Pour plus de clareté dand la présentation, nous allons traiter notamment le cas C1
de la figure 1. Cependant, les mêmes résultats peuvent être étendus aux cas C2, C3, C4 dans un cadre
fonctionnel plus faible, dû à l’inégalité plus faible de Hardy (2).

1. Introduction
Let us consider Ω to be a smooth subset of RN , N ≥ 1, with the origin x = 0 placed on its boundary Γ.
Without losing the generality we distinguish the following geometrical configurations for Ω as in Figure
1: C1 - Ω is a subset of RN+ := {x = (x1, . . . , xN ) ∈ RN | xN > 0} (Fig. 1, top left). C2 - Close to x = 0,
the points x ∈ Γ satisfy x · ν ≥ 0. Nevertheless, Ω crosses the hyperplane xN = 0 far from origin (Fig. 1,
top, right). C3 - Close to x = 0, the points x ∈ Γ verify x · ν ≤ 0 (Fig. 1, bottom, left). C4 - For x ∈ Γ
the sign of x · ν changes at origin (Fig. 1, bottom, right).

The following Hardy inequalities are well-known: if Ω verifies the case C1 in Fig. 1, then (e.g. [4]) for
any u ∈ C∞0 (Ω) it holds that∫

Ω

|∇u|2dx ≥ N2

4

∫
Ω

u2

|x|2
dx+

1

4

∫
Ω

u2

|x|2 log2(RΩ/|x|)
dx. (1)

where RΩ = supx∈Ω |x|. If Ω satisfies the cases C2, C3, C4 as in Fig. 1 then (e.g. [8], [9]) there exist
C2 = C2(Ω) ∈ R and C3 = C3(Ω, N) > 0 such that any u ∈ C∞0 (Ω) satisfies

C2

∫
Ω

u2dx+

∫
Ω

|∇u|2dx ≥ N2

4

∫
Ω

u2

|x|2
dx+ C3

∫
Ω

u2

|x|2 log2(RΩ/|x|)
dx. (2)

In both situations above, the constant λ(N) = N2/4 is optimal. For the sake of clarity and because
similar results can be obtained in the other cases in an other functional framework, next we analyze the
situation when Ω verifies the case C1 in Fig. 1. In the sequel let us consider the operator (Aλ, D(Aλ)),
λ ≤ λ(N), acting on such Ω.

Firstly, this Note is aimed to justify the Pohozaev identity (5) in the functional setting (Aλ, D(Aλ))
in which Theorem 1 plays a crucial role. Pohozaev-type identities (e.g. pp. 515, [7]) have been widely
used to show non-existence results to nonlinear elliptic equations. In particular, we point out that this
issue has been also studied for nonlinear equations with singular potentials (see e.g. [5], [10]). In those
cases, due to the regularizing effect of the nonlinearity, the solutions become regular enough to obtain the
corresponding Pohozaev identity by direct computations. This is not precisely our case. To the best of
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C2: The locally elliptic case
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C3: The hyperbolic case
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C4: x · ν changes sign at 0
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Figure 1. Geometry of Ω (in red), ν denotes the outward normal vector

our knowledge, the regularity of the operator (Aλ, D(Aλ)) in terms of the Sobolev spaces is yet unknown
and this affects the direct justification of (5). To do this we proceed by approximations arguments near
the singularity. We analyze two situations when discussing the values of λ: the subcritical case λ ≤ λ(N)
respectively the critical case λ = λ(N). However, the main novelty appears for the critical value λ = λ(N)
in which case Hλ is strictly larger than H1

0 (Ω). This case requires e better understanding of the norm of
Hλ(N) as discussed in Section 2.

The controllability properties and stabilization of the heat and wave equation corresponding to Aλ have
been analyzed in [16], [6], [17] in the case of interior singularity. Roughly speaking, they showed that the
parameter λ? = (N−2)2/4, which is the optimal constant in the Hardy inequality with interior singularity,
is critical when asking the well-posedness and control properties of such systems. In the second part of
this Note we address the question of controllability for the wave and Schrodinger equations corresponding
to Aλ, in the case of boundary singularity. Our main result asserts that we can increase the range of values
λ (from λ? to λ(N)) for which the exact controllability holds.

2. The space Hλ, proper norm and main elliptic results. Following the idea in [18], thanks to
inequality (1) we consider the Hardy functional Bλ[u] =

∫
Ω

[
|∇u|2 − λu2/|x|2

]
dx, which is positive and

finite for all u ∈ C∞0 (Ω). We define the Hilbert space Hλ to be the completion of C∞0 (Ω) functions in
the norm induced by Bλ[u]. If λ < λ(N), it holds that H1

0 (Ω) = Hλ due to Hardy inequality which
ensures the equivalence of the norms. Similar to the case of interior singularity emphasized in [19], an
interesting phenomena appears in the critical space Hλ(N). Assume Ω = {x ∈ RN | |x| ≤ 1, xN >

0} and let e1 := xN |x|−N/2J(z0,1|x|) where z0,1 is the first positive zero of the Bessel function J0.
Then there exists limε→0

∫
x∈Ω,|x|≥ε

[
|∇e1|2−λ(N)e2

1|x|2
]
dx <∞ although e1 6∈ H1

0 (Ω). Surprisingly, the

meaning of Bλ(N)[·] is not well-defined in the sense of principle value. Indeed, if it were one can check that
Bλ(N)[e1 − φ] ≥ C0 > 0, for all φ ∈ C∞0 (Ω) for some universal constant C0 > 0. This is in contradiction
with the definition of Hλ(N) ! The remedy for this is to consider the functional
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Bλ,1[u] =

∫
Ω

∣∣∣∇u+
N

2

x

|x|2
u− eN

xN
u
∣∣∣2dx+ (λ(N)− λ)

∫
Ω

u2

|x|2
dx, (3)

where eN denotes the N−th canonical vector of RN . We observe that Bλ[u] = Bλ,1[u], for all u ∈ C∞0 (Ω).
Therefore, Bλ,1[u] induces a new norm in the space Hλ which is well understood in the sense of principal
value. In the sequel, we denote by || · ||Hλ the norm induced by Bλ,1.
Notations: For any ε > 0, θε is a smooth cut-off function which satisfies θε = 0 for |x| ≤ ε respectively
θε = 1 for |x| ≥ 2ε. Besides, q ∈ (C2(Ω))N denotes a vector field such that q = ν on Γ. H

′

λ denotes the
dual space of Hλ. Next we state our main elliptic results.

Theorem 1 (trace regularity) Assume Ω ⊂ RN , N ≥ 1, verifies the case C1. Let us consider λ ≤
λ(N) and u ∈ D(Aλ). Then

(
∂u/∂ν

)
|x| ∈ L2(Γ) and there exists C = C(Ω) > 0 such that∫

Γ

(∂u
∂ν

)2

|x|2dσ ≤ C(||u||2Hλ + ||Aλu||2L2(Ω)). (4)

Sketch of the proof. In order to avoid the singularity, we multiply Aλu by |x|2(q ·∇u)θε and we integrate
by parts. Then we obtain an identity which, combined with Cauchy-Schwartz inequality, allows to get
uniform upper bounds for the boundary term. Then, by Fatou Lemma we can pass to the limit as ε tends
to zero to end up the proof. �

Theorem 2 (Pohozaev identity) Assume Ω ⊂ RN , N ≥ 1, verifies the case C1 and let λ ≤ λ(N).
Then for all u ∈ D(Aλ) it holds that

1

2

∫
Γ

(x · ν)
(∂u
∂ν

)2

dσ = −
∫

Ω

Aλu(x · ∇u)dx− N − 2

2
||u||2Hλ . (5)

Sketch of the proof. Note firstly that all terms in (5) are finite. Indeed, thanks to the fact that x · ν =
O(|x|2) and Theorem 1 we obtain the integrability of the boundary term. Moreover, x · ∇u ∈ L2(Ω) as
shown in Theorem 6. We proceed by multiplier technique. If λ < λ(N) the multiplier (x ·∇u)θε is used to
obtain (5) in the limit process. If λ = λ(N) we apply the subcritical result for (λ(N)− δ) and we argue
we can pass to the limit as δ tends to zero. Indeed, following approximation lemma which is proved in
generality in [1], for a given u ∈ D(Aλ), the solution uδ of Aλ(N)−δuδ = Aλ(N)u, converges strongly to u
in Hλ(N). Secondly, by comparison arguments we show the asymptotic behavior of uδ, ∇uδ when Aλu is
smooth. This is done by constructing super solutions and using rescalling arguments in [3] to get rid of
the singularity. A density argument together with Theorem 1 concludes the proof. �

Theorem 3 Assume λ ≤ λ(N) and Ω ⊂ RN , N ≥ 3, satisfying the case C1. Let us consider the problem

−∆u− λ

|x|2
u = |u|α−1u, x ∈ Ω; u = 0, x ∈ Γ, (6)

1). If 1 < α < (N + 2)/(N − 2), problem (6) has non trivial solutions in Hλ. Moreover, if 1 < α <
N/(N − 2) it has non trivial solutions in D(Aλ).
2). Assume Ω is a star-shaped domain (i.e. x · ν ≥ 0, for all x ∈ Γ). If α ≥ (N + 2)/(N − 2), problem (6)
does not have non trivial solutions in D(Aλ).
Sketch of the proof. The existence of non-trivial solutions reduces to finding minimizers for the problem
I = inf ||u||Lα+1(Ω)=1 ||u||2Hλ and is due to the compact embedding Hλ ↪→ Lα+1(Ω). The non-existence

result is proved by combining Theorem 2 and unique continuation results as in [12]. �.

3. Applications to controllability
Let us set Γ0 := {x ∈ Γ | x · ν ≥ 0}. a non-empty part of the boundary Γ. Next we consider the

Wave-like process
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
utt −∆u− λ u

|x|2
= 0, (t, x) ∈ QT ,

u(t, x) = h(t, x)χΓ0
, (t, x) ∈ ΣT ,

(u(0, x), ut(0, x)) = (u0(x), u1(x)), x ∈ Ω,

(7)

where QT = (0, T )× Ω, ΣT = (0, T )× Γ and χΓ0 denotes the characteristic function of Γ0.
The solution of (7) is defined in week sense by the transposition method (J.L. Lions [13]). In this

section we address the question of exact controllability of system (7), i.e. whether for any initial data
(u0, u1) ∈ L2(Ω)×H ′

λ and any target (u0, u1) ∈ L2(Ω)×H ′

λ , there exists a finite time T > 0 and a control
h ∈ L2((0, T )×Γ0) such that the solution of (7) satisfies (ut(T, x), u(T, x)) = (u1(x), u0(x)) for all x ∈ Ω.
In view of the time-reversibility of the equation it is enough to consider the null-controllability problem,
i.e. the case where the target (u0, u1) = (0, 0). By now classical Hilbert Uniqueness Method (HUM) (see
J. L. Lions [13]) the null-controllability of system (7) is characterized through the adjoint system

vtt −∆v − λ v

|x|2
= 0, (t, x) ∈ QT ,

v(t, x) = 0, (t, x) ∈ ΣT ,

(v(0, x), vt(0, x)) = (v0(x), v1(x)), x ∈ Ω,

(8)

The operator (Aλ, D(Aλ)) defined by Aλ(v, w) = (w,∆v+λ|x|2v) for all (v, w) ∈ D(Aλ) := D(Aλ)×Hλ

generates the wave semigroup in Hλ × L2(Ω). In view of that, the adjoint system is well-posed.
In the sequel, we justify some “hidden regularity” effect for the system (8) which may not be directly

deduce from the semigroup regularity but from the equation itself.

Theorem 4 (Hidden regularity) Assume λ ≤ λ(N) and v is the solution of (8) corresponding to the
initial data (v0, v1) ∈ Hλ × L2(Ω). Then v satisfies∫ T

0

∫
Γ

(∂v
∂ν

)2

|x|2dσdt ≤ C(||v0||2Hλ + ||v1||2L2(Ω)). (9)

for some universal constant C > 0. Moreover, v verifies the identity

1

2

∫ T

0

∫
Γ

(x · ν)
(∂v
∂ν

)2

dσdt =
T

2
(||v0||2Hλ + ||v1||2L2(Ω)) +

∫
Ω

vt
(
x · ∇v +

N − 1

2
v
)∣∣∣T

0
dx. (10)

Sketch of the proof. By density, tt suffices to prove Theorem 4, for initial data (v0, v1) in D(Aλ). For the
proof of (9) we multiply Aλv by |x|2(q ·∇v)θε and integrate. The integration in time and the conservation
of energy allow to obtain uniform bounds for the boundary term in the energy space. Then by Fatou
Lemma we pass to the limit as ε tends to zero and the proof finishes.

For the proof of (10) we proceed straightforward from Theorem 2. Indeed, for a fixed time t ∈ [0, T ]
we apply Theorem 2 for Aλv = −vtt. Then we integrate in time, and due to the equipartition of energy
we can finish the proof. �

Due to Theorem 4 the operator (v0, v1) 7→
( ∫ T

0

∫
Γ0

(x ·ν)(∂v/∂ν)2dσdt
)1/2

is a linear continuous map in

Hλ×L2(Ω). Let H be the completion of this norm in Hλ×L2(Ω). We consider the functional J : H → R
defined by

J(v0, v1)(v) :=
1

2

∫ T

0

∫
Γ0

(x · ν)
(∂v
∂ν

)2

dσdt− < u1, v0 >H′
λ
,Hλ

+(u0, v1)L2(Ω),L2(Ω), (11)

where v is the solution of (8) corresponding to initial data (v0, v1). Of course, < ·, · >H′
λ
,Hλ

denotes

the duality product. The control h ∈ L2((0, T ) × Γ0) for (7) could be chosen as h = (x · ν)vmin where
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vmin minimizes the functional J on H among the solutions v of (8) corresponding to the initial data
(u0, u1) ∈ H

′

λ × L2(Ω) The existence of a minimizer of J is assured by the coercivity of J which is
equivalent to the Observability Inequality for the adjoint system stated as follows.

Theorem 5 (Observability) For all λ ≤ λ(N), there exists a positive constant D1 = D1(Ω, λ, T ) > 0
such that for all T ≥ 2RΩ, and any initial data (v0, v1) ∈ Hλ × L2(Ω) the solution of (8) verifies

||v0||2Hλ + ||v1||2L2(Ω) ≤ D1

∫ T

0

∫
Γ0

(x · ν)
(∂v
∂ν

)2

dσdt. (12)

Sketch of the proof. The proof of Theorem 5 relies mainly on Theorem 4, combining compactness unique-
ness argument (cf. [14]) and the sharp Hardy inequality stated in Theorem 6.

Theorem 6 Assume Ω satisfies one of the cases C1-C4. Then, there exists a constant C = C(Ω) ∈ R
such that ∫

Ω

|x|2|∇v|2dx ≤ R2
Ω

[ ∫
Ω

|∇v|2dx− N2

4

∫
Ω

v2

|x|2
dx
]

+ C

∫
Ω

v2dx ∀v ∈ C∞0 (Ω). (13)

Remark 1 The proof of Theorem 6 is quite technical and we omit it here. The constant R2
Ω which appears

in inequality (13), helps to obtain the control time T > T0 = 2RΩ, which is sharp from the Geometric
Control Condition considerations, see [2].
The results above guarantee the exact boundary controllability of (7). More precisely, we obtain

Theorem 7 (Controllability) Assume that Ω satisfies C1 and λ ≤ λ(N). For any time T > 2RΩ,
(u0, u1) ∈ L2(Ω)×H ′

λ and (u0, u1) ∈ L2(Ω)×H ′

λ there exists h ∈ L2((0, T )× Γ0) such that the solution
of (7) satisfies (ut(T, x), u(T, x)) = (u1(x), u0(x)) for all x ∈ Ω.

Schrödinger equation. In the above geometrical settings, we consider the Schrödinger equation
iut −∆u− λ u

|x|2
= 0, (t, x) ∈ QT ,

u(t, x) = h(t, x)χΓ0 , (t, x) ∈ ΣT ,

u(0, x) = u0(x), x ∈ Ω,

(14)

For all λ ≤ λ(N), we define the Hilbert space Hλ(Ω;C) as the completion of H1
0 (Ω;C) with respect to the

norm induced by the inner product < u, v >Hλ(Ω;C):= Re
∫

Ω

(
∇u(x) · ∇v(x)− λu(x)v(x)/|x|2

)
dx. Then

Theorem 8 (Controllability) For any λ ≤ λ(N), u0 ∈ H
′

λ, u0 ∈ H
′

λ and any time T > 0 there exists
h ∈ L2((0, T )× Γ0) such that the solution of (14) satisfies u(T, x)) = u0(x) for all x ∈ Ω.
This result holds true due to the result valid for the wave equation. Indeed, the general theory presented
in an abstract form in [15], assure the observability of systems like ż = iA0z using results available for
systems of the form z̈ = −A0z.
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