
Procedia Computer Science 00 (2010) 1–9

Procedia Computer
Science

International Conference on Computational Science, ICCS 2010

Complex systems in finance: Monte Carlo evaluation of first
passage time density functions

O. Tsviliuk1, D. Zhang2, and R. Melnik3

1 OJSC Rodovid Bank, 1-3 Pivnychno-Syretska St, Kyiv 04136, Ukraine
2 M2NeT Lab, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, Canada N2L 3C5

3 BCAM, Bizkaia Technology Park, Build. 500, 48160 Derio, Spain and M2NeT Lab, Wilfrid Laurier University,
75 University Ave W, Waterloo, ON, Canada N2L 3C5

Abstract

Many examples of complex systems are provided by applications in finance and economics areas. Some of intrin-
sic features of such systems lie with the fact that their parts are interacting in a non-trivial dynamic manner and they
can be subject to stochastic forces and jumps. The mathematical models for such systems are often based on stochas-
tic differential equations and efficient computational tools are required to solve them. Here, on an example from the
credit risk analysis of multiple correlated firms, we develop a fast Monte-Carlo type procedure for the analysis of
complex systems such as those occurring in the financial market. Our procedure is developed by combining the fast
Monte-Carlo method for one-dimensional jump-diffusion processes and the generation of correlated multidimensional
variates. As we demonstrate on the evaluation of first passage time density functions in credit risk analysis, this allows
us to analyze efficiently multivariate and correlated jump-diffusion processes.

Keywords: Monte Carlo simulations, credit risk, dynamic interactions, complex systems, stochastic differential
equations, multidimensional, jump-diffusion processes.

1. Introduction

Complex systems usually consist of parts that interact in a dynamic non-trivial manner [14, 15]. Such systems
are found frequently in financial applications and economics. For example, in the market economy, individual com-
panies are inevitably linked together via dynamically changing economic conditions. Therefore, the default events of
companies are often correlated, especially in the same industry. Probably, Zhou [20] and Hull et al [7] were the first
to incorporate default correlation into the Black-Cox first passage structural model, but they have not included the
jumps. The standard Brownian motion model for market behavior falls short of explaining empirical observations of
market returns and their underlying derivative prices Zhou [21], Kou et al [9]. Models describing jump-diffusion pro-
cesses (JDPs) represent an important alternative to the standard Brownian motion model [2] and provide a convenient
framework for investigating many complex phenomena. As soon as jumps are incorporated in the model for most
practical cases we have to resort to numerical procedures where Monte Carlo methods remain a primary candidate for
applications.

The conventional Monte Carlo methods are very straightforward to implement. We discretize the time period into
N intervals with N being large enough in order to avoid discretization bias [8]. The main drawback of this procedure
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is that we need to evaluate the processes at each discretized time which is very time-consuming. Many researchers
have contributed to the field of enhancement of the efficiency of Monte Carlo simulations. Among others, Kuchler
et al [10] discussed the solution of SDEs in the framework of weak discrete time approximations and Liberati et al
[12] considered the strong approximation where the SDE is driven by a high intensity Poisson process. Atiya and
Metwally [2, 16] have developed a fast Monte Carlo-type numerical methods to solve the FPT problem. In our recent
contributions, we reported an extension of this fast Monte-Carlo-type method in the context of multiple non-correlated
jump-diffusion processes [18, 19]. In this contribution, we generalize our previous fast Monte-Carlo method (for non-
correlated jump-diffusion cases) to multivariate (and correlated) jump-diffusion processes. The developed technique
provides an efficient tool for a number of applications, including credit risk and option pricing [11, 1]. We demonstrate
the applicability of this technique to the evaluation of first passage time density functions in the default analysis.

2. Models for joint default in the financial market

If the firm (i) assets value Vi(t) falls below a threshold level DVi (t), the firm defaults. Note that finding the threshold
level is already a challenge in applications (one of the reasons for that is because firms often rearrange their liability
structure when they have credit problems). Here we assume that DVi (t) = κi exp(γit) as proposed by Zhou [20], where
γi is the growth rate of the firm’s liabilities, while κi is responsible for capturing the liability structure of the firm
(often defined as the firm’s short-term liability plus 50% of the firm’s long-term liability). We set Xi(t) = ln[Vi(t)], in
which case the threshold of Xi(t) is Di(t) = γit + ln(κi), and in what follows our main interest is in the dynamics of
process Xi(t).

The default correlation measures the strength of the default relationship between different firms and for two firms
i and j with respective probabilities Pi and P j it is defined as

ρi j =
Pi j − PiP j√

Pi(1 − Pi)P j(1 − P j)
, (1)

where Pi j is the probability of joint default. The default correlation defined by (1) plays a key role in the joint default
with important implications in the field of credit analysis and other applications.

The first passage time model to describe default correlations of two firms under the “bivariate diffusion process”
can be described as follows Zhou [20]: [

X1(t)
X2(t)

]
=

[
µ1
µ2

]
dt + Ω

[
dz1
dz2

]
, (2)

where µ1 and µ2 are constant drift terms, z1 and z2 are two independent standard Brownian motions, andΩ is a constant
2 × 2 matrix such that

Ω ·Ω′ =
[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
.

The coefficient ρ reflects the correlation between the movements in the asset values of the two firms. If we assume
that µi = γi (i = 1, 2), then the probability that firm i defaults at time t can be easily calculated as:

Pi(t) = 2 · Φ
(
−Xi(0) − ln(κi)

σi
√

t

)
= 2 · Φ

(
− Zi√

t

)
, (3)

where
Zi ≡

Xi(0) − ln(κi)
σi

is the standardized distance of firm i to its default point and Φ(·) denotes the cumulative probability distribution
function for a standard normal variable.

However, this and other classical models do not include jumps in the processes, while it is well-known that jumps
are a major factor in credit risk analysis and other applications. Multivariate jump-diffusion processes can provide a
convenient way to describe multivariate and correlated processes with jumps.
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2.1. Multivariate jump-diffusion processes
On a complete probability space (Ω, F, P) with information filtration (Ft) we assume that X⃗t = ln(V⃗t) is a Markov

process in some state space D ⊂ Rn such that it solves the stochastic differential equation [4]:

dX⃗t = µ⃗(X⃗t)dt + σ⃗(X⃗t)dW⃗t + dZ⃗t, (4)

where W⃗ is an (Ft)-standard Brownian motion in Rn; µ⃗ : D → Rn, σ⃗ : D → Rn×n, and Z⃗ is a pure jump process
whose jumps have a fixed probability distribution ν⃗ on Rn such that they arrive with intensity {λ⃗(X⃗t) : t ≥ 0}, for
some λ⃗ : D → [0,∞). Under these conditions, the above model is reduced to an affine model and the theory of affine
processes as a class of time-homogeneous Markov processes arising often in the context of applications in finance,
including credit risk modeling, has been developed in [5, 6]. What we are interested in our contribution is multivariate
transformed Brownian motions with jumps and in the estimation of the default rate of a firm during a given time
period. This problem is reduced to a first passage time problem. The difficulties arise from the fact that the multiple
processes as well as their first passage times are indeed correlated, so the simulation must reflect the correlations
of first passage times. We propose a solution to circumvent these difficulties by combining the fast Monte-Carlo
method of one-dimensional jump-diffusion processes and the generation of correlated multidimensional variables,
generalizing previous results on non-correlated jump-diffusion situations.

Although for jump-diffusion processes, the closed form solutions are usually unavailable, between each two jumps
the process is a Brownian bridge for a univariate jump-diffusion process. In Atiya et al [2] the one-dimensional first
passage time distribution has been deduced for time period [0,T ]. In order to evaluate multiple processes, we obtain
multi-dimensional formulas and reduce them to computable forms.

Therefore, we consider Nfirm firms X⃗t = [X1, X2, ..., XNfirm ]T , each Xi describes the process of individual firm i. We
may expect that each process Xi satisfies the following SDE:

dXi = µidt +
∑

j

σi jdW j + dZi

= µidt + σidW̃i + dZi, (5)

where W̃i is also a standard Brownian motion and σi is:

σi =

√∑
j

σ2
i j.

We assume that in the interval [0,T ], the total number of jumps for firm i is Mi. Let the jump instants be
T1, T2, · · · ,TMi . Let T0 = 0 and TMi+1 = T . The quantities τ j equal interjump times, which are T j − T j−1. Fol-
lowing the notation of Atiya et al [2], let Xi(T−j ) be the process value immediately before the jth jump, and Xi(T+j ) be
the process value immediately after the jth jump. The jump-size is Xi(T+j ) − Xi(T−j ), and we can use such jump-sizes
to generate Xi(T+j ) sequentially.

Let Ai(t) be the event consisting of process Xi crossing the threshold level Di(t) for the first time in the interval
[t, t + dt], then the conditional interjump first passage density is defined as [2]:

gi j(t) = P(Ai(t) ∈ dt|Xi(T+j−1), Xi(T−j )). (6)

For firm i, after generating a series of first passage times si, we use a kernel density estimator with Gaussian kernel
to estimate the first passage time density (FPTD) f . Such kernels allow quite straightforward kernel combinations,
and therefore present a natural choice for a number of generalizations of the procedure described here. The kernel
density estimator is based on centering a kernel function of a bandwidth as follows:

f̂ =
1
N

N∑
i=1

K(h, t − si), (7)

where

K(h, t − si) =
1

√
π/2h

exp
(
− (t − si)2

h2/2

)
.
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The optimal bandwidth in the kernel function K can be calculated by using standard procedures (at least in the one-
dimensional case) and we do not focus on this here. However, we note that the kernel estimator for the multivariate
case involves the evaluation of the joint conditional interjump first passage time density and the methodology for such
an evaluation is quite involved compared to the one-dimensional case.

3. The methodology of solution

First, let us recall the conventional Monte-Carlo procedure in application to the analysis of the evolution of firm
Xi within the time period [0,T ]. We divide the time period into n small intervals [0, t1], [t1, t2], · · ·, [tn−1,T ]. In
each Monte Carlo run, we need to calculate the value of Xi at each discretized time t. As usual, in order to exclude
discretization bias, the number n must be large. This procedure exhibits substantial computational difficulties when
applied to jump-diffusion processes. Indeed, for a typical jump-diffusion process, let T j−1 and T j be any successive
jump instants, as described above. Then, in the conventional Monte Carlo method, although there is no jump occurring
in the interval [T j−1,T j], yet we need to evaluate Xi at each discretized time t in [T j−1,T j]. This very time-consuming
procedure results in a serious shortcoming of the conventional Monte-Carlo methodology.

To remedy the situation, two modifications of the conventional procedure were recently proposed [2, 16] that
allow a potential speed-up of the conventional methodology of up to 10-30 times. One of the modifications, the
uniform sampling method, involves samplings using the uniform distribution. The other is the inverse Gaussian
density sampling method. Both methodologies were developed for the univariate case.

The major improvement of the UNIF method is based on the fact that it only evaluates Xi at generated jump
times, while between each two jumps the process is a Brownian bridge. Hence, we just consider the probability of
Xi crossing the threshold in (T j−1, T j) instead of evaluating Xi at each discretized time t. More precisely, in the UNIF
method, we assume that the values of Xi(T+j−1) and Xi(T−j ) are known as two end points of the Brownian bridge, the
probability that firm i defaults in (T j−1,T j) is 1 − Pi j which can easily be computed. Then we generate a variable
si from a distribution uniform in the interval [T j−1,T j−1 +

T j−T j−1

1−Pi j
]. If the generated point si falls in the interjump

interval [T j−1,T j], then we have successfully generated the first passage time si and can neglect the other intervals
and perform another Monte Carlo run. On the other hand, if the generated point si falls outside the interval [T j−1, T j]
(which happens with probability Pi j), then that point is “rejected”. This means that no boundary crossing has occurred
in the interval, and we proceed to the next interval and repeat the whole process again.

In what follows, we focus on the further development of the UNIF method and extend it to multivariate and
correlated jump-diffusion processes. In order to implement the UNIF method for our multivariate model, we need to
consider several points:

1. We assume that the arrived jumps follow the Poisson process. The intensity λ of the Poisson process and the
distribution of (T j − T j−1) are the same for each firm. This assumption may not always be fulfilled as one may
argue that the intensity λ could be different for different firms which implies that different firms may endure
different jump rates. However, in the real market economy once a firm (let us call it ”A”) encounters sudden
economic hazard, its correlated firms may also endure the same hazard. Furthermore, it is common that other
firms may help firm ”A” to pull out, which may result in a simultaneous jump for them. Therefore, as a first
approximation, it is reasonable to employ the simultaneous jumps processes for all the different firms.

2. As for the jump-size, we generate it by a given distribution which can be different for different firms to reflect
specifics of the jump process for each firm. In the current contribution, we exemplify our description by con-
sidering an exponential distribution (mean value µT ) for (T j − T j−1) and a normal distribution (mean value µJ

and standard deviation σJ) for the jump-size. We can use any other distribution when appropriate.
3. An array IsDefault (whose size is the number of firms denoted by Nfirm) is used to indicate whether firm i has

defaulted in this Monte Carlo run. If the firm defaults, then we set IsDefault(i) = 1, and will not evaluate it
during this Monte Carlo run.

4. Most importantly, as we have mentioned before, the default events of firm i are inevitably correlated with other
firms, for example firm i+1. The default correlation of firms i and i+1 can easily be calculated. Hence, firm i’s
first passage time si is indeed correlated with si+1 – the first passage time of firm i+1. We must generate several
correlated si in each interval [T j−1,T j−1 +

T j−T j−1

1−Pi j
] which is the key point for multivariate correlated processes.
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Finally, we note that the default happening at time si also means that time si is exactly the first passage time for
firm i. Therefore, the correlation of si and si+1 is the same as the default correlation of firms i and i + 1:

ρ(si, si+1) = ρi,i+1(t) =
Pi(t) + Pi+1(t) − Pi(t)Pi+1(t) − Pi∪i+1(t)
√

Pi(t)[1 − Pi(t)]Pi+1(t)[1 − Pi+1(t)]
, (8)

where in practice t can be chosen as the midpoint of the interval.

Next, we will give a brief description of the sum-of-uniforms method which is used to generate correlated uni-
form random variables, followed by the description of the multivariate and correlated UNIF method and the model
calibration.

3.1. Sum-of-uniforms method
In the above sections, we have reduced the solution of the original problem to a series of one-dimensional jump-

diffusion processes. The first passage time distribution in an interval [T j−1,T j] (between two successive jumps) was
obtained. Here, we will describe how to generate several correlated si in [T j−1,T j−1 +

T j−T j−1

1−Pi j
] whose correlations can

be described by Eq. (8).
Let us introduce a new variable bi j =

T j−T j−1

1−Pi j
, then we have si = bi jYi + T j−1, where Yi is uniformly distributed in

[0, 1]. Moreover, the correlation of Yi and Yi+1 equals ρ(si, si+1). Now we can generate the correlated uniform random
variables Y1,Y2, · · · by using the sum-of-uniforms (SOU) method [3, 17] in the following steps:

1. Generate Y1 from numbers uniformly distributed in [0, 1].
2. For i = 2, 3, · · ·, generate Wi ∼ U(0, ci−1,i), where U(0, ci−1,i) denotes a uniform random number over range

(0, ci−1,i). Chen [3] has obtained the relationship of parameter ci−1,i and the correlation ρ(si−1, si) (abbreviated
as ρi−1,i) as follows:

ρi−1,i =



1
ci−1,i

− 0.3
c2

i−1,i

, 0 ≤ ρi−1,i ≤ 0.7, ci−1,i ≥ 1,

1 − 0.5c2
i−1,i + 0.2c3

i−1,i, ρi−1,i ≥ 0.7, ci−1,i < 1,

− 1
ci−1,i

+
0.3

c2
i−1,i

, −0.7 ≤ ρi−1,i ≤ 0, ci−1,i ≥ 1,

−1 + 0.5c2
i−1,i − 0.2c3

i−1,i, ρi−1,i ≤ −0.7, ci−1,i < 1.

If Yi−1 and Yi are positively correlated, then let

Zi = Yi−1 +Wi.

If Yi−1 and Yi are negatively correlated, then let

Zi = 1 − Yi−1 +Wi.

Let Yi = F(Zi), where for ci−1,i ≥ 1,

F(Z) =


Z2/(2ci−1,i), 0 ≤ Z ≤ 1,
(2Z − 1)/(2ci−1,i), 1 ≤ Z ≤ ci−1,i,
1 − (1 + ci−1,i − Z)2/(2ci−1,i), ci−1,i ≤ Z ≤ 1 + ci−1,i,

and for 0 < ci−1,i ≤ 1,

F(Z) =


Z2/(2ci−1,i), 0 ≤ Z ≤ ci−1,i,
(2Z − ci−1,i)/2, ci−1,i ≤ Z ≤ 1,
1 − (1 + ci−1,i − Z)2/(2ci−1,i), 1 ≤ Z ≤ 1 + ci−1,i.

By carrying out the above two steps, we can generate correlated uniform random variables Y1, Y2,..., leading
to the relationship si = bi jYi + T j−1 whose correlations automatically satisfy Eq. (8). Note also that ρ(si, si+1)
should be computed before generating the correlated uniform random variables Y1, Y2,..., and hence, in a practical
implementation, we should approximate time t where ρ(si, si+1) is computed as discussed. One such possible choice
has already been mentioned above and, from a practical point of view, it will work well as long as ρ(si, si+1) is a slowly
varying function in [T j−1,T j].
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3.2. Uniform sampling method
In this subsection, we will describe our algorithm for multivariate jump-diffusion processes, which is an extension

of the one-dimensional case developed earlier by other authors (e.g. Atiya et al [2], Metwally et al [16]).
Consider Nfirm firms in the given time period [0,T ]. First, we generate the jump instant T j by generating interjump

times (T j − T j−1) and set all the IsDefault(i) = 0 (i = 1, 2, · · · ,Nfirm) to indicate that no firm has defaulted at the
beginning.

Note that for each process Xi we can make the following observations:

1. If no jump occurs, as described by Eq. (5), the interjump size (Xi(T−j ) − Xi(T+j−1)) follows a normal distribution
of mean µi(T j − T j−1) and standard deviation σi

√
T j − T j−1. We get

Xi(T−j ) ∼ Xi(T+j−1) + µi(T j − T j−1) + σi
√

T j − T j−1 W̃i

∼ Xi(T+j−1) + µi(T j − T j−1) +
Nfirm∑
k=1

σik
√

T j − T j−1 Wi,

where the initial state is Xi(0) = Xi(T+0 ).
2. If a jump occurs, we simulate the jump-size by a normal distribution or another distribution when appropriate,

and compute the postjump value:
Xi(T+j ) = Xi(T−j ) + Zi(T j).

This completes the procedure for generating beforejump and postjump values Xi(T−j ) and Xi(T+j ), respectively. As
before, j = 1, · · · ,M where M is the total number of jumps for all the firms. We compute Pi j. To recur the first
passage time density (FPTD) fi(t), we have to consider three possible cases that may occur for each non-default firm
i:

1. First passage happens inside the interval. We know that if Xi(T+j−1) > Di(T j−1) and Xi(T−j ) < Di(T j), then
the first passage happened in the time interval [T j−1,T j]. To evaluate when the first passage happened, we
introduce a new variable bi j as bi j =

T j−T j−1

1−Pi j
. We generate several correlated uniform numbers Yi by using the

SOU method as described in Section 3.1, then compute si = bi jYi+T j−1. If si belongs to interval [T j−1,T j], then
the first passage time occurred in this interval. We set IsDefault(i) = 1 to indicate that firm i has defaulted
and compute the conditional boundary crossing density gi j(si). To get the density for the entire interval [0,T ],

we use f̂i,n(t) =
(

T j−T j−1

1−Pi j

)
gi j(si) ∗ K(hopt, t − si), where n is the iteration number of the Monte Carlo cycle.

2. First passage does not happen in this interval. If si does not belong to interval [T j−1,T j], then the first passage
time has not yet occurred in this interval.

3. First passage happens at the right boundary of the interval. If Xi(T+j ) < Di(T j) and Xi(T−j ) > Di(T j), then TIi

is the first passage time and Ii = j, we evaluate the density function using kernel function f̂i,n(t) = K(hopt, t−TIi ),
and set IsDefault(i) = 1.

Next, we increase j and examine the next interval and analyze the above three cases for each non-default firm
again. After running N times the Monte Carlo cycle, we get the FPTD of firm i as f̂i(t) = 1

N
∑N

n=1 f̂i,n(t).

3.3. Model calibration and concluding remarks on the developed methodology
We need to calibrate the developed model that is to numerically choose or optimize the parameters, and in the

specific case of the credit analysis these parameters include drift, volatility and jumps to fit the most liquid market
data.

As already mentioned, after Monte Carlo simulation we obtain the estimated density f̂i(t) by using the kernel
estimator method. Then we minimize the difference between our model and historical default data Ãi(t) to obtain the
optimized parameters in the model (such as σi j, arrival intensity λ in Eq. (5)):

argmin

∑i

√√√√∑
t j

Pi(t j) − Ãi(t j)
t j

2
 . (9)
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Note that in practice, the generated by using SOU method si are not obtained according to the conditional boundary
crossing density gi j(si). Instead, in order to obtain an appropriate density estimate, the right hand side summation in
Eq. (7) can be viewed as a finite sample estimate in a way proposed by Atiya et al [2]. For the multidimensional
density estimate, we need to evaluate the joint conditional boundary crossing density. This problem can be divided into
several one-dimensional density estimation subproblems if the processes are non-correlated [18]. As for the general
case of multivariate correlated processes, the joint density is not available analytically and numerical approximations
are necessary for different classes of special cases. Before moving to specific examples, demonstrating numerical
efficiency of the developed methodology, we remark that the developed method belongs to the class of methodologies
based on Brownian bridge simulations or more generally large deviations methodologies. In several special cases,
recent theoretical results on estimating barrier crossing probabilities of the associated Brownian bridges are available
in the literature (with upper and lower limits). With a few exceptions, most such results concern one-dimensional
Brownian bridges only [16, 13] for further details on these issues.

4. Applications and discussion

Our first task is to describe the first passage time density functions (based on which we can determine default rates
of the corresonding firms). Since there is no option value that can be used, we will employ Eq.(9) to optimize the
parameters in our model. For convenience, we reduce the number of optimizing parameters by:

1. Setting Xi(0) = 2 and ln(κi) = 0.
2. Setting the growth rate γi of debt value equivalent to the growth rate µi of the firm’s value [20], so the default

of firm is non-sensitive to µi. In our computations, we set µi = −0.001.
3. The interjump times (T j − T j−1) satisfy an exponential distribution with mean value equal to 1.
4. The arrival rate for jumps satisfies the Poisson distribution with intensity parameter λ, where the jump size is a

normal distribution Zi ∼ N(µZi , σZi ).

As a result, we only need to optimize σi, λ, µZi , σZi for each firm. This is done by minimizing the differences
between our simulated default rates and historical data. Moreover, as mentioned above, we will use the same arrival
rate λ and distribution of (T j − T j−1) for differently rated firms, so we first optimize four parameters for, e.g., the
A-rated firm, and then set the parameter λ of other three firms the same as A’s.

The minimization was performed by using the quasi-Newton procedure implemented as a Scilab program. The
optimized parameters for each differently rated firm were found by using the UNIF method. In each step of the
optimization we choose the Monte Carlo runs N = 50, 000.

By using the optimized parameters, we carried out the final simulation with Monte Carlo runs N = 500, 000. The
estimated first passage time density function of these four firms are shown in Fig. 1 (top). The simulated cumulative
default rates (line) together with historical data (squares) are given in Fig. 1 (bottom). The theoretical data denoted as
circles in Fig. 1 (bottom) were computed by using Eq. (3) where the Zi were evaluated in [20] as 8.06, 6.46, 3.73 and
2.10 for A-, Baa-, Ba- and B-rated firms, respectively.

From Fig. 1, we can conclude that the density functions of A- and Baa-rated firms still have the trend to increase,
which means the default rates of A- and Baa-rated firms may increase little faster in future. As for Ba- and B-rated
firms, their density functions have decreased, so their default rates may increase very slowly or be kept at a constant
level. Mathematically speaking, the cumulative default rates of A- and Baa-rated firms are convex function, while the
cumulative default rates of Ba- and B-rated firms are concave.

5. Conclusion

In this contribution, we develop a fast Monte-Carlo type procedure for the analysis of complex systems such
as those occurring in the financial market. As an example, we have analyzed the credit risk problems of multiple
correlated firms in a structural model framework, where we incorporated jumps to reflect the external shocks or
other unpredicted events. Our new procedure was developed by combining the fast Monte-Carlo method for one-
dimensional jump-diffusion processes and the generation of correlated multidimensional variates. This allows us to
analyze multivariate and correlated jump-diffusion processes. The developed approach generalizes further previously
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Figure 1: Estimated density function for differently rated firms with all the simulations were performed with Monte Carlo runs N = 500, 000
(top). Historical (squares), theoretical (circles) and simulated (line) cumulative default rates for differently rated firms with all the simulations were
performed with Monte Carlo runs N = 500, 000 (bottom).

discussed non-correlated jump-diffusion cases for multivariate and correlated jump-diffusion processes. Finally, we
have applied the developed technique to analyze the default events of multiple correlated firms.
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