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a b s t r a c t

In this paper, a logistic equation with multiple piecewise constant arguments is
investigated in detail. We generalize the approach in two papers, [K. Uesugi, Y. Muroya,
E. Ishiwata, On the global attractivity for a logistic equation with piecewise constant
arguments, J. Math. Anal. Appl. 294 (2) (2004) 560–580] and [Y. Muroya, E. Ishiwata,
N. Guglielmi, Global stability for nonlinear difference equations with variable coefficients,
J. Math. Anal. Appl. 334 (1) (2007) 232–247], and establish a new condition for the global
stability of the equation. Their results are given as one of the special cases. Moreover,
we improve the 3/2 type stability condition under several dominance assumptions on the
coefficients of the equation. Some examples and numerical simulations are also presented.
All of these examples show that there are several conditions for the global stability of the
equation, depending on the coefficients on the delay terms of the equation, beyond the 3/2
type stability condition.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the following logistic equation with piecewise constant arguments:

dN(t)
dt
= N(t)r

(
1−

m∑
j=0

bjN([t − j])

)
, (1.1)

where

r > 0, bj ≥ 0, j = 0, 1, 2, . . . ,m, and
m∑
j=0

bj > 0, (1.2)

with initial condition N(−l) = N−l ≥ 0, l = 1, 2, . . . ,m and N(0) = N0 > 0. [t] means the maximal integer not greater
than t . (1.1) has the positive equilibrium N∗ = 1/

(∑m
j=0 bj

)
.

Several classes of nonlinear delay differential and difference equations have been studied many times in the literature
(see [1–20] and references therein) and many authors focus on the global stability of the equation as one of the important
topics from the viewpoint of the application. Gopalsamy and Liu [1] studied a class of logistic equations with one
piecewise constant argument and offered a conjecture about the global asymptotic stability of the equation. Recently, the
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conjecture has been completely solved by Muroya and Kato [13] and Li and Yuan [3]. A more general logistic equation
with piecewise constant arguments was studied by Muroya [8] and the result was extended to the nonautonomous case by
Nakata et al. [14].
The main purpose in the present paper is to investigate (1.1) in detail and establish a new sufficient condition for the

global asymptotic stability. Several authors have investigated the stability and oscillatory characteristics of (1.1)withm = 0,
and it is known that r ≤ 2 is the necessary and sufficient condition for the global attractivity of the positive equilibrium
N∗ = 1/b0.

Theorem A (See [6, Theorem 1.1]). Let m = 0. If

r ≤ 2, (1.3)

then for any solution N(t) of (1.1), limt→+∞ N(t) = N∗.

For the case m ≥ 1, So and Yu [15] obtained the following 3/2 type criterion for the global attractivity of the positive
equilibrium N∗ = 1/

(∑m
j=0 bj

)
.

Theorem B (See [15, Theorem 1.2]). Let m ≥ 1. If

r ≤
3

2(m+ 1)
, (1.4)

then for any solution N(t) of (1.1), limt→+∞ N(t) = N∗.

For the global asymptotic stability of the delay differential and difference equations, 3/2 type stability conditions are
obtained in many literature entries (see, for example, [7,16–18] and references therein). In particular, Theorem B holds for
any set of the coefficients of the equation. On the other hand, Uesugi et al. [19] paid attention to the following dominance
assumption:

b0 >
m∑
j=1

bj. (1.5)

They established a better condition for the global attractivity of (1.1) under (1.5).

Theorem C (See [19, Theorem 1.2]). Let m ≥ 1. Suppose that (1.5) holds. If

r ≤ 2, (1.6)

and

r −

m∑
j=1
bj

b0
exp(r − 1) ≥ 0 for r > 1, (1.7)

then for any solution N(t) of (1.1), limt→+∞ N(t) = N∗ and the positive equilibrium N∗ is globally asymptotically stable.

One can see that under the assumption (1.5), they really improve Theorem B. Moreover, by [19, Corollary 1.1], we see
that (1.3) still guarantees the global asymptotic stability of (1.1) if

∑m
j=1 bj/b0 ≤ 2/e.

Now, a natural question occurs, that is, whether or not the bound 3/2(m+1) in (1.4) is the best possible constant for the
global stability of (1.1), when (1.5) is not true. In this paper, using a generalized approach from [19,12], we offer affirmative
answers for the above question.
Instead of (1.5), throughout the paper, we impose the following general assumption.
(H) There exists an integer i ∈ [0,m] such that

i∑
k=0

i−k∑
j=0

bj >
i∑
k=0

m∑
j=i−k+1

bj. (1.8)

For a given set of the coefficients, bj, j = 0, 1, 2, . . . ,m, for (1.1), if we can have (H) with i = 0, then (1.8) becomes (1.5).
Therefore, (H) is a generalized assumption from (1.5). Under the assumption (H), we establish the following new condition
for the global asymptotic stability of (1.1), which generalizes the results given in [9,19,12].

Theorem 1.1. Let m ≥ 1. Suppose that (H) holds. If

r ≤
2
i+ 1

, (1.9)
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and

r(i+ 1)−

i∑
k=0

m∑
j=i−k+1

bj

i∑
k=0

i−k∑
j=0
bj

exp(r(i+ 1)− 1) ≥ 0 for r(i+ 1) > 1, (1.10)

then for any solution N(t) of (1.1), limt→+∞ N(t) = N∗ and the positive equilibrium N∗ is globally asymptotically stable.

As a direct consequence, we have the following corollaries.

Corollary 1.2. Let m ≥ 1. Assume that there exists an integer i ∈ [0,m] such that

i∑
k=0

m∑
j=i−k+1

bj

i∑
k=0

i−k∑
j=0
bj

≤
2
e
. (1.11)

If r ≤ 2
i+1 , then for any solution N(t) of (1.1), limt→+∞ N(t) = N

∗ and the positive equilibrium N∗ is globally asymptotically
stable.

Corollary 1.3. Let m ≥ 1. Assume that there exists an integer i ∈ [0,m] such that

i∑
k=0

i−k∑
j=0
bj

(i+ 1)
m∑
j=0
bj
≥

2
e+ 2

. (1.12)

If r ≤ 2
i+1 , then for any solution N(t) of (1.1), limt→+∞ N(t) = N

∗ and the positive equilibrium N∗ is globally asymptotically
stable.

For (1.1), if b0 >
∑m
j=1 bj, then we can choose i = 0, and Theorem 1.1 becomes Theorem C. For the case i = m, a similar

result is established by Muroya et al. [12].
Moreover, we obtain the following several corollaries.

Corollary 1.4. Let m ≥ 1. Suppose that
∑1
k=0

∑1−k
j=0 bj >

∑1
k=0

∑m
j=2−k bj. If

r ≤ 1, and 2r −

1∑
k=0

m∑
j=2−k

bj

1∑
k=0

1−k∑
j=0
bj

exp(2r − 1) ≥ 0 for r >
1
2
, (1.13)

then for any solution N(t) of (1.1), limt→+∞ N(t) = N∗ and the positive equilibrium N∗ is globally asymptotically stable.

Corollary 1.5. Let m ≥ 1. Suppose that
∑2
k=0

∑2−k
j=0 bj >

∑2
k=0

∑m
j=3−k bj. If

r ≤
2
3
, and 3r −

2∑
k=0

m∑
j=3−k

bj

2∑
k=0

2−k∑
j=0
bj

exp(3r − 1) ≥ 0 for r >
1
3
, (1.14)

then for any solution N(t) of (1.1), limt→+∞ N(t) = N∗ and the positive equilibrium N∗ is globally asymptotically stable.

To illustrate the above results, we introduce an example.

Example 1.6. Consider the following logistic equation with two piecewise constant arguments:

dN(t)
dt
= N(t)r (1− 0.2N([t])− 0.8N([t − 1])) . (1.15)
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(1.15) has the positive equilibrium N∗ = 1. We can choose i = 1 such that (H) holds and it follows that 0.8/1.2 ≤ 2/e.
By Corollary 1.2, if 0 < r ≤ 1, then for any solution N(t) of (1.15), limt→+∞ N(t) = N∗ = 1 and the positive equilibrium
N∗ = 1 is globally asymptotically stable. On the other hand, (1.4) becomes r ≤ 3

4 = 0.75 and, hence, our stability condition
improves Theorem B without the assumption (1.5).

This paper is organized as follows. In Section 2, we prepare some basic results and derive a new condition for the global
asymptotic stability in Lemma 2.6. Lemma 2.6 is the most important result in this paper and established by a generalized
approach of the estimation of the upper and lower bounds of the solution from Uesugi et al. [19] and Muroya et al. [12].
In the proof of Lemma 2.6, Lemma 2.5 becomes one of the key results. In Section 3, using the property of a unimodal
function ϕ(x), which is introduced in Section 2, some sufficient conditions for Lemma 2.6 are established. Moreover, we
introduce Theorem 3.6, which extends the previous results in [9,20]. Using the previous results given in [19], we finally
prove Theorem 1.1 in the last part of Section 3. In Section 4, some examples and numerical simulations are given. All of
these examples show that there are several conditions for the global stability of the equation, depending on the coefficients
on the delay terms of the equation, beyond the 3/2 type stability condition.

2. Basic results

In this section, we prepare some basic results. With a new approach of the estimation of the upper and lower bounds of
the solution, we establish a condition for the global asymptotic stability of the equation in Lemma 2.6.
At first, under a variable transformation N(t) = N∗ exp(x(t)), (1.1) becomes

dx(t)
dt
= −

m∑
j=0

ajf (x([t − j])), (2.1)

where{
aj = rN∗bj for j = 0, 1, 2, . . . ,m,
f (x) = ex − 1, (2.2)

with initial condition x(−l) = ln(N−l/N∗), l = 0, 1, 2, . . . ,m. By integrating both sides of (2.1) from n to t on the interval
[n, n+ 1), n = 0, 1, 2, . . . , we obtain that

x(t)− x(n) = −
m∑
j=0

ajf (x(n− j))(t − n).

By the continuity of the solution, we let t → n+ 1 and obtain the following discretized equation with delays:

x(n+ 1) = x(n)−
m∑
j=0

ajf (x(n− j)). (2.3)

It is clear that (2.3) has the zero solution. The global asymptotic stability of the zero solution of (2.3) is equivalent to the
global asymptotic stability of the positive equilibrium N∗ of (1.1). Hereafter, we consider (2.3).
Let us introduce the following well known results from Muroya et al. [12] (see also [15,19]).

Lemma 2.1 (See [12, Lemma 2.1]). Let {x(n)}∞n=0 be the solution of (2.3). If x(n) is eventually larger (resp. smaller) than 0, then
x(n) is eventually decreasing (resp. increasing), and limn→∞ x(n) exists and it holds that limn→∞ x(n) = 0.

Next, we show the uniform persistence for (2.3).

Lemma 2.2 (See also [12, Lemma 2.2]). Let {x(n)}∞n=0 be the solution of (2.3). If x(n) is oscillatory about 0, and
∑m
j=0 aj < +∞,

then x(n) is bounded above and below. Moreover, it holds that

−∞ < −(m+ 1)
m∑
j=0

ajf (M) ≤ lim inf
n→+∞

x(n) ≤ lim sup
n→+∞

x(n) ≤ M < +∞,

where M = (m+ 1)
∑m
j=0 aj.

Proof. From (2.2)–(2.3), we have that

x(n+ 1)− x(n) ≤
m∑
j=0

aj, for n ≥ 0. (2.4)

Please cite this article in press as: Y. Nakata, Global asymptotic stability beyond 3/2 type stability for a logistic equation with piecewise constant
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Suppose that lim supn→+∞ x(n) = +∞. Then, there exists a strictly monotone increasing integer sequence {nk}
+∞

k=1 such
that nk ≥ 0 and

x(nk) = max
0≤n≤nk

x(n), x(nk) ≥ x(nk − 1) and lim
k→+∞

x(nk) = lim sup
n→+∞

x(n).

Then, by (2.3) we have

0 ≤ x(nk)− x(nk − 1) = −
m∑
j=0

ajf (x(nk − 1− j)) for nk > m,

which implies 0 ≤ −
∑m
j=0 ajf (x(nk − 1− j)). Thus, there exists an integer ηk ∈ [nk − 1− m, nk − 1] such that x(ηk) ≤ 0.

Summing (2.4) from n = ηk to n = nk − 1, we have

x(nk) ≤ x(ηk)+ (nk − ηk)
m∑
j=0

aj ≤ (m+ 1)
m∑
j=0

aj = M.

This leads to a contradiction to our assumption. Thus, x(n) < +∞ for n > 0.
Moreover, like in the above discussion, we obtain that x(n) ≤ M < +∞ for n > 0 and lim supn→+∞ x(n) ≤ M < +∞.
Next, let us consider the lower bound of the solution. From (2.2)–(2.3), we have that

x(n+ 1)− x(n) ≥ −
m∑
j=0

ajf (M), for n ≥ m+ 1. (2.5)

Suppose that lim infn→+∞ x(n) = −∞. Then, there exists a strictly monotone increasing integer sequence {nk}
+∞

k=1 such that
nk ≥ 0 and

x(nk) = min
0≤n≤nk

x(n), x(nk) ≤ x(nk − 1) and lim
k→+∞

x(nk) = lim infn→+∞
x(n).

Then, by (2.3) we have

0 ≥ x(nk)− x(nk − 1) = −
m∑
j=0

ajf (x(nk − 1− j)) for nk > 2m+ 1,

which implies 0 ≥ −
∑m
j=0 ajf (x(nk − 1− j)). Thus, there exists an integer ηk ∈ [nk − 1− m, nk − 1] such that x(ηk) ≥ 0.

Summing (2.5) from n = η
k
to n = nk − 1, we have

x(nk) ≥ x(ηk)+ (nk − ηk)
m∑
j=0

ajf (M) ≥ −(m+ 1)
m∑
j=0

ajf (M).

This leads to a contradiction to our assumption. Thus, x(n) > −∞ for n > 0.
Moreover, like in the above discussion, we obtain that x(n) ≥ −(m + 1)

∑m
j=0 ajf (M) > −∞ for n > 2m + 1 and

lim infn→+∞ x(n) ≥ −(m+ 1)
∑m
j=0 ajf (M) > −∞. Hence, the proof is complete. �

Remark 2.3. By Lemma 2.2, for some real number (small enough) L < 0, there exists a positive integer nL such that x(n) ≥ L
for n ≥ nL.

Under the assumption (H), without loss of generality, we can fix i ∈ [0,m] and define

r1 =
i∑
k=0

i−k∑
j=0

aj and r2 =
i∑
k=0

m∑
j=i−k+1

aj, (2.6)

respectively for such i. We note that r1 + r2 = (i+ 1)
∑m
j=0 aj, and by (2.2) it holds that

r1 + r2 = r(i+ 1). (2.7)

Moreover, by (H), throughout the paper, we assume that

r1 > r2 ≥ 0. (2.8)

The following lemma is used in Lemma 2.6 and some discussions in Section 3.
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Lemma 2.4. Let {x(n)}∞n=0 be the solution of (2.3). Suppose that for some real number L < 0, there exists a positive integer nL
such that x(n) ≥ L for n ≥ nL. If there exists an integer n > nL + 2m such that x(n+ 1) > 0 and x(n+ 1) ≥ x(n), then there
exists an integer g(n) ∈ [0, i] such that

x(n− g(n)) = min
0≤j≤i

x(n− j) ≤ f −1

−
m∑

j=i+1
aj

i∑
j=0
aj

f (L)

 . (2.9)

Moreover, it holds that

m∑
j=i+1

aj

i∑
j=0
aj

≤

1∑
k=0

m∑
j=i−k+1

aj

1∑
k=0

i−k∑
j=0
aj

≤

2∑
k=0

m∑
j=i−k+1

aj

2∑
k=0

i−k∑
j=0
aj

≤ · · · ≤
r2
r1
, (2.10)

and it follows that

x(n− g(n)) ≤ f −1

−
m∑

j=i+1
aj

i∑
j=0
aj

f (L)

 ≤ f −1
(
−
r2
r1
f (L)

)
. (2.11)

Proof. From (2.6) and (2.8), it is clear that
∑i
j=0 aj > 0, if r1 > 0. From (2.3), we have that

0 ≤ x(n+ 1)− x(n) ≤ −
i∑
j=0

ajf (x(n− g(n)))−
m∑

j=i+1

ajf (L),

which implies

f (x(n− g(n))) ≤ −

m∑
j=i+1

aj

i∑
j=0
aj

f (L),

and (2.9) holds. From the observation of the following inequality:

y2
y1
≤
y2 + ỹ2
y1 + ỹ1

for 0 ≤ y2 ≤ ỹ2 and 0 ≤ ỹ1 ≤ y1,

we see that (2.10) holds. By (2.9) and (2.10), we easily obtain (2.11). Hence, the proof is complete. �

The following observation enables us to establish Lemma 2.6.

Lemma 2.5. Let {x(n)}∞n=0 be the solution of (2.3). Suppose that for some real number L < 0, there exists a positive integer nL
such that x(n) ≥ L for n ≥ nL. If there exists an integer n > nL + 2m such that x(n+ 1) > 0 and x(n+ 1) ≥ x(n− (i− i1)) for
an integer i1 ∈ [0, i], then there exists an integer g(n) ∈ [0, i] such that

x(n− g(n)) = min
0≤j≤i

x(n− j),

and it holds that

−

(
i∑

k=i1

i−k∑
j=0

aj

)
f (x(n− g(n)))−

(
i∑

k=i1

m∑
j=i−k+1

aj

)
f (L) ≥ 0. (2.12)

Moreover, suppose that for some real number RL > 0, it holds that x(n) ≤ RL for n > nL + 4m + 1. If there exists an integer
n > nL + 4m+ 1 such that x(n+ 1) < 0 and x(n+ 1) ≤ x(n− (i− i2)) for an integer i2 ∈ [0, i], then there exists an integer
g(n) ∈ [0, i] such that

x(n− g(n)) = max
0≤j≤i

x(n− j),

Please cite this article in press as: Y. Nakata, Global asymptotic stability beyond 3/2 type stability for a logistic equation with piecewise constant
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and it holds that

−

(
i∑

k=i2

i−k∑
j=0

aj

)
f (x(n− g(n)))−

(
i∑

k=i2

m∑
j=i−k+1

aj

)
f (RL) ≤ 0. (2.13)

Proof. Since (n− g(n))−m ≥ n− 2m, we exploit (2.3) and get the following equations:

x(n+ 1) ≤ x(n)−
i−i1∑
j=0

ajf (x(n− g(n)))−
m∑

j=i−i1+1

ajf (L),

x(n) ≤ x(n− 1)−
i−i1−1∑
j=0

ajf (x(n− g(n)))−
m∑

j=i−i1

ajf (L),

x(n− 1) ≤ x(n− 2)−
i−i1−2∑
j=0

ajf (x(n− g(n)))−
m∑

j=i−i1−1

ajf (L),

· · ·

x(n− (i− i1)+ 1) ≤ x(n− (i− i1))− a0f (x(n− g(n)))−
m∑
j=1

ajf (L),

and, hence, it follows that

0 ≤ x(n+ 1)− x(n− (i− i1)) ≤ −

(
i∑

k=i1

i−k∑
j=0

aj

)
f (x(n− g(n)))−

(
i∑

k=i1

m∑
j=i−k+1

aj

)
f (L).

Thus, (2.12) holds. Similarly, (2.13) also holds and the proof is complete. �

Before introducing the next lemma, we put

dL = f −1
(
−
r2
r1
f (L)

)
for L < 0, (2.14)

and

ϕ(x) = x− r1f (x). (2.15)

We generalize the approach in [19,12] and establish the following important lemma in this paper.

Lemma 2.6. Suppose that the solution x(n) of (2.3) is oscillatory about 0. If, for some real number L < 0, there exists a positive
integer nL such that x(n) ≥ L for n ≥ nL, then it holds that

x(n+ 1) ≤ RL, n > nL + 2m and x(n+ 1) ≥ SL, n > nL + 4m+ 1, (2.16)

where

RL = max
L≤x≤dL

ϕ(x)− r2f (L) and SL = min
L≤x≤RL

ϕ(x)− r2f (RL), (2.17)

respectively. Moreover, if

SL > L for any L < 0, (2.18)

then it holds that limn→+∞ x(n) = 0.

Proof. Assume x(n) ≥ L for any n ≥ nL. From the assumption that the solution is oscillatory about 0 and Lemma 2.2, there
exists a strictly monotone increasing integer subsequence {nk}+∞k=1 such that nk > nL + 2m, and

x(nk) = max
nL+2m<n<nk

x(n), x(nk) ≥ x(nk − 1) and lim
k→+∞

x(nk) = lim sup
n→+∞

x(n).

Moreover, there exists an integer g(n) ∈ [0, i] for n > nL + 2m such that x(n − g(n)) = min0≤j≤i x(n − j) and, hence, we
have x(n− g(n)) ≤ x(n− j) for j = 0, 1, 2, . . . , i. For simplicity, we put

x(ξ
k
) = x(nk − 1− g(nk − 1)).
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Since (n− g(n))−m ≥ n− 2m, we exploit (2.3) and get the following equations:

x(nk) ≤ x(nk − 1)−
i∑
j=0

ajf (x(ξ k))−
m∑

j=i+1

ajf (L),

x(nk − 1) ≤ x(nk − 2)−
i−1∑
j=0

ajf (x(ξ k))−
m∑
j=i

ajf (L),

x(nk − 2) ≤ x(nk − 3)−
i−2∑
j=0

ajf (x(ξ k))−
m∑

j=i−1

ajf (L),

· · ·

x(ξ
k
+ 1) ≤ x(ξ

k
)−

i−g(nk−1)∑
j=0

ajf (x(ξ))−
m∑

j=i−g(nk−1)+1

ajf (L),

and then we obtain that

x(nk) ≤ x(ξ k)−

g(nk−1)∑
k=0

i−k∑
j=0

aj

 f (x(ξ
k
))−

g(nk−1)∑
k=0

m∑
j=i−k+1

aj

 f (L). (2.19)

If g(nk − 1) ≤ i− 1, then we put i1 = g(nk − 1)+ 1 and, by Lemma 2.5, we have that

0 ≤ −

 i∑
k=g(nk−1)+1

i−k∑
j=0

aj

 f (x(ξ
k
))−

 i∑
k=g(nk−1)+1

m∑
j=i−k+1

aj

 f (L). (2.20)

By adding (2.19) and (2.20), we obtain that

x(nk) ≤ x(ξ k)−

(
i∑
k=0

i−k∑
j=0

aj

)
f (x(ξ

k
))−

(
i∑
k=0

m∑
j=i−k+1

aj

)
f (L) = ϕ(x(ξ

k
))− r2f (L).

From (2.11) in Lemma 2.4 and (2.14), we have L ≤ x(ξ
k
) ≤ dL. Thus, we obtain that x(n+ 1) ≤ RL for any n > nL + 2m. For

the case g(nk − 1) = i, we also obtain x(n+ 1) ≤ RL for any n > nL + 2m.
Like in the above discussion, there exists a strictly monotone increasing integer subsequence {nk}

+∞

k=1 such that nk >
nL + 4m+ 1, and

x(nk) = min
nL+4m+1<n≤nk

x(n), x(nk) ≤ x(nk − 1) and lim
k→+∞

x(nk) = lim infn→+∞
x(n).

There exists an integer g(n) ∈ [0, i] for n > nL + 4m + 1 such that x(n − g(n)) = max0≤j≤i x(n − j) and, hence, we have
x(n− g(n)) ≥ x(n− j) for j = 0, 1, 2, . . . , i. For simplicity, we put

x(ξ k) = x(nk − 1− g(nk − 1)).

Since (n− g(n))−m ≥ n− 2m, we exploit (2.3) and get the following equations:

x(nk) ≥ x(nk − 1)−
i∑
j=0

ajf (x(ξ k))−
m∑

j=i+1

ajf (RL),

x(nk − 1) ≥ x(nk − 2)−
i−1∑
j=0

ajf (x(ξ k))−
m∑
j=i

ajf (RL),

x(nk − 2) ≥ x(nk − 3)−
i−2∑
j=0

ajf (x(ξ k))−
m∑

j=i−1

ajf (RL),

· · ·

x(ξ k + 1) ≥ x(ξ k)−
i−g(nk−1)∑
j=0

ajf (x(ξ k))−
m∑

j=i−g(nk−1)+1

ajf (RL),

and then, we obtain that

x(nk) ≥ x(ξ k)−

(
g(nk−1)∑
k=0

i−k∑
j=0

aj

)
f (x(ξ k))−

(
g(nk−1)∑
k=0

m∑
j=i−k+1

aj

)
f (RL). (2.21)
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If g(nk − 1) ≤ i− 1, then we put i2 = g(nk − 1)+ 1 and by Lemma 2.5, it holds that

0 ≥ −

 i∑
k=g(nk−1)+1

i−k∑
j=0

aj

 f (x(ξ k))−
 i∑
k=g(nk−1)+1

m∑
j=i−k+1

aj

 f (RL). (2.22)

Consequently, by adding (2.21) and (2.22), we obtain that

x(nk) ≥ x(ξ k)−

(
i∑
k=0

i−k∑
j=0

aj

)
f (x(ξ k))−

(
i∑
k=0

m∑
j=i−k+1

aj

)
f (RL) = ϕ(x(ξ k))− r2f (RL).

Now we have L ≤ x(ξ k) ≤ RL. Hence, we obtain that x(n+ 1) ≥ SL for any n > nL + 4m+ 1. For the case g(nk − 1) = i, we
easily obtain the same conclusion.
Next, we suppose that SL > L for any L < 0. We set L = lim infn→+∞ x(n) and if L < 0, then we have that SL > L for such

a L < 0. Therefore, there exists an integer nL such that

x(n) ≥ SL > L, for any n > nL,

which is a contradiction to the assumption, that is, L = lim infn→+∞ x(n). Hence, we have L = 0 and this implies that
limn→+∞ x(n) = 0. Hence, the proof is complete. �

Remark 2.7. By Lemmas 2.1, 2.2 and 2.6, the zero solution of (2.3) is uniformly asymptotically stable. Hence,
limn→+∞ x(n) = 0 implies that the zero solution of (2.3) is globally asymptotically stable.

Remark 2.8. Muroya et al. [12] and So and Yu [15] pay attention to the fact that there exists at least one nonpositive delay
term when they estimate the upper bound of the solution. However, our approach does not need such a observation. A
similar statement is true for the estimation of the lower bound of the solution.

3. Explicit conditions for Lemma 2.6 and the proof of Theorem 1.1

In this section, we offer some conditionswhich ensure that (2.18) in Lemma 2.6 holds. Using the property of the unimodal
function ϕ(x), Theorems 3.1–3.3 are derived. Next, we establish one of the main theorems, which extends the results given
in [9,20]. Moreover, we introduce useful results from Uesugi et al. [19] and finally prove Theorem 1.1.
The following important results are derived for Lemma 2.6.

Theorem 3.1. Assume that ϕ(x) has only one critical point L∗ < 0 which is a local maximum point. If it holds that

min{ϕ(L), ϕ(RL)} − r2f (RL) > L for any L < 0, (3.1)

where

RL = ϕ(max{L∗, L})− r2f (L),

then the zero solution of (2.3) is globally asymptotically stable.

Proof. Now, ϕ(x) is a unimodal function which attains a local maximum at L∗ < 0; hence, it follows that maxL≤x≤dL ϕ(x) =
ϕ(max{L∗, L}) and RL = ϕ(max{L∗, L}) − r2f (L) for L < 0. It also holds that minϕL≤x≤RL(x) = min{ϕ(L), ϕ(RL)} and
SL = min{ϕ(L), ϕ(RL)} − r2f (RL) for L < 0. Hence, (3.1) implies that (2.18) holds. By Lemma 2.6, we have the conclusion of
this theorem. �

Theorem 3.2. Assume that ϕ(x) has only one critical point R∗ > 0 which is a local maximum point.
(1) If R∗ ≥ ϕ(R∗)+ r2 and

ϕ(L)− r2f (RL) > L for any L < 0, (3.2)

where

RL = ϕ(dL)− r2f (L) = dL,

then the zero solution of (2.3) is globally asymptotically stable.
(2) If R∗ < ϕ(R∗)+ r2 then there exists a unique L < 0 such that R∗ = ϕ(R∗)− r2f (L), and it holds that{

R∗ > ϕ(R∗)− r2f (L) for L < L < 0,
R∗ ≤ ϕ(R∗)− r2f (L) for L ≤ L < 0.

Moreover, if

ϕ(L)− r2f (RL) > L for any L < L < 0, (3.3)
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where

RL = ϕ(dL)− r2f (L) = dL,

and if

min{ϕ(L), ϕ(RL)} − r2f (RL) > L for any L ≤ L < 0, (3.4)

where

RL = ϕ(R∗)− r2f (L),

then the zero solution of (2.3) is globally asymptotically stable.

Proof. (1) From the assumption that R∗ ≥ ϕ(R∗)+ r2, we see that 0 ≥ −r1f (R∗)+ r2. Then, it follows that

f (R∗) ≥
r2
r1
≥ −

r2
r1
f (L) = f (dL) for L < 0.

This implies that dL ≤ R∗ and, hence, it holds that maxL≤x≤dL ϕ(x) = ϕ(dL) and

RL = ϕ(dL)− r2f (L) = dL − r1f (dL)− r2f (L) = dL ≤ R∗ for L < 0,

fromwhich,we see thatminL≤x≤RL ϕ(x) = ϕ(L). Hence, (3.2) implies that (2.18) holds. By Lemma2.6,wehave the conclusion.
(2) By [19, Lemma 2.4], there exists a unique L < 0 such that R∗ = ϕ(R∗)−r2f (L). This implies that 0 = −r1f (R∗)−r2f (L).
Let us consider the case L < L < 0. From (2.14), it holds that

dL < f −1
(
−
r2
r1
f (L)

)
= f −1(f (R∗)) = R∗ for L < L < 0,

from which, we see that maxL≤x≤dL ϕ(x) = ϕ(dL) and RL = ϕ(dL) − r2f (L) = dL < R
∗ for L < L < 0, and then it holds that

minL≤x≤RL ϕ(x) = ϕ(L). Consequently, (3.3) implies that (2.18) holds. By Lemma 2.6, we have the conclusion.
Next, we consider the case L ≤ L < 0. In this case, we have that R∗ ≤ ϕ(R∗) − r2f (L) for L ≤ L < 0. Then,

0 ≤ −r1f (R∗)− r2f (L) for L ≤ L < 0 and it follows that

f (R∗) ≤ −
r2
r1
f (L) = f (dL) for L ≤ L < 0.

This implies that 0 < R∗ ≤ dL and, hence, we have that maxL≤x≤dL ϕ(x) = ϕ(R
∗) and

RL = ϕ(R∗)− r2f (L) ≥ R∗ for L ≤ L < 0.

Then, it follows that minL≤x≤RL ϕ(x) = min{ϕ(L), ϕ(RL)} and SL = min{ϕ(L), ϕ(RL)} − r2f (RL). Hence, (3.4) implies that
(2.18) holds. By Lemma 2.6, we have the conclusion of this theorem. �

Theorem 3.3. Assume that ϕ(x) has only one critical point R∗ = 0 which is a local maximum point. Then R∗ ≤ ϕ(R∗)+ r2 and
there exists a unique L = 0 such that R∗ = ϕ(R∗)− r2f (L).
If it holds that

min{ϕ(L), ϕ(RL)} − r2f (RL) > L for any L < 0, (3.5)

where

RL = ϕ(R∗)− r2f (L),

and then the zero solution of (2.3) is globally asymptotically stable.

Since the proof of Theorem 3.3 is similar to the proof of Theorem 3.2, we omit it here. For the convenience of the reader, we
illustrate the graphs of ϕ(x) in Figs. 1 and 2.
We put

ϕ̃(x) = x− (r1 + r2)f (x),

and introduce the following useful results from Uesugi et al. [19] in Lemmas 3.4, 3.9 and 3.10. Although the definition of
r1 and r2 is different from that of Uesugi et al. [19], it is clear that their results work well as the explicit conditions for
Theorems 3.1–3.3.
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Fig. 1. Graph of ϕ(x), r1 = 1.8.
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Fig. 2. Graph of ϕ(x), r1 = 0.3.

Lemma 3.4 (See [19, Lemma 3.1]). Assume that

0 < r1 + r2 ≤ 2.

Then, {
ϕ̃2(L) > L for any L < 0,
ϕ̃2(R) < R for any R > 0,

and for (2.3) with r2 = 0, limn→+∞ x(n) = 0.

Lemma 3.4 implies that if 0 < r1 ≤ 2 and r2 = 0, then limn→+∞ x(n) = 0.
Next, we introduce the following result.

Lemma 3.5. Assume that

r1 > r2 ≥ 0,

For L ≤ 0, put

H(L) = ϕ(L)− r2f (RL)− L,

where

RL = ϕ(dL)− r2f (L) = dL.

Then,

H(L) > 0 for any L < 0.

Proof. By (2.14), we have that f (dL) = − r2r1 f (L) for L < 0. By (2.15), it follows that

H(L) = −r1f (L)+
r22
r1
f (L)

= −
1
r1
f (L)

(
r21 − r

2
2

)
> 0 for L < 0.

Hence, the proof is complete. �

Please cite this article in press as: Y. Nakata, Global asymptotic stability beyond 3/2 type stability for a logistic equation with piecewise constant
arguments, Nonlinear Analysis (2010), doi:10.1016/j.na.2010.06.081



ARTICLE  IN  PRESS
12 Y. Nakata / Nonlinear Analysis ( ) –

From this lemma, we see that r1 > r2 ≥ 0 ensures that (3.2) and (3.3) in Theorem 3.2 hold. Then, we obtain one of the
main theorems, which extends the results given in [9,20].

Theorem 3.6. Let m ≥ 1. Suppose that (H) holds. If

r ≤
1
i+ 1

, (3.6)

then for any solution N(t) of (1.1), limt→+∞ N(t) = N∗ and the positive equilibrium N∗ is globally asymptotically stable.

Proof. By (2.6)–(2.8) and (3.6), we have that

r1 > r2 ≥ 0 and r1 + r2 ≤ 1. (3.7)

For the case r2 = 0, by Lemma 3.4, we obtain the conclusion of this lemma. Let us consider the case r2 > 0. From (3.7), ϕ(x)
attains a unique local maximum at R∗ = ln 1r1 > 0. Then we see that

−r1f (R∗)+ r2 = −r1 exp(R∗)+ r1 + r2 ≤ 0,

fromwhich it holds that R∗ ≥ ϕ(R∗)+r2. By Lemma3.5 and (1) in Theorem3.2,we obtain the conclusion of this theorem. �

Remark 3.7. For the case i = 0, a result similar to the global stability is obtained by Muroya [9] and Wang et al. [20]. In
particular, for the case i = 0, in Muroya [9], the solution has contractivity.

Example 3.8. Consider the following logistic equation with piecewise constant arguments:

dN(t)
dt
= N(t)r

(
1−

4∑
j=0

bjN([t − j])

)
. (3.8)

When b0 >
∑4
j=1 bj holds, the positive equilibrium N

∗ is globally asymptotically stable if r ≤ 1. For the case∑1
k=0

∑1−k
j=0 bj >

∑1
k=0

∑4
j=2−k bj, the positive equilibrium N

∗ is globally asymptotically stable if r ≤ 1
2 . Moreover, for

the case
∑2
k=0

∑2−k
j=0 bj >

∑2
k=0

∑4
j=3−k bj, the positive equilibrium N

∗ is globally asymptotically stable if r ≤ 1
3 .

On the other hand, (1.4) becomes r ≤ 3
2(1+4) = 0.3 and, hence, the condition for the global stability of the equation is

improved in all cases.

Hereafter, we restrict our attention to the case of r1 + r2 > 1 and r2 > 0.

Lemma 3.9 (See [19, Lemma 3.2]). Assume that

r1 > r2 > 0, r1 > 1, r1 + r2 ≤ 2 and r1 + r2 −
r2
r1
exp(r1 + r2 − 1) ≥ 0. (3.9)

Then, ϕ(x) attains a unique local maximum at L∗ = − ln r1 < 0.
(1) For L ≤ 0, put{

G1(L) = ϕ(L)− r2f (R∗L )− L,
G̃1(L) = r1f (L)+ r2f (R∗L ),

(3.10)

where

R∗L = ϕ(L
∗)− r2f (L).

Then, each of the following holds. (i) limL→−∞ G̃1(L) ≤ 0, (ii) G̃1(L∗) < 0, (iii) if G̃1
′

(L) = 0 for some L < L∗, then G̃1(L) < 0.
Hence, G̃1(L) < 0 and

G1(L) > 0 for any L ≤ L∗ < 0. (3.11)

(2) For L ≤ 0, put

G2(L) = ϕ(R∗L )− r2f (R
∗

L )− L, (3.12)

where

R∗L = ϕ(L
∗)− r2f (L).
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Then, each of the following holds. (i) limL→−∞ G2(L) = +∞, (ii) G2(L∗) = ϕ̃2(L∗) − L∗ > 0, (iii) G′2(L) < 0 for any L < L
∗.

Hence,

G2(L) > 0 for any L ≤ L∗ < 0. (3.13)

(3) For L ≤ 0, put

G3(L) = ϕ(RL)− r2f (RL)− L, (3.14)

where

RL = ϕ(L)− r2f (L).

Then

G3(L) = ϕ̃2(L)− L > 0 for any L∗ ≤ L < 0. (3.15)

We note that r1 > 1 ensures that ϕ(x) is a unimodal function which has only one critical point at L∗ = − ln r1 < 0. For the
case r1 ≤ 1, we introduce the following results.

Lemma 3.10 (See [19, Lemma 3.3]). Assume that

1 > r1 > r2 > 0, r1 + r2 > 1 and r1 + r2 −
r2
r1
exp(r1 + r2 − 1) ≥ 0. (3.16)

Then, ϕ(x) attains a unique local maximum at R∗ = − ln r1 > 0.
(1) For L ≤ 0, put{

G4(L) = ϕ(L)− r2f (R∗∗L )− L,
G̃4(L) = r1f (L)+ r2f (R∗∗L ),

(3.17)

where

R∗∗L = ϕ(R
∗)− r2f (L).

Then, there exists a unique L < 0 such that R∗ = ϕ(R∗) − r2f (L), and each of the following holds. (i) limL→−∞ G̃4(L) ≤
0, (ii) G̃4(L) < 0, (iii) G̃′4(L) > 0. Hence,

G4(L) > 0 for any L ≤ L < 0. (3.18)

(2) For L ≤ 0, put

G5(L) = ϕ(R∗∗L )− r2f (R
∗∗

L )− L, (3.19)

where

R∗∗L = ϕ(R
∗)− r2f (L).

Then, ϕ(R∗∗L ) > ϕ(L) and

G5(L) = ϕ̃(R∗∗L )− L > G4(L) > 0 for any L ≤ L < 0. (3.20)

Lemma 3.11 (See [19, Lemma 3.4]). Assume that

r1 = 1, r2 > 0 and 1+ r2 − r2 exp(r2) ≥ 0. (3.21)

Then, ϕ(x) attains a unique local maximum at R∗ = − ln r1 = 0. There exists a unique L = 0 such that R∗ = ϕ(R∗)− r2f (L).
(1) For (3.17) with R∗ = 0, it holds that

G4(L) > 0 for any L < L = 0. (3.22)

(2) For (3.19) with R∗ = 0, it holds that

G5(L) = ϕ̃(R∗∗L )− L > 0 for any L < L = 0. (3.23)

Now, we can prove Theorem 1.1.
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Proof of Theorem 1.1. From (1.9), (1.10) and (2.6)–(2.8), we have that

r1 + r2 ≤ 2 and r1 + r2 −
r2
r1
exp(r1 + r2 − 1) ≥ 0 for r1 + r2 > 1.

By Theorem 3.6, it is sufficient to give the proof for the case r1 + r2 > 1. Now we easily see that (3.9), (3.16) and (3.21) are
satisfied, respectively.
From (1) and (2) of Lemma 3.9, it holds that

min{ϕ(L), ϕ(R∗L )} − r2f (R
∗

L ) > L for any L ≤ L
∗ < 0,

where

R∗L = ϕ(L
∗)− r2f (L).

Moreover, from (3) of Lemma 3.9, it holds that

ϕ(RL)− r2f (RL) > L for any L ∈ [L∗, 0),

where

RL = ϕ(L)− r2f (L).

We note that min{ϕ(L), ϕ(RL)} = ϕ(RL) for L∗ ≤ L < RL. Hence, (3.1) in Theorem 3.1 holds.
From (1), (2) of Lemmas 3.10 and 3.11, it holds that

min{ϕ(L), ϕ(R∗∗L )} − r2f (R
∗∗

L ) > L for any L < 0, (3.24)

where

R∗∗L = ϕ(R
∗)− r2f (L).

Hence, (3.1)–(3.4) in Theorems 3.2 and 3.3 hold.
By Theorems 3.1–3.3, we obtain the conclusion of this theorem. Hence, the proof is complete. �

4. Applications

The object of this section is to introduce some examples and to compare our results with some previous results.
Consider the following logistic equation with piecewise constant arguments:

dN(t)
dt
= N(t)r

(
1−

2∑
j=0

bjN([t − j])

)
, (4.1)

(4.1) has the positive equilibrium N∗ = 1/
∑2
j=0 bj.

If 3b0 + 2b1 + b2 > b1 + 2b2 then we choose i = 2 such that (H) holds. By Theorem 1.1, if

r ≤
2
3
, and 3r −

b1 + 2b2
3b0 + 2b1 + b2

exp(3r − 1) ≥ 0 for r >
1
3
, (4.2)

then the positive equilibrium N∗ is globally asymptotically stable.
If 2b0 + b1 > b1 + 2b2 then we can choose i = 1 such that (H) holds. In this case, by Theorem 1.1, if

r ≤ 1, and 2r −
b1 + 2b2
2b0 + b1

exp(2r − 1) ≥ 0 for r >
1
2
, (4.3)

then the positive equilibrium N∗ is globally asymptotically stable. On the other hand, (1.4) becomes r ≤ 3
2(2+1) = 0.5.

Moreover, for the case b0 > b1 + b2, we can choose i = 0 such that (H) holds. By Theorem 1.1, if

r ≤ 2, and r −
b1 + b2
b0

exp(r − 1) ≥ 0 for r > 1, (4.4)

then the positive equilibrium N∗ is globally asymptotically stable. This is also shown by Theorem C.
Now, we fix b1 = b2 = 0.1 for (4.1). By Corollary 1.2, we see that if b0 ≥ 1

3

[
0.3
(2/e) − 0.3

]
w 0.03591 . . . and r ≤ 2

3 ,

then the positive equilibrium N∗ is globally asymptotically stable. If b0 ≥ 1
2

[
0.3
(2/e) − 0.1

]
w 0.15387 . . . and r ≤ 1, then the

positive equilibrium N∗ is globally asymptotically stable. Moreover, if b0 ≥ 0.2
(2/e) w 0.27182 . . . and r ≤ 2, then the positive

equilibrium N∗ is globally asymptotically stable.
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Fig. 3. (4.5) with r = 1.
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Fig. 4. Several global stability regions for (4.1) with b2 = 0.

Example 4.1. The positive equilibrium N∗ = 1 of the following logistic equation with piecewise constant arguments:

dN(t)
dt
= N(t)r(1− 0.3N([t])− 0.6N([t − 1])− 0.1N([t − 2])), (4.5)

is globally asymptotically stable if r ≤ 1.

In Fig. 3, we draw the orbit of the solution for (4.5) with r = 1 and initial condition (N0,N−1,N−2) = (0.1, 0.1, 0.1).

Example 4.2. The positive equilibrium N∗ = 1
2 of the following logistic equation with piecewise constant arguments:

dN(t)
dt
= N(t)r(1− 0.9N([t])− 1.1N([t − 2])), (4.6)

is globally asymptotically stable if r ≤ 2
3 .

Fig. 4 illustrates our stability region and previous results for (4.1) with b2 = 0. Moreover, in Fig. 5, some stability regions for
(4.1) with b1 = 0 are shown.

5. Discussion

In this paper, we generalize the approach in [19,12] and establish a new sufficient condition for the global asymptotic
stability of a logistic equation with piecewise constant arguments. Their results are given as one of the special cases of our
result. Moreover, we improve the 3/2 type stability condition for some suitable situations. The 3/2 type condition ensures
the global attractivity of the positive equilibrium of (1.1) for any set of the coefficients on the delay terms, however, our
results state that the condition can be improved when taking account of the effect of delays. Our new approach is applicable
to a wider class of delay difference equations and discrete systems. Such applications will be our future work.

Please cite this article in press as: Y. Nakata, Global asymptotic stability beyond 3/2 type stability for a logistic equation with piecewise constant
arguments, Nonlinear Analysis (2010), doi:10.1016/j.na.2010.06.081
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Fig. 5. Several global stability regions for (4.1) with b1 = 0.
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