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In this paper, we investigate a disease transmission model of SIRS type with latent
period τ � 0 and the specific nonmonotone incidence rate, namely, k exp(−dτ )S(t)I(t−τ )

1+α I2(t−τ )
.

For the basic reproduction number R0 > 1, applying monotone iterative techniques, we
establish sufficient conditions for the global asymptotic stability of endemic equilibrium
of system which become partial answers to the open problem in [Hai-Feng Huo, Zhan-
Ping Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate,
Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 459–468]. Moreover, combining both
monotone iterative techniques and the Lyapunov functional techniques to an SIR model
by perturbation, we derive another type of sufficient conditions for the global asymptotic
stability of the endemic equilibrium.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models which describe the dynamics of infectious diseases have recently played a crucial role in the dis-
ease control in epidemiological aspect. Many authors have proposed various kinds of epidemic models to understand
the mechanism of disease transmission (see [1–8] and references therein).

On the global asymptotic stability of an endemic equilibrium of endemic models with a non-monotonic incidence rate,
there are papers recently appears in the literature. Xiao and Ruan [6] first proposed a non-monotonic incident rate kS I

1+α I2 ,

where kI measure the infection force of the disease and 1
1+α I2 describes the psychological or inhibitory effect from the be-

havioral change of the susceptible individuals when the number of infective individuals is very large. By applying Dulac
function, Xiao and Ruan [6] established that the endemic equilibrium of an SIRS model with this non-monotonic incidence
rate and no delays, is globally asymptotically stable.

Recently, for the following SIRS model with a non-monotonic incident rate with latency, Huo and Ma [4] investigated
the existence of equilibria and global asymptotic stability of the disease-free equilibrium of system, permanence and lo-
cal stability of the endemic equilibrium of system, and conjectured with numerical simulations that there are cases that
the global stability of the endemic equilibrium can occur.

* Corresponding author.
E-mail addresses: ymuroya@waseda.jp (Y. Muroya), yo1.gc-rw.docomo@akane.waseda.jp (Y. Enatsu), nakata@bcameth.org (Y. Nakata).

1 Research is partially supported by Scientific Research (c), No. 21540230 of Japan Society for the Promotion of Science.
0022-247X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2010.10.010

http://dx.doi.org/10.1016/j.jmaa.2010.10.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:ymuroya@waseda.jp
mailto:yo1.gc-rw.docomo@akane.waseda.jp
mailto:nakata@bcameth.org
http://dx.doi.org/10.1016/j.jmaa.2010.10.010


JID:YJMAA AID:15348 /FLA [m3G; v 1.47; Prn:14/10/2010; 10:38] P.2 (1-14)

2 Y. Muroya et al. / J. Math. Anal. Appl. ••• (••••) •••–•••

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= b − dS(t) − k exp (−dτ )S(t)I(t − τ )

1 + α I2(t − τ )
+ γ R(t),

dI(t)

dt
= k exp (−dτ )S(t)I(t − τ )

1 + α I2(t − τ )
− (d + μ)I(t),

dR(t)

dt
= μI(t) − (d + γ )R(t),

(1.1)

where S(t), I(t) and R(t) denote the numbers of susceptible to the disease, infective and recovered individuals at time t ,
respectively. b is the recruitment rate of the population, d is the natural death rate of the population. The positive constant
k and τ is the average number of contacts per infective per day and latent period, respectively. μ is the natural recovery
rare of the infective individuals, γ is the rate at which recovered individuals lose immunity and return to the susceptible
class, α is the parameter measures the psychological or inhibitory effect. We assume that the force of infection at any time
t is given by k exp (−dτ )S(t)I(t−τ )

1+α I2(t−τ )
(see Capasso [2]), since those infected at time t − τ become infectious at time τ latter.

The term 0 < exp (−dτ ) � 1 represents the survival of vector population in which the time taken to become infectious
is τ .

The initial conditions of system (1.1) take the form⎧⎪⎨
⎪⎩

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ),

φi(θ) � 0, θ ∈ [−h,0], φi(0) > 0, i = 1,2,3,(
φ1, φ2, φ3

) ∈ C
([−h,0],R

3
+0

)
,

(1.2)

where R
3
+0 = {(x1, x2, x3) | xi � 0, i = 1,2,3}.

By the fundamental theory of functional differential equations, it is well known that system (1.1) has a unique solution
(S(t), I(t), R(t)) satisfying the initial condition (1.2). It is easy to show that all solutions of system (1.1) with the initial
condition (1.2) are defined on [0,+∞) and remain positive for all t > 0. We see that system (1.1) always has a disease-free
equilibrium E0 = (b/d,0,0). The basic reproduction number of system (1.1) is

R0 = bk exp (−dτ )

d(d + μ)
. (1.3)

If R0 > 1, then system (1.1) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗) (see Huo and Ma [4]), where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = 1

d

{
b −

(
d + μ − γμ

d + γ

)
I∗

}
,

I∗ =
−k exp (−dτ )(d + μ − γμ

d+γ ) + √�
2αd(d + μ)

,

R∗ = μ

d + γ
I∗,

(1.4)

and

� = k2 exp (−2dτ )

(
d + μ − γμ

d + γ

)2

− 4αd2(d + μ)2(1 − R0). (1.5)

More recently, Yang and Xiao [9] extended the result of Xiao and Ruan [6] to the incident rate of a specific form, namely,
β I(t−τ )S(t)
1+α I p(t−τ )

, where p � 1. Stability of the disease-free equilibrium and existence, uniqueness and stability of an endemic
equilibrium for the model, were investigated. It was shown that if R0 � 1, then the disease-free equilibrium is globally
asymptotic stable, whereas if R0 > 1, then the unique endemic equilibrium is globally asymptotically stable in the interior
of the feasible region for the model for no latency, and periodic solutions can arise at a critical latency. Some numerical
simulations were provided to support their analytical conclusions. However, they showed no sufficient conditions for the
global stability of the endemic equilibrium of the model with latency, and when 1 < p � 2 and R0 > 1, they also proposed
a conjecture that the endemic equilibrium of the model is globally stable for all τ > 0.

Therefore, it is important to study more carefully the global asymptotic stability of endemic equilibrium of system (1.1),
which corresponds to the case p = 2 and β = k exp(−dτ ). In this paper, for the basic reproduction number R0 > 1 of
system (1.1), applying both of new monotone iterative techniques which are improved versions of Xu and Ma [8] (see also
Xu and Ma [7]), and Lyapunov functional techniques in McCluskey [5], we obtain two types of sufficient conditions for the
global asymptotic stability of endemic equilibrium E∗ of system (1.1) which is a partial answer to the open problem in Huo
and Ma [4] and also Yang and Xiao [9].

The first main theorem is established by applying new monotone iterative techniques (see Lemma 3.4 in Section 3) such
that the each lower and upper bounds for each S(t), I(t) and R(t) of system (1.1) for a sufficiently large t � 0, approach to
an endemic steady state by simple conditions of contractive convergence for suitable monotone iterations (see (3.9)).
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Theorem 1.1. Assume R0 > 1. Then, the endemic equilibrium E∗ = (S∗, I∗, R∗) of system (1.1) exists. If

k exp(−dτ )

(d + μ)
√

α
+ 2 > R0 and

d + γ

μ

(
1 + d + μ

k exp(−dτ )
α I∗

)
� 1, (1.6)

then, the endemic equilibrium E∗ = (S∗, I∗, R∗) of system (1.1) is globally asymptotically stable in the interior of R
3+ .

We solve the open question for an example offered by Huo and Ma [4, Example], because we can see that this example
(b = 4, k = 0.8, d = α = γ = μ = 1 and 1 < R0 = 1.6 exp (−0.8τ ) < 2) satisfied the condition (1.6) in Theorem 1.1.

Let us consider two functions G(I) and h(I) of I such that⎧⎪⎪⎨
⎪⎪⎩

G(I) = I

1 + α I2
, 0 � I < +∞, and

h(I) = I

G(I)
= 1 + α I2, 0 < I < +∞,

(1.7)

and Î = 1√
α

be the local maximal point of G(I), where G ′( Î) = 0 and G(I) � G( Î) = 1
2
√

α
for any 0 � I < +∞. For any

0 � I � Ī , put

Ḡ(I, Ī) = max
I�I� Ī

G(I) =

⎧⎪⎨
⎪⎩

G( Ī), if Ī < Î,

G( Î), if I � Î � Ī,

G(I), if Î < I,

(1.8)

and ⎧⎪⎪⎨
⎪⎪⎩

K̄ (I, Ī) = Ī + d + μ

k exp(−dτ )
h̄(I, Ī), h̄(I, Ī) = Ī

Ḡ(I, Ī)
,

K (I) = I + d + μ

k exp(−dτ )
h(I),

(1.9)

and consider three constants I0, Ī1 and I1 such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 � I0 � lim inf
t→+∞ I(t),

K̄ (I0, Ī1) = b

d
− μ

d + γ
I0,

K (I1) = b

d
− μ

d + γ
Ī1,

(1.10)

and three constants a, σ and c such that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a = d + γ

μ

d + μ

k exp(−dτ )
α,

σ = d + γ

μ

(
1 + d + μ

k exp(−dτ )
α2I∗

)
,

c = σ − 1 + √
(σ − 1)(σ + 3)

2
.

(1.11)

For (1.11), we note that⎧⎪⎪⎨
⎪⎪⎩

σ = d + γ

μ
+ 2aI∗,

c2 = (σ − 1)(c + 1), and

c > σ − 1 > 0, if σ > 1.

(1.12)

Then, the second main theorem is obtained by applying the best possible lower bound I∗ and upper bounds Ī∗ of I(t)
for a sufficiently large t obtained by new monotone iterative techniques (see (3.25) in Theorem 3.2) to Lyapunov functional
techniques to the SIR model by perturbation (see Lemma 3.4 and Section 4).

Theorem 1.2. Assume that R0 > 1 and I∗ � Î , and for three constants I0 , Ī1 and I1 defined by (1.10), suppose that

I0 < I1 < Ī1, (1.13)

and consider three constants a, σ and c defined by (1.11).



JID:YJMAA AID:15348 /FLA [m3G; v 1.47; Prn:14/10/2010; 10:38] P.4 (1-14)

4 Y. Muroya et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
(i) If {
σ � 1, or

σ > 1, and c > a
(

I∗ − I0
)

or c � (σ − 1) + a
(

Î − I∗
)
,

(1.14)

then the endemic equilibrium E∗ = (S∗, I∗, R∗) of system (1.1) is globally asymptotically stable in the interior of R
3+ .

(ii) For the constants I∗ � 0, Ī∗ � b
d and S∗ such that

⎧⎪⎪⎨
⎪⎪⎩

I∗ � lim inf
t→+∞ I(t) � lim sup

t→+∞
I(t) � Ī∗, and

S∗ = σ(d + γ )/d − γ Ī∗

(d + γ ) + k exp(−dτ )G( Ī∗)
,

(1.15)

if

γ 2 < 4(d + μ)(d + γ )S∗ α(I∗ + I∗)(1 − α Ī∗ I∗)
(1 + α( Ī∗)2)(1 + α(I∗)2)

, (1.16)

then the endemic equilibrium E∗ of system (1.1) exists and is globally asymptotically stable.

In particular, if

σ > 1, c � a
(

I∗ − I0
)

and c < (σ − 1) + a
(

Î − I∗
)
, (1.17)

then the following I∗ and Ī∗ such that

I∗ = I∗ − c

a
, and Ī∗ = I∗ + c − (σ − 1)

a
, (1.18)

satisfy (1.15).

In the case (1.17), we say that I∗ − c
a , and I∗ + c−(σ−1)

a are the best possible lower bound I∗ and upper bounds Ī∗ of
I(t) for a sufficiently large t , respectively, in the meaning of (1.15) obtained by new monotone iterative techniques in this
paper.

The organization of this paper is as follows. In Section 2, we give known results for system (1.1) by Huo and Ma [4].
In Section 3, we offer new monotone iterative techniques to SIRS model (1.1). In Section 4, applying Lyapunov functional
techniques of McCluskey [5], we establish another type of conditions of the global stability of endemic equilibrium E∗
of system (1.1) for R0 > 1. In Section 5, we investigate two numerical examples. Finally, a brief discussion is offered in
Section 6.

2. Preliminaries

In this section, we give the following known results obtained by Huo and Ma [4].

Theorem 2.1. If R0 � 1 (i.e. τ � τ ∗), then system (1.1) only has the disease-free equilibrium E0 and if R0 > 1 (i.e. 0 � τ < τ ∗), then
system (1.1) has the endemic equilibrium E∗ and E∗ is unique.

Theorem 2.2. If R0 < 1 (i.e. τ > τ ∗), then the disease-free equilibrium E0 of system (1.1) is globally asymptotically stable. If R0 > 1
(i.e. 0 � τ < τ ∗), E0 becomes unstable.

Theorem 2.3. If R0 = 1 (i.e. τ = τ ∗), then the disease-free equilibrium E0 of system (1.1) is globally attractive.

Theorem 2.4. If R0 > 1 (i.e. 0 � τ < τ ∗), then the endemic equilibrium E∗ of (1.1) is locally stable.

Theorem 2.5. If R0 > 1 (i.e. 0 � τ < τ ∗), then the disease of (1.1) is permanent.

3. Monotone iterative techniques for R0 > 1

In this section, for R0 > 1, we improve the monotone iterative techniques offered by Xu and Ma [8, Theorem 3.1] for
system (1.1).

For solutions (S(t), I(t), R(t)) of (1.1) with initial conditions (1.2), the unique existence of the endemic equilibrium E∗ of
system (1.1) is guaranteed by Theorem 2.1.



JID:YJMAA AID:15348 /FLA [m3G; v 1.47; Prn:14/10/2010; 10:38] P.5 (1-14)

Y. Muroya et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 5
By Theorem 2.5, there exist positive constants vi (i = 1,2,3) such that

⎧⎪⎨
⎪⎩

lim inf
t→+∞ S(t) = Ŝ � v1, lim inf

t→+∞ I(t) = Î � v2, lim inf
t→+∞ R(t) = R̂ � v3,

lim sup
t→+∞

S(t) = ˆ̄S � b

d
, lim sup

t→+∞
I(t) = ˆ̄I � b

d
, lim sup

t→+∞
R(t) = ˆ̄R � b

d
,

(3.1)

where from (1.1), it follows that N ′(t) = b − dN(t) for N(t) ≡ S(t) + I(t) + R(t), and we obtain limt→+∞ N(t) = b
d . Therefore,

hereafter, we may restrict our attention to the case that

S(t) + I(t) + R(t) = b

d
, for any t � 0. (3.2)

Then, we have the following lemma.

Lemma 3.1.

b

d
− Î − ˆ̄R > 0, and

b

d
− ˆ̄I − R̂ > 0. (3.3)

Proof. Suppose that b
d − ˆ̄I − R̂ � 0. Then, by (3.1), there is a sequence {tn}∞n=1 such that limn→+∞ I(tn) = ˆ̄I . Since

lim infn→+∞ R(tn) � R̂ , by (3.2), we have that

0 < lim sup
n→+∞

S(tn) � b

d
− lim inf

n→+∞ I(tn) − lim inf
n→+∞ R(tn) � b

d
− ˆ̄I − R̂ � 0,

which is a contradiction. Thus, we have b
d − ˆ̄I − R̂ > 0.

Similarly, we can prove that b
d − Î − ˆ̄R > 0. �

Lemma 3.2.
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 � b − dŜ − k exp(−dτ ) Ŝ Ḡ( Î, ˆ̄I) + γ

(
b

d
− Ŝ − ˆ̄I

)
,

0 � k exp(−dτ )

(
b

d
− Î − ˆ̄R

)
G( Î) − (d + μ) Î,

0 � μ Î − (d + γ )R̂,

(3.4)

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 � b − d ˆ̄S − k exp(−dτ ) ˆ̄SG( Î) + γ

(
b

d
− ˆ̄S − Î

)
,

0 � k exp(−dτ )

(
b

d
− ˆ̄I − R̂

)
Ḡ( Î, ˆ̄I) − (d + μ)ˆ̄I,

0 � μˆ̄I − (d + γ ) ˆ̄R.

(3.5)

Proof. First, we assume that I(t) is eventually monotone decreasing for t � 0. Then, by Theorem 2.5, there exists

limt→+∞ I(t) = ˆ̄I = Î > 0. Then, by the third equation of (1.1), we obtain that there exists limt→+∞ R(t) = ˆ̄R = R̂ > 0.

Then, by the first equation of (1.1), we obtain that there exists limt→+∞ S(t) = ˆ̄S = Ŝ > 0. Since the endemic equilibrium

E∗ = (S∗, I∗, R∗) is unique, we have that Ŝ∗ = ˆ̄S = Ŝ , Î∗ = ˆ̄I = Î and R̂∗ = ¯̄R = R̂ . Thus, by (1.4), we obtain (3.5).
Second, we assume that I(t) is not eventually monotone decreasing for t � 0. Then, there exists a sequence {tn}∞n=1 such

that limn→+∞ I ′(tn) � 0 and limn→+∞ I(tn) = ˆ̄I . Then, by (3.2), it follows that

lim sup
n→+∞

S(tn) � b

d
− lim

n→+∞ I(tn) − lim inf
n→+∞ R(tn) � b

d
− ˆ̄I − R̂,

from which we can obtain (3.5). Similar to the above discussion, we can obtain (3.4). �
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Hereafter, for simplicity, we assume that I∗ � Î . Then, we easily obtain the following lemma.

Lemma 3.3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŝ �
b(1 + γ

d ) − γ ˆ̄I
(d + γ ) + k exp(−dτ )Ḡ( Î, ˆ̄I)

,

Î + d + μ

k exp(−dτ )
h( Î) � b

d
− μ

d + γ
ˆ̄I,

R̂ � μ

d + γ
Î,

(3.6)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ˆ̄S �
b(1 + γ

d ) − γ Î

(d + γ ) + k exp(−dτ )G( Î)
,

ˆ̄I + d + μ

k exp(−dτ )
h̄( Î, ˆ̄I) � b

d
− μ

d + γ
Î,

ˆ̄R � μ

d + γ
ˆ̄I.

(3.7)

We now first take a initial value I0 = 0 or more appropriate I0 such that

0 � I0 � lim inf
t→+∞ I(t), (3.8)

and consider the following six sequences S̄n, Īn, R̄n, Sn, In and Rn (n = 1,2, . . .) as follows (cf. Xu and Ma [8, (3.3)]).
⎧⎪⎪⎨
⎪⎪⎩

K̄ (In−1, Īn) = b

d
− μ

d + γ
In−1,

K (In) = b

d
− μ

d + γ
Īn, n = 1,2,3, . . . ,

(3.9)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sn = b(d + γ )/d − γ Īn

(d + γ ) + k exp(−dτ )Ḡ(In, Īn)
, Rn = μ

d + γ
In,

S̄n = b(d + γ )/d − γ In−1

(d + γ ) + k exp(−dτ )G(In−1)
, R̄n = μ

d + γ
Īn.

(3.10)

Then, by Lemma 3.3, (3.7) and (3.9), we have that

I0 � lim inf
t→+∞ I(t) � lim sup

t→+∞
I(t) � Ī1. (3.11)

Lemma 3.4. For the sequences { Īn}∞n=1 , {In}∞n=1 , { S̄n}∞n=1 , {Sn}∞n=1 defined by (3.9) and (3.10), assume I0 < Ī1 . Then, (1.13) holds true,
if and only if,

μ

d + γ
< 1 + d + μ

k exp(−dτ )

h̄(I0, Ī1) − h(I1)

Ī1 − I1
. (3.12)

In this case, the three sequences {In}∞n=1 , {Sn}∞n=1 and {Rn}∞n=1 are strictly monotone increasing sequences and converge to I∗ , S∗
and R∗ , respectively and the three sequences { Īn}∞n=1 , { S̄n}∞n=1 and {R̄n}∞n=1 are strictly monotone decreasing sequences and converge
to Ī∗ , S̄∗ and R̄∗ , respectively, as n tends to +∞ satisfying

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
n→+∞ In = I∗ � lim inf

t→+∞ I(t) � lim sup
t→+∞

I(t) � lim
n→+∞ Īn = Ī∗,

lim
n→+∞ Sn = S∗ � lim inf

t→+∞ S(t) � lim sup
t→+∞

S(t) � lim
n→+∞ S̄n = S̄∗,

lim
n→+∞ Rn = R∗ � lim inf

t→+∞ R(t) � lim sup
t→+∞

R(t) � lim
n→+∞ R̄n = R̄∗,

(3.13)

and



JID:YJMAA AID:15348 /FLA [m3G; v 1.47; Prn:14/10/2010; 10:38] P.7 (1-14)

Y. Muroya et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 7
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ī∗ + μ

d + γ
I∗ + d + μ

k exp(−dτ )
h̄
(

I∗, Ī∗
) = b

d
,

I∗ + μ

d + γ
Ī∗ + d + μ

k exp(−dτ )
h
(

I∗
) = b

d
, and

1 + d + μ

k exp(−dτ )

h̄(I∗, Ī∗) − h(I∗)
Ī∗ − I∗

= μ

d + γ
, if I∗ < Ī∗.

(3.14)

Moreover, assume that there exist two constants I < Ī such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I � lim inf
t→+∞ I(t) � I∗ � lim sup

t→+∞
I(t) � Ī,

μ

d + γ
< 1 + d + μ

k exp(−dτ )

h̄(I, Ī) − h(I)

Ī − I
, and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I � I∗ � I∗ � Ī∗ � Ī,

Ī∗ + d + μ

k exp(−dτ )
h̄
(

I∗, Ī∗
) = b

d
− μ

d + γ
I∗, and

I∗ + d + μ

k exp(−dτ )
h
(

I∗
) = b

d
− μ

d + γ
Ī∗,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

imply I∗ = Ī∗ = I∗.

(3.15)

Then, the endemic equilibrium E∗ = (S∗, I∗, R∗) of system (1.1) is globally asymptotically stable in the interior of R
3+ . In particular, if

(1.6) holds, then both conditions (3.12) and (3.15) are satisfied.

Proof. By (1.9) and (3.9),
⎧⎪⎪⎨
⎪⎪⎩

Īn + d + μ

k exp(−dτ )
h̄(In−1, Īn) = b

d
− μ

d + γ
In−1,

In + d + μ

k exp(−dτ )
h(In) = b

d
− μ

d + γ
Īn, n = 1,2,3, . . . ,

(3.16)

from which we have that for In < Īn and n = 1,2,3, . . . ,

(
1 + d + μ

k exp(−dτ )

h̄(In−1, Īn) − h(In)

Īn − In

)
( Īn − In) = μ

d + γ
( Īn − In−1).

Hence, we obtain that for In < Īn ,

Īn − In =
μ

d+γ

1 + d+μ
k exp(−dτ )

h̄(In−1, Īn)−h(In)

Īn−In

( Īn − In−1), n = 1,2,3, . . . , (3.17)

from which one can see that (1.13) holds, if and only if, (3.12) holds. Then, by the monotonicity and inductions in (3.16),
we can prove that In−1 < In < Īn < Īn−1, n = 2,3, . . . , (3.13) and (3.14) hold. Moreover, suppose that (3.15) holds. Then, by
I∗ � Î and (3.17), we obtain I∗ = Ī∗ = I∗ , from which we have S∗ = S̄∗ = S∗ and R∗ = R̄∗ = R∗ . Hence, from (3.6) and (3.7),
E∗ is globally asymptotically stable in the interior of R

3+ .
In particular, assume that (1.6) holds. By the first equation of (3.14), we have that

k exp(−dτ )

d + μ
Ī∗ + h̄

(
I∗, Ī∗

) = R0 − k exp(−dτ )

d + μ

μ

d + γ
I∗ � R0.

If Ī∗ � Î , then, by (1.8), (1.9) and the first equation of (1.6), we have that

k exp(−dτ )

d + μ
Ī∗ + h̄

(
I∗, Ī∗

) = k exp(−dτ )

d + μ
Ī∗ + Ī∗

G( Î)
� k exp(−dτ )

d + μ
Ī∗ + Î

G( Î)
> R0,

which is a contradiction. Therefore, the first equation of (1.6) implies Ī∗ < Î . Then, h̄(I, Ī) = h( Ī) = 1 + α Ī2 for any 0 < I <

Ī < Î , and

h̄(I, Ī) − h(I)
¯ = (1 + α Ī2) − (1 + α I2)

¯ = α( Ī + I) > α I∗, for Ī � I∗.

I − I I − I
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Then, by the second equation of (1.6), both conditions (3.12) and (3.15) are satisfied. Hence, we obtain the conclusion of this
lemma. �
Proof of Theorem 1.1. By Lemma 3.4, we can immediately obtain the conclusion of Theorem 1.1. �

Now, assume that R0 > 1 and consider the solutions I∗ and Ī∗ of (3.14) in Lemma 3.4. Put I∗ = I∗ − ε and Ī∗ = I∗ + κ .
Then, we need the following restriction:

0 � ε � I∗ − I0 and 0 � κ < Ī1 − I∗. (3.18)

Lemma 3.5. Assume R0 > 1. Then, under (3.18), there is a unique solution (I∗, Ī∗) of (3.14) in Lemma 3.4 such that if

σ � 1, (3.19)

or

σ > 1, c � a
(

I∗ − I0
)

or c � (σ − 1) + a
(

Ī1 − I∗
)
, (3.20)

then

I∗ = Ī∗ = I∗, (3.21)

otherwise,

I∗ = I∗ − c

a
and Ī∗ = I∗ + c + (1 − σ)

a
. (3.22)

Proof. First, assume that Ī∗ < Î . By (3.14), (1.9) and I∗ + κ � Î , we have that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
I∗ + κ

) + μ

d + γ

(
I∗ − ε

) + d + μ

k exp(−dτ )

{
1 + α

(
I∗ + κ

)2} = b

d
,

(
I∗ − ε

) + μ

d + γ

(
I∗ + κ

) + d + μ

k exp(−dτ )

{
1 + α

(
I∗ − ε

)2} = b

d
, and

1 + d + μ

k exp(−dτ )
α

{
2I∗ + (κ − ε)

} = μ

d + γ
, if ε + κ > 0.

(3.23)

Then, by (1.4) and (1.11), (3.23) becomes⎧⎪⎪⎨
⎪⎪⎩

μ

d + γ

(−ε + σκ + aκ2) = 0,

μ

d + γ

(
κ − σε + aε2) = 0.

Thus, {
κ + ε = 0, or

σ + a(κ − ε) = 1, if κ + ε > 0,

from which we have ε = κ = 0, or κ = ε + 1−σ
a if ε > 0, respectively. Suppose that ε > 0. Then, by κ − σε + aε2 = 0, it

follows that

a2ε2 + a(1 − σ)ε + (1 − σ) = 0.

Hence, we obtain that σ > 1, ε = c
a and κ = c+(1−σ)

a > 0.

Second, we suppose that Ī∗ � Î . Then, we have that 1
G2( Î)

− 1
G2( Ī∗)

� 0 and by (1.9) and (3.14),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
I∗ + κ

) + μ

d + γ

(
I∗ − ε

) + d + μ

k exp(−dτ )

[{
1 + α

(
I∗ + κ

)2} + α

(
1

G2( Î)
− 1

G2( Ī∗)

)
Ī∗

]
= b

d
,

(
I∗ − ε

) + μ

d + γ

(
I∗ + κ

) + d + μ

k exp(−dτ )

{
1 + α

(
I∗ − ε

)2} = b

d
, and

if ε + κ > 0, then

1 + d + μ

k exp(−dτ )
α

{
2I∗ + (κ − ε)

} + d + μ

k exp(−dτ )
α

(
1
ˆ − 1

¯∗
)

Ī∗ = μ

d + γ
.

(3.24)
G2(I) G2(I )
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Then, by 1
G2( Î)

− 1
G2( Ī∗)

� 0, similar to the above discussion, we can derive that for (3.24), I∗ � I∗ − c
a and Ī∗ � I∗ + c−(σ−1)

a ,

from which we can conclude that there exist the same two solutions that ε = κ = 0, or σ > 1, ε = c
a and κ = c+(1−σ)

a .
Next, we investigate the restriction (3.18). If σ � 1 then c is not a real number. Thus, we only have ε = κ = 0 and we

only have the solution I∗ = Ī∗ = I∗ . If (3.20) holds, then

I∗ = I∗ − c

a
< I0, or Ī∗ = I∗ + c + (1 − σ)

a
> Ī1.

Since by the monotone convergence of the sequences { Īn}∞n=1, {In}∞n=1 to I∗ and Ī∗ , respectively, in Lemma 3.4, this is a
contradiction if ε > 0. Thus, we conclude that under the restriction (3.18), there is only solution I∗ = Ī∗ = I∗ . Suppose that
σ > 1 and (3.20) is not satisfied. Then, by Lemma 3.4, we conclude that (3.22) holds. Hence, we complete the proof of this
lemma. �

By Lemmas 3.4 and 3.5, we can obtain the following two theorems.

Theorem 3.1. Assume that R0 > 1, I∗ � Î and for (1.10) and suppose that (1.13) and (1.14) hold. Then, the endemic equilibrium
E∗ = (S∗, I∗, R∗) of system (1.1) is globally asymptotically stable in the interior of R

3+ .

Theorem 3.2. Assume that R0 > 1 and I∗ � Î and for (1.10), suppose that (1.13) and (1.17) hold. Then, for (3.14), it holds that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I∗ = I∗ − c

a
, Ī∗ = I∗ + c − (σ − 1)

a
,

S∗ = σ(d + γ )/d − γ Ī∗

(d + γ ) + k exp(−dτ )G( Ī∗)
, S̄∗ = σ(d + γ )/d − γ I∗

(d + γ ) + k exp(−dτ )G(I∗)
,

R∗ = μ

d + γ
I∗, R̄∗ = μ

d + γ
Ī∗.

(3.25)

4. Lyapunov functional techniques for R0 > 1

In this section, we establish another conditions of the global stability of the endemic equilibrium E∗ of system (1.1) by
Lyapunov functional techniques. We here note that the first and second equations of system (1.1) do not depend on the third
equation, and the limit set of (1.1) is on the plane S + I + R = b/d. Hence, the dynamics of system (1.1) in Ω1 is equivalent
to the following reduced system.⎧⎪⎪⎨

⎪⎪⎩

dS(t)

dt
= b̃ − d̃S(t) − k̃S(t)G

(
I(t − τ )

) − γ I(t),

dI(t)

dt
= k̃S(t)G

(
I(t − τ )

) − (d + μ)I(t),

(4.1)

with the initial conditions⎧⎪⎨
⎪⎩

S(θ) = φ1(θ), I(θ) = φ2(θ),

φi(θ) � 0, θ ∈ [−h,0], φi(0) > 0, i = 1,2,(
φ1, φ2

) ∈ C
([−h,0],R

2+0

)
,

(4.2)

where b̃ = b + γ , d̃ = d + γ , k̃ = k exp (−dτ ) and R
2+0 = {(x1, x2) | xi � 0, i = 1,2}.

In this section, for the case R0 > 1, we offer sufficient conditions for the endemic equilibrium Q ∗ = (S∗, I∗) of the
reduced system (4.1) to be globally asymptotically stable. We recall that by Theorem 2.1, the existence of the endemic
equilibrium Q ∗ of this system is guaranteed for the case R0 > 1.

For preparations, we need some lemmas. Put⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xt = S(t)

S∗ , yt = I(t)

I∗
, yt,τ = I(t − τ )

I∗
,

zt = G(I(t))

G(I∗)
, zt,τ = G(I(t − τ ))

G(I∗)
, and

g(x) = x − 1 − ln x � 0, for x > 0.

(4.3)

Lemma 4.1. For all t � 0, it holds that

g(yt) − g(zt) � 1

I∗
{

G
(

I(t)
) − G

(
I∗

)}( I(t)

G(I(t))
− I∗

G(I∗)

)
. (4.4)
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Proof. First, by (4.3), we have that

zt − 1 = 1

G(I∗)
{

G
(

I(t)
) − G

(
I∗

)}
(4.5)

and

yt − zt = I(t)

I∗
− G(I(t))

G(I∗)
= G(I(t))

I∗

(
I(t)

G(I(t))
− I∗

G(I∗)

)
. (4.6)

Then, we immediately obtain

(zt − 1)(yt − zt) = G(I(t))

I∗G(I∗)
{

G
(

I(t)
) − G

(
I∗

)}( I(t)

G(I(t))
− I∗

G(I∗)

)
. (4.7)

Moreover, by g′′(x) = 1
x2 > 0 for x > 0 and (4.3), one can obtain that

g(yt) − g(zt) � g′(zt)(yt − zt)

=
(

1 − 1

zt

)
(yt − zt)

= 1

zt
(zt − 1)(yt − zt)

= G(I∗)
G(I(t))

G(I(t))

I∗G(I∗)
{

G
(

I(t)
) − G

(
I∗

)}( I(t)

G(I(t))
− I∗

G(I∗)

)

= 1

I∗
{

G
(

I(t)
) − G

(
I∗

)}( I(t)

G(I(t))
− I∗

G(I∗)

)
. (4.8)

Hence, we get the conclusion of Lemma 4.1. �
Lemma 4.2. G(I) = I

1+α I2 is a unimodal function of I > 0 and it holds that{
I

G(I)
− I∗

G(I∗)

}(
I − I∗

) = α
(

I + I∗
)(

I − I∗
)2 � 0, (4.9)

and
{

G(I) − G
(

I∗
)}(

I − I∗
) = 1 − α I I∗

(1 + α I2)(1 + α(I∗)2)

(
I − I∗

)2
. (4.10)

Proof. Since G ′(I) = 1−α I2

(1+α I2)2 , G(I) is a unimodal function of I > 0. The remained part of this lemma is proved by simple

calculations. �
We now claim the following lemma which plays a crucial role to obtain Theorem 1.2.

Lemma 4.3. It holds that

g(yt) − g(zt) � α
(

I(t) + I∗
)

I∗ 1 − α I(t)I∗

(1 + α I2(t))(1 + α(I∗)2)
(yt − 1)2. (4.11)

Assume that for (3.9), it holds (3.12). Moreover, suppose that (1.17) holds for (1.16), and I∗ < Ī∗ for (3.14). If

0 < α <
1

(I∗ + c−(σ−1)
a )I∗

, (4.12)

then for any sufficiently large t > 0,

1 − α I(t)I∗ > 0. (4.13)

Proof. By Lemmas 4.1 and 4.2, we obtain (4.11). If (1.17) and I∗ < Ī∗ hold, then for (4.12), it holds that

1 − α
(

I(t)I∗
)
> 1 − 1

(I∗ + c−(σ−1)
a )I∗

(
I∗ + c − (σ − 1)

a

)
I∗ = 0,

for any sufficiently large t > 0. Hence, we complete the proof of this lemma. �
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Now, by applying the best possible lower bound I∗ and upper bounds Ī∗ of I(t) for a sufficiently large t obtained by new
monotone techniques (see (3.25) in Theorem 3.2 which may be not convergent to I∗) to Lyapunov techniques established by
McCluskey [5, Proof of Theorem 4.1], we are in a position to prove the global asymptotic stability of the endemic equilibrium
E∗ for R0 > 1.

Proof of Theorem 1.2. (i) By Theorem 3.1, it is evident.
(ii) Now, assume (1.16). Let us consider the following Lyapunov functional (cf. McCluskey [5, Theorem 4.1])

U (t) = 1

k̃G(I∗)
U S(t) + I∗

k̃S∗G(I∗)
U I (t) + U+(t), (4.14)

where

U S(t) = g

(
S(t)

S∗

)
, U I (t) = g

(
I(t)

I∗

)
, U+(t) =

t∫
t−τ

g

(
G(I(u))

G(I∗)

)
du.

We now show that dU (t)
dt � 0. First, we calculate dU S (t)

dt

dU S(t)

dt
= 1

S∗

(
1 − S∗

S(t)

){
b̃ − d̃S(t) − k̃S(t)G

(
I(t − τ )

) − γ I(t)
}
.

Substituting b̃ = d̃S∗ + k̃S∗G(I∗) + γ I∗ gives

dU S(t)

dt
= S(t) − S∗

S∗S(t)

{
d̃
(

S∗ − S(t)
) + k̃

{
S∗G

(
I∗

) − S(t)G
(

I(t − τ )
)} + γ

(
I∗ − I(t)

)}

= − d̃S(t)

S∗

(
1 − S∗

S(t)

)2

+ k̃G
(

I∗
)(

1 − S∗

S(t)

){
1 − S(t)G(I(t − τ ))

S∗G(I∗)

}

+γ I∗

S∗

(
1 − S∗

S(t)

)(
1 − I(t)

I∗

)

= −d̃xt

(
1 − 1

xt

)2

+ k̃G
(

I∗
)(

1 − 1

xt

)
(1 − xt zt,τ ) + γ I∗

S∗

(
1 − 1

xt

)
(1 − yt). (4.15)

We secondly calculate dU I (t)
dt

dU I (t)

dt
= I(t) − I∗

I∗ I(t)

{
k̃S(t)G

(
I(t − τ )

) − (d + μ)I(t)
}
.

Substituting (d + μ)I∗ = k̃S∗G(I∗) gives

dU I (t)

dt
= I(t) − I∗

I∗ I(t)

{
k̃S(t)G

(
I(t − τ )

) − k̃S∗G(I∗)
I∗

I(t)

}

= k̃S∗G(I∗)
I∗

(
1 − I∗

I(t)

)(
S(t)G(I(t − τ ))

S∗G(I∗)
− I(t)

I∗

)

= k̃S∗G(I∗)
I∗

(
1 − 1

yt

)
(xt zt,τ − yt). (4.16)

Next, calculating dU+(t)
dt gives as follows

dU+(t)

dt
= g

(
G(I(t))

G(I∗)

)
− g

(
G(I(t − τ ))

G(I∗)

)
= g(zt) − g(zt,τ ). (4.17)

Since it follows that(
1 − 1

xt

)
(1 − xt zt,τ ) +

(
1 − 1

yt

)
(xt zt,τ − yt) + {

g(zt) − g(zt,τ )
}

=
(

1 − 1 − xt zt,τ + zt,τ

)
+

(
xt zt,τ − xt zt,τ − yt + 1

)
+ {zt − zt,τ − ln zt + ln zt,τ }
xt yt
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= −
(

1

xt
− 1 − ln xt

)
−

(
xt zt,τ

yt
− 1 − ln

xt zt,τ

yt

)
− (yt − 1 − ln yt) + (zt − 1 − ln zt)

= −
{

g

(
1

xt

)
+ g

(
xt zt,τ

yt

)}
− {

g(yt) − g(zt)
}
,

by combining (4.15)–(4.17) and Lemma 4.3, we obtain

dU (t)

dt
= − d̃xt

k̃G(I∗)

(
1 − 1

xt

)2

− γ I∗

k̃S∗G(I∗)

(
1 − 1

xt

)
(1 − yt) +

(
1 − 1

xt

)
(1 − xt zt,τ )

+
(

1 − 1

yt

)
(xt zt,τ − yt) + {

g(zt) − g(zt,τ )
}

= − d̃xt

k̃G(I∗)

(
1 − 1

xt

)2

− γ I∗

k̃S∗G(I∗)

(
1 − 1

xt

)
(1 − yt) −

{
g

(
1

xt

)
+ g

(
xt zt,τ

yt

)}
− {

g(yt) − g(zt)
}

� − d̃xt

k̃G(I∗)

(
1 − 1

xt

)2

+ γ I∗

k̃S∗G(I∗)

(
1 − 1

xt

)
(yt − 1)

− α(I(t) + I∗)I∗{1 − α I(t)I∗}
(1 + α I2(t))(1 + α(I∗)2)

(yt − 1)2 − g

(
xt zt,τ

yt

)
.

Since it follows from (1.16) and the relation k̃S∗G(I∗) = (d + μ)I∗ that

(
γ I∗

k̃S∗G(I∗)

)2

− 4
d̃xt

k̃G(I∗)
· α(I(t) + I∗)I∗{1 − α I(t)I∗}

(1 + α I2(t))(1 + α(I∗)2)

=
(

I∗

k̃S∗G(I∗)

)2{
γ 2 − 4d̃S∗xt

k̃S∗G(I∗)
I∗

· α(I(t) + I∗){1 − α I(t)I∗}
(1 + α I2(t))(1 + α(I∗)2)

}

=
(

1

d + μ

)2{
γ 2 − 4(d + μ)(d + γ )S(t) · α(I(t) + I∗){1 − α I(t)I∗}

(1 + α I2(t))(1 + α(I∗)2)

}

< 0, (4.18)

for any sufficiently large t > 0, we obtain that dU (t)
dt � 0. By Theorem 2.4, solutions of system (4.1) limit to M , the largest

invariant subset of { dU (t)
dt = 0}. Since dU (t)

dt = 0 holds if xt = 1, yt = 1 and xt zt,τ /yt = 1 or equivalently, if S(t) = S∗ and
I(t) = I∗ . Therefore, M consists only the endemic equilibrium Q ∗ of (4.1). It follows from the permanence result in The-
orem 2.5 and La Salle’s invariant principle that Q ∗ is globally asymptotically stable. This corresponds to the proof of the
main part of (ii) in Theorem 1.2, and the last part of Theorem 1.2 is evident by Theorem 3.2. �
5. Numerical examples

In this section, we provide two numerical examples which are applicable to one of Theorems 1.1 and 1.2. Set

f1 = k exp (−dτ )

(d + μ)
√

α
+ 2 − R0, f2 = d + γ

μ

(
1 + d + μ

k exp (−dτ )
I∗

)
− 1, (5.1)

and

f3 = 4(d + μ)(d + γ )S∗ α(I∗ + I∗)(1 − α Ī∗ I∗)
(1 + α( Ī∗)2)(1 + α(I∗)2)

− γ 2. (5.2)

If f1 > 0 and f2 > 0, then the condition (1.6) in Theorem 1.1 holds true and if I∗ � Î and f3 > 0, then the condition (1.16)
in Theorem 1.2 holds true.

First, consider an example of (1.1) with

b = 4, k = 6, α = 0.1, d = γ = μ = 1, and τ = 1, (5.3)

and consider (1.10) with I0 = 0. Then, Ī1 � b/d = 4. For this case, we obtain that R0 = 4.4145 . . . > 1 and E∗ =
(1.2178 . . . ,1.8547 . . . ,0.9273 . . .). Then, it holds that f1 = 1.0754 . . . > 0, f2 = 4.3612 . . . > 0. By Theorem 1.2, we obtain
that the endemic equilibrium E∗ of system (1.1) is globally asymptotically stable. Fig. 1 indicates that the both sequences
{ Īn}+∞

n=1 and {In}+∞
n=1 defined by (3.9), converge to I∗ for the case (5.3). Fig. 2 shows us a graph trajectory of S(t), I(t) and

R(t) of (1.1) for the case (5.3) which indicates that the endemic equilibrium E∗ of system (1.1) is globally asymptotically
stable for the case (5.3).
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Fig. 1. A graph trajectory of In−1 and In for n � 1 (0 = I0 → I1 → I1 → ·· ·) of (3.16) for the case (5.3).

Fig. 2. A graph trajectory of S(t), I(t) and R(t) of (1.1) for the case (5.3).

Second, we give an another example of (1.1) with

b = 4, k = 9, α = 0.2, d = γ = μ = 1, and τ = 1. (5.4)

For this case, R0 = 6.6218 . . . > 1 and E∗ = (1.0662 . . . ,1.9558 . . . ,0.9779 . . .) with I∗ < Î = 2.2360, but f1 = −0.9201 . . . <

0, f2 = 3.3629 . . . > 0. If we chose that I∗ = I0 = 0 and Ī∗ = b/d = 4, then 1 − aĪ0 I∗ � −0.5646 . . . < 0. Thus, the conditions
in Theorems 1.1 and (1.16) in Theorem 1.2 are not satisfied. On the other hand, by monotone iterations (3.9), we use that
I∗ = Ī4 = 1.9552 . . . and Ī∗ = Ī4 = 1.9568 . . . , from which we obtain 1 − aĪ4 I∗ = 0.2345 . . . > 0 and f3 � 0.0039 . . . > 0.
Therefore, by applying Theorem 1.2, we obtain that the endemic equilibrium E∗ of system (1.1) is globally asymptotically
stable. Note that for the case (5.4), Fig. 3 indicates that the both sequences { Īn}+∞

n=1 and {In}+∞
n=1 defined by (3.9), seems to

converge numerically to I∗ , as n → ∞. Fig. 4 shows us a graph trajectory of S(t), I(t) and R(t) of (1.1) for the case (5.4)
which indicates that the endemic equilibrium E∗ of system (1.1) is globally asymptotically stable for the case (5.4).

6. Conclusion

In this paper, for the basic reproduction number R0 > 1 of system (1.1), applying both of new monotone iteration tech-
niques and Lyapunov functional techniques in McCluskey [5], we establish two types of sufficient conditions for the global
asymptotic stability of endemic equilibrium E∗ of system (1.1), one (see Theorem 1.1) is obtained by a simple conditions
of contractive convergence for suitable monotone iterations (see (3.9)), and the other (Theorem 1.2) is derived by applying
the best possible lower bound I∗ and upper bounds Ī∗ of I(t) for a sufficiently large t which are obtained by new mono-
tone iterative techniques (see (3.25) in Theorem 3.2) to Lyapunov functional techniques to an SIR model by perturbation
(see Lemma 3.4 and Section 4). Note that by the sake of Lemma 3.3, our monotone iterative techniques become much
improved one than that in Xu and Ma [8] (see also Xu and Ma [7]) which was applied to the saturated incidence rate
G(I) = I .
1+α I
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Fig. 3. A graph trajectory of In−1 and In for n � 1 (0 = I0 → I1 → I1 → ·· ·) of (3.16) for the case (5.4).

Fig. 4. A graph trajectory of S(t), I(t) and R(t) of (1.1) for the case (5.4).

Then, we have solved the conjecture to the example in Huo and Ma [4] that the endemic equilibrium of system (1.1) is
globally asymptotically stable if R0 > 1, and also give partial answers to the open problem in Huo and Ma [4] and also Yang
and Xiao [9].
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