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In this paper we investigate the permanence of a system and give a sufficient condition
for the endemic equilibrium to be globally asymptotically stable, which are the remaining
problems in our previous paper (G. Izzo, Y. Muroya, A. Vecchio, A general discrete time
model of population dynamics in the presence of an infection, Discrete Dyn. Nat. Soc.
(2009), Article ID 143019, 15 pages. doi:10.1155/2009/143019.)
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1. Introduction

The application of theories of functional differential/difference equations in mathematical biology has been developing
rapidly. Various mathematical models have been proposed in the literature of population dynamics, ecology and
epidemiology.Many authors have studied the dynamical behavior of several epidemicmodels (see [1–21] and the references
therein).

For a discrete epidemicmodel with immigration of infectives, Jang and Elaydi [10] showed the global asymptotic stability
of the disease-free equilibrium, the local asymptotic stability of the endemic equilibrium and the strong persistence of the
susceptible class by means of the nonstandard discretization method.

Applying the techniques offered in [20] to discrete models, Sekiguchi [15] and Sekiguchi and Ishiwata [16] proved the
permanence of a class of SIR discrete epidemic models with one delay and SEIRS discrete epidemic models with two delays
if an endemic equilibrium of each model exists.

In those cases, how to choose the discrete schemes which guarantee the global asymptotic stability for the endemic
equilibrium of the models still remained a very important open problem. A first complete answer to this problem has been
established by the recent paper [3].

Recently, extending the result in [5], Yuan and Zou [21], proposed a general mathematical model with detailed
justifications to describe the spread of a disease with latency in a heterogeneous host population which includes many
existing ones as special cases (see [18] for more detail). In a particular case, one group of this model becomes the following
model for a disease with a latent period:
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S ′(t) = ϕ(S)− βS(t)I(t),

I ′(t) = β

∫ t

0
S(u)I(u)P(t − u)e−δ(t−u)du − (δ + ϵ + γ )I(t),

R′(t) = γ I(t)− δR(t).

(1)

S(t), I(t) and R(t) denote the numbers of susceptible, infectious, and recovered individuals at time t , respectively. The
nonnegative constant β is the transmission rate due to the contact of susceptible individuals with infectious individuals.
The nonnegative constants δ, ϵ, γ are natural death rates, disease-caused death rates and recovery rates, respectively. The
function P(t) is the gamma distribution:

P(u) = Pn,b(u) ≡
un−1

(n − 1)!bn
e−u/b, (2)

where b > 0 is a real number and n > 1 is an integer. ϕ is a C1 non-increasing function and there exists S0 such that

ϕ(S0) = 0, ϕ(u) > 0, for 0 ≤ u < S0, and ϕ(u) < 0 for u > S0. (3)
By using the ‘‘linear chain trick’’ to transfer (1) into a system of ordinary differential equations, Yuan and Zou [21] derived

the following model which is equivalent to the integro-differential system (1):
S ′(t) = ϕ(S(t))− βS(t)I(t),
y′

1(t) = c(S(t))yn+1(t)− dy1(t),
y′

j(t) = dy1(t)− dy2(t), j = 2, 3, . . . , n,
y′

n+1(t) = dyn(t)− eyn+1(t),

(4)

where
c(S) =

βS
(1 + δb)n

, d =
1

b̂
, e = δ + ϵ + γ .

b̂ =
b

1 + δb
, yn+1(t) = I(t).

(5)

The reproduction number of system (4) becomes

R0 =
c(S0)
e

=
βS0

(1 + δb)n(δ + ϵ + γ )
. (6)

Yuan and Zou [21] established a complete analysis of the global asymptotic stability of system (4) with a single threshold
parameter R0: if R0 ≤ 1, the disease-free equilibrium is globally asymptotically stable in the positive orthant, whereas if
R0 > 1, a unique endemic equilibrium exists and is globally asymptotically stable in the interior of the positive orthant. as
a special case (one group) of multi-group cases.

For this result of a continuous model, Muroya et al. [13] propose the following discrete SIR epidemic model which is
derived from system (4) by applying a variation of the backward Euler method (cf. [9]):

s(p + 1) = s(p)+ ϕ(s(p + 1))− βs(p + 1)yn+1(p),
y1(p + 1) = y1(p)+ c(s(p + 1))yn+1(p)− dy1(p + 1),
yj(p + 1) = yj(p)+ dyj−1(p + 1)− dyj(p + 1), j = 2, 3, . . . , n,
yn+1(p + 1) = yn+1(p)+ dyn(p + 1)− eyn+1(p + 1),

(7)

where the initial condition of system (7) is
s(0) > 0, yj(p) > 0, and j = 1, . . . , n + 1. (8)

Using the same threshold R0 =
c(S0)

e =
βS0

(1+δb)n(δ+ϵ+γ ) as the continuous system (4) and applying new techniques to
both cases for R0 ≤ 1 and R0 > 1, they established a complete analysis of the global asymptotic stability for this discrete SIR
epidemicmodel (7)with latency spreading in a heterogeneous host population. In particular, they extended both techniques
in [8,9] for the case R0 ≤ 1 and a simpler proof in [3] for the permanence of system (7) than Sekiguchi [15] and Sekiguchi and
Ishiwata [16] for system (7) and they also applied techniques of Lyapunov functions in [11] to prove the global asymptotic
stability for the endemic equilibrium of system (7) for the case R0 > 1.

On the other hand, Izzo et al. [8] presented a set of difference equations
y(n + 1) = α + (1 − β)y(n)−

m−
i=1

ψi(y(n + 1))zi(n + 1), n ≥ 0,

z1(n + 1) = (1 − a1)z1(n)+ φ1(y(n))zL(n), 1 ≤ L ≤ m, n ≥ 0,
zi(n + 1) = (1 − ai)zi(n)+ φi(y(n))zi−1(n), i = 2, 3, . . . ,m, n ≥ 0,

(9)

which generalizes that proposed in [9] and represented the discrete counterpart of a larger class of continuous model
concerning the dynamics of an infection in an organism or in a host population. This difference system contains a very large
class of population dynamics models in the presence of an infection involving typically at least two populations: susceptible
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individuals and infective ones. The former is represented in (9) by the sequence y, while the latter is represented by the
sequences zi. In [8], various examples of continuous models which can be discretized by (9) were reported.

Izzo et al. [8] proved some basic properties of the solution of the proposed scheme such as positivity and boundedness
which makes it meaningful in the applications, and investigated the asymptotic behavior of the solution and established a
necessary and sufficient condition for the vanishing of the sequences of the infection and derived the expression of the basic
reproduction number R0, a threshold parameter which allows us to predict whether the infection develops or not. But for the
case R0 > 1, they only prove the existence of endemic equilibrium and open questions remain about the permanence and
the global asymptotic stability for the endemic equilibrium of the system.

Motivated by the above results, in this paper, we assume that

ψi(y) is a monotone increasing function of y, 1 ≤ i ≤ m,

andwe prove the permanence of the system (9), and give a partial answer to the remaining open question for the case R0 > 1
about the global asymptotic stability for the endemic equilibrium of the system (9). To this aim, we consider the following
modified difference equations to (9):

y(n + 1) = α + (1 − β)y(n)−

m−
i=1

ψi(y(n + 1))xi(n), n ≥ 0,

x1(n + 1) = (1 − a1)x1(n)+ φ1(y(n + 1))xL(n), 1 ≤ L ≤ m,
xi(n + 1) = (1 − ai)xi(n)+ φi(y(n + 1))xi−1(n), i = 2, 3, . . . ,m,

(10)

where ψi(x), φi(x) ∈ C0(R), 1 ≤ i ≤ m and we assume that

(i) α > 0,
(ii) 0 < β < 1,
(iii) 0 < ai < 1, i = 1, 2, . . . ,m,
(iv) φi(y) is strictly monotone increasing and φi(0) ≥ 0, i = 1, . . . ,m,
(v) yψi(y) ≥ 0, ψi(0) = 0,∀y ∈ R, i = 1, 2, . . . ,m,
(vi) ∃ i s.t. 1 ≤ i ≤ L and

∃q > 0 :


φ1(y) ≤ qψL(y), y ≥ 0 if ī = 1
φi(y) ≤ qψi−1(y), y ≥ 0 if 2 ≤ ī ≤ L.

Note that (10) is equivalent to the following difference equations:

y(n + 1)− y(n) =
1

1 − β


α − βy(n + 1)−

m−
i=1

ψi(y(n + 1))xi(n)


,

x1(n + 1)− x1(n) =
1

1 − a1
{−a1x1(n + 1)+ φ1(y(n + 1))xL(n)}, 1 ≤ L ≤ m,

xi(n + 1)− xi(n) =
1

1 − ai
{−aixi(n + 1)+ φi(y(n + 1))xi−1(n)}, i = 2, 3, . . . ,m, n ≥ 0,

(11)

and if we set zi(n+1) = xi(n), i = 1, 2, . . . ,m, n = 0, 1, . . . , then (10) becomes the set of difference equations (9) except
for initial equations of n = 0 for zi(1), i = 1, 2, . . . ,m, that is, equations of

z1(1) = (1 − a1)z1(0)+ φ1(y(1))zL(0), 1 ≤ L ≤ m, n ≥ 1,
zi(1) = (1 − ai)zi(0)+ φi(y(0))zi−1(0), i = 2, 3, . . . ,m, n ≥ 1. (12)

Thus, the asymptotic behaviors of the solutions of (10) and the difference equations (9) treated in Izzo et al. [8] are the same.
The paper is organized as follows. In Section 2, we prove some basic properties of the solution of the proposed scheme

such as positivity and eventual boundedness which do not depend on the initial conditions. In Section 3, the asymptotic
behavior of the solution is investigated. We prove a necessary and sufficient condition for the vanishing of the sequences
{xi(n)} and we derive the expression of the basic reproduction number, a threshold parameter which allows us to predict
whether the infectiondevelops or not. Such aparameter permits us to check that the asymptotic behaviors of the discrete and
continuous problems coincide, therefore our discrete system incorporates the dynamical characteristics (such as positivity
and steady states) of the continuous-time models. In Section 4, we prove the permanence of system (10), and in Section 5,
for a class of special models of (10), we show that the endemic equilibrium is globally asymptotically stable. Finally, we offer
a short conclusion in Section 6.

2. Basic properties

Since the functions y and xi (i = 1, 2, . . . ,m) represent populations, at first, we can prove in the following two theorems
their positivity and eventual boundedness which do not depend on the initial conditions.
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Lemma 2.1. Under the conditions (i)–(v), it holds that y(n) > 0, xi(n) > 0 n ≥ 0, i = 1, . . . ,m.
Proof. Suppose that

y(1) ≤ 0. (13)

From (v) and xi(0) > 0, i = 1, 2, . . . ,m, we get
∑m

i=1 ψi(y(1))xi(0) ≤ 0, and from (i), (ii) and the first of (10) we obtain
y(1) > 0 which contradicts (13). Then, from (iii), (iv) and the positivity of xi(0)we have xi(1) > 0, i = 1, 2, . . . ,m. The rest
of this lemma can be proved in the same way (by induction). �

Put

V (n) ≡ y(n)+

m−
i=1

ψ(y(n))xi(n − 1), n = 1, 2, . . . . (14)

Lemma 2.2. It holds that

lim sup
n→∞

V (n) ≤
α

β
. (15)

Proof. By (10) and y(n) ≤ V (n) for n = 1, 2, . . . ,we have that

V (n + 1) = y(n + 1)+

m−
i=1

ψ(y(n + 1))xi(n) = α + (1 − β)y(n) ≤ α + (1 − β)V (n),

and

V (n + 1)− V (n) ≤
1

1 − β
{α − βV (n + 1)},

from which we obtain the conclusion of this lemma. �

In order to simplify the proofs of the remaining section, let us set
y = lim inf

n→∞
y(n), ȳ = lim sup

n→∞

y(n),

x0(n) = xL(n), n = 0, 1, 2, . . . ,
xi = lim inf

n→∞
xi(n), x̄i = lim sup

n→∞

xi(n), 1 ≤ i ≤ m,
(16)

and introduce the following basic lemma of the eventual boundedness of y(n) and xi(n), 1 ≤ i ≤ m by Lemma 2.2 (cf. Izzo
et al. [8, Theorem 3.2]). The eventual boundedness of x(n), n = 0, 1, 2, . . .means that there exists a constant x̄ such that x̄
is independent of the initial conditions and x(n) ≤ x̄ for any sufficiently large t .

Lemma 2.3. Under the conditions (i)–(vi), it holds that

ȳ ≤
α

β
, (17)

and for ī = 1,
x̄1 ≤

qα
a1β

, x̄2 ≤
qα
a1β

φ2


α
β


a2

, x̄3 ≤
qα
a1β

φ2


α
β


a2

φ3


α
β


a3

, . . . ,

x̄m ≤
qα
a1β

φ2


α
β


a2

φ3


α
β


a3

· · ·

φm


α
β


am

,

(18)

and for 2 ≤ ī ≤ m,

x̄i ≤
qα
aīβ

φī+1


α
β


aī+1

φī+2


α
β


aī+2

· · ·

φL


α
β


aL

φ1


α
β


a1

· · ·

φi


α
β


ai

, 1 ≤ i ≤ ī − 1,

x̄ī ≤
qα
aīβ

, x̄ī+1 ≤
qα
aīβ

φī+1


α
β


aī+1

, . . . , x̄L ≤
qα
aīβ

φī+1


α
β


aī+1

φī+2


α
β


aī+2

· · ·

φL


α
β


aL

,

x̄i ≤
qα
aīβ

φī+1


α
β


aī+1

φī+2


α
β


aī+2

· · ·

φi


α
β


ai

, L + 1 ≤ i ≤ m,

(19)

and the sequences {y(n)}, {xi(n)}, i = 1, 2, . . . ,m are eventually bounded.
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Proof. Since the hypotheses of the previous lemma hold, positivity of the sequences {y(n)} , {xi(n)} is assured. Thus, by
Lemma 2.2, we easily obtain that ȳ ≤ lim supn→∞ V (n) ≤

α
β
, and lim supn→∞ φi(y(n))xi−1(n − 1) ≤ lim supn→∞

φi(
α
β
)xi−1(n − 1) ≤

α
β
, 1 ≤ i ≤ L. Assume that there exists q > 0 such that

φ1(y) ≤ qψL(y), y ≥ 0. (20)

Then, ī = 1 and in order to prove this theorem it is convenient to represent (10) in the form of the following system of
Volterra difference equations (see for example [1,2]), we have:

x1(n + 1) = (1 − a1)n+1x1(0)+

n+1−
l=1

(1 − a1)n+1−lφ1(y(l))xL(l − 1), (21)

≤ (1 − a1)n+1x1(0)+ q
n+1−
l=1

(1 − a1)n+1−lψL(y(l))xL(l − 1). (22)

Then, we have that

x̄1 = lim sup
n→∞

x1(n) ≤ q
lim sup
n→∞

ψL


α
β


xL(n − 1)

a1
≤ q

α
β

a1
=

qα
βa1

. (23)

Let us consider the third of (10) for i = 2. Then, similarly, we have that

x2(n + 1) ≤ (1 − a2)n+1x2(0)+

n+1−
l=1

(1 − a2)n+1−lφ2(y(l))x1(l − 1). (24)

From the eventual boundedness of x1(n) and (iv) we have:

x̄2 = lim sup
n→∞

x2(n) ≤

ψ2


α
β


x̄1

a2
≤

qα
a1β

φ2


α
β


a2

. (25)

The eventual boundedness of the remaining sequences can be proved in the same way and we obtain (18). If (20) does not
hold then, from (vi), there exist q > 0 and i such that 2 ≤ i ≤ L and

φi(y) ≤ qψi−1(y), y ≥ 0.

Thus, by the third of (10), (ii), (iii) and (11), the eventual boundedness of xi(n) (and then the xj(n) sequences, j > i) can be
proved with the same argumentation used before for x1(n) and x2(n). Since by 2 ≤ ī ≤ L, xi(n), ī ≤ i ≤ m is eventually
bounded, we obtain the eventual boundedness of the remaining sequences xj(n), 1 ≤ j ≤ ī and obtain (19). �

Similar to Izzo et al. [8, Lemma 2.3]), we obtain the following lemma which only improves the lower and upper bounds
of y and ȳ compared with those of Izzo et al. [8, Lemma 2.3].

Lemma 2.4.

0 < h−1(α; x1, x2, . . . , x̄m) ≤ y ≤ y ≤ h−1(α; x1, x2, . . . , xm) ≤
α

β
,

φi(y)

ai
xi−1 ≤ xi ≤ x̄i ≤

φi(ȳ)
ai

x̄i−1, i = 1, 2, . . . ,m,

xi ≥


L∏

j=1

φj(y)

aj


xi, and

x̄i ≤


L∏

j=1

φj(ȳ)
aj


x̄i, i = 1, 2, . . . , L,

(26)

where for any fixed nonnegative constants x1, x2, . . . , xm,

h(y; x1, x2, . . . , xm) ≡ βy +

m−
i=1

ψi(y)xi, (27)

is a strictly monotone increasing function of y, and for a positive constant z, there exists the inverse function y =

h−1(z; x1, x2, . . . , xm) of z = h(y; x1, x2, . . . , xm).
Proof. By the assumption that each ψi(y) is a monotone increasing function of y, 1 ≤ i ≤ m, h−1(y; x1, x2, . . . , xm) is a
strictly monotone increasing function of y. From Eq. (10) and Lemmas 2.1 and 2.3, we easily have that
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y ≥ α + (1 − β)y −

m−
i=1

ψi(y)xi

and then

βy +

m−
i=1

ψi(y)xi ≥ α.

Thus, we obtain that y ≥ h−1(α; x1, x2, . . . , xm). Since for any fixed nonnegative constants x1, x2, . . . , xm,
h−1(0; x1, x2, . . . , xm) = 0 and h−1(y; x1, x2, . . . , xm) is a strictly monotone increasing function of y, by α > 0, we have
that

0 < h−1(α; x̄1, x̄2, . . . , x̄m) ≤ y. (28)

In the same way it can be proved that

y ≤ h−1(α; x1, x2, . . . , xm) ≤
α

β
.

Also, from (11), we easily have that

φi(y)

ai
xi−1 ≤ xi ≤ x̄i ≤

φi(ȳ)
ai

x̄i−1, i = 1, 2, . . . ,m,

and we have that

x̄L ≤


L∏

j=1

φj(ȳ)
aj


x̄L,

x̄i ≤
φi(ȳ)
ai

x̄i−1 ≤ · · · ≤


i∏

j=2

φj(ȳ)
aj


x̄1 ≤


i∏

j=1

φj(ȳ)
aj


x̄L

≤


i∏

j=1

φj(ȳ)
aj


φL(ȳ)
aL

x̄L−1 ≤ · · · ≤


i∏

j=1

φj(ȳ)
aj


L∏

j=i+1

φj(ȳ)
aj


x̄i

=


L∏

j=1

φj(ȳ)
aj


x̄i, 1 ≤ i ≤ L

and then

x̄i ≤


L∏

j=1

φj(ȳ)
aj


x̄i, 1 ≤ i ≤ L. (29)

Similarly, we have that

xi ≥


L∏

j=1

φj(y)

aj


xi, 1 ≤ i ≤ L. (30)

The remaining parts are obtained similarly. �

Note that if there exists an integer i ∈ {1, 2, . . . ,m} such that xi > 0, then by the last inequalities of (26) in Lemma 2.4,
we have that

L∏
j=1

φj(y)

aj
≤ 1 ≤

L∏
j=1

φj(ȳ)
aj

. (31)

3. Asymptotic properties

By hypotheses (iii)–(v), it holds that

(vii) P(λ) ≡

L∏
j=1

φj(λ)

aj
is a strictly increasing positive

continuous function of λ on (0,+∞) and P(0) = 0 < 1, (32)
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and we put

R0 = P

α

β


. (33)

Since the asymptotic behaviors of the solutions of (10) and the difference equations (9) treated in Izzo et al. [8] are exactly
the same, as mentioned in Section 1, we obtain Theorem 3.1 by Izzo et al. [8].

Theorem 3.1. (i) R0 ≤ 1, if and only if, the disease free equilibrium E0 = ( α
β
, 0, 0, . . . , 0) of (1) is globally asymptotically stable

and hence

lim
n→∞

y(n) =
α

β
and lim

n→∞
xi(n) = 0, i = 1, 2, . . . ,m.

(ii) R0 > 1, if and only if,

ȳ <
α

β
and xi > 0, 1 ≤ i ≤ m, (34)

and there exists the endemic equilibrium E∗
= (y∗, x∗

1, x
∗

2, . . . , x
∗
m) of (1) such that

P(y∗) = 1, 0 < y∗ <
α

β
, φi(y∗)x∗

i−1 = aix∗

i , i = 1, 2, . . . ,m,

and x∗

i =
α − βy∗

m∑
l=1
ψl(y∗)

l∏
j=i+1

φj(y∗)
aj

> 0, i = 1, 2, . . . ,m. (35)

4. Global stability of the endemic equilibrium for R0 > 1

In this section, we assume that R0 > 1 and we obtain the permanence of system (10) for R0 > 1.
It holds that

m∏
i=1

φi(y∗)

ai
= 1. (36)

We have a lemma.

Lemma 4.1. For R0 > 1, it holds that x∗

i > 0, i = 1, 2, . . . ,m and

φi(y∗)x∗

i−1

aix∗

i
= 1, 1 ≤ i ≤ m. (37)

Proof. From (35), we obtain (37). �

By Lemma 4.1, we put
ψ̃i(y) = ψi(y)x∗

i , φ̃i(y) =
φi(y)x∗

i−1

x∗

i

x̃i(n) =
xi(n)
x∗

i
, x̃∗

i = 1, 1 ≤ i ≤ m, n = 0, 1, 2, . . . .
(38)

Then, (11) becomes that

y(n + 1)− y(n) =
1

1 − β


α − βy(n + 1)−

m−
i=1

ψ̃i(y(n + 1))x̃i(n)


,

x̃1(n + 1)− x̃1(n) =
1

1 − a1
{−a1x̃1(n + 1)+ φ̃1(y(n + 1))x̃L(n)}, 1 ≤ L ≤ m,

x̃i(n + 1)− x̃i(n) =
1

1 − ai
{−aix̃i(n + 1)+ φ̃i(y(n + 1))x̃i−1(n)}, i = 2, 3, . . . ,m, n ≥ 0,

(39)

and by Lemma 4.1, it holds that

φ̃i(y∗)

ai
= 1, 1 ≤ i ≤ m. (40)

Thus, (10) becomes that
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y(n + 1)− y(n) =
1

1 − β


α − βy(n + 1)−

m−
i=1

ψ̃i(y(n + 1))x̃i(n)


,

x̃1(n + 1)− x̃1(n) =
a1

1 − a1


φ̃1(y(n + 1))

φ̃1(y∗)
x̃L(n)− x̃1(n + 1)


, 1 ≤ L ≤ m,

x̃i(n + 1)− x̃i(n) =
ai

1 − ai


φ̃i(y(n + 1))

φ̃i(y∗)
x̃i−1(n)− x̃i(n + 1)


, i = 2, 3, . . . ,m, n ≥ 0.

(41)

Lemma 4.2. If min1≤i≤m x̃i(n+1) < min1≤i≤m x̃i(n), then y(n+1) < y∗. Inversely, if y(n+1) ≥ y∗, thenmin1≤i≤m x̃i(n+1) ≥

min1≤i≤m x̃i(n).

Proof. Assume that there exists a positive integer 1 ≤ i0 ≤ m such that 0 < x̃i0(n + 1) = min1≤i≤m x̃i(n + 1) <
min1≤i≤m x̃i(n). Then, x̃i0(n + 1)− x̃i0(n) < 0 and x̃i0(n + 1)− x̃i0−1(n) < 0, and by (41), we have that

0 > x̃i0(n + 1)− x̃i0(n) ≥
ai0

1 − ai0


φ̃i0(y(n + 1))

φ̃i0(y∗)
− 1


x̃i0(n + 1),

from which we obtain that φ̃i0(y(n + 1)) < φ̃i0(y
∗). Hence, we obtain that y(n + 1) < y∗. Inversely, the remaining part of

this lemma is evident. �

Lemma 4.3. If max1≤i≤m x̃i(n+1) > max1≤i≤m x̃i(n), then y(n+1) > y∗. Inversely, if y(n+1) ≤ y∗, thenmax1≤i≤m x̃i(n+1) ≤

max1≤i≤m x̃i(n).

Proof. Assume that there exists a positive integer 1 ≤ i0 ≤ m such that x̃i0(n+ 1) = max1≤i≤m x̃i(n+ 1) > max1≤i≤m x̃i(n).
Then, x̃i0(n + 1)− x̃i0(n) > 0 and x̃i0(n + 1)− x̃i0−1(n) > 0, and by (41), we have that

0 < x̃i0(n + 1)− x̃i0(n) ≤
ai0

1 − ai0


φ̃i0(y(n + 1))

φ̃i0(y∗)
− 1


x̃i0(n + 1),

from which we obtain that φ̃i0(y(n + 1)) > φ̃i0(y
∗). Hence, we obtain that y(n + 1) > y∗. Inversely, the remaining part of

this lemma is evident. �

Lemma 4.4. If R0 > 1, then any solution of system (41),

lim inf
n→∞

y(n) ≥ h−1(α; x̄1, x̄2, . . . , x̄m) > 0, (42)

lim inf
n→∞

xi(n) ≥ bm−1(1 − ā)l0x∗

i > 0, 1 ≤ i ≤ m, (43)

where the integer l0 ≥ m − 1 is sufficiently large such that

y∗ < y△
:= k{1 − (1 − β)l0}, k =

α

β
−

1
β

m−
i=1

ψi(y∗)rx∗

i > y∗, (44)

and

ā = max
1≤i≤m

ai, b = min
1≤i≤m


φ̃i(y)

φ̃i(y∗)
, 1 − ai


< 1. (45)

Proof. For any fixed nonnegative constants x1, x2, . . . , xm,

h(y; x1, x2, . . . , xn) ≡ βy +

m−
i=1

ψi(y)xi, (46)

is a strictly monotone increasing function of y, and for a positive constant z, there exists the inverse function y =

h−1(z; x1, x2, . . . , xm) of z = h(y; x1, x2, . . . , xn). Then, by Lemmas 2.2 and 2.4, we obtain that x̄1, x̄2, . . . , x̄m are uniformly
bounded and

y ≥ h−1(α; x̄1, x̄2, . . . , x̄m) > 0.

We first prove the claim that any solution (y(n), xi(n), x2(n), . . . , xm(n)) of system (10) does not have the following
property: for any 0 < r < 1, there exists a nonnegative integer n0 such that xi(n) ≤ rx∗

i , 1 ≤ i ≤ m for all n ≥ n0.
Suppose on the contrary that there exist a solution (y(n), x1(n), x2(n), . . . , xm(n)) of system (10) and a nonnegative integer
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n0 such that xi(n) ≤ rx∗

i , 1 ≤ i ≤ m for all n ≥ n0. One can represent the first equation of (10) in the form of the following
Volterra difference equations (see for example [1,2]):

y(n + 1) =
α

β
{1 − (1 − β)n+1−n0} + (1 − β)n+1−n0y(n0)−

n+1−
l=n0+1

(1 − β)n+1−l
m−
i=1

ψi(y(l))xi(l − 1). (47)

Let k =
α
β

−
1
β

∑m
i=1 ψi(y∗)rx∗

i . Then, by y∗
=

α
β

−
1
β

∑m
i=1 ψi(y∗)x∗

i and k > y∗, there exists a sufficiently large integer
l0 ≥ m − 1 such that k{1 − (1 − β)l0} > y∗. Suppose that y(n) ≤ y∗ for any n0 + 1 ≤ n ≤ n0 + l0. Then, by (47), and
y(n0) > 0, we have that

y(n0 + l0) =
α

β
{1 − (1 − β)l0} + (1 − β)l0y(n0)−

n0+l0−
l=n0+1

(1 − β)n0+l0−l
m−
i=1

ψi(y(l))xi(l − 1),

>
α

β
{1 − (1 − β)l0} −

1 − (1 − β)l0

β

m−
i=1

ψi(y∗)rx∗

i

= k{1 − (1 − β)l0} > y∗,

which is a contradiction. Thus, there exists an integer n1 such that n0 + 1 ≤ n1 ≤ n0 + l0 and y(n1) > y∗. If y(n) > y∗ for
some n ≥ n0 + 1, then by the first equation of (10), we have that,

y(n + 1)+

m−
i=1

ψi(y(n + 1))rx∗

i > α + (1 − β)y∗
= y∗

+

m−
i=1

ψi(y∗)x∗

i ,

which is equivalent to

y(n + 1) ≥ y△
:= h−1


y∗

+

m−
i=1

ψi(y∗)x∗

i ; rx
∗

1, rx
∗

2, . . . , rx
∗

m


> y∗,

because h(y(n+ 1); rx∗

1, rx
∗

2, . . . , rx
∗
m) > y∗

+
∑m

i=1 ψi(y∗)x∗

i = h(y△
; rx∗

1, rx
∗

2, . . . , rx
∗
m) and h(y; x1, x2, . . . , xm) is a strictly

monotone increasing function of y.
Therefore, we may choose n1 = n0 + l0 and obtain that

y(n) ≥ y△ > y∗, for any n ≥ n0 + l0. (48)

Then, by the second part of Lemma 4.2, we have that

min
1≤i≤m

x̃i(n + 1) ≥ min
1≤i≤m

x̃i(n), for any n ≥ n0 + l0 − 1. (49)

Thus, we obtain that there exists a positive constant ˆ̃x such that xi(n) ≥ ˆ̃xx∗

i , 1 ≤ i ≤ m for any n ≥ n0 + l0 − 1. Moreover,
consider the sequence {w(n)}∞n=n0+l0−1 defined by

w(n) =

m−
i=1

xi(n). (50)

By R0 > 1 with assumptions (40) and y△ > y∗, we have that −ai + φi(y△) > 0, 1 ≤ i ≤ m. Then, from (11), we obtain that

w(n + 1)− w(n) ≥
1

1 − ( min
1≤i≤m

ai)

m−
i=1

{−ai + φi(y△)}xi(n)

≥
1

1 − ( min
1≤i≤m

ai)

m−
i=1

{−ai + φi(y△)}ˆ̃xx∗

i

> 0 for any n ≥ n0 + l0 − 1,

which implies that limn→∞w(n) = +∞. However, by (50) and Lemma 2.3, it holds that there are a positive constant
n4 ≥ n0 + l0 − 1 and w̄ such thatw(n) ≤ w̄ for any n ≥ n4, which leads to a contradiction. Hence, the claim is proved.

By the claim, we are left to consider the two possibilities for ¯̃x(n) = max1≤i≤m x̃i(n). First, ¯̃x(n) ≥ r for all n sufficiently
large. Second, we consider the case that ¯̃x(n) oscillates about r for all sufficiently large n. If the first condition that ¯̃x(n) ≥ r
holds for all sufficiently large n, then we get the conclusion of the proof. For the second case that ¯̃x(n) oscillates about r for
all sufficiently large n, let two sequences {nk}

∞

k=1 and {n̄k}
∞

k=1 be such that

¯̃x(nk − 1), ¯̃x(n̄k + 1) > r, and ¯̃x(n) ≤ r for any nk ≤ n ≤ n̄k, k = 1, 2, . . . .
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If n̄k − nk ≥ l0 for some k ≥ 1, then by the above discussion from (47) to (48), replacing n0 by nk, we obtain that
y(n) ≥ y△ > y∗ for any nk + l0 ≤ n ≤ n̄k and by Lemma 4.2, we have that

min
1≤i≤m

x̃i(n) ≥ min
1≤i≤m

x̃i(n − 1), for any nk + l0 ≤ n ≤ n̄k.

Therefore, we need to estimate the lower bound of minnk≤n≤nk+l0−1(min1≤i≤m x̃i(n)).
Put x̃0(n) = x̃L(n), n = 0, 1, . . .. Then, by (41), we have that

x̃i(n + 1) ≥ (1 − ai)x̃i(n),

x̃i(n + 1) ≥
φ̃i(y)

φ̃i(y∗)
x̃i−1(n), i = 1, 2, . . . ,m, n = 0, 1, 2, . . . .

Therefore, we have that
x̃i(n + 1) ≥ (1 − ai)lx̃i(n + 1 − l), l = 0, 1, 2, . . . , n + 1, i = 1, 2, . . . ,m,

x̃i(n + 1) ≥


i∏

k=j+1

φ̃k(y)

φ̃k(y∗)


x̃j(n + 1 − (i − j)), for any m ≥ i > j ≥ 0.

Then, for any n̄k−1 + 1 ≤ n ≤ nk − 1, there exists a 1 ≤ i0 ≤ m such that x̃i0(n) ≥ r and, hence, we can easily obtain that
for any 1 ≤ i ≤ m,

x̃i(n + m − 1) ≥ bm−1r, i = 1, 2, . . . ,m,

and

x̃i(n + l) ≥ bm−1(1 − ā)l−(m−1)r, l = m,m + 1, . . . , i = 1, 2, . . . ,m.

In particular, for any i = 1, 2, . . . ,m, we have thatx̃i(n) ≥ bm−1r, n̄k−1 + m ≤ n ≤ nk + m − 2,
and
x̃i(n) ≥ bm−1(1 − ā)n−(nk+m−2)r, nk + m − 1 ≤ n.

Thus, by l0 ≥ m − 1,

x̃i(n) ≥ bm−1(1 − ā)l0−1−(m−2)r, n̄k−1 + m ≤ n ≤ n̄k, i = 1, 2, . . . ,m.

Then,

x̃i(n) ≥ bm−1(1 − ā)l0 r, n̄k + 1 ≤ n ≤ n̄k + m − 1, i = 1, 2, . . . ,m.

Hence, we obtain that

x̃i(n) ≥ bm−1(1 − ā)l0 r, n̄k−1 + m ≤ n ≤ n̄k + m − 1, i = 1, 2, . . . ,m.

Since the above k ≥ 2 is arbitrarily chosen,we conclude that for any i = 1, 2, . . . ,m, xi(n) ≥ bm−1(1−ā)l0 r for all sufficiently
large n for the second case. Since r (0 < r < 1) is also arbitrarily chosen, we conclude that

lim inf
n→∞

xi(n) ≥ bm−1(1 − ā)l0x∗

i , 1 ≤ i ≤ m.

This completes the proof. �

5. A special class of (10) where the endemic equilibrium is globally asymptotically stable for R0 > 1

Assume R0 > 1. Then, by Lemma 4.4, the system (41) is permanent and by Theorem 3.1, system (41) has a unique
endemic equilibrium E∗

= (y∗, x∗

1, x
∗

2, . . . , x
∗
m). Thus, (41) has a unique endemic equilibrium Ẽ∗

= (y∗, x̃∗

1, x̃
∗

2, . . . , x̃
∗
m)with

x̃∗

1 = x̃∗

2 = · · · = x̃∗
m = x̃∗

= 1.
In the rest of this paper, extending the result in Muroya et al. [13] to the following special class of (10), we show that the

endemic equilibrium Ẽ∗ of (41) is globally asymptotically stable. Assume that

bi = b > 0 or 0, i = 1, 2, . . . ,m, (51)

and b0 = bL, x∗

0 = x∗

L and there is a strictly monotone increasing function ψ(y) on y ≥ 0 and ψ(0) = 0 such that for
i = 1, 2, . . . ,m,
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ψi(y) = biψ(y),

ˆ̃
ψ i(y) =


ψ(y)
ψ(y∗)

, if bi ≠ 0,

1, if bi = 0,

φi(y) =
aix∗

i

x∗

i−1

ˆ̃
ψ i−1(y),

(52)

and ˆ̃
ψ0(y) =

ˆ̃
ψ L(y), x̃0(n) = x̃L(n), and α > 0, 0 < β < 1 and 0 < ai < 1, i = 1, 2, . . . ,m are constants. Then, this

system of (10) is equivalent to the following special class of difference equations:
y(n + 1)− y(n) =

1
1 − β


α − βy(n + 1)− ψ(y(n + 1))

m−
i=1

bix̃i(n)


,

x̃1(n + 1)− x̃1(n) =
a1

1 − a1


ˆ̃
ψ L(y(n + 1))x̃L(n)− x̃1(n + 1)


, 1 ≤ L ≤ m,

x̃i(n + 1)− x̃i(n) =
ai

1 − ai


ˆ̃
ψ i−1(y(n + 1))x̃i−1(n)− x̃i(n + 1)


, i = 2, 3, . . . ,m, n ≥ 0.

(53)

For example, Muroya et al. [13] treated the case that bi = 0, i = 1, 2, . . . ,m − 1 and bm = b > 0.
Let the Lyapunov function (see [11,12]) be

U(n) =
1 − β

bψ(y∗)
Uy(n)+

m−
i=1

1 − ai
ai

Ui(n)+ U+(n), (54)

where
Uy(n) =

∫ y(n)

y∗


1 −

ψ(y∗)

ψ(y)


dy, Ui(p) = g


x̃i(n)


, i = 1, 2, . . . ,m,

U+(p) =

m−
i=1

g

x̃i(n)


,

and g(x) = x − 1 − ln x, x > 0.
We now show that U(n + 1)− U(n) ≤ 0. First, we calculate Uy(n + 1)− Uy(n) by using the first equation of (41):

Uy(n + 1)− Uy(n) = (y(n + 1)− y(n))−

∫ y(n+1)

y(n)

ψ(y∗)

ψ(y)
dy

≤ (y(n + 1)− y(n))− ψ(y∗)
y(n + 1)− y(n)
ψ(y(n + 1))

=
ψ(y(n + 1))− ψ(y∗)

ψ(y(n + 1))
(y(n + 1)− y(n))

=
ψ(y(n + 1))− ψ(y∗)

(1 − β)ψ(y(n + 1))


α − βy(n + 1)− ψ(y(n + 1))

m−
i=1

bix̃i(n)


, (55)

because by the fact that ψ(y) is strictly monotone increasing on y > 0, it holds that∫ y(n+1)

y(n)

1
ψ(s)

ds ≥
y(n + 1)− y(n)
ψ(y(n + 1))

for any y(n) > 0 and y(n + 1) > 0.

Substituting α = βy∗
+ ψ(y∗)

∑m
i=1 bix̃

∗

i into (55) and by the definition bi, i = 1, 2, . . . ,m, we have bi(1 −
ψ(y∗)
ψ(y) ) =

b

1 −

1
ˆ̃
ψ i(y)


, i = 1, 2, . . . ,m, and we obtain that

Us(p + 1)− Us(p) ≤
ψ(y(n + 1))− ψ(y∗)

(1 − β)ψ(y(n + 1))

×


β(y∗

− y(n + 1))+ ψ(y∗)

m−
i=1

bi


x̃∗

i −
ψ(y(n + 1))
ψ(y∗)

x̃i(n)


= −
β

1 − β

(ψ(y(n + 1))− ψ(y∗))(y(n + 1)− y∗)

ψ(y(n + 1))

+
ψ(y∗)

1 − β

m−
i=1

b


1 −

1
ˆ̃
ψ i(y(n + 1))


(1 −

ˆ̃
ψ i(y(n + 1))x̃i(n)).
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Second, similarly, we calculate Ui(n + 1)− Ui(n), i = 1, 2, . . . ,m by using the second and third equations of (41):

Ui(n + 1)− Ui(n) = {x̃i(n + 1)− x̃i(n)} − ln
x̃i(n + 1)
x̃i(n)

≤ {x̃i(n + 1)− x̃i(n)} −
x̃i(n + 1)− x̃i(n)

x̃i(n + 1)

=
x̃i(n + 1)− 1
x̃i(n + 1)

(x̃i(n + 1)− x̃i(n))

=


a1

1 − a1


1 −

1
x̃1(n + 1)


ˆ̃
ψ L(y(n + 1))x̃L(n)− x̃1(n + 1)


, if i = 1,

ai
1 − ai


1 −

1
x̃i(n + 1)


ˆ̃
ψ i−1(y(n + 1))x̃i−1(n)− x̃i(n + 1)


, if i = 2, 3, . . . ,m.

Finally, calculating U+(n + 1)− U+(n), we get that

U+(n + 1)− U+(n) =

m−
i=1


g

x̃i(n + 1)


− g


x̃i(n)


.

Therefore, by the above discussion and (54), similar to McCluskey [11, Proof of Theorem 4.1], we obtain that

U(n + 1)− U(n) ≤ −
β

ψ(y∗)ψ(y(n + 1))
{ψ(y(n + 1))− ψ(y∗)}(y(n + 1)− y∗)

+

m−
i=1


1 −

1
ˆ̃
ψ i(y(n + 1))


1 −

ˆ̃
ψ i(y(n + 1))x̃i(n)


+

m−
i=1


1 −

1
x̃i(n + 1)


ˆ̃
ψ i−1(y(n + 1))x̃i−1(n)− x̃i(n + 1)


+

m−
i=1


g

x̃i(n + 1)


− g


x̃i(n)


= −

β

ψ(y∗)ψ(y(n + 1))
{ψ(y(n + 1))− ψ(y∗)}(y(n + 1)− y∗)

+


m−
i=1


1 −

1
ˆ̃
ψ i(y(n + 1))


−

m−
i=1


ˆ̃
ψ i(y(n + 1))− 1


x̃i(n)



+


m−1−
i=0


ˆ̃
ψ i(y(n + 1))− 1


x̃i(n)+

m−1−
i=0


x̃i(n)− x̃i(n + 1)


−


m−1−
i=0

ˆ̃
ψ i(y(n + 1))x̃i(n)

x̃i+1(n + 1)


+ m


+

m−
i=1


g

x̃i(n + 1)


− g


x̃i(n)


= −

β

ψ(y∗)ψ(y(n + 1))
{ψ(y(n + 1))− ψ(y∗)}(y(n + 1)− y∗)

−


m−
i=1

g


1

ˆ̃
ψ i(y(n + 1))


+

m−1−
i=0


g

x̃i(n)


− g


x̃i(n + 1)


+

m−1−
i=0

g


ˆ̃
ψ i(y(n + 1))x̃i(n)

x̃i+1(n + 1)


+

m−
i=1


g

x̃i(n + 1)


− g


x̃i(n)


= −

β

ψ(y∗)ψ(y(n + 1))
{ψ(y(n + 1))− ψ(y∗)}(y(n + 1)− y∗)

−


m−
i=1

g


1

ˆ̃
ψ i(y(n + 1))


+

m−1−
i=0

g


ˆ̃
ψ i(y(n + 1))x̃i(n)

x̃i+1(n + 1)


.

Moreover, we have that

(ψ(y(n + 1))− ψ(y∗))(y(n + 1)− y∗) ≤ 0,
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with equality, if and only if y(n + 1) = y∗. Hence, U(n + 1) − U(n) ≤ 0 for any n ≥ 0. Since U(n) ≥ 0 is a monotone
decreasing sequence, there is a limit limn→+∞ U(n) ≥ 0. Then, limn→+∞(U(n+ 1)−U(n)) = 0, fromwhich we obtain that

lim
n→+∞

y(n + 1) = y∗, lim
n→+∞

x̃i(n + 1) = x̃∗, i = 1, 2, . . . ,m,

that is, limn→+∞(y(n), x1(n), x2(n), . . . , xm(n)) = (y∗, x∗

1, x
∗

2, . . . , x
∗
m, ). Since U(n) ≤ U(0) for all n ≥ 0 and g(x) ≥ 0 with

equality if and only if x = 1, E∗ is uniformly stable. Hence, the proof is complete. �

6. Conclusions

In this paper, motivated by the recent progress of several proof techniques on the permanence and Lyapunov techniques
(see for example, [3,11,13,20]), under the assumption that each ψi(y) is a monotone increasing function of y, 1 ≤ i ≤ m,
we prove the permanence of the system (9) treated in [9], and give a partial answer to the remaining open question for the
case R0 > 1 about the global asymptotic stability for the endemic equilibrium of the system (9).

In spite of the proofs of the main results in [21] making use of the theory of nonnegative matrices, Lyapunov functions
and a subtle grouping technique in estimating the derivatives of Lyapunov functions guided by graph theory, we apply the
techniques of Lyapunov functions in [11] and [13] to prove the global asymptotic stability for the endemic equilibrium of
system (7) for the case R0 > 1 which is simple and we no longer need to use any of the theory of nonnegative matrices and
graph theory (cf. [6]). Moreover, we offer new techniques to obtain lower bounds for the permanence of group epidemic
models which will be useful in applications (cf. persistence theory in dynamical systems, for example, [4,6,17]). Our future
work will be to apply these techniques to other types of not only discrete but also continuous group epidemic models.
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