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Abstract

We present a global stability analysis of two-compartment models of a hierarchical cell production system with a
nonlinear regulatory feedback loop. The models describe cell differentiation processes with the stem cell division
rate or the self-renewal fraction regulated by the number of mature cells. The two-compartment systems constitute
a basic version of the multicompartment models proposed recently by Marciniak-Czochra and collaborators [11] to
investigate the dynamics of the hematopoietic system. Using global stability analysis, we compare different regulatory
mechanisms. For both models, we show that there exists a unique positive equilibrium that is globally asymptotically
stable if and only if the respective reproduction numbers exceed one. The proof is based on constructing Lyapunov
functions, which are appropriate to handle the specific nonlinearities of the model. Additionally, we propose a new
model to test biological hypothesis on the regulation of the fraction of differentiating cells. We show that such
regulatory mechanism is inefficient to maintain homeostasis and leads to an unbounded cell growth. The potential
biological implications are discussed.
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1. Introduction

Adult stem cells, which give rise to differentiated
cells of living organisms, have been identified in most
tissues. They maintain and repair the host tissue func-
tion by replacing the mature cells through differentia-
tion. They also repopulate the stem cell pool through
self-renewal [25]. Under homeostatic conditions the
system keeps the balance between maintaining the
stem cell pool and providing differentiated cells when
needed. The mechanisms underlying the cell production
system have been a central issue in stem cell biology
[19]. The relationship between cell-cycle progression
and stem cell fate has been widely explored [13].

There is a long history for application of mathemat-
ical models built to understand processes of cell differ-
entiation and tissue regeneration, especially in the case
of hematopoiesis and its disorders [15]. In [2, 10], using
mathematical models formulated as delay differential
equations, the authors explore biological mechanisms
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that cause oscillating circulating neutrophil count ob-
served in a hematological disorder called cyclical neu-
tropenia. From bifurcation analysis and numerical sim-
ulations the authors propose a destabilization mecha-
nism via increasing the death rate of hematopoietic stem
cell. See also [6] for a summary of related works.
In [17] a single cell-based stochastic model is devel-
oped to explain constitution of stem cell pool as a self-
organizing process. They assume that stem cells re-
side in two different signaling contexts characterizing
the property of cell as either proliferating or quiescence.
In [16], to overcome a time-consuming problem when
simulating the agent-based model in [17], a structured
population model is formulated as a system of partial
differential equations. It is observed that the model cap-
tures the dynamics obtained by the agent-based model
[17] in the context of modeling of disease and treatment
dynamics with chronic myeloid leukemia. In [8] the
authors investigate plausible controlling mechanisms of
cell proliferation in mammalian olfactory epithelium
with mathematical modeling. In particular, regulatory
mechanisms for the length of cell cycle and for the repli-
cation probability of progenitor cells are discussed.
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The choice of regulatory mechanisms is an impor-
tant modeling ingredient. It is known that the dynam-
ics of cell proliferation and differentiation can be con-
trolled by extracellular signaling molecules, such as cy-
tokines. However, the precise nature of these processes
remains to be fully elucidated. Different plausible reg-
ulatory feedback mechanisms lead to different types of
nonlinearities in the model equations. In [11] a multi-
compartment model of blood cell differentiation and
hematopoietic reconstitution is developed to investigate
two hypotheses concerning the regulatory mechanism
based on a single negative regulatory feedback between
the level of mature cells and the proliferation rate or
the fraction of cell self-renewal. Previously, a regula-
tory mechanism based on two simultaneous feedback
loops was assumed to be necessary to stabilize such a
cell system [1]. Assuming short- and long-range feed-
backs from either stem cells, mature cells or both pop-
ulations, both normal homeostasis and oscillatory be-
havior were shown using linearized and global stabil-
ity analysis. Numerical results in [11] showed that the
positive equilibrium can be stable in the models with a
single nonlinear feedback loop.

One aim of our research is to study analytical prop-
erties of the models proposed in [11] to understand bet-
ter effects of different regulatory mechanisms. In this
direction we analyzed local stability properties of two-
and three-compartment models in [12]. It was found
that the intermediate stage of differentiation is responsi-
ble for the emergence of an instability region in a param-
eter plane.In that paper it is assumed that the division
rates of stem and progenitor cells are regulated. In the
present paper we discuss two types of regulatory mecha-
nisms, namely the mechanism of regulated division rate
and of regulated fraction of self-renewal. Using two-
compartmental models we show global stability of the
positive steady state, where stem and mature cells co-
exist, for both regulatory mechanisms. Furthermore we
develop another two-compartment model to investigate
efficiency of the regulation of the fraction of differen-
tiating cell instead of self-renewal fractions. The bio-
logical rationale behind the hypothesis is that overpro-
duction of mature cells might switch on the inhibition
of the differentiation process to avoid oversupply from
stem cells. We show that this regulatory mechanism is
inefficient and can lead to unbounded growth of stem
cell population.

The remainder of the paper is organized as follows.
In Section 2 we introduce two models of [11] that has
two compartments. In the first model the division rate
is regulated whereas in the second model the fraction
of self-renewal is regulated. In Section 3 for the two

models we respectively discuss the existence of equi-
libria and prove their global stability in terms of repro-
duction number of stem cells. We then show that at a
positive equilibrium the system with the mechanism of
regulated fraction of self-renewal admits less number
of stem cells compared to the system with the mech-
anism of regulated division rate. We numerically show
that different regulatory mechanisms cause different dy-
namical behavior of the cell population. In Section 4 we
consider a model to test a new hypothesis in which the
fraction of differentiation is regulated. In Section 5 we
discuss and interpret our results.

2. Model formulation

First, we focus on the model which is a two-
compartment version of the multi-compartment model
established in [11]. The model describes the time evo-
lution of the stem and mature cell populations. A basic
assumption is that the differentiation process takes place
during cell division. A stem cell divides and gives rise
to two daughter cells, each of which is either a stem
cell or a mature cell. The process of producing, by di-
viding, daughter cells that are stem cells, we refer to
as self-renewal, the process of producing daughter cells
that are mature cells, we refer to as differentiation. We
here describe these processes by a per cell division rate
and a fraction of self-renewal that gives the fraction of
those “newborn” daughter cells that, like their mother,
are stem cells. The remaining fraction of newborn cells
are then those who have differentiated and become ma-
ture cells.

In [11] it is assumed that the extracellular signaling
molecules are secreted by specialized cells and that this
secretion is regulated by mechanisms sensitive to the
amount of mature cells. By using a quasi steady state
approximation of the plausible dynamics of the cytokine
molecules, the signal intensity is given by

s(v) :=
1

1+ kv
,

where k is a positive constant to take into account the
sensitivity to the amount of mature cells and v is the
number of mature cells. The expression reflects the
heuristic assumption that the signal intensity achieves
its maximum in absence of mature cells and decreases
asymptotically to zero if the level of mature cells in-
creases. Another qualitatively similar regulatory func-
tion is based on exponential dependence of signal in-
tensity on mature cell counts, s(v) = e−const·v, similar to
that in the well-known Lasota-Wazewska model [24].
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Let pw and aw be positive constants with aw ∈ [0,1).
We define the division rate of stem cells as

dw(v) := pws(v) =
pw

1+ kv
.

The fraction of self-renewal is the fraction of progeny
cells that are identical to the mother cells. It can also be
interpreted as the probability that a daughter cell is of
the same type as the mother cell. We define the fraction
of self-renewal as

sw(v) := aws(v) =
aw

1+ kv
.

Assuming that v̄ is a level of mature cells in homeosta-
sis, we define the corresponding constant cell division
rate and the constant fraction of self-renewal by

p̄w := pws(v̄) =
pw

1+ kv̄
,

āw := aws(v̄) =
aw

1+ kv̄
.

After perturbations of the system which are related to a
drop in values of v below v̄, the signal intensity is grow-
ing and consequently the model describes increase in
the values of the regulated parameters above the val-
ues of those parameters in the homeostasis case. If the
model parameters are unregulated, their values stay at
the same level as during the homeostasis, i.e. in the
healthy system. Consequently, one can interpret p̄w as
the unregulated division rate and āw as the unregulated
fraction of self-renewal. We denote by w(t) the num-
ber of stem cells at time t. The expected flow of cells
joining the stem cell pool at time t equals

(2sw(v(t))−1)dw(v(t))w(t).

On the other hand, the expected flow of cells into the
pool of mature cells at time t due to differentiation of
stem cells equals

2(1− sw(v(t)))dw(v(t))w(t).

Then the dynamics of the two-compartment model can
be formulated as{

w′(t) = (2sw(v(t))−1)dw(v(t))w(t)−µww(t),
v′(t) = 2(1− sw(v(t)))dw(v(t))w(t)−µvv(t),

where µw and µv are the death rates of stem and mature
cells, respectively. We assume that µw > 0 and µv > 0.
In Figure 1 we give a flow diagram for the mathematical
model.

We introduce two different scenarios:

cell death µw cell death µv

differentiation dw(v)

mature cells vstem cells w

self-renewal sw(v)

signal s(v)

Figure 1: Compartmental diagram for stem and mature cell popula-
tions.

1. The division rate is regulated and the fraction of
self-renewal is not regulated.

2. The division rate is not regulated and the fraction
of self-renewal is regulated.

One has{
w′(t) = (2āw−1)dw(v(t))w(t)−µww(t),
v′(t) = 2(1− āw)dw(v(t))w(t)−µvv(t)

(2.1)

for the first scenario whereas{
w′(t) = (2sw(v(t))−1)p̄ww(t)−µww(t),
v′(t) = 2(1− sw(v(t)))p̄ww(t)−µvv(t)

(2.2)

for the second scenario. For both models (2.1) and (2.2)
we assume that

w(0) = w0 ≥ 0 and v(0) = v0 ≥ 0 (2.3)

as the initial conditions. Similar as in Lemma 4.1 in
[22], one can prove that there exists a global nonneg-
ative solution of (2.1) and (2.2) with initial conditions
(2.3). If we take w0 = 0, for both of (2.1) and (2.2), it
follows that w(t) = 0 for t > 0 and that limt→∞ v(t) = 0.
This implies that mature cell population can not grow
without stem cells. To avoid this situation we assume
that

w0 > 0 and v0 ≥ 0. (2.4)

We define a set

Σ :=
{
(w,v) ∈ R2

+|w > 0,v > 0
}

. (2.5)

It is easy to prove that (w(t),v(t)) ∈ Σ for all t > 0. In
particular, Σ is a positively invariant set i.e., if (w0,v0)∈
Σ then (w(t),v(t)) ∈ Σ for all t > 0, see e.g. [21].
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3. Stem and mature cell populations dynamics

In the following we consider global dynamics of the
two models (2.1) and (2.2). For the different regulatory
modes we respectively introduce (different) reproduc-
tion numbers for stem cells to characterize thresholds of
existence and global stability of equilibria. In Section
3.2 we compare the amount of stem and mature cells at
a positive equilibrium for each regulation mode. We dis-
cuss how the regulatory mechanisms are related to the
amount of stem and mature cells at the positive equilib-
rium. In Section 3.2 we visualize dynamical behavior
of stem and mature cell populations.

3.1. Global stability analysis
3.1.1. Regulated division rate

To analyze model (2.1) we define the reproduction
number of stem cells for regulated division rate as

Rw :=
(2āw−1) pw

µw
. (3.1)

We will interpret and discuss this number in Section
5. Using Rw the authors in [12] characterized the exis-
tence of equilibria and their local stability properties of
(2.1). For the completeness of presentation, from [12]
we quote the result on existence of equilibria in terms of
Rw.

Theorem 3.1. For the first model (2.1)

1. There always exists a trivial equilibrium.
2. There exists a positive equilibrium if and only if

Rw > 1. (3.2)

The positive equilibrium is given as(
(2āw−1)µv

2(1− āw)µw

1
k

(Rw−1) ,
1
k

(Rw−1)
)

. (3.3)

One can see that, from the expression of equilibrium
(3.3) and condition (3.1), strict positivity of model pa-
rameters is necessary for the existence of the positive
equilibrium. In particular, in absence of the regulation
mechanism such a positive equilibrium does not exist.
The same result also holds for the second model (2.2),
see (3.10) below for the expression of the equilibrium
for the second model.

We have studied local stability of equilibria in [12]:
the trivial equilibrium is locally asymptotically stable if
Rw < 1 and unstable if Rw > 1 and the positive equilib-
rium is locally asymptotically stable for Rw > 1. In the
following we show that similar threshold property holds
for the global dynamics.

Theorem 3.2. For the first model (2.1)

1. The trivial equilibrium is globally asymptotically
stable if Rw < 1 and it is unstable if Rw > 1.

2. The positive equilibrium is globally asymptotically
stable if and only if Rw > 1.

PROOF. 1. By Theorem 3.2 in [12] the trivial equilib-
rium is locally asymptotically stable if Rw < 1 and it
is unstable if Rw > 1. It remains to prove the global
atractivity of the trivial equilibrium for Rw < 1. Let us
assume that Rw < 1 holds. Then

w′(t)≤ µw (Rw−1)w(t) < 0

and hence, limt→+∞ w(t) = limt→+∞ v(t) = 0 follows.
Thus the trivial equilibrium is globally attractive.

2. Let us assume that Rw > 1. By Theorem 3.3 in [12]
the positive equilibrium is locally asymptotically stable.
To show the global attractivity, we employ the method
of Lyapunov function. For (w,v)∈Σ, where Σ is defined
in (2.5), we define the functions

L11(w,v) :=
w
w1
−1− ln

w
w1

,

L12(w,v) :=
v
v1
−1− 1

v1

ˆ v

v1

dw(ξ )
dw(v1)

dξ ,

where (w1,v1) denotes the positive equilibrium of (2.1)
which is given as (3.3). We consider the following Lya-
punov function:

L1(w,v) :=
1

µw
L11(w,v)+

1
µv

L12(w,v). (3.4)

To differentiate L1 with respect to t along the system
(2.1), we compute

d
dt

L11(w(t),v(t))

=
(

1
w1
− 1

w(t)

)
{(2āw−1)dw(v(t))w(t)−µww(t)} .

Since it holds that µw = (2āw−1)dw(v1), it follows that

d
dt

L11(w(t),v(t))

=µw

(
w(t)
w1
−1
)(

dw(v(t))
dw(v1)

−1
)

=µw

(
w(t)
w1

dw(v(t))
dw(v1)

− w(t)
w1
− dw(v(t))

dw(v1)
+1
)

. (3.5)

Next we compute

d
dt

L12(w(t),v(t))

=
1
v1

(
1− dw(v(t))

dw(v1)

)
{2(1− āw)dw(v(t))w(t)−µvv(t)} .
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Using the equality µv = 2(1− āw)dw(v1)w1
1
v1

, we ob-
tain that

d
dt

L12(w(t),v(t))

=µv

(
1− dw(v(t))

dw(v1)

)(
dw(v(t))w(t)

dw(v1)w1
− v(t)

v1

)
=µv

{
dw(v(t))w(t)

dw(v1)w1
− v(t)

v1
−
(

dw(v(t))
dw(v1)

)2 w(t)
w1

+
dw(v(t))
dw(v1)

v(t)
v1

}
. (3.6)

Using (3.5) and (3.6), we conclude that

d
dt

L1(w(t),v(t))

=− w(t)
w1

{(
dw(v(t))
dw(v1)

)2

−2
dw(v(t))
dw(v1)

+1

}

+
(
−dw(v(t))

dw(v1)
+1− v(t)

v1
+

dw(v(t))
dw(v1)

v(t)
v1

)
=− w(t)

w1

(
1− dw(v(t))

dw(v1)

)2

+
(

1− dw(v(t))
dw(v1)

)(
1− v(t)

v1

)
.

By definition of dw(v), it holds that(
1− dw(v(t))

dw(v1)

)(
1− v(t)

v1

)
=
(

1− 1+ kv1

1+ kv(t)

)(
1− v(t)

v1

)
≤ 0.

Consequently, we obtain that

d
dt

L1(w(t),v(t))≤ 0. (3.7)

By (3.4) and (3.7) every solution in Σ is bounded. We
denote by Σ the closure of Σ. Define

E :=
{

(w(t),v(t)) ∈ Σ
∣∣∣∣ L1(w(t),v(t)) < +∞,

d
dt L1(w(t),v(t)) = 0

}
and let M be the maximum invariant set in E. Then
M consists of the positive equilibrium. By La Salle’s
invariance principle, see Theorem 2.1 in Chapter 2 in
[21], we conclude that every solution in Σ tends to M.
Thus the positive equilibrium is globally attractive.

�

3.1.2. Regulated fraction of self-renewal
For the second model (2.2) we introduce the repro-

duction number of stem cells for regulated fraction of
self-renewal as

Sw :=
2aw pw

p̄w + µw
. (3.8)

We give the following result without proof, since it is
straightforward.

Theorem 3.3. For the second model (2.2)

1. There always exists a trivial equilibrium.
2. There exists a positive equilibrium if and only if

Sw > 1. (3.9)

The positive equilibrium is given as(
(2aw−Sw)µv

2(Sw−aw)µw

1
k

(Sw−1) ,
1
k

(Sw−1)
)

.

(3.10)

In Theorem A.1 in the Appendix we show that the
trivial equilibrium is locally asymptotically stable if
Sw < 1 and unstable if Sw > 1. We prove that the positive
equilibrium is locally asymptotically stable if Sw > 1 in
Theorem A.3. In the following we show that similar
threshold property holds for the global dynamics.

Theorem 3.4. For the second model (2.2)

1. The trivial equilibrium is globally asymptotically
stable if Sw < 1 and it is unstable if Sw > 1.

2. The positive equilibrium is globally asymptotically
stable if and only if Sw > 1.

PROOF. 1. By Theorem A.1 the trivial equilibrium is
locally asymptotically stable if Sw < 1 and unstable if
Sw > 1. Hence, it remains to show that the trivial equi-
librium is globally stable for Sw < 1. Assuming that
Sw < 1, we obtain

w′(t)≤ (p̄w + µw)(Sw−1)w(t) < 0

and hence, limt→+∞ w(t) = limt→+∞ v(t) = 0 follows.
2. Let us assume that Sw > 1. By Theorem A.3 we

have that the positive equilibrium is locally asymptot-
ically stable. To show the global attractivity, we con-
sider an equivalent system and then employ the method
of Lyapunov function. We define

G(v) := 2(1− sw(v)) for v≥ 0. (3.11)
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Since we have 2sw(v)−1 = 1−G(v), (2.2) is equivalent
to the following system:{

w′(t) = (p̄w−µw)w(t)− p̄wG(v(t))w(t),
v′(t) = p̄wG(v(t))w(t)−µvv(t).

(3.12)

Now we denote by (w2,v2) the positive equilibrium of
(2.2) which is given by (3.10). Obviously, (3.12) it has
the same positive equilibrium (w2,v2) if (3.9) holds.
Note that as aw < 1, p̄w > µw follows from (3.9). For
(w,v) ∈ Σ, where Σ is defined in (2.5), we define the
functions

L21(w,v) :=
w
w2
−1− ln

w
w2

,

L22(w,v) :=
v
v2
−1− 1

v2

ˆ v

v2

G(v2)
G(ξ )

dξ

Then we consider the following Lyapunov function:

L2(w,v) :=
1

p̄wG(v2)
L21(w,v)+

1
µv

L22(w,v). (3.13)

To differentiate L2 with respect to t along the system
(2.2), we compute

d
dt

L21(w(t),v(t))

=
(

1
w2
− 1

w(t)

)
{(p̄w−µw)w(t)− p̄wG(v(t))w(t)} .

The equality p̄w−µw = p̄wG(v2) yields

d
dt

L21(w(t),v(t))

=p̄wG(v2)
(

w(t)
w2
−1
)(

1− G(v(t))
G(v2)

)
=p̄wG(v2)

(
w(t)
w2
−1− w(t)

w2

G(v(t))
G(v2)

+
G(v(t))
G(v2)

)
.

(3.14)

Next, we compute

d
dt

L22(w(t),v(t))

=
1
v2

(
1− G(v2)

G(v(t))

)
(p̄wG(v(t))w(t)−µvv(t)) .

Since we have µv = G(v2)p̄ww2
1
v2

, it follows that

d
dt

L22(w(t),v(t))

=µv

(
1− G(v2)

G(v(t))

)(
G(v(t))
G(v2)

w(t)
w2
− v(t)

v2

)
=µv

(
G(v(t))
G(v2)

w(t)
w2
− v(t)

v2
− w(t)

w2
+

G(v2)
G(v(t))

v(t)
v2

)
.

(3.15)

Therefore, from (3.14) and (3.15), we obtain

d
dt

L2(w(t),v(t))

=−1+
G(v(t))
G(v2)

− v(t)
v2

+
G(v2)

G(v(t))
v(t)
v2

=
(

1− G(v2)
G(v(t))

)(
G(v(t))
G(v2)

− v(t)
v2

)
=

G(v(t))
v2

(
1− G(v2)

G(v(t))

)(
v2

G(v2)
− v(t)

G(v(t))

)
.

By (3.11) the function G(v) is monotone increasing for
v≥ 0. If v

G(v) is also monotone increasing for v≥ 0, then

we obtain that d
dt L2(w(t),v(t)) ≤ 0. From Proposition

A.2 in the Appendix, we obtain

d
dv

(
v

G(v)

)
=

1
G(v)

(
1− G′(v)

G(v)
v
)

=
1

G(v)

(
1+

s′w(v)
1− sw(v)

v
)

>0.

Thus, v
G(v) is monotone increasing for v≥ 0. Hence, we

obtain that
d
dt

L2(w(t),v(t))≤ 0. (3.16)

By (3.13) and (3.16) every solution in Σ is bounded. We
denote by Σ the closure of Σ. Define

E :=
{

(w(t),v(t)) ∈ Σ
∣∣∣∣ L2(w(t),v(t)) < +∞,

d
dt L2(w(t),v(t)) = 0

}
and let M be the maximum invariant set in E. Then
M consists of the positive equilibrium. By La Salle’s
invariance principle, see Theorem 2.1 in Chapter 2 in
[21], we conclude that every solution in Σ tends to M.
Thus the positive equilibrium is globally attractive.

�

3.2. The size of cell population at the positive equilib-
rium

It is not wrong what stands here but definitely it
should be told from different perspective; I have to
think about it

For the two regulation modes, regulated division rate
and regulated fraction of self-renewal, we show that the
sizes of both populations at the positive equilibrium are
ordered independently of parameter values. We assume
that Rw > 1 and Sw > 1 hold. We denote by (wd ,vd) and
(ws,vs) the sizes of stem and mature cell populations at
the positive equilibrium for regulated division rate and
for regulated fraction of self-renewal, respectively.
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Theorem 3.5. Let us assume that Rw > 1 and Sw > 1
hold. Then

ws < wd and vs < vd .

PROOF. Using respective definitions of Rw and Sw,
(3.1) and (3.8), one obtains the following relation:

Rw−1 >
µw

µw + pw
(Rw−1) = Sw−1.

Thus vd > vs holds from (3.3) and (3.10). From a direct
calculation, it holds that

2aw−1
2(1−aw)

>
2aw−Sw

2(Sw−aw)

if Sw > 1. Therefore, wd > ws holds from (3.3) and
(3.10).

�

At the equilibrium the cell production system with
regulated division rate has more stem and mature cells
than the system with the mechanism of regulated frac-
tion of self-renewal. In the following we explain
how different regulatory mechanisms cause the differ-
ent sizes of both populations. We introduce two regu-
lated reproduction numbers of stem cells for regulated
division rate and for regulated fraction of self-renewal,

rd(v) :=
(2aw−1)dw(v)

µw

and

rs(v) :=
(2sw(v)−1) pw

µw
,

respectively. These reproduction numbers can be inter-
preted as the expected net number of stem cells coming
into the stem cell compartment caused by one stem cell
via self-renewal with regulation in a time that a stem
cell would be expected to live without division. Then
equilibrium conditions for the mature cells are defined
via

rd(vd) = 1 and rs(vs) = 1, (3.17)

respectively. The form of the reproduction number
for regulated fraction of self-renewal suggests that this
mechanism reduces the influx of stem cells. One can
see that 2awdw(v) = 2sw(v)pw and that dw(v) < pw for
v > 0. This implies that the regulation of the division
rate reduces the inflow as much as the mechanism of the
regulated fraction of self-renewal, but the former addi-
tionally also reduces the outflow of stem cells. Thus

(2aw−1)dw(v) > (2sw(v)−1) pw, (3.18)

which implies
rd(v) > rs(v). (3.19)

Both of the regulated reproduction numbers decrease
with respect to the number of mature cells. Hence there
have to be more mature cells to obtain a higher reduction
of the stem cells for regulated division rate to satisfy the
condition (3.17). It holds that

vd > vs. (3.20)

Next we consider the number of stem cells at the
equilibrium point, which can be expressed as

wd(v) :=
µvv

2(1−aw)dw(v)

for regulated division rate and

ws(v) =
µvv

2(1− sw(v)) pw
,

for regulated fraction of self-renewal. Similar to those
discussed above one can prove

2(1− sw(v)) pw > 2(1−aw)dw(v), (3.21)

which implies that the number of mature cells produced
by one stem cell per unit of time for regulated fraction
of self-renewal is bigger than that for regulated division
rate. From (3.21), one can see

ws(v) < wd(v). (3.22)

The size of the stem cell population at the equilibrium
is given as wd(vd) and ws(vs) for regulated division rate
and for regulated fraction of self-renewal, respectively.
It is easy to see that wd and ws are increasing functions.
This implies that if more mature cells exist, more stem
cells are required to maintain mature cells. From (3.20)
we can conclude that at the equilibrium the mechanism
of regulated division rate has more stem cells than the
mechanism of regulated fraction of self-renewal i.e.,

ws(vs) < wd(vd).

Finally, by a simple calculation, we can also com-
pare the relative proportion of stem cells to mature cells
when the sizes of both populations are at the positive
equilibrium. We omit the proof since it is straightfor-
ward.

Theorem 3.6. Let us assume that Rw > 1 and Sw > 1
hold. Then ws

vs
<

wd

vd
.
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One can see that, to supply a fixed number of mature
cells, less stem cells are required in the mechanism of
regulated fraction of self-renewal compared to the case
of regulated division rate. It is suggested that the regu-
lating the fraction of self-renewal is more efficient than
regulating the division rate.

3.3. Simulations of solution behavior

In this subsection we show numerical simulations for
the two models, regulated division rate (2.1) and regu-
lated fraction of self-renewal (2.2). We choose two sets
of parameters such that i) respective reproduction num-
bers exceed one and ii) are less than one. We present
the parameter values and their interpretations in Tables
1 and 2.

In Figure 2 we plot two vector fields in the w-v- state
space for both regulation modes where we set parame-
ter values as in Table 1. Consider a situation in which
there are a large number of mature cells such that they
exceed the equilibrium level. In Figure 2-(a), for regu-
lated division rate, v decreases to the equilibrium point
if w < wd(v) holds. In Figure 2-(b), for regulated frac-
tion of self-renewal, there are two possible behaviors
of v: v increases if w > ws(v) whereas v decreases if
w < ws(v). Since the number of mature cells can in-
crease, even if it exceeds the equilibrium level, one may
consider that the system does not react properly to the
large quantity of mature cells. However, at the same
time, the number of stem cells decreases due to the reg-
ulated fraction of self-renewal. Then small number of
stem cells suppresses the supply of the mature cells. Fi-
nally, the number of mature cells decreases. Repeating
this process, they approach the equilibrium point. Since
ws(v) < wd(v) holds from (3.22), this oscillatory-like
behavior seems to easily occur in the mechanism of reg-
ulated fraction of self-renewal.

In Figure 3 we present the graph trajectory of w and v
with respect to time for both regulation modes. For the
case of regulated division rate, each solution trajectory
takes at most one hump while, for the case of regulated
fraction of self-renewal, there are two or three humps
and each trajectory is damped oscillation to the equi-
librium. Figure 3 suggests that solutions for regulated
fraction of self-renewal reach the equilibrium faster than
solutions for regulated division rate.

In Figures 4 and 5 we plot two vector fields and the
corresponding graphs for time evolution of the solution
of (2.1) and (2.2) when we fix parameters as in Table 2.
Every solution converges to the trivial equilibrium.

4. Regulated fraction of differentiation

We consider a regulatory mechanism in which the
fraction of cell differentiation is regulated by the amount
of mature cells. The fraction of differentiation in ab-
sence of the regulation is given as 1−aw. As we derive
the form of the regulated fraction of self-renewal in Sec-
tion 2, we obtain

s̃w(v) := (1−aw)s(v) =
1−aw

1+ kv

as the regulated fraction of differentiation. One can in-
terpret 1− s̃w(v) as the fraction of self-renewal. The
population dynamics is then formulated as{

w′(t) = {2(1− s̃w(v(t)))−1} p̄ww(t)−µww(t),
v′(t) = 2s̃w(v(t))p̄ww(t)−µvv(t),

which can be rewritten as{
w′(t) = (1−2s̃w(v(t))) p̄ww(t)−µww(t),
v′(t) = 2s̃w(v(t))p̄ww(t)−µvv(t).

(4.1)

We set (2.4) as the initial conditions of (4.1).

4.1. Stability analysis

First, we formulate the result on the existence of equi-
libria in terms of Sw.

Theorem 4.1. For model (4.1)

1. There always exists a trivial equilibrium.
2. There exists a positive equilibrium if and only if

Sw ∈ (aw,1) . (4.2)

The positive equilibrium is given as(
2aw−Sw

2(Sw−aw)
µv

µw

1
k

aw (1−Sw)
Sw−aw

,
1
k

aw (1−Sw)
Sw−aw

)
.

Next we formulate stability results for model (4.1) in
terms of Sw. In Appendix we prove the following result.

Theorem 4.2. For model (4.1)

1. The trivial equilibrium is locally asymptotically
stable if Sw < 1 and unstable if Sw > 1.

2. Let us assume that (4.2) holds. Then the positive
equilibrium is unstable.

Finally we show that w(t) and v(t) tend to infinity if
Sw > 1.
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parameter interpretation value 1
aw fraction of self-renewal of the stem cells 0.8
pw division rate of the stem cells 1.3 per unit of time
k regulation constant 0.3

µw death rate of the stem cells 0.2 per unit of time
µv death rate of the mature cells 0.5 per unit of time
Sw reproduction number 1.30

Table 1: Parameters and their values. Respective reproduction numbers exceed one.

parameter interpretation value
aw fraction of self-renewal of the stem cells 0.4
pw division rate of the stem cells 1.3 per unit of time
k regulation constant 0.3

µw death rate of the stem cells 0.2 per unit of time
µv death rate of the mature cells 0.5 per unit of time
Sw reproduction number 0.65

Table 2: Parameters and their values. Respective reproduction numbers are less than one.

v

w

vd

wd(v)

(a) regulated division rate

vs

ws(v)

v

w

(b) regulated fraction of self-renewal

Figure 2: Phase portrait of w, the amount of stem cells, and v, the amount of mature cells, for regulated division rate (a) and for regulated fraction
of self-renewal (b) when the respective reproduction numbers exceed one. The respective vertical line and the dashed curve denote v = vd,s and
w = wd,s(v), respectively. Each intersection of the vertical line and dashed curve is the positive equilibrium and the origin is the trivial equilibrium.
In both figures (a) and (b) every solution converges to the positive equilibrium.
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(b) regulated fraction of self-renewal

Figure 3: Behavior of w, the amount of stem cells, and v, the amount of mature cells, with respect to time for regulated division rate (a) and for
regulated fraction of self-renewal (b) when respective reproduction numbers exceed one. In both figures (a) and (b) every solution converges to the
positive equilibrium.
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v

w

wd(v)

(a) regulated division rate

w

v

ws(v)

(b) regulated fraction of self-renewal

Figure 4: Phase portrait of w, the amount of stem cells, and v, the amount of mature cells, for regulated division rate (a) and for regulated fraction
of self-renewal (b) when respective reproduction numbers are less than one. The respective dashed curve denotes w = ws,d(v). The origin is the
trivial equilibrium. In both figures (a) and (b) every solution converges to the trivial equilibrium.
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Figure 5: Behavior of w, the amount of stem cells, and v, the amount of mature cells, with respect to time for the case of regulated division rate
(a) and regulated fraction of self-renewal (b) when respective reproduction numbers are less than one. In both figures (a) and (b) every solution
converges to the trivial equilibrium.

Theorem 4.3. Let us assume that Sw > 1 holds. Then

lim
t→+∞

w(t) = lim
t→+∞

v(t) = +∞.

PROOF. Since we have

w(t) =w0 exp
[ˆ t

0
{(1−2s̃w(v(s))) p̄w−µw}ds

]
>w0 exp{(p̄w + µw)(Sw−1) t} ,

it holds that
lim

t→+∞
w(t) = +∞.

Then limt→+∞ v(t) = +∞ follows.

�

4.2. Simulations of solution behavior
Like in Section 3.3, we plot vector fields and corre-

sponding graphs for time evolution of the solutions. We

use the same parameter set given as in Tables 1 and 2.
For Sw > 1 every solution tends to infinity (Figures 6-
(a)). For Sw < 1 we numerically found that there exist
solutions which tend to infinity, see Figure 6-(b). In Fig-
ure 7-(a) we focus on the vector field around the trivial
equilibrium. One can see that there are two types of so-
lutions depending on the initial conditions. Some solu-
tions converge to the trivial equilibrium. However, there
are solutions which do not approach the vicinity of the
trivial equilibrium and tend to infinity.

5. Discussion

We have analyzed two-compartmental models of [11]
describing stem cell maturation that account for self-
renewal, differentiation and cell death. In the math-
ematical models (2.1) and (2.2) different regulatory
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(a) Sw > 1 (b) Sw < 1

Figure 6: Phase portrait of w, the amount of stem cells, and v, the amount of mature cells for regulated fraction of differentiation when the respective
reproduction number exceeds one (a) and when the respective reproduction number is less than one (b). The respective dashed curve denotes the
v-nullcline and the vertical line denotes the w-nullcline. In (a) the intersection of the dashed curve and the vertical line is the positive equilibrium.
In both figures (a) and (b) every solution tend to infinity.

(a) Vector field (b) Time evolution of the solutions

Figure 7: Phase portrait of w, the amount of stem cells, and v, the amount of mature cells for regulated fraction of differentiation when the
reproduction number is less than one (a). Solutions with four different initial conditions are illustrated. Two solutions approach to the trivial
equilibrium while other solutions do not tends to the trivial equilibrium. The solution behavior with respect to time when the reproduction number
is less than one (b). One solution tends to the trivial equilibrium while another solution tends to infinity.

mechanisms, namely regulated division rate and reg-
ulated fraction of self-renewal, are respectively fea-
tured. Stability analysis of basic models including
different modes of regulation shall help understanding
what mechanisms may be efficient to regulate home-
ostasis. In particular, global stability analysis may be
a suitable way to explain the dynamics of the system af-
ter a big perturbation, such as chemotherapy treatment
or bone marrow transplantation. In Section 3.1 we re-
spectively analyzed the existence of equilibria and their
global stability for models with regulated division rate
and with regulated fraction of self-renewal. We com-
pare the number of cell population for the two regula-
tory mechanisms in Section 3.2. The comparison re-
sult may suggest that the mechanism of regulated self-
renewal is efficient to control the cell production sys-

tem. We then numerically observe population dynami-
cal behavior in Section 3.2.

To show the global stability we employed a method
of Lyapunov function, which is widely used for ana-
lyzing stability properties of mathematical models [21].
In general, there is no unified method to construct Lya-
punov functions. We have been inspired by Lyapunov
functions introduced in [7] to analyze global stability of
epidemiological models. However, since the cell pop-
ulation dynamics considered by us is based on signif-
icantly different type of interactions than in the infec-
tious disease model, it is not straightforward to apply the
same type of Lyapunov functions. For (2.1) and (2.2) we
respectively find a suitable way to formulate Lyapunov
functions and to compute the time derivatives. As a re-
mark, we mention the difference of proofs for Theorems
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3.2 and 3.4. In the proof of Theorem 3.4, we consider a
different formulation of the model (3.12) that facillitates
us to apply the Lyapunov function. We also use a spe-
cific property found in Proposition A.2 to compute the
derivative of the Lyapunov function. We also note that it
seems to be not straightforward to construct a Lyapunov
function for the model that has both regulatory mecha-
nisms, regulated division rate and regulated fraction of
self-renewal.

We formulated global stability results using two dif-
ferent reproduction numbers. The first reproduction
number Rw, which is defined as (3.1), can be interpreted
as the expected net number of stem cells coming into
the stem cell compartment due to one stem cell via self-
renewal in the time that a stem cell would be expected
to live given that it would not divide. This reproduc-
tion number is introduced in [12] to analyze the exis-
tence and local stability of equilibria of the first model
(2.1). The analysis of local and global stability proper-
ties of the second model (2.2) for regulated fraction of
self-renewal is new. The expression of the positive equi-
librium, given in (3.10), motivates us to use the different
reproduction number Sw which is defined as (3.8). This
reproduction number can be interpreted as the expected
number of stem cells produced by one cell through self-
renewal during its expected lifetime. For the first and
second models we prove that a positive equilibrium ex-
ists and that it is globally asymptotically stable, if and
only if, respective reproduction numbers exceed one,
i.e., if and only if, Rw > 1 or Sw > 1, see Theorems
3.2 and 3.4. The global stability of the positive equi-
librium rules out the existence of periodic behavior of
solutions. Thus our results indicate that the number
of stem and mature cells from any initial state reaches
the neighborhood of the equilibrium after sufficient time
has elapsed. We also prove that the trivial equilibrium
is globally asymptotically stable if the respective repro-
duction numbers are less than one.

Both threshold parameters, Rw and Sw, play the same
role in the characterization of the dynamics of the first
and second model, although their interpretations are dif-
ferent. It is easy to prove that Rw > 1 if and only if
Sw > 1 and that both conditions are equivalent to

aw >
1
2

(
1+

µw

pw

)
. (5.1)

We see that (5.1) together with the consistency require-
ments aw < 1, µw > 0 and pw > 0 imply that pw > µw,
i.e., that the division rate should be greater than the mor-
tality rate. Moreover, they imply that aw > 1

2 , i.e., that
fraction of self-renewal should exceeds 1

2 . The condi-
tion Sw > 1 says that the expected number of stem cells
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Figure 8: The stability boundary of the positive and trivial equilib-
rium in the (pw,aw)-parameter plane for regulated division rate and
for regulated fraction of self-renewal. The shaded region is the sta-
bility region of the positive equilibrium. The vertical line represents
pw = µw.

produced by one cell through self-renewal during its ex-
pected lifetime should exceed one. In the first two mod-
els, (2.1) and (2.2), as often in population dynamics [4],
the equilibrium at the population level can be character-
ized by the requirement that every individual on average
replaces itself, which in our case amounts to the require-
ment that Sw > 1. In Figure 8 we plot the stability region
of both equilibria in the (pw,aw)-parameter space after
fixing µw = 0.2. The choice of pw and aw as free pa-
rameters allows a graphical representation of much of
the discussed information.

To compare qualitative aspects of those regulatory
modes, two-compartmental models seem to be a suit-
able setting due to the mathematical tractability, al-
though the analysis of three-compartmental models is
not impossible, see [12]. We found that the intermedi-
ate stage of differentiation is responsible for the emer-
gence of an instability region in a parameter plane. For
the same reason, some possible feedback mechanisms
are not explicitly considered. For example, a quiescent
phase of stem cells is not explicitly incorporated in the
model. It is known that cell death is regulated by ery-
thropoietin [3], which is not considered here.

In tissues that regenerate with certain frequency,
homeostasis requires that the total number of stem and
mature cells remains stable to avoid unrequested tis-
sue expansion or extinction. This equilibrium may be
achieved by exquisite regulation of the stem and ma-
ture cell populations. The molecular regulatory ele-
ments that control this equilibrium remain largely un-
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resolved. However, in certain tissues, insights into the
mechanisms of stem cell regulation and the signaling
pathways involved are starting to be revealed. For ex-
ample, in vivo and in vitro assays have shown the com-
petition for contact between Lgr5hi cells with Paneth
cell surface to have access to the signals that maintain
stem cell competence in the intestine, such as Notch and
Wnt [18]. In the mammary gland, estrogen can reduce
the expression of key stem cell markers such as Nanog
and Sox2 to influence stem cell fate [20]. Interestingly,
the conclusions from our first and second models sug-
gest that individual cells may be regulated by signals
received from the environment and, independently of
whether the main level of regulation occurs during the
process of self-renewal or cell division rate, a steady
state is reached. This may explain the possibility that
most cells and organisms survive and manage to ignore
many of the perturbations in their environment.

In Section 4, we developed a model (4.1), in which
the regulation of the self-renewal fraction was replaced
by the regulation of the fraction of cell differentiation.
In this scenario, a large number of mature cells regu-
lates the fraction of stem cell’s differentiation to avoid
the oversupply. Thus one may expect that homeostasis
can be reached. However, contrary to one’s expectation,
we prove that the positive equilibrium is unstable, if it
exists, and the number of stem and mature cells always
tends to infinity if the reproduction number exceeds one,
i.e., if Sw > 1. In this regulatory mechanism, the frac-
tion of self-renewal increases as the size of mature cell
population increases. Since the condition Sw > 1 im-
plies that the stem cell population grows in absence of
mature cells, the mature cell population gives a positive
feedback to the growth of the stem cell population. Thus
there is no positive equilibrium for the stem cell popu-
lation and the number of stem cells tends to infinity. We
also numerically found that this model can permit un-
bounded solutions even if the reproduction number is
less than one. In Figure 9 we express parameter regions
for unbounded growth of populations and stability of
equilibria in the (pw,aw)-parameter space after fixing
µw = 0.2.

The elimination of the elaborated stem cell control
and the exclusive regulation of the fraction of cell differ-
entiation leads to unbounded growth, which may reflect
the disturbed alterations of cell proliferation observed
during tumorigenesis. Tumors are formed by heteroge-
nous cell populations that include increased stem cell
content and indiscriminated cell growth of more mature
cells. In fact, the higher proportion of stem cells in a
tumor correlates with the poorer prognosis of the cancer
[14, 23]. Thus, this model may reveal the need for reg-
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Figure 9: Parameter regions for unbounded growth of cell population
and stability of the trivial and the positive equilibrium in the (pw,aw)-
parameter plane for regulated fraction of differentiation. The curve
represents the condition, Sw = 1. The vertical line represents pw = µw.
T:LS denotes the local stability region of the trivial equilibrium.

ulated control of the stem cell population, either at the
self-renewal or cell division rate, to ensure cell home-
ostasis.
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A. Appendix

A.1. Asymptotic stability of equilibria of (2.2)
First, we present the stability of the trivial equilib-

rium without the proof.

Theorem A.1. The trivial equilibrium of (2.2) has two
real eigenvalues (p̄w + µw)(Sw−1) and −µv and is lo-
cally asymptotically stable if

Sw < 1 (A.1)

and it is unstable if (3.9) holds.

Next we study the stability of the positive equilib-
rium. We give the following proposition.

Proposition A.2. It holds that

1+
s′w(v)

1− sw(v)
v > 0 for v≥ 0. (A.2)

PROOF. We denote by the second component of the
positive equilibrium of (2.2), which is given as (3.10).
It follows that

1+
s′w(v2)

1− sw(v2)
v2 = 1− aw

Sw−aw

(
1− 1

Sw

)
> 0 (A.3)

for Sw > 1. The inequality 1− sw(v) > 0 holds by defi-
nition. A direct computation yields

1− sw(v)+ vs′w(v)

=1− aw

1+ kv
− awkv

(1+ kv)2

=
1

(1+ kv)2

{
(1+ kv)2−aw(1+ kv)−awkv

}
=

1
(1+ kv)2

{
(1−aw)+2(1−aw)kv+ k2v2}

>0

for v ≥ 0. Thus we obtain (A.2). Next we show (A.3).
Since we have 1+kv2 = Sw from (3.10) in Theorem 3.3,
we conclude

s′w(v2)
1− sw(v2)

v2 =− 1
1− aw

1+kv2

(
aw

1+ kv2

kv2

1+ kv2

)
=− aw

Sw−aw

(
1− 1

Sw

)
.

Hence, (A.3) follows.
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Let us assume that (3.9) holds. For the eigenvalues
associated to the positive equilibrium, we introduce the
following positive constants

ζ1 :=µv

{
1− aw

Sw−aw

(
1− 1

Sw

)}
,

ζ2 :=
2aw

2aw−Sw
µwµv

(
1− 1

Sw

)
.

Theorem A.3. Let us assume that (3.9) holds. The pos-
itive equilibrium of (2.2) has two eigenvalues λi, i = 1,2
where

λ1,2 =
1
2

{
−ζ1±

(
ζ

2
1 −4ζ2

) 1
2

}
(A.4)

and λ1,2 lie in the left half plane. Hence, the positive
equilibrium is locally asymptotically stable.

PROOF. We introduce the following functions.

fw,1(v) := (2sw(v)−1) p̄w,

fw,2(v) := 2(1− sw(v)) p̄w.

We denote by (w2,v2) the positive equilibrium of (2.2)
which is given as (3.10). For the positive equilibrium it
holds

fw,1(v2)−µw = 0 and w2 =
µvv2

fw,2(v2)
.

By dropping the index of w2 and v2, we obtain the char-
acteristic equation:

0 = λ

{
λ + µv

(
1−

f ′w,2(v)
fw,2(v)

v

)}
− f ′w,1(v)µvv. (A.5)

By a direct calculation and Proposition A.2, it follows
that

1−
f ′w,2(v)
fw,2(v)

v = 1+
s′w(v)

1− sw(v)
v

= 1− aw

Sw−aw

(
1− 1

Sw

)
and that

− f ′w,1(v)v = (p̄w + µw)
(

1− 1
Sw

)
=

2aw

2aw−Sw
µw

(
1− 1

Sw

)
.

Hence, (A.5) becomes 0 = λ 2 + ζ1λ + ζ2. Therefore,
λ1,2 are as stated in (A.4) and lie in the left half plane.

�

A.2. Asymptotic stability of equilibria of (4.1)

Proof of Theorem 4.1 It is obvious that there always
exists the trivial equilibrium. Assume that there exists a
positive equilibrium (w3,v3). From the first equation of
(4.1) it follows that

0 =
(

1−2
1−aw

1+ kv3

)
p̄w−µw

=
(

1−2
1−aw

1+ kv3

)
Sw

2aw−Sw
µw−µw

=
2µw

2aw−Sw

{
Sw−aw−

Sw (1−aw)
1+ kv3

}
.

Then we obtain

v3 =
1
k

{
Sw (1−aw)

Sw−aw
−1
}

=
1
k

aw

Sw−aw
(1−Sw) .

Now we have

s̃w(v3) =
Sw−aw

Sw
.

From the second equation of (4.1) w3 is given as

w3 =
µvv3

2s̃w(v3)p̄w

=
Swµv

2(Sw−aw)

(
Sw

2aw−Sw
µw

)−1

v3

=
2aw−Sw

2(Sw−aw)
µv

µw
v3.

One can see that (4.2) if and only if w3 > 0 and v3 > 0.

�

Proof of Theorem 4.2 For the trivial equilibrium we
obtain the characteristic equation as

{(2aw−1) p̄w−µw−λ}(−µv−λ ) = 0.

The characteristic equation has two roots λ =−µv and

λ = (2aw−1) p̄w−µw = (p̄w + µw)(Sw−1) .

Thus if Sw < 1 then every roots are negative and if
Sw > 1 there exists a positive root from which we ob-
tain the stability results for the trivial equilibrium. Next
we consider the characteristic equation for the positive
equilibrium. We introduce the following functions:

fw,1(v) := (1−2s̃w(v)) p̄w,

fw,2(v) := 2s̃w(v)p̄w.
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We denote by (w3,v3) the positive equilibrium. It holds

fw,1(v3)−µw = 0 and w3 =
µvv3

fw,2(v3)
.

By dropping the index of w3 and v3, we obtain the char-
acteristic equation:

0 = λ

{
λ + µv

(
1−

f ′w,2(v)
fw,2(v)

v

)}
− f ′w,1(v)µvv. (A.6)

By using an relation that

p̄w =
µwSw

2aw−Sw
,

it follows that

1−
f ′w,2(v)
fw,2(v)

v = 1+
s′w(v)
sw(v)

= 1+
kv

1+ kv

= 1+
aw (1−Sw)
Sw (1−aw)

and

− f ′w,1(v)v = 2s̃′w(v)p̄wv

=−2(1−aw)
1+ kv

kv
1+ kv

p̄w

=−µw
2aw (1−Sw)(Sw−aw)
Sw (1−aw)(2aw−Sw)

.

Hence, (A.6) becomes 0 = λ 2 +ζ1λ +ζ2, where

ζ1 := µv

{
1+

aw (1−Sw)
Sw (1−aw)

}
,

ζ2 :=−µw
2aw (1−Sw)(Sw−aw)
Sw (1−aw)(2aw−Sw)

.

Therefore the characteristic equation has two roots
λi, i = 1,2 given as

λ1,2 =
1
2

{
−ζ1±

(
ζ

2
1 −4ζ2

) 1
2

}
.

Since ξ2 < 0, one root is positive. Hence the positive
equilibrium is unstable.

�
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