
Global dynamics of a viral infection model with a
latent period and Beddington-DeAngelis response

Yukihiko Nakata a,b
aDepartment of Pure and Applied Mathematics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

bBCAM - Basque Center for Applied Mathematics Bizkaia Technology Park, Building 500, E-48160, Derio, Basque
Country, Spain

Abstract

In this paper, we study the global dynamics of a viral infection model with a latent period. The model has
a nonlinear function which denotes the incidence rate of the virus infection in vivo. The basic reproduction
number of the virus is identified and it is shown that the uninfected equilibrium is globally asymptotically
stable if the basic reproduction number is equal to or less than unity. Moreover, the virus and infected
cells eventually persist and there exists a unique infected equilibrium which is globally asymptotically
stable if the basic reproduction number is greater than unity. The basic reproduction number determines the
equilibrium that is globally asymptotically stable, even if there is a time delay in the infection.
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1. Introduction

To develop a better understanding of a virus dynamics in vivo, mathematical models have
played a significant role. By modeling the dynamics of the virus and target cells, much knowledge
about the mechanism of the interactions among these components have been gained (see [1,3–9,
11–16, 18, 19] and the references therein). First of all, we introduce the standard viral infection
model. 

d
dt

x(t) = s−dx(t)− kx(t)v(t),
d
dt

y(t) = kx(t)v(t)−δy(t),
d
dt

v(t) = Nδy(t)−µv(t).

(1.1)
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x(t),y(t) and v(t) denote the concentration of uninfected cells, infected cells and free virus par-
ticles, respectively. It is assumed that new target cells are generated at a constant s and die at
rate dx(t). Infection of target cells by free virus is assumed to occur at rate kx(t)v(t) and die at
rate δy(t). The average number of virus particles produced over the lifetime of a single infected
cell is N, which also called the burst size. Hence, new virus are produced from infected cells at
rate Nδy(t) and die at rate µv(t). (1.1) has been used to model a virus dynamics in vivo such as
human immunodeficiency virus type I (HIV-1) and hepatitis B virus (HBV) (see also [1,3,12–15]
and the references therein).

(1.2) has always an uninfected equilibrium (x0,0,0), x0 =
s
d , corresponding to the extinction of

the infected cells and virus. It is also possible that an infected (internal) equilibrium (x1,y1,z1)
exists. Existence of the infected equilibrium is determined by a parameter which is called the
basic reproduction number. The basic reproduction number denotes the average number of newly
infected cells generated from one infected cells at the beginning of the infectious process and,
for system (1.1), it is given by

R0(1.1) =
kx0N

µ
,

Korobeinikov [5] established the global dynamics of (1.1) by a method of Lyapunov functional.
It is shown that the uninfected equilibrium is globally asymptotically stable if R0(1.1) ≤ 1, while
the infected equilibrium exists and is globally asymptotically stable if R0(1.1) > 1.

(1.1) is formulated under an assumption that the infection could occur and virus are produced
from infected cells instantaneously, once uninfected cells are contacted by the virus particles.
However, it has been reported that HIV-1 infection models with intracellular delays change the
estimation of kinetic parameters when compared to model without delay such as (1.1) by many
authors (see also [3, 11, 12]). Delayed viral infection models which are described by delay dif-
ferential equations have been introduced and analyzed (see also [3, 8, 11, 19] and the references
therein). Li and Shu [9] studied a viral infection model with delay and bilinear incidence rate and
established its global dynamics.

On the other hand, functional form of the incidence rate of the infection have a crucial role for
modeling of the virus dynamics. Korobeinikov [7] assumed that the incidence rate is given by
an unspecified function of the number of the uninfected cells and virus particles. Li and Ma [8]
proposed a delayed HIV-1 infection model with a saturated incidence rate, kx v

1+v , instead of the
bilinear incidence rate kxv. Recently, Huang et al. [4] formulated the following virus dynamics
model with Beddington-DeAngelis infection rate

d
dt

x(t) = s−dx(t)− f (x(t),v(t)),
d
dt

y(t) = f (x(t),v(t))−δy(t),
d
dt

v(t) = Nδy(t)−µv(t),

(1.2)

with
f (x,v) =

kxv
1+ax+bv

,a≥ 0,b≥ 0, for (x,v) ∈ R2.

They identified the basic reproduction number for (1.2) as follows

R0(1.2) =
kx0N

(1+ax0)µ
,

and established the global dynamics of (1.2) by using two Lyapunov functions which are moti-
vated by Korobeinikov [5,6]. (1.2) also has two possible equilibrium, similar to (1.1), uninfected
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equilibrium (x0,0,0) and the infected (internal) equilibrium (x2,y2,v2). It is shown that the unin-
fected equilibrium is globally asymptotically stable if R0(1.2) ≤ 1, while the infected equilibrium
exists and is globally asymptotically stable if R0(1.2) > 1.

It is needed to investigate the global asymptotic stability of the equilibrium, because it helps
us to understand the global dynamics, not only local dynamics, of the model. In this paper, to
account for the effect of a latent period for the cell infection in (1.2), we assume that virus
production occurs after the virus entry with a constant time lag τ > 0. The recruitment of infected
cells at time t is given by f (x(t − τ),v(t − τ))e−mτ where e−mτ is the probability of surviving
from t−τ to t and m is a constant death rate for infected cells (but, not yet virus producing cells).
Then, we obtain the following viral infection model with a latent period τ > 0 and Beddington-
DeAngelis infection rate.

d
dt

x(t) = s−dx(t)− f (x(t),v(t)),
d
dt

y(t) = f (x(t− τ),v(t− τ))e−mτ −δy(t),
d
dt

v(t) = Nδy(t)−µv(t),

(1.3)

with

f (x,v) =
kxv

1+ax+bv
,a≥ 0,b≥ 0, for (x,v) ∈ R2. (1.4)

Obviously, (1.1) and (1.2) can be seen as a special case of (1.3)-(1.4), respectively. (1.3)-(1.4)
also includes an HIV-1 infection model which was studied by Li and Ma [8].

In this paper, we investigate the global dynamics of (1.3)-(1.4) by employing a method of
Lyapunov functional. The Lyapunov functional is motivated by the works of McCluskey [10],
Korobeinikov [5] and Huang et al. [4]. We identify the basic reproduction number R0 for (1.3)-
(1.4) (see Section 2) and it is shown that the uninfected equilibrium is globally asymptotically
stable if R0 ≤ 1. On the other hand, (1.3)-(1.4) admits a unique infected equilibrium which is
globally asymptotically stable if R0 > 1. Thus, the global dynamics of (1.3)-(1.4) is fully deter-
mined by the basic reproduction number R0. Moreover, our result derive an affirmative answer
for a conjecture by Li and Ma [8]. By applying our result, it is shown that the infected equilibrium
of their model is also globally asymptotically stable whenever it exists.

The paper is organized as follows. In Section 2, we introduce some basic results for (1.3)-
(1.4). Explicit form of the basic reproduction number for (1.3)-(1.4) is given. The existence of
a unique infected equilibrium is also discussed. In Section 3, we study the global asymptotic
stability of the uninfected equilibrium by using a Lyapunov functional which is motivated by
Huang et al. [4]. In Section 4, we show the uniformly persistence of the solution by persistence
theory. From our result, the virus and infected cells eventually persist for R0 > 1. Moreover, in
Section 5, we show that the infected equilibrium is globally asymptotically stable if R0 > 1 by
employing a Lyapunov functional. Lemma 5.1 is a key result to obtain this result. In Section 6,
we introduce two viral infection models as examples. We obtain an affirmative answer for the
conjecture by Li and Ma [8]. Finally, we offer a brief discussion in Section 7.

2. Preliminary results

To investigate the dynamics of (1.3)-(1.4), we set a suitable phase space. For τ > 0, we denote
by C =C([−τ,0],R) the Banach space of continuous functions mapping the interval [−τ,0] into
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R equipped with the sup-norm. The nonnegative cone of C is defined as C+ = C([−τ,0],R+).
From the biological meanings, the initial conditions for (1.3)-(1.4) is

x(θ) = ϕ1(θ),y(θ) = ϕ2(θ),v(θ) = ϕ3(θ),θ ∈ [−τ,0], (2.1)

where ϕi(θ) ∈C+, i = 1,2,3.
Lemma 2.1 All solutions of (1.3)-(1.4) with (2.1) are positive for t ≥ τ if one of the following
holds.

i) there exists θ ∈ [−τ,0) such that ϕ1(θ)ϕ3(θ)> 0.
ii) ϕ3(0)> 0.
iii) ϕ2(0)> 0.
Furthermore, all solutions are bounded by some positive constant for sufficiently large t.

PROOF. The solution (x(t),y(t),v(t)) of (1.3)-(1.4) with (2.1) exists and is unique on its max-
imal interval of existence [0,σ) for some σ > 0. We see that x(t) > 0 for all t ∈ (0,σ). Indeed,
this follows from that d

dt x(t) = s > 0 for any t ∈ [0,σ) when x(t) = 0 by the first equation of
(1.3)-(1.4).

Let us show the positivity of y(t) and v(t). Firstly, we claim that if there exists t1 ≥ 0 such that
y(t1)> 0 or v(t1)> 0 then y(t)> 0 and v(t)> 0 for any t > t1.

Assume y(t1) > 0. Then we have that y(t) > 0 for t ∈ (t1, t1 + ε) where ε > 0 is sufficiently
small. Suppose that there exists a t2 such that y(t2) = 0 and y(t)> 0 for t ∈ (t1, t2). We have

y(t2) =
(

y(t1)+
∫ t2

t1
f (x(s− τ),v(s− τ))e−mτ eδ sds

)
e−δ t2 ,

with

v(s− τ) =

ϕ3(s− τ), for s− τ ≤ 0,(
ϕ3(0)+Nδ

∫ s−τ

0
y(u)eµ(s−τ)du

)
e−µ(s−τ), for s− τ > 0.

It then follows v(s− τ) ≥ 0 for s ∈ [t1, t2]. Then we see y(t2) ≥ y(t1)e−δ t2 > 0 and this leads a
contradiction. Moreover, from the above discussion, we obtain

v(t) =
(

ϕ3(0)+Nδ

∫ t

0
y(s)eµsds

)
e−µt > 0, t > t1.

Next, assume v(t1)> 0. Similar to the above discussion, we also obtain y(t)> 0, v(t)> 0 for
t > t1.

Now, it is sufficient to show the existence of such t1 ≥ 0. For the case ii) and iii), we can choose
t1 = 0. Consider the case i). If y(θ + τ) = 0 then we have

d
dt

y(t)|t=θ+τ
= f (ϕ1(θ),ϕ3(θ))e−mτ −δy(θ + τ)> 0,

and hence, y(t)> 0 for t ∈ (θ +τ,θ +τ +ε) where ε > 0 is sufficiently small. Consequently, for
any cases, it follows that x(t)> 0,y(t)> 0 and v(t)> 0 for any t ∈ [t1,σ) where t1 ≥ τ .

For G(t) = x(t− τ)+ y(t)emτ + 1
N v(t), it then follows

d
dt

G(t) = s−dx(t− τ)−δemτ y(t)− µ

N
v(t)≤ s−min{d,δ ,µ}G(t),

which implies that (x(t),y(t),v(t)) is ultimately bounded on [0,σ). Finally, it follows that (x(t),y(t),v(t))
exists and is unique and positive for any t ≥ τ . 2
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Lemma 2.2 y(t) and v(t) of (1.3)-(1.4) with (2.1) are identically zero for t > 0 if ϕ1(θ)ϕ3(θ) =
ϕ2(0) = ϕ3(0) = 0 for all

PROOF. From the initial conditions, it is clear that y(t) = 0 for t ∈ (0,τ). It then follows v(t) = 0
for all t ∈ (0,τ).

Now, we show y(t) = v(t) = 0 for t ∈ [τ,+∞). Suppose there exists a t1 ≥ τ such that d
dt y(t1)>

0 and y(t1) = 0. By (1.3), we see

f (x(t1− τ),v(t1− τ))e−mτ > 0,

which implies v(t1− τ)> 0. On the other hand, we have

v(t1− τ) =

(
ϕ3(0)+Nδ

∫ t1−τ

0
y(u)eµudu

)
e−µ(s2−τ) = 0,

and this leads a contradiction.
Next, suppose that there exists a t2≥ τ such that d

dt v(t2)> 0 and v(t2) = 0. Similarly, we obtain
y(t2)> 0 from (1.3). On the other hand, we have

y(t2) =
(

ϕ2(0)+ e−mτ

∫ t2

0
f (x(s− τ),v(s− τ))eδ sds

)
e−δ t2 = 0,

which also leads a contradiction. Thus, the conclusion holds. 2

Now we define the basic reproduction number and discuss the possible equilibrium for (1.3)-
(1.4).

(1.3)-(1.4) always has an uninfected equilibrium E0 = (x0,0,0), where x0 =
s
d , corresponding

to the extinction of the virus and infected cells. The basic reproduction number for (1.3)-(1.4) is
given by

R0 =
kx0

1+ax0
e−mτ N

µ
. (2.2)

We show that (1.3)-(1.4) admits a unique infected equilibrium E∗ = (x∗,y∗,v∗), which satisfies
0 = s−dx∗− f (x∗,v∗),
0 = f (x∗,v∗)e−mτ −δy∗,
0 = Nδy∗−µv∗,

(2.3)

for R0 > 1. From the third equation of (2.3), we obtain y∗ = µ

Nδ
v∗. By substituting this into the

second equation of (2.3), we also obtain

x∗ =
1+bv∗

ke−mτ N
µ
−a

.

Note that the following holds

k
a

e−mτ N
µ

>
kx0

1+ax0
e−mτ N

µ
= R0 > 1, for a > 0,

which implies that ke−mτ N
µ
− a > 0 if R0 > 1. Now we show that there exists a unique positive

solution v∗ which satisfies
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0 = s−dx∗− f (x∗,v∗)

= s−d

(
1+bv∗

ke−mτ N
µ
−a

)
−δemτ y∗

= s−d

(
1+bv∗

ke−mτ N
µ
−a

)
− emτ µ

N
v∗.

Consider the function

K(v) = s−d

(
1+bv

ke−mτ N
µ
−a

)
− emτ µ

N
v for v ∈ [0,+∞).

We see that K(v) is monotone decreasing on v. Moreover, it follows

K(0) = s−d

(
1

ke−mτ N
µ
−a

)

=

(
d

ke−mτ N
µ
−a

)[(
ke−mτ N

µ
−a
)

x0−1
]

=

(
d(1+ax0)

ke−mτ N
µ
−a

)
(R0−1)> 0.

Thus, there exists a unique v∗ > 0 such that K(v∗) = 0. Consequently, (1.3)-(1.4) admits a unique
infected equilibrium

E∗ = (x∗,y∗,v∗) =

(
1+bv∗

ke−mτ N
µ
−a

,
µ

Nδ
v∗,v∗

)
.

3. Global stability of the uninfected equilibrium

Theorem 3.1 If R0 ≤ 1 then the uninfected equilibrium E0 of (1.3)-(1.4) is globally asymptoti-
cally stable.

PROOF. We construct the following Lyapunov functional

U(t) =
x0

1+ax0
e−mτU1(t)+U2(t),

where

U1(t) =
x(t)
x0
−1− ln

x(t)
x0

,

U2(t) = y(t)+
1
N

v(t)+ e−mτ

∫ t

t−τ

f (x(u),v(u))du.

We calculate the time derivative of U(t) along the solutions of (1.3)-(1.4).
First, we calculate dU1(t)

dt
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d
dt

U1(t) =
(

1
x0
− 1

x(t)

)
(s−dx(t)− f (x(t),v(t)))

=
x(t)− x0

x0x(t)
(s−dx(t)− f (x(t),v(t))) .

Substituting s = dx0 gives

d
dt

U1(t) =
x(t)− x0

x0x(t)
(dx0−dx(t)− f (x(t),v(t)))

=− d
x0x(t)

(x(t)− x0)
2−
(

1
x0
− 1

x(t)

)
f (x(t),v(t)). (3.1)

Next, we calculate dU2(t)
dt

dU2(t)
dt

=
(

f (x(t− τ),v(t− τ))e−mτ −δy(t)
)
+
(

δy(t)− µ

N
v(t)
)

+ e−mτ ( f (x(t),v(t))− f (x(t− τ),v(t− τ)))

= e−mτ f (x(t),v(t))− µ

N
v(t). (3.2)

Consequently, by (3.1) and (3.2), we obtain

d
dt

U(t) =− de−mτ

(1+ax0)x(t)
(x(t)− x0)

2 +C(t),

where

C(t) =− x0

1+ax0
e−mτ

(
1
x0
− 1

x(t)

)
f (x(t),v(t))+ e−mτ f (x(t),v(t))− µ

N
v(t).

We claim C(t) is not positive. Now it follows that

C(t) =
µ

N

[
−
(

1
x0
− 1

x(t)

)
R0

k
f (x(t),v(t))+

(
µ

N

)−1
e−mτ f (x(t),v(t))− v(t)

]
=

µ

N

[
−
(

1
x0
− 1

x(t)

)
R0

k
f (x(t),v(t))+R0

(
kx0

1+ax0

)−1

f (x(t),v(t))− v(t)

]

=
µ

N

[
R0 f (x(t),v(t))

1
k

(
1+ax0

x0
− 1

x0
+

1
x(t)

)
− v(t)

]
=

µ

N

[
R0 f (x(t),v(t))

1
k

(
a+

1
x(t)

)
− v(t)

]
=

µ

N

[
R0

kx(t)v(t)
1+ax(t)+bv(t)

(
1+ax(t)

kx(t)

)
− v(t)

]
=

µ

N

[
R0

1+ax(t)
1+ax(t)+bv(t)

v(t)− 1+ax(t)+bv(t)
1+ax(t)+bv(t)

v(t)
]

=
µ

N

[
(R0−1)

1+ax(t)
1+ax(t)+bv(t)

v(t)− b
1+ax(t)+bv(t)

v(t)2
]
.

Since we have R0 ≤ 1, C(t)≤ 0 follows. Thus, dU(t)
dt ≤ 0 holds. Hence, solutions of system (1.3)

with (1.4) limit to M, the largest invariant subset of
{

dU(t)
dt = 0

}
. We see that dU(t)

dt = 0 if and
only if x(t) = x0, and v(t) = 0. By the above discussion, each element of M satisfies x(t) = x0,
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and v(t) = 0 for all t. It follows that y(t) = 0 for all t. From La Salle’s invariant principle, the
uninfected equilibrium E0 is globally asymptotically stable. Thus, the proof is complete. 2

4. Uniformly persistence of the solution

In this section, by applying persistence theory (see also [2,17]), we show the uniformly persis-
tence of the solution of (1.3)-(1.4) for R0 > 1. This result shows that the virus and infected cells
eventually persist for R0 > 1.
Theorem 4.1 Assume that one of the initial conditions in Lemma 2.1 holds. If R0 > 1, then there
exists a positive constant ε such that the solution (x(t),y(t),v(t)) of (1.3)-(1.4) satisfies

ε ≤min
{

liminf
t→+∞

y(t), liminf
t→+∞

v(t)
}
.

PROOF. In order to use persistence theory, we define ϕ = (ϕ1,ϕ2,ϕ3) and

X =
{

ϕ ∈C3
+

}
,X0 = X1

0 ∪X2
0 ∪X3

0 ,∂X0 = X \X0,

where

X1
0 =

{
ϕ ∈ X | there exists a θ ∈ [−τ,0)such that ϕ1(θ)ϕ3(θ)> 0

}
X2

0 = {ϕ ∈ X |ϕ2(0)> 0} ,
X3

0 = {ϕ ∈ X |ϕ3(0)> 0} .
∂X0 is relatively closed in X and

∂X0 = {ϕ ∈ X |ϕ2(0) = ϕ3(0) = ϕ1(θ)ϕ3(θ) = 0 for θ ∈ [−τ,0)} .
Let Φ(t) : X → X be the solution semiflow associated with (1.3)-(1.4), that is,

(Φ(t)ϕ)(θ) = (x(t +θ ,ϕ),y(t +θ ,ϕ),v(t +θ ,ϕ)),θ ∈ [−τ,0], t ≥ 0.

From Lemmas 2.1 and 2.2, Φ(t) : X0→ X0 for any t ≥ τ and Φ(t) : ∂X0→ ∂X0 for any t ≥ 0 .
Furthermore, by Lemmas 2.1 and 2.2, Φ(t) : X → X is point dissipative. Set

M∂ = {ϕ ∈ X |Φ(t)ϕ ∈ ∂X0, for any t ≥ 0} .
Then, by Lemma 2.2, it follows

M∂ = {ϕ ∈ ∂X0|y(t,ϕ) = v(t,ϕ) = 0 for any t ≥ 0} .
Assume R0 > 1. Then, from (2.2), it holds that

kx0

1+ax0
e−mτ − µ

N
> 0.

Hence, there exist a small enough η > 0 and γ > 0 such that

f (x0−η ,γ)

γ
e−mτ − µ

N
=

k (x0−η)

1+a(x0−η)+bγ
e−mτ − µ

N
> 0. (4.1)

Let us consider the following perturbed equation to the first equation of (1.3)
d
dt

x(t) = s−dx(t)− f (x(t),v), (4.2)

For a fixed v, we put f̃v(x) = s− dx− f (x,v) for x ∈ [0,+∞). From (1.4), we see that f̃v(x)
is monotone decreasing on x ∈ [0,+∞), f̃v(0) = s− f (0,v) = s > 0 and limx→+∞ f̃v(x) = −∞.
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Therefore, (4.2) admits a unique positive equilibrium x∗v such that f̃v(x∗v) = 0. From the above
discussion, we have d

dt x(t) = f̃v(x(t)) > 0 for x(t) ∈ [0,x∗v) and d
dt x(t) = f̃v(x(t)) < 0 for x(t) ∈

[x∗v ,+∞) which implies that a unique positive equilibrium x∗v is globally attractive in R+. Since
x∗v is continuous on v, we fix v > 0 small enough such that

x∗v > x0−η .

We now show that the uninfected equilibrium E0 repels the solutions of (1.3)-(1.4) in X0. We
claim that there exists γ > 0 such that the solution semiflow Φ(t) associated with (1.3)-(1.4)
satisfies

limsup
t→+∞

‖Φ(t)ϕ−E0‖ ≥ γ for any ϕ ∈ X0. (4.3)

Suppose that limsupt→+∞ ‖Φ(t)ϕ−E0‖< γ for some ϕ ∈X0. Then there exists a t1 > 0 such that
‖Φ(t)ϕ−E0‖< γ for any t ≥ t1. Set (x(t),y(t),v(t)) = Φ(t)ϕ . It follows that 0≤ v(t)≤ γ, t ≥ t1
and hence, we have that

d
dt

x(t)≥ s−dx(t)− f (x(t),γ), for t ≥ t1.

We note that f (x,v) is monotone increasing on v∈ [0,+∞). Since the unique positive equilibrium
x∗v of (4.2) is globally attractive and x∗v > x0−η , there exists a large enough t2 > 0 such that

x(t)≥ x0−η for t > t2.

Let us consider the differential function

W (t) = y(t)+
1
N

v(t)+ e−mτ

∫ t

t−τ

f (x(u),v(u))du

By Lemma 2.1, the function W (t) is bounded above. Calculating the derivative of W (t) along the
solution of (1.3)-(1.4) gives

d
dt

W (t) = e−mτ f (x(t),v(t))− µ

N
v(t)

=

[
f (x(t),v(t))

v(t)
e−mτ − µ

N

]
v(t)

≥
[

f (x0−η ,γ)

γ
e−mτ − µ

N

]
v(t), for t > t2.

Since we have (4.1), it holds that limt→+∞ W (t) =+∞. This leads to a contradiction to the bound-
edness of the function W (t).

Thus (4.3) holds and Φ(t) is weakly uniformly persistent with respect to (X0,∂X0). Then
it follows that E0 is an isolated invariant set in X and W s(E0)∩X0 = /0. It is clear that every
solution in M∂ converges to E0 and E0 is acyclic in M∂ . By the acyclicity theorem on uniform
persistence, we obtain that Φ(t) is uniformly persistent with respect to (X0,∂X0) and the proof is
complete. 2

5. Global stability of the infected steady state

In this section, we show that the infective equilibrium E∗ of (1.3)-(1.4) is globally asymptoti-
cally stable if R0 > 1 by employing the method of a Lyapunov functional. For simplicity of the
proof, we use the following notation.
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x̃t =

x(t)
x∗

, ỹt =
y(t)
y∗

, ṽt =
v(t)
v∗

,

z̃t =
f (x(t),v(t))

f (x∗,v∗)
, z̃t,τ =

f (x(t− τ),v(t− τ))

f (x∗,v∗)
, z̃x

t =
f (x(t),v∗)
f (x∗,v∗)

,

We set
g(x) = x−1− lnx for x ∈ (0,+∞).

g(x) ≥ 0 for all x ∈ (0,+∞) and min0<x<+∞ g(x) = g(1) = 0. The following lemma plays an
important role in the proof of Theorem 5.2.
Lemma 5.1 Assume that one of the initial conditions in Lemma 2.1 holds. It holds that(

ṽt −
z̃t

z̃x
t

)(
z̃t

z̃x
t
−1
)
≥ 0, (5.1)

and

g(ṽt)−g
(

z̃t

z̃x
t

)
≥ 0, (5.2)

with equality if and only if ṽt =
z̃t
z̃x
t
= 1 for all t ≥ τ .

PROOF. First, we have that

ṽt −
z̃t

z̃x
t
=

v(t)
v∗
− f (x(t),v(t))

f (x∗,v∗)

(
f (x(t),v∗)
f (x∗,v∗)

)−1

=
v(t)
v∗
− f (x(t),v(t))

f (x(t),v∗)

=
f (x(t),v(t))

v∗

(
v(t)

f (x(t),v(t))
− v∗

f (x(t),v∗)

)
,

and

z̃t

z̃x
t
−1 =

f (x(t),v(t))
f (x∗,v∗)

(
f (x(t),v∗)
f (x∗,v∗)

)−1

−1 =
f (x(t),v(t))
f (x(t),v∗)

−1

=
f (x(t),v(t))− f (x(t),v∗)

f (x(t),v∗)
.

Then, by using (1.4), we immediately obtain(
ṽt −

z̃t

z̃x
t

)(
z̃t

z̃x
t
−1
)

=
f (x(t),v(t))
v∗ f (x(t),v∗)

(
v(t)

f (x(t),v(t))
− v∗

f (x(t),v∗)

)
( f (x(t),v(t))− f (x(t),v∗))

=
f (x(t),v(t))
v∗ f (x(t),v∗)

(
1+ax(t)+bv(t)

kx(t)
− 1+ax(t)+bv∗

kx(t)

)
( f (x(t),v(t))− f (x(t),v∗))

=
f (x(t),v(t))
v∗ f (x(t),v∗)

b(v(t)− v∗)
kx(t)

( f (x(t),v(t))− f (x(t),v∗))

≥0,

from which (5.1) follows. (5.1) implies that either ṽt ≤ z̃t
z̃x
t
≤ 1 or ṽt ≥ z̃t

z̃x
t
≥ 1 holds for all t ≥ τ .

Thus, (5.2) holds. From the above discussion, we see that g(ṽt) = g
(

z̃t
z̃x
t

)
= 0 holds if and only if

ṽt =
z̃t
z̃x
t
= 1. Hence, the proof is complete. 2
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We are in a position to prove the global asymptotic stability of the infected equilibrium E∗ for
R0 > 1.
Theorem 5.2 Assume that one of the initial conditions in Lemma 2.1 holds. If R0 > 1 then the
infected equilibrium E∗ of (1.3)-(1.4) is globally asymptotically stable.

PROOF. We construct the following Lyapunov functional

U(t) =
x∗

f (x∗,v∗)
Ux(t)+

y∗

f (x∗,v∗)e−mτ
Uy(t)+

v∗

Nδy∗
Uv(t)+U(t), (5.3)

where

Ux(t) =
x(t)
x∗
−1− 1

x∗

∫ x(t)

x∗

f (x∗,v∗)
f (ξ ,v∗)

dξ ,Uy(t) = g
(

y(t)
y∗

)
,Uv(t) = g

(
v(t)
v∗

)
,

U(t) =
∫ t

t−τ

g
(

f (x(u),v(u))
f (x∗,v∗)

)
du.

Let

L(x) =
x
x∗
−1− 1

x∗

∫ x

x∗

f (x∗,v∗)
f (ξ ,v∗)

dξ , for x ∈ (0,+∞).

Since it holds that
d
dx

L(x) =
1
x∗

(
1− f (x∗,v∗)

f (x,v∗)

)
,

we have that d
dx L(x) < 0 for x ∈ (0,x∗), d

dx L(x) > 0 for x ∈ (x∗,+∞) and d
dx L(x)|x=x∗ = 0. We

also have L(x∗) = 0. Thus, Ux(t)≥ 0 for all t > 0. Hence, by Lemma 2.1, we see U(t)≥ 0 for all
t ≥ τ .

We now show that dU(t)
dt ≤ 0. First, we calculate dUx(t)

dt

dUx(t)
dt

=

(
1
x∗
− 1

x∗
f (x∗,v∗)

f (x(t),v∗)

)
d
dt

x(t)

=
1
x∗

(
1− f (x∗,v∗)

f (x(t),v∗)

)
(s−dx(t)− f (x(t),v(t))) .

Substituting s = dx∗+ f (x∗,v∗) gives

dUx(t)
dt

=
1
x∗

(
1− f (x∗,v∗)

f (x(t),v∗)

)
(dx∗+ f (x∗,v∗)−dx(t)− f (x(t),v(t)))

=
1
x∗

(
1− f (x∗,v∗)

f (x(t),v∗)

)
(−d(x(t)− x∗)+ f (x∗,v∗)− f (x(t),v(t)))

=− d
x∗

(
1− f (x∗,v∗)

f (x(t),v∗)

)
(x(t)− x∗)

+
f (x∗,v∗)

x∗

(
1− f (x∗,v∗)

f (x(t),v∗)

)(
1− f (x(t),v(t))

f (x∗,v∗)

)
=− d

x∗

(
1− f (x∗,v∗)

f (x(t),v∗)

)
(x(t)− x∗)+

f (x∗,v∗)
x∗

(
1− 1

z̃x
t

)(
1− z̃t

)
=− d

x∗

(
1− f (x∗,v∗)

f (x(t),v∗)

)
(x(t)− x∗)+

f (x∗,v∗)
x∗

(
1− 1

z̃x
t
− z̃t +

z̃t

z̃x
t

)
. (5.4)
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We secondly calculate dUy(t)
dt

dUy(t)
dt

=

(
1
y∗
− 1

y(t)

)
d
dt

y(t)

=
1
y∗

(
1− y∗

y(t)

)(
f (x(t− τ),v(t− τ))e−mτ −δy(t)

)
.

Substituting δy∗ = f (x∗,v∗)e−mτ gives δ = f (x∗,v∗)e−mτ

y∗ and

dUy(t)
dt

=
1
y∗

(
1− y∗

y(t)

)(
f (x(t− τ),v(t− τ))e−mτ − f (x∗,v∗)e−mτ y(t)

y∗

)
=

f (x∗,v∗)e−mτ

y∗

(
1− y∗

y(t)

)(
f (x(t− τ),v(t− τ))

f (x∗,v∗)
− y(t)

y∗

)
=

f (x∗,v∗)e−mτ

y∗

(
1− 1

ỹt

)
(z̃t,τ − ỹt)

=
f (x∗,v∗)e−mτ

y∗

(
z̃t,τ −

z̃t,τ

ỹt
− ỹt +1

)
. (5.5)

Let us calculate dUv(t)
dt

dUv(t)
dt

=

(
1
v∗
− 1

v(t)

)
d
dt

v(t)

=
1
v∗

(
1− v∗

v(t)

)
(Nδy(t)−µv(t)) .

Substituting µv∗ = Nδy∗ gives µ = Nδ
y∗
v∗ and

dUv(t)
dt

=
1
v∗

(
1− v∗

v(t)

)(
Nδy(t)−Nδy∗

v(t)
v∗

)
=

Nδy∗

v∗

(
1− v∗

v(t)

)(
y(t)
y∗
− v(t)

v∗

)
=

Nδy∗

v∗

(
1− 1

ṽt

)
(ỹt − ṽt)

=
Nδy∗

v∗

(
ỹt − ṽt −

ỹt

ṽt
+1
)
. (5.6)

Calculating dU(t)
dt gives as follows

dU(t)
dt

= g
(

f (x(t),v(t))
f (x∗,v∗)

)
−g
(

f (x(t− τ),v(t− τ))

f (x∗,v∗)

)
= z̃t − ln z̃t − z̃t,τ + ln z̃t,τ . (5.7)

Consequently, by (5.4)-(5.7), we obtain

d
dt

U(t) =− d
x∗

(
1− f (x∗,v∗)

f (x(t),v∗)

)
(x(t)− x∗)+C(t,τ),

where
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C(t,τ) =
(

1− 1
z̃x

t
− z̃t +

z̃t

z̃x
t

)
+

(
z̃t,τ −

z̃t,τ

ỹt
− ỹt +1

)
+

(
ỹt − ṽt −

ỹt

ṽt
+1
)

+(z̃t − ln z̃t − z̃t,τ + ln z̃t,τ)

=

(
1− 1

z̃x
t

)
+

(
−

z̃t,τ

ỹt
+1
)
+

(
− ỹt

ṽt
+1
)
+

(
z̃t

z̃x
t
− ṽt

)
+(− ln z̃t + ln z̃t,τ)

=

(
1− 1

z̃x
t

)
+

(
−

z̃t,τ

ỹt
+1
)
+

(
− ỹt

ṽt
+1
)
+

(
z̃t

z̃x
t
− ṽt

)
+

(
ln

1
z̃x

t
− ln

1
z̃x

t

)
+

(
ln

z̃t,τ

ỹt
− ln z̃t

)
+

(
ln

ỹt

ṽt
+ lnvt

)
=

(
1− 1

z̃x
t
+ ln

1
z̃x

t

)
+

(
−

z̃t,τ

ỹt
+1+ ln

z̃t,τ

ỹt

)
+

(
− ỹt

ṽt
+1+ ln

ỹt

ṽt

)
+

(
z̃t

z̃x
t
− ṽt

)
+

(
− ln

1
z̃x

t

)
+(− ln z̃t)+ ln ṽt

=−
[

g
(

1
z̃x

t

)
+g
(

z̃t,τ

ỹt

)
+g
(

ỹt

ṽt

)]
+

[(
z̃t

z̃x
t
− ln

z̃t

z̃x
t

)
− (ṽt − ln ṽt)

]
=−

[
g
(

1
z̃x

t

)
+g
(

z̃t,τ

ỹt

)
+g
(

ỹt

ṽt

)]
−
[

g(ṽt)−g
(

z̃t

z̃x
t

)]
. (5.8)

From (1.4), it holds that (
1− f (x∗,v∗)

f (x(t),v∗)

)
(x(t)− x∗)≥ 0.

From (5.8) and Lemma 5.1, we also see C(t,τ) ≤ 0. Consequently, dU(t)
dt ≤ 0 holds. Hence, the

solution of system (1.3)-(1.4) limit to M, the largest invariant subset of
{

dU(t)
dt = 0

}
.

Next we show that M consists of only the infected steady state E∗. We recall that by Lemma
2.1, dU(t)

dt = 0 if and only if z̃x
t = 1, z̃t,τ

ỹt
= 1, ỹt

ṽt
= 1 and ṽt =

z̃t
z̃x
t
= 1, or equivalently, if and only if

x(t) = x∗, y(t) = y∗ and v(t) = v∗. By the above discussion, each element of M satisfies x(t) = x∗,
y(t)= y∗ and v(t)= v∗ for all t ≥ τ . It follows from Theorem 4.1 and La Salle’s invariant principle
that infected steady state E∗ is globally asymptotically stable. This completes the proof. 2

6. Applications

Li and Ma [8] proposed the following HIV-1 infection model with delay and nonlinear inci-
dence rate 

d
dt

x(t) = s−dx(t)− kx(t)v(t)
1+ v(t)

,

d
dt

y(t) =
kx(t− τ)v(t− τ)

1+ v(t− τ)
−δy(t),

d
dt

v(t) = Nδy(t)−µv(t).

(6.1)

(6.1) has a unique infected equilibrium E∗ = (x∗,y∗,v∗) if

R0(6.1) = kx0
N
µ

> 1.
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They showed that the infected equilibrium E∗ is locally asymptotically stable if R0(6.1) > 1 and
conjectured that the infected equilibrium E∗ is globally asymptotically stable if R0(6.1) > 1. From
Theorem 5.2, we obtain an affirmative answer for the problem.
Corollary 6.1 Assume that one of the initial conditions in Lemma 2.1 holds. If R0(6.1) > 1 then
the infected equilibrium E∗ of (6.1) is globally asymptotically stable.
We also obtain the following viral infection model with bilinear incidence rate from (1.3)-(1.4)
with a = b = 0. 

d
dt

x(t) = s−dx(t)− kx(t)v(t),
d
dt

y(t) = ke−mτ x(t− τ)v(t− τ)−δy(t),
d
dt

v(t) = Nδy(t)−µv(t).

(6.2)

(6.2) always has an uninfected equilibrium E0. On the other hand, there exists a unique infected
equilibrium E∗ = (x∗,y∗,v∗) if

R0(6.2) = kx0e−mτ N
µ

> 1.

The following result is derived from Theorems 3.1 and 5.2.
Corollary 6.2 i) If R0(6.2) ≤ 1 then the uninfected equilibrium E0 of (6.2) is globally asymptoti-
cally stable.

ii) Assume that one of the initial conditions in Lemma 2.1 holds. If R0(6.2) > 1 then the infected
equilibrium E∗ of (6.2) is globally asymptotically stable.
Li and Shu [9] also obtained this threshold type result by using the method of Lyapunov func-
tional.

7. Discussion

Many authors have investigated the global dynamics of viral infection models. Korobeinikov
[5] studied the basic viral infection model (1.1) with using Lyapunov functions. It is shown that
the basic reproduction number R0(1.1) is an important parameter which determines the global
dynamics of the model. Huang et al. [4] considered a general viral infection model (1.2) which
has Beddington-DeAngelis response as a incidence rate of the virus infection. They also showed
that the basic reproduction number R0(1.2) works as an important parameter which determines the
equilibrium that is globally asymptotically stable. Recently, the global dynamics for a delayed
viral infection model which has bilinear incidence rate was analyzed by Li and Shu [9].

In this paper, following Huang et al. [4], we also assume that the incidence rate of the virus
infection is described by Beddington-DeAngelis response. Then we obtain the viral infection
model with a latent period by introducing a discrete time delay. We investigate its global dynam-
ics by using two Lyapunov functional and persistence theory. These Lyapunov functionals are
motivated by the works by Huang et al. [4], Korobeinikov [5] and McCluskey [10].

We show that the uninfected equilibrium E0 is globally asymptotically stable if R0 ≤ 1. More-
over, the virus and infected cells eventually persist and there exists a unique infected equilibrium
E∗ which is globally asymptotically stable if R0 > 1. The basic reproduction number R0 deter-
mines the equilibrium that is globally asymptotically stable, even if there is a latent period for
the cell infection.
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In Section 6, we obtain an affirmative answer for the conjecture by Li and Ma [8]. The infected
equilibrium of their model (6.1) is also globally asymptotically stable if it exists. We see that such
a latent period in the infection does not change the virus dynamics dramatically when compared
with models with no delays. The latent period in the infection does not produce a periodic solu-
tion. The basic reproduction number determines the equilibrium that is globally asymptotically
stable, even if there exists a time delay in the cell infection.
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