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Abstract

We study an initial boundary value problem to a model describing the evolu-
tion in time of diffusive phase interfaces in solid materials, in which martensitic
phase transformations driven by configurational forces take place. The model was
proposed earlier by the authors and consists of the partial differential equations of
linear elasticity coupled to a nonlinear, degenerate parabolic equation of second order
for an order parameter. In a previous paper global existence of weak solutions in
one space dimension was proved under Dirichlet boundary conditions for the order
parameter. Here we show that global solutions also exist for Neumann boundary
conditions. Again, the method of proof is only valid in one space dimension.

1 Introduction

In [3] we have investigated a system of partial differential equations modeling the evolu-
tion of a phase interface in solid bodies and proved that in the case of one space dimension
an initial boundary value problem to this system has global solutions.

This system has been derived in [2, 4] from a sharp interface model for martensitic
phase transformations in a solid body. The sharp interface model consists of the equa-
tions of linear elasticity theory coupled with an equation posed on the interface, which
determines the normal speed of the interface. To find the phase field model, the inter-
face condition was transformed in a first step by rigorous mathematical arguments into
a Hamilton-Jacobi transport equation for a smooth order parameter. In a second step
a regularizing term was inserted into the Hamilton-Jacobi equation to avoid that the
order parameter develops singularities after a finite time. This regularizing term, which
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consists of the Laplace operator with a small positive parameter ν, was inserted such that
the second law of thermodynamics holds. For details of this procedure, for mathematical
investigations of phase field models and for the background in continuum mechanics we
refer to [1], [2] – [7], [8, 9, 10, 12, 13, 14].

This derivation suggests that solutions of this system of partial differential equations
converge to solutions of the original sharp interface model for ν → 0. The usage of
the new system of partial differential equations as phase field model for martensitic
transformations depends on this asymptotic behavior. Yet, it is not obvious whether this
convergence really holds. To verify it, we construct in [7] an asymptotic solution for the
system of partial differential equation, which indeed converges to a solution of the sharp
interface model for ν → 0.

The asymptotic behavior of the new phase field model differs in an essential way from
the asymptotic behavior of the standard model, which consists of the equations of linear
elasticity theory coupled with the Allen-Cahn equation. The asymptotic behavior of this
standard model is studied in [11] by formal methods. The result given there shows that
in the limit sharp interface model the driving force of the interface motion contains a
term with the mean curvature of the interface, which cannot be avoided. On the other
hand, the limit model of the new phase field model does not contain such a curvature
term. It is possible to make the constant multiplying the mean curvature term in the
limit model of the Allen-Cahn model small by choosing a parameter in the Allen-Cahn
model appropriately, but in [7] it is shown by analytical considerations and numerical
examples, that in this case the numerical solution of the Allen-Cahn model becomes very
ineffective, and that when the same physical problem is simulated with the new phase
field model the computing time is smaller by a large factor.

This property makes the new phase field model interesting and justifies further inves-
tigation. It would be important to prove rigorously that solutions converge to solutions
of the sharp interface model for ν → 0; the result in [7] is formal, since the asymptotic
solutions constructed there satisfy the new phase field model only up to an error term
in the right hand side of the equations. For a rigorous proof it is necessary to show that
the error in the solution caused by this error term in the right hand side tends to zero for
ν → ∞. Such a proof needs an existence result for the phase field model. In this paper
we do not estimate this error term, but we continue the investigation of the existence
theory, which we started in [3]. There we proved that an initial-boundary value problem
to the new phase field model in one space dimension has solutions, if the displacement
field and the order parameter both satisfy Dirichlet boundary conditions. Here we show
that solutions exist for the one-dimensional problem when the order parameter satisfies
homogeneous Neumann boundary conditions.

We next formulate the initial-boundary value problem in one space dimension and
the main result of the paper. For the original form of the phase field model in three space
dimensions we refer the reader to [3].

Let Ω = (a, d) be a bounded open interval, which represents the material points of
a solid bar. Te is a positive constant, which can be chosen arbitrarily large. We write
QTe = (0, Te)× Ω and define

(v, ϕ) =
∫

Z

v(y) ϕ(y) dy,

where Z = Ω or Z = QTe . If v is a function defined on QTe , we denote the mapping
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x 7→ v(t, x) by v(t). If no confusion is possible we sometimes drop the argument t and
write v = v(t). The crystallographic structure of the material can vary in space and
time. We assume that two different structures, called phases, are possible. The different
phases are characterized by the order parameter S(t, x) ∈ R. A value of S(t, x) near to
zero indicates that the material is in the matrix phase at the point x ∈ Ω at time t, a
value near to one indicates that the material is in the second phase. The other unknowns
are the displacement u(t, x) ∈ R3 of the material point x at time t and the Cauchy stress
tensor T (t, x) ∈ S3, where S3 denotes the set of symmetric 3× 3-matrices. If we denote
the first column of the matrix T (t, x) by T1(t, x) and set

ε(ux) =
1
2

(
(ux, 0, 0) + (ux, 0, 0)T

) ∈ S3,

then the unknowns must satisfy the quasistatic equations

−T1x = b, (1.1)
T = D(ε(ux)− ε̄S), (1.2)
St = −c

(
ψS

(
ε(ux), S

)− νSxx

) |Sx| (1.3)

for (t, x) ∈ QTe . Since the equations (1.1), (1.2) are linear, the inhomogeneous Dirichlet
boundary condition for u can be reduced in the standard way to the homogeneous con-
dition. For simplicity we thus assume that u satisfies homogeneous Dirichlet boundary
conditions. The initial and boundary conditions therefore are

u(t, x) = 0, (t, x) ∈ [0, Te]× ∂Ω, (1.4)
Sx(t, x) = 0, (t, x) ∈ [0, Te]× ∂Ω, (1.5)

S(0, x) = S0(x), x ∈ Ω. (1.6)

Here ε̄ ∈ S3 is a given matrix, the misfit strain, and D : S3 → S3 is a linear, symmetric,
positive definite mapping, the elasticity tensor. In the free energy

ψ∗(ε, S,∇xS) = ψ(ε, S) +
ν

2
|∇xS|2, (1.7)

where
ψ(ε, S) = ψ(ε(∇xu), S) =

1
2
(
D(ε− ε̄S)

) · (ε− ε̄S) + ψ̂(S), (1.8)

we choose for ψ̂ ∈ C2(R, [0,∞)) a double well potential with minima at S = 0 and S = 1.
The scalar product of two matrices is A ·B =

∑
aijbij . Also,

ψS(ε, S) = ∂S ψ(ε, S) = −T · ε̄ + ψ̂′(S)

is the partial derivative, c > 0 is a constant and ν is a small positive constant. Given are
the volume force b : [0,∞) × Ω → R3 and the initial data S0 : Ω → R. This completes
the formulation of the initial-boundary value problem.

To define weak solutions of this initial-boundary value problem we note that because
of 1

2(|y|y)′ = |y| equation (1.3) is equivalent to

St − cν
1
2
(|Sx|Sx)x − c

(
T · ε̄− ψ̂′(S)

)
|Sx| = 0. (1.9)
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Definition 1.1. Let b ∈ L∞(0, Te, L
2(Ω)), S0 ∈ L1(Ω). A function (u, T, S) with

u ∈ L∞(0, Te;W
1,∞
0 (Ω)), (1.10)

T ∈ L∞(QTe), (1.11)
S ∈ L∞(QTe) ∩ L2(0, Te,H

1(Ω)), (1.12)

is a weak solution to the problem (1.1) – (1.6), if the equations (1.1), (1.2), (1.4) are
satisfied weakly and if for all ϕ ∈ C∞

0 ((−∞, Te)× Ω)

(S, ϕt)QTe
−cν

1
2
(|Sx|Sx, ϕx)QTe

+c
((

T · ε− ψ̂′(S)
)|Sx|, ϕ

)
QTe

+(S0, ϕ(0))Ω = 0. (1.13)

The main result of this article is

Theorem 1.1 Assume that there exists a constant M > 0 such that the double well
potential ψ̂ ∈ C1(R, [0,∞)) satisfies

S2 ≤ M(ψ̂(S) + 1). (1.14)

Then to all S0 ∈ H1(Ω) and b ∈ C(QTe
) with bt ∈ C(QTe

) there exists a weak solution
(u, T, S) of the problem (1.1) – (1.6), which, in addition to (1.10) – (1.13), satisfies

St ∈ L
4
3 (QTe), Sx ∈ L

8
3 (0, Te;L∞(Ω)), (1.15)

and
(|Sx|Sx)x ∈ L

4
3 (QTe), Sxt ∈ L

4
3 (0, Te;W−1, 4

3 (Ω)). (1.16)

The remaining sections are devoted to the proof of this theorem. The main difficulty in
the proof stems from the fact that the coefficient ν|Sx| of the highest order derivative
Sxx in the equation (1.3) is not bounded away from zero and that it is not differentiable
with respect to Sx. The equation (1.3) is therefore degenerate parabolic. As in [3], to
overcome this difficulty we approximate (1.3) by a uniformly parabolic equation, where
the regularizing term depends on a parameter κ > 0. We derive a-priori estimates for
solutions of the regularized initial-boundary value problem and use these estimates to
show that a sequence of solutions (uκ, T κ, Sκ) of the regularized problem converges to
a solution of the original problem. The convergence proof is based on the generalized
version of the Aubin-Lions Lemma valid in L1(0, Te;H−2(Ω)). We need this generalized
version since one of the a-priori estimtes is valid only in this space.

In the existence proof for the inital-boundary value problem with Dirichlet boundary
condition given in [3] in use the maximum principle to estimate the L∞-norm of the
functions Sκ. In the case of the Neumann problem this is not possible. We use instead
an energy estimate, which is essentially the Clausius-Duhem inequality, to estimate these
functions. Also, we use a different regularization of the evolution equation (1.3) and apply
a new method to prove Lemma 2.3. Together both modifications lead to a simplification
of the proof of this lemma and of the subsequent convergence proof given in Section 3.

The method of proof is limited to one space dimension, since for the a-priori estimates
it is crucial that the term |Sx|Sxx in (1.3) can be written in the form 1

2(|Sx|Sx)x. In higher
space dimensions the evolution equation for S, which is stated in [3], contains the term
|∇xS|∆xS, which cannot be written in this form.
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2 A-priori estimates for approximate solutions

In this section we study a modified problem obtained by regularization of the equation
(1.3), which we use to construct approximation solutions of (1.1) – (1.6) depending on a
small parameter κ.

2.1 Existence of solutions to a modified problem

In this subsection we formulate the modified initial-boundary value problem and show
that it has a Hölder continuous classical solution. To this end we choose a function
χ ∈ C∞

0 (R+, [0,∞)), which satisfies
∫∞
−∞ χ(t)dt = 1. For κ > 0, we set

χκ(t) :=
1
κ

χ

(
t

κ

)
,

and for S ∈ L∞(QTe ,R) we define

(χκ ∗ S)(t, x) =
∫ Te

0
χκ(t− s)S(s, x)ds. (2.1)

The modified initial-boundary value problem consists of the equations

−T1x = b, (2.2)
T = D(ε(ux)− ε̄χκ ∗ S), (2.3)

St = c
(
νSxx + T · ε̄− ψ̂′(S)

)
|Sx|κ , (2.4)

which must hold in QTe , and of the boundary and initial conditions

u(t, x) = 0, (t, x) ∈ [0, Te]× ∂Ω, (2.5)
Sx(t, x) = 0, (t, x) ∈ [0, Te]× ∂Ω, (2.6)
S(0, x) = S0(x), x ∈ Ω. (2.7)

To formulate an existence theorem for this problem we need some function spaces: For
nonnegative integers m,n and a real number α ∈ (0, 1) we denote by Cm+α(Ω) the space
of m-times differentiable functions on Ω, whose m-th derivative is Hölder continuous with
exponent α. The space Cα,α/2(QTe

) consists of all functions on QTe
, which are Hölder

continuous in the parabolic distance

d((t, x), (s, y)) :=
√
|t− s|+ |x− y|2.

Cm,n(QTe
) and Cm+α,n+α/2(QTe

), respectively, are the spaces of functions, whose x–
derivatives up to order m and t–derivatives up to order n belong to C(QTe

) or to
Cα,α/2(QTe

), respectively.

Theorem 2.1 Let ν, κ > 0, Te > 0. Suppose that the function b ∈ C(QTe
) has the

derivative bt ∈ C(QTe
), that the initial data S0 is in C2+α(Ω) and that S0, u(0, ·) and

T (0, ·) satisfy the compatibility conditions

S0,x(x) = 0,

St(0, x) = cκ
(
νS0,xx(x) + T (0, x) · ε̄− ψ̂(S0(x))

)
,

T (0, x) = Dε(ux(0, x)),

(2.8)
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for x ∈ ∂Ω. Then there exists a solution

(u, T, S) ∈ C2,1(QTe
)× C1,1(QTe

)× C2+α,1+α/2(QTe
)

to the modified initial-boundary value problem (2.2) – (2.7). This solution satisfies Stx ∈
L2(QTe).

Remark 1. The unusual compatibility conditions (2.8) hold, for example, if S0 and
u(0, x) satisfy

S0|∂Ω = S0,xx|∂Ω = 0, ux(0, ·)|∂Ω = 0.

We refer the reader also to [3].

Sketch of the proof of Theorem 2.1. Note that if S is given then for every t the equations
(2.2), (2.3), (2.5) form a linear elliptic boundary value problem for the unknown function
x 7→ (u(t, x), T (t, x)). In [4] the authors have shown that the unique solution of this
problem is given by

u(t, x) = u∗
(∫ x

a
(χκ ∗ S)(t, y)dy − x− a

d− a

∫ d

a
(χκ ∗ S)(t, y)dy

)
+ w(t, x), (2.9)

T (t, x) = D(ε∗ − ε̄)(χκ ∗ S)(t, x)− Dε∗

d− a

∫ d

a
(χκ ∗ S)(t, y)dy + σ(t, x), (2.10)

where u∗ ∈ R3, ε∗ ∈ S3 are suitable constants only depending on ε̄ and D, and where for
every t ∈ [0, Te] the function (w(t), σ(t)) : Ω → R3 × S3 is the solution to the boundary
value problem

−σ1x(t) = b(t),
σ(t) = Dε(wx(t)),

w(t)|∂Ω = 0.

Insertion of (2.10) into (2.4) yields the parabolic equation

St = a1(Sx)Sxx + a2

(
t, x, S, Sx, χκ ∗ S,

1
d− a

∫ d

a
(χκ ∗ S)(t, y)dy

)
, (2.11)

which contains a non-local term. Here the coefficients are defined by

a1(p) = cν|p|κ ,

a2(t, x, S, p, r, s) = c
(
ε̄ ·D(ε∗ − ε̄)r − ε̄ ·Dε∗s + ε̄ · σ(t, x)− ψ̂′(S)

)
|p|κ .

The statements of Theorem 2.1 follow if we can show that the inital-boundary value
problem to the equation (2.11) has a solution with appropriate regularity properties. To
verify this we combine an existence theorem for nonlinear parabolic equations given in
[15] with some obvious considerations concerning the non-local term in (2.11). Details of
the proof can be found in [3].
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2.2 A-priori estimates which are uniform in κ

We next construct a family of solutions (uκ, T κ, Sκ) of (2.2) – (2.7) and derive a-priori
estimates for these solutions, which hold uniformly with respect to the positive parameter
κ. To define the solution family, let Te be a fixed positive number and choose for every
κ a function Sκ

0 ∈ C∞(Ω) such that

‖Sκ
0 − S0‖H1(Ω) → 0, κ → 0, (2.12)

where S0 ∈ H1(Ω) are the initial data given in Theorem 1.1. We insert for S0 in (2.7)
the function Sκ

0 and choose for b in (2.2) the function given in Theorem 1.1. These
functions satisfy the assumptions of Theorem 2.1, hence there is a solution (uκ, T κ, Sκ)
of the modified problem (2.2) – (2.7), which exists in QTe .

In what follows we assume, without loss of generality, that

0 < κ ≤ 1, (2.13)

since we consider the limit κ → 0. The L2(Ω)-norm is denoted by ‖ · ‖, and the letter C
stands for universal positive constants independent of κ. The first a-priori estimates are

Lemma 2.1 There holds for any t ∈ [0, Te]

‖Sκ
x(t)‖2 + ‖Sκ(t)‖2 + ‖ε(uκ

x(t))‖2 ≤ C, (2.14)
‖Sκ‖L∞(QTe ) ≤ C, (2.15)

‖T κ · ε̄− ψ̂′(Sκ)‖L∞(QTe ) ≤ C. (2.16)

Proof. It is easy to see that (2.15) is a direct consequence of (2.14) by the Sobolev em-
bedding theorem. To prove (2.16) we use (2.14) to conclude that Sκ

x ∈ L∞(0, Te;L2(Ω)).
From this information and from the elliptic regularity theory for the linear elasticity
system (2.2) – (2.3) we obtain that

‖uκ‖L∞(0,Te;H2(Ω)) ≤ C,

which implies uκ
x ∈ L∞(QTe). By (2.3) we then arrive at (2.16).

It remains to prove (2.14). We denote εκ = ε(uκ
x). Let the free energy ψ∗ and the

flux q be defined by

ψ∗(εκ, Sκ, Sκ
x) = ψ(εκ, Sκ) +

ν

2
|Sκ

x |2 =
1
2
D(εκ − ε̄Sκ) · (εκ − ε̄Sκ) + ψ̂(Sκ) +

ν

2
|Sκ

x |2,

q = q(uκ
t , T κ, Sκ

x , Sκ
t ) = T κ · uκ

t + νSκ
t Sκ

x .

If (uκ, T κ, Sκ) satisfies (2.2) – (2.4), then a straightforward computation yields

d

dt

∫

Ω
ψ∗(εκ, Sκ, Sκ

x)dx−
∫

Ω
divx qκdx−

∫

Ω
b · uκ

t dx

= −
∫

Ω

(
νSκ

xx + T κ · ε̄− ψ̂S(Sκ)
)2
|Sκ

x |κdx

≤ 0. (2.17)

7



In fact, this inequality means that the Clausius-Duhem inequality holds. From the bound-
ary conditions uκ

t = 0 and Sκ
x = 0 we see that q = 0 at the boundary. Thus integrating

(2.17) implies
∫

Ω
ψ∗(εκ, Sκ, Sκ

x)dx

∣∣∣∣
t

0

≤
∫ t

0

∫

Ω
b · uκ

t dxdτ

=
∫ t

0

d

dt

∫

Ω
b · uκdxdτ −

∫

Qt

bt · uκd(τ, x)

=
∫

Ω
b · uκdx

∣∣∣∣
t

0

−
∫

Qt

bt · uκd(τ, x). (2.18)

Hence, ∫

Ω
ψ∗(εκ, Sκ, Sκ

x)(t, x)dx−
∫

Ω
ψ∗(εκ, Sκ, Sκ

x)(0, x)dx

≤
∫

Ω
(b · uκ)(t, x)dx−

∫

Ω
(b · uκ)(0, x)dx +

∫

Qt

(bt · uκ)d(τ, x). (2.19)

Now we deal with (2.19) term by term. From well known a-priori estimates for the linear
elliptic system (2.2) – (2.3) and from the assumptions for S0 we obtain

‖uκ(0)‖H1(Ω) ≤ C, (2.20)

and the assumptions for b and Hölder’s inequality yield∣∣∣∣
∫

Ω
ψ∗(εκ, Sκ, Sκ

x)(0, x)dx

∣∣∣∣ ≤ C, (2.21)
∣∣∣∣
∫

Ω
b(0, x)uκ(0, x)dx

∣∣∣∣ ≤ C. (2.22)

We next use the fact that uκ(t) vanishes at the boundary and that the definition of ε(uκ
x)

implies |ε(uκ
x)|2 ≥ 1

2 |uκ
x|2 to conclude from Poincaré’s inequality and from the regularity

assumptions of b for every µ > 0
∣∣∣∣
∫

Ω
buκ dx

∣∣∣∣ ≤ ‖b‖ ‖uκ‖ ≤ C‖b‖ ‖uκ
x‖ ≤

C2

2µ
‖b‖2 +

µ

2
‖uκ

x‖2 ≤ Cµ + µ‖εκ‖2, (2.23)

∣∣∣∣
∫

Qt

btu
κdxdτ

∣∣∣∣ ≤
∫ t

0
‖bt‖ ‖uκ‖dτ ≤ C

∫ t

0

(‖bt‖2 + ‖uκ
x‖2

)
dτ ≤ C + C

∫ t

0
‖εκ‖2dτ.

(2.24)

Combining (2.19) – (2.24) we arrive at
∫

Ω
ψ∗(εκ, Sκ, Sκ

x)(t, x)dx ≤ Cµ + µ‖εκ(t)‖2 + C

∫ t

0
‖εκ(τ)‖2dτ. (2.25)

In order to absorb the term µ‖ε‖2 in the right hand side we use assumption (1.14) to
find

‖εκ‖2 ≤ 2‖ε̄Sκ‖2 + 2‖εκ − ε̄Sκ‖2

≤ C

∫

Ω

(
M(ψ̂(Sκ) + 1) +

1
2
(D(εκ − ε̄Sκ)) · (εκ − ε̄Sκ)

)
dx

≤ C

∫

Ω
ψ∗(εκ, Sκ, Sκ

x) dx .
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Thus we can choose µ sufficiently small to obtain
∫

Ω
ψ∗(εκ, Sκ, Sκ

x) dx ≤ C

(
1 +

∫ t

0

∫

Ω
ψ∗(εκ, Sκ, Sκ

x) dxdτ

)
. (2.26)

Applying Gronwall’s inequality in the integral form we conclude from this inequality that
there is CTe such that for every t ∈ [0, Te]

∫ t

0

∫

Ω
ψ∗(εκ, Sκ, Sκ

x) dxdτ ≤ CTe . (2.27)

Since (1.14) and (1.7) imply

|S|2 +
ν

2
|Sx|2 ≤ (M + 1)(ψ∗(ε, S, Sx) + 1),

(2.26) becomes
‖Sκ

x(t)‖2 + ‖Sκ(t)‖2 + ‖εκ(t)‖2 ≤ C.

The proof of the lemma is complete.

Lemma 2.2 There holds for any t ∈ [0, Te]

‖Sκ
x(t)‖2 + ν

∫ t

0

∫

Ω
|Sκ

x |κ|Sκ
xx|2dxdτ ≤ C. (2.28)

Proof. Observe first that Sκ
tx ∈ L2(QTe), by Theorem 2.1, which yields that for almost

all t
1
2

d

dt
‖Sκ

x(t)‖2 =
∫

Ω
Sκ

x(t)Sκ
xt(t)dx.

Using this relation, (2.16) and (2.15) we obtain by multiplication of (2.4) by −Sκ
xx and

integration by parts with respect to x, where we take the boundary condition (2.6) into
account, that for almost all t

1
2

d

dt
‖Sκ

x‖2 + ν

∫

Ω
|Sκ

x |κ|Sκ
xx|2dx = c

∫

Ω

(
ψ̂′(Sκ)− T κ · ε

)
|Sκ

x |κSκ
xxdx

≤ C

∫

Ω
|Sκ

x |κ|Sκ
xx|dx = C

∫

Ω
|Sκ

x |
1
2
κ |Sκ

x |
1
2
κ |Sκ

xx|dx

≤ ν

2

∫

Ω
|Sκ

x |κ|Sκ
xx|2dx +

2C2

ν

∫

Ω
(|Sκ

x |κ)2dx. (2.29)

We subtract the term ν
2

∫
Ω |Sκ

x |κ|Sκ
xx|2dx on both sides of this inequality and use Gron-

wall’s Lemma to derive (2.28) from the resulting estimate, noting also (2.12). This
completes the proof.

From this estimate we obtain more estimates which we collect now.
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Corollary 2.1 There holds for any t ∈ [0, Te]
∫ t

0

∫

Ω
(|Sκ

x |κ|Sκ
xx|)

4
3 dxdτ ≤ C, (2.30)

∫ t

0

∫

Ω
(|Sκ

x | |Sκ
xx|)

4
3 dxdτ ≤ C, (2.31)

∫ t

0

∥∥∥∥
∫ Sκ

x

0
|y|κdy

∥∥∥∥
4
3

W 1, 43 (Ω)

dτ ≤ C, (2.32)

∫ t

0

∥∥∥∥
∫ Sκ

x

0
|y|κdy

∥∥∥∥
4
3

L∞(Ω)

dτ ≤ C, (2.33)

‖ |Sκ
x |Sκ

x‖L
4
3 (0,Te;L∞(Ω))

≤ C, (2.34)
∫ t

0
‖Sκ

x‖
8
3

L∞(Ω) dτ ≤ C. (2.35)

Proof. By Hölder’s inequality, we have for some 2 > p ≥ 1, q = 2
p and 1

q + 1
q′ = 1 that

∫ t

0

∫

Ω
(|Sκ

x |κ|Sκ
xx|)p dxdτ

=
∫ t

0

∫

Ω
(|Sκ

x |κ)
p
2

(
(|Sκ

x |κ)
p
2 |Sκ

xx|p
)

dxdτ

≤
(∫ t

0

∫

Ω
(|Sκ

x |κ)
pq′
2 dxdτ

) 1
q′

(∫ t

0

∫

Ω
(|Sκ

x |κ)
pq
2 |Sκ

xx|pqdxdτ

) 1
q

≤
(∫ t

0

∫

Ω
(|Sκ

x |κ)
p

2−p dxdτ

) 2−p
2

(∫ t

0

∫

Ω
|Sκ

x |κ|Sκ
xx|2dxdτ

) p
2

. (2.36)

Inequality (2.28) implies for p
2−p ≤ 2, i.e. p ≤ 4

3 , that the right hand side of (2.36) is
bounded. This yields the estimate (2.30). Writing

|Sκ
x |κSκ

xx =
(∫ Sκ

x

0
|y|κdy

)

x

, (2.37)

and invoking the boundary condition Sκ
x |x∈[0,Te]×∂Ω = 0, we show easily that (2.30)

implies (2.32) by the Poincaré inequality, and one has

∫ t

0

∥∥∥∥
∫ Sκ

x

0
|y|κdy

∥∥∥∥
4
3

L
4
3 (Ω)

≤ C,

thence we get
∫ Sκ

x
0 |y|κdy ∈ L

4
3 (0, Te;W 1, 4

3 (Ω)). Making use of the Sobolev embedding
theorem, we get (2.33).

Sine 1
2(|y|y)′ = |y| we know that (2.35) is equivalent to (2.34). To prove (2.35), we
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rewrite
∫ Sκ

x
0 |y|κdy as

∫ Sκ
x

0
|y|κdy =

∫ Sκ
x

0
|y|dy +

∫ Sκ
x

0
(|y|κ − |y|)dy

=
1
2
|y|y

∣∣∣∣
Sκ

x

0

+
∫ Sκ

x

0

κ2

|y|κ + |y|dy

=
1
2
|Sκ

x |Sκ
x +

∫ Sκ
x

0

κ2

|y|κ + |y|dy. (2.38)

Thus

1
2
(|Sκ

x |Sκ
x)x =

(∫ Sκ
x

0
|y|dy

)

x

=
(∫ Sκ

x

0
|y|κdy

)

x

− κ2Sκ
xx

|Sκ
x |κ + |Sκ

x |
. (2.39)

From |y|κ + |y| ≥ κ it is easy to see that

κ2

|y|κ + |y| ≤
κ2

κ
= κ. (2.40)

By the Young inequality we obtain from (2.28) and the assumption that k ≤ 1 that

‖κSκ
xx‖L

4
3 (QTe )

≤
(∫

QTe

(
κ2 + κ|Sκ

xx
2|) d(τ, x)

) 3
4

≤ C.

Combination with (2.33), (2.39) and (2.40) yields

‖(|Sκ
x |Sκ

x)x‖
L

4
3 (QTe )

≤ C

(∥∥∥∥
(∫ Sκ

x

0
|y|κdy

)

x

∥∥∥∥
L

4
3 (QTe )

+ ‖κSκ
xx‖L

4
3 (QTe )

)
≤ C.

Using the boundary condition Sκ
x |x∈[0,Te]×∂Ω = 0, and applying again the Poincaré in-

equality we obtain
‖|Sκ

x |Sκ
x‖L

4
3 (QTe )

≤ C,

hence
‖|Sκ

x |Sκ
x‖L

4
3 (0,Te;W

1, 43 (Ω))
≤ C.

Therefore one concludes by the Sobolev embedding theorem that

‖|Sκ
x |Sκ

x‖L
4
3 (0,Te;L∞(Ω))

≤ C,

that is
‖Sκ

x‖L
8
3 (0,Te;L∞(Ω))

≤ C.

This proves the corollary.

Lemma 2.3 The function Sκ
t belongs to L

4
3 (QTe) and we have the estimates

‖Sκ
t ‖L4/3(QTe ) ≤ C , (2.41)

‖(|Sκ
x |Sκ

x)t‖L1(0,Te;H−2(Ω)) ≤ C . (2.42)
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Proof. From the equation (2.4) and the estimates (2.30), and (2.28) we immediately see
that Sκ

t ∈ L
4
3 (QTe) and that (2.41) holds. Therefore we only need to prove the second

estimate.
To verify (2.42) we must show that there exists a constant C, which is independent

of κ, such that
∣∣∣((|Sκ

x |Sκ
x)t , ϕ)QTe

∣∣∣ ≤ C‖ϕ‖L∞(0,Te;H2(Ω)) (2.43)

for all functions ϕ ∈ L∞(0, Te;H2
0 (Ω)). To prove (2.43), we first prove that for any

1 ≥ δ > 0 there holds
∣∣∣∣∣
((∫ Sκ

x

0
|y|δdy

)

t

, ϕ

)

QTe

∣∣∣∣∣ ≤ C‖ϕ‖L∞(0,Te;H2(Ω)) (2.44)

for all functions ϕ ∈ L∞(0, Te;H2
0 (Ω)). Here δ is independent of κ. Inequality (2.43) is

obtained from this estimate as follows: From Sκ
x ∈ L∞(0, Te, L

2(Ω)) ⊂ L2(QTe), Sκ
xt ∈

L2(QTe) and | |y|δ − |y| | ≤ δ → 0 as δ → 0 we infer that ‖ |Sκ
x |δ − |Sκ

x | ‖L∞(QTe ) → 0. A
straightforward computation yields that

(∫ Sκ
x

0
|y|δdy

)

t

= |Sκ
x |δSκ

xt . (2.45)

Therefore,
(∫ Sκ

x
0 |y|δdy

)
t
= |Sκ

x |δSκ
xt → |Sκ

x |Sκ
xt strongly in L2(QTe). Whence, as δ → 0,

((∫ Sκ
x

0
|y|δdy

)

t

, ϕ

)
→ 1

2
((|Sκ

x |Sκ
x)t , ϕ)QTe

for all ϕ ∈ L∞(0, Te;H2
0 (Ω)) ⊂ L∞(QTe). This relation together with (2.44) implies

(2.43).
Thus it suffices to prove (2.44). To simply the notations we define

Rκ := c
(
νSκ

xx + T κ · ε̄− ψ̂′(Sκ)
)
|Sκ

x |κ . (2.46)

Multiplying equation (2.4) by (|Sκ
x |δϕ)x , integrating the resulting equation with respect

to (t, x) over QTe , using integration by parts for the term with the time derivative and
noting (2.45), we obtain

0 = (Sκ
t −Rκ, (|Sκ

x |δϕ)x)QTe

= − (Sκ
xt, |Sκ

x |δϕ)QTe
− (Rκ, (|Sκ

x |δϕ)x)QTe

= −
((∫ Sκ

x

0
|y|δdy

)

t

, ϕ

)

QTe

−
(
Rκ, (|y|δ)′

∣∣
y=Sκ

x
Sκ

xxϕ
)
− (Rκ, |Sκ

x |δϕx) .(2.47)

Remembering that Sκ
xt ∈ L2(QTe) for any fixed κ, we see that the first term in the second

equality of (2.47) is properly defined. To estimate the last two terms on the right hand
side of this inequality we note that there holds

∣∣(|y|δ)′
∣∣ =

∣∣∣∣
y

|y|δ

∣∣∣∣ ≤ 1 and |y|δ ≤ |y|+ 1,
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which yields the estimates
∣∣∣∣
(
Rκ, (|y|δ)′

∣∣
y=Sκ

x
Sκ

xxϕ
)

QTe

∣∣∣∣ ≤
∣∣∣(|Rκ|, |Sκ

xxϕ|)QTe

∣∣∣

≤
∣∣∣
(|Sκ

x |κ|Sκ
xx|2, |ϕ|

)
QTe

∣∣∣ +
∣∣∣∣
(
|T κ · ε− ψ̂S(Sκ)|, |Sκ

x |κ|Sκ
xxϕ|

)
QTe

∣∣∣∣
≤ C‖ϕ‖L∞(QTe ) ≤ C‖ϕ‖L∞(0,Te;H2(Ω)) + I, (2.48)

and
∣∣∣(Rκ, |Sκ

x |δϕx)QTe

∣∣∣ ≤ C

∫

QTe

(|Sκ
x |+ 1) |Sκ

x |κ|Sκ
xxϕx|d(τ, x)

+C

∫

QTe

∣∣∣(T κ · ε− ψ̂S(Sκ))
∣∣∣ |Sκ

x |κ(|Sκ
x |+ 1) |ϕx| d(τ, x)

= I1 + I2. (2.49)

We estimate I first. Recalling that |T κ · ε− ψ̂S(Sκ)| ≤ C, one has

I ≤ C

∫

QTe

|Sκ
x |

1
2
κ |Sκ

x |
1
2
κ |Sκ

xx| |ϕ| d(t, x)

≤ C

∫ Te

0
‖ |Sκ

x |
1
2
κ ‖L4(Ω)‖ |Sκ

x |
1
2
κ Sκ

xx‖ ‖ϕ‖L4(Ω)dτ

≤ C

(∫ Te

0
‖ |Sκ

x |
1
2
κ Sκ

xx‖2dτ

) 1
2
(∫ Te

0
‖ϕ‖2

L4(Ω)dτ

) 1
2

≤ C‖ϕ‖L2(0,Te;L4(Ω)). (2.50)

Next, we consider I1, I2. The term I1 can be handled as

I1 ≤ C

∫ t

0
‖ |Sκ

x |
1
2
κ ‖L∞(Ω)‖ϕx‖L∞(Ω)

(∫

Ω
(1 + |Sκ

x |2)dx

) 1
2
(∫

Ω
|Sκ

x |κ|Sκ
xx|2dx

) 1
2

dτ

≤ C‖ϕx‖L∞(0,Te;H1(Ω))

∫ t

0
(‖Sκ

x‖
1
2

L∞(Ω) + 1)
(∫

Ω
|Sκ

x |κ|Sκ
xx|2dx

) 1
2

dτ

≤ C‖ϕ‖L∞(0,Te;H2(Ω))

(∫ t

0
(‖Sκ

x‖
1
2

L∞(Ω) + 1)2dτ

) 1
2
(∫ t

0
‖ |Sκ

x |
1
2
κ Sκ

xx‖2dτ

) 1
2

≤ C‖ϕ‖L∞(0,Te;H2(Ω)). (2.51)

Here we used the estimates in Lemma 2.2 and Lemma 2.3. The term I2 is easier to
estimate. Using again the inequallity |T κ · ε− ψ̂S(Sκ)| ≤ C, we obtain that

I2 ≤ C

∫ t

0

∫

Ω
|Sκ

x |κ(1 + |Sκ
x |) |ϕx|dxdτ ≤

∫ t

0

∫

Ω
(|Sκ

x |+ 1)2 |ϕx|dxdτ

≤ C‖ϕx‖L∞(QTe )

∫ t

0

(‖Sκ
x‖2 + 1

)
dτ

≤ C‖ϕ‖L∞(0,Te;H2(Ω)). (2.52)
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Combination of (2.47) – (2.52) yields
∣∣∣∣∣
((∫ Sκ

x

0
|y|δdy

)

t

, ϕ

)

QTe

∣∣∣∣∣ ≤ C(‖ϕ‖L∞(0,Te;H2
0 (Ω)) + ‖ϕ‖L2(0,Te;L4(Ω)))

≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)) , (2.53)

which implies (2.44) and completes the proof.

3 Existence of solutions to the phase field model

In this section we use the a priori estimates established in the previous section to study
the convergence of (uκ, T κ, Sκ) as κ → 0. We shall show that there is a subsequence,
which converges to a weak solution of the initial-boundary value problem (1.1) – (1.6),
thereby proving Theorem 1.1.

Note first that the estimates (2.14), (2.35), (2.41), the fact that Ω is bounded, and
Poincaré’s inequality imply

‖Sκ‖W 1,4/3(QTe ) ≤ C , (3.1)

for a constant C independent of κ. Hence, we can select a sequence κn → 0 and a function
S ∈ W 1,4/3(QTe), such that the sequence Sκn , which we again denote by Sκ, satisfies

‖Sκ − S‖L4/3(QTe ) → 0, Sκ
x ⇀ Sx , Sκ

t ⇀ St , (3.2)

where the weak convergence is in L4/3(QTe) .
As usual, since equation (2.4) is nonlinear, the weak convergence of Sκ

x is not enough
to prove that the limit function solves this equation. In the following lemma we therefore
show that Sκ

x converges pointwise almost everywhere:

Lemma 3.1 There exists a subsequence of Sκ
x , we still denote it by Sκ

x , such that

Sκ
x → Sx, a.e. in QTe , (3.3)

|Sκ
x |κ → |Sx|, a.e. in QTe , (3.4)

|Sκ
x |κ ⇀ |Sx|, weakly in L

4
3 (QTe), (3.5)∫ Sκ

x

0
|y|dy → 1

2
Sx|Sx|, strongly in L

4
3 (0, Te;L2(Ω)), (3.6)

∫ Sκ
x

0
|y|κdy → 1

2
Sx|Sx|, strongly in L

4
3 (0, Te;L2(Ω)), (3.7)

as κ → 0.

The proof is based on the following two results:

Theorem 3.1 Let B0 be a normed linear space imbedded compactly into another normed
linear space B which is continuously imbedded into a Hausdorff locally convex space
B1. Assume that 1 ≤ p < +∞, that v, vi ∈ Lp(0, Te;B0) for all i ∈ IN, that the se-
quence {vi}i∈IN converges weakly to v in Lp(0, Te;B0) and that {∂vi

∂t }i∈IN is bounded in
L1(0, Te;B1). Then vi converges to v strongly in Lp(0, Te;B).
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Lemma 3.2 Let (0, Te) × Ω be an open set in R+ × Rn and assume that 1 < q < ∞.
Suppose that the functions gn, g ∈ Lq((0, Te)× Ω) satisfy

‖gn‖Lq((0,Te)×Ω) ≤ C, gn → g almost everywhere in (0, Te)× Ω.

Then gn converges to g weakly in Lq((0, Te)× Ω).

Theorem 3.1 is a general version of Aubin-Lions lemma valid under the weak assumption
∂tvi ∈ L1(0, Te;B1). This version, which we need here, is proved in [18] and in [17]. A
proof of Lemma 3.2 can be found in [16, p.12].

Proof of Lemma 3.1: We choose p = 4
3 and

B0 = W 1, 4
3 (Ω), B = L2(Ω), B1 = H−2(Ω).

These spaces satisfy the assumptions of the theorem. Since the estimates (2.30), (2.32)
and (2.42) imply that the sequence

∫ Sκ
x

0 |y|dy is uniformly bounded in Lp(0, Te;B0) for

κ → 0 and
(∫ Sκ

x
0 |y|dy

)
t

is uniformly bounded in L1(0, Te;B1), it follows from Theo-

rem 3.1 that there is a subsequence, still denoted by
∫ Sκ

x
0 |y|dy, which converges strongly

in Lp(0, Te;B) = L
4
3 (0, Te;L2(Ω)) to a limit function G ∈ L

4
3 (0, Te;L2(Ω)). Conse-

quently, from this sequence we can select another subsequence, denoted in the same
way, which converges almost everywhere in QTe . Using that the mapping y 7→ f(y) :=∫ y
0 |ξ|dξ = 1

2y|y| has a continuous inverse f−1 : R → R, we infer that also the sequence

Sκ
x = f−1

(∫ Sκ
x

0 |y|dy
)

converges pointwise almost everywhere to f−1(G) in QTe . From

the uniqueness of the weak limit we conclude that f−1(G) = Sx almost everywhere in
QTe .

For the proof of (3.7) we write

∫ Sκ
x

0
|y|κdy =

∫ Sκ
x

0
|y|dy +

∫ Sκ
x

0
(|y|κ − |y|)dy = I1 + I2.

It is easy to estimate I2 as ‖I2‖L2(QTe ) ≤ ‖κSκ
x‖L2(QTe ) ≤ Cκ‖Sκ

x‖L∞(0,Te;L2(Ω)) ≤ Cκ →
0. Therefore,

∫ Sκ
x

0 |y|κdy → limκ→0 I1 = 1
2 |Sx|Sx strongly in L

4
3 (0, Te;L2(Ω). This is

(3.7).
To prove (3.5) we note that the estimate |Sκ

x |κ ≤ |Sκ
x | + κ and the inequality (3.1)

together imply that the sequence |Sκ
x |κ is uniformly bounded in L

4
3 (QTe). Thus, (3.5) is

a consequence of (3.4) and Lemma 3.2.

Proof of Theorem 1.1: Define the functions u and T by

u(t, x) = u∗
(∫ x

a
S(t, y)dy − x− a

d− a

∫ d

a
S(t, y)dy

)
+ w(t, x), (3.8)

T (t, x) = D(ε∗ − ε̄)S −Dε∗
1

d− a

∫ d

a
S(t, y)dy + σ(t, x), (3.9)

where for S we insert the limit function of the sequence Sκ given in (3.2), and where
u∗ ∈ R3, ε∗ ∈ S3 and (w, σ) are the same constants and functions as in (2.9) and (2.10).
We prove that (u, T, S) is a weak solution of problem (1.1) – (1.6).
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Remember first that by Lemma 2.1 we have S ∈ L∞(QTe). From this relation, from
the above definition of u and T and from (w, σ) ∈ C2,1(Q̄Te)×C1,1(Q̄Te) we immediately
see that u and T satisfy (1.10) and (1.11). Observe next that ‖Sκ‖L∞(0,Te;H1

0 (Ω)) ≤ C, by
Lemma 2.1 and Sobolev’s embedding theorem. This implies S ∈ L∞(0, Te;H1

0 (Ω)), since
we can select a subsequence of Sκ which converges weakly to S in this space. Thus, S
satisfies (1.12).

It is shown in [4] that the functions u and T defined in this way satisfy the equations
(1.1), (1.2) and (1.5). We remarked this previously. It therefore suffices to show that the
equations (1.3) and (1.6) are fulfilled in the weak sense. By definition, these equations
are satisfied in the weak sense if the relation (1.13) holds. To verify (1.13) we use that
by construction (T κ, Sκ) solves (2.4), (2.6) and (2.7). If we multiply equation (2.4) by a
test function ϕ ∈ C∞

0 ((−∞, Te) × Ω) and integrate the resulting equation over QTe we
obtain

0 = (Sκ
t , ϕ)QTe

+
(
−cν|Sκ

x |κSκ
xx − c

(
T κ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)

QT

= −(Sκ
0 , ϕ(0))Ω − (Sκ, ϕt)QTe

+
(

cν

∫ Sκ
x

0
|y|κdy, ϕx

)

QTe

−
(
c
(
T κ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)

QTe

.

Equation (1.13) follows from this relation if we show that

(Sκ
0 , ϕ(0))Ω → (S0, ϕ(0))Ω, (3.10)

(Sκ, ϕt)QTe
→ (S, ϕt)QTe

, (3.11)
(∫ Sκ

x

0
|y|κdy, ϕx

)

QTe

→
(

1
2
|Sx|Sx, ϕx

)

QTe

, (3.12)

((
T κ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)

QTe

→
((

T · ε̄− ψ̂′(S)
)
|Sx|, ϕ

)
QTe

, (3.13)

for κ → 0. Now, the relation (3.10) follows from (2.12), and the relation (3.11) is a
consequence of (3.2). To verify (3.13) we note that (2.10) and (3.9) yield

T κ(t, x)− T (t, x)

= D(ε∗ − ε̄)(χκ ∗ Sκ − S)(t, x)− Dε∗

d− a

∫ d

a
(χκ ∗ Sκ − S)(t, y)dy. (3.14)

From (2.1) and (3.2) we conclude that

‖χκ ∗ Sκ − S‖
L

4
3 (QTe )

≤ ‖χκ ∗ (Sκ − S)‖
L

4
3 (QTe )

+ ‖(S − χκ ∗ S)‖
L

4
3 (QTe )

≤ ‖(S − χκ ∗ S)‖
L

4
3 (QTe )

+ ‖Sκ − S‖
L

4
3 (QTe )

→ 0,

for κ → 0. Since ε∗ and ε̄ are constants, we infer from this relation and from (3.14) that

‖T − T κ‖
L

4
3 (QTe )

→ 0,

for κ → 0. Thus, after selecting a subsequence we have T κ → T a.e in QTe . Together
with (3.3) and (3.4) we see that (T κ · ε̄− ψ̂′(Sκ))|Sκ

x |κ tends to (T · ε̄− ψ̂′(S))|Sx|, almost
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everywhere in QTe . Since (2.28) and (2.16) imply that (T κ · ε̄− ψ̂′(Sκ))|Sκ
x |κ is uniformly

bounded in L2(QTe), we deduce from Lemma 3.2 that

(T κ · ε̄− ψ̂′(Sκ))|Sκ
x |κ ⇀ (T · ε̄− ψ̂′(S))|Sx|,

weakly in L2(QTe), which implies (3.13). Consequently (1.13) holds.
It remains to prove that the solution has the regularity properties stated in (1.15)

and (1.16). The relation St ∈ L
4
3 (QTe) is implied by (3.2). To verify the second assertion

in (1.15), we use estimate (2.35) to get
∫ Te

0
‖Sκ

x‖
8
3

L∞(Ω)dt ≤ C.

This inequality and Sκ
x ⇀ Sx in L

8
3 (0, Te;L∞(Ω)) imply Sx ∈ L

8
3 (0, Te;L∞(Ω)).

To prove (1.16), we recall that
∫ Sκ

x

0 |y|κdy converges to |Sx|Sx strongly in the space

L
4
3 (0, Te;L2(Ω)) ⊂ L

4
3 (QTe) and that

(∫ Sκ
x

0 |y|κdy
)

x
is uniformly bounded in L

4
3 (QTe)

for κ → 0, by (2.30). This together implies that (|Sx|Sx)x ∈ L
4
3 (QTe). Finally, to prove

the second assertion of (1.16) we choose a test function ϕ ∈ L4(0, Te,W
1,4
0 (Ω)), multiply

equation (2.4) by −ϕx and integrate the resulting equation over QTe to obtain

0 = (Sκ
t −Rκ,−ϕx)QTe

= (Sκ
xt, ϕ)QTe

+ (Rκ, ϕx)QTe
, (3.15)

with Rκ defined in (2.46). Invoking the estimates (2.30), (2.16) and (2.28) we deduce
that

‖Rκ‖
L

4
3 (QTe )

≤ C,

hence (3.15) yields

(Sκ
xt, ϕ)QTe

≤ ‖Rκ‖
L

4
3 (QTe )

‖ϕx‖L4(QTe ) ≤ C‖ϕ‖
L4(0,Te;W

1,4
0 (Ω))

,

and this means that Sκ
xt is uniformly bounded in L

4
3 (0, Te;W−1, 4

3 (Ω)). From this estimate
and from Sκ

t ⇀ St in L
4
3 (QTe) we deduce easily that Sxt belongs to the dual space of

L4(0, Te;W
1,4
0 (Ω)), which is L

4
3 (0, Te;W−1, 4

3 (Ω)).
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