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Abstract: Generalized Shadow Hybrid Monte Carlo (GSHMC) is a method for molecular simulations that rigorously alter-
nates Monte Carlo sampling from a canonical ensemble with integration of trajectories using Molecular Dyna-
mics (MD). While conventional hybrid Monte Carlo methods completely re-sample particle’s velocities between
MD trajectories, our method suggests a partial velocity update procedure which keeps a part of the dynamic infor-
mation throughout the simulation. We use shadow (modified) Hamiltonians, the asymptotic expansions in powers
of the discretization parameter corresponding to timestep, which are conserved by symplectic integrators to higher
accuracy than true Hamiltonians. We present the implementation of this method into the highly efficient MD code
GROMACS and demonstrate its performance and accuracy on computationally expensive systems like proteins
in comparison with the molecular dynamics techniques already available in GROMACS. We take advantage of the
state-of-the-art algorithms adopted in the code, leading to an optimal implementation of the method. Our imple-
mentation introduces virtually no overhead and can accurately recreate complex biological processes, including
rare event dynamics, saving much computational time compared with the conventional simulation methods.
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1. Introduction

Molecular simulations are commonly approached by two basic simulations methods: Molecular Dynamics (MD), whichnumerically integrates Newton’s equations of motion to deterministically predict the time evolution of a molecular system,
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and Monte Carlo (MC) simulations, which generate a random walk in the phase space of the system. A third approachis the hybrid Monte Carlo method (HMC) [7] which alternates MC proposal steps with short MD trajectories followedby a Metropolis acceptance test, where each trajectory is accepted or rejected with a Boltzmann probability e−∆H/kBT ,where ∆H is the energy change in the tested trajectory. MD and MC are highly complementary methods (deterministicvs. stochastic), so the HMC method can take advantage of the combined properties of both.MD trajectories are integrated using symplectic numerical methods, which conserve energy and provide deterministicdynamical data. The MC proposal steps offer a faster exploration of the phase space and maintain constant temperatureby sampling from a Boltzmann distribution. However, in order to preserve the dynamical information between MD tra-jectories, the HMC method needs to be generalized so that particle velocities are only partially updated at the MCstep, instead of being completely reset. This led to the generalized hybrid Monte Carlo method (GHMC) [13, 16] whichincludes a partial velocity update procedure.Another limitation of HMC, and by extension of GHMC, is that the acceptance rate of the MD step decreases withincreasing size of molecular systems due to discretization errors introduced by the numerical integrator [15]. Thisimplies that HMC methods can be highly inefficient for large bio-molecular systems. This limitation is remedied byusing importance sampling with respect to shadow Hamiltonians, as was introduced by Izaguirre et al. [14]. ShadowHamiltonians are modified energies derived by asymptotic expansions in powers of the discretization step-size. Theiradvantage is that symplectic integrators commonly used in MD, like the Störmer–Verlet method [10], conserve shadowHamiltonians to higher accuracy than true Hamiltonians [23]. The introduction of shadow Hamiltonians into the GHMCmethod led to the generalized shadow hybrid Monte Carlo (GSHMC) method [4], which overcomes the limitations ofHMC methods while offering most of the advantages of both MD and MC methods.In [25], GSHMC is applied to coarse-grained simulations of biological systems like phospholipid bilayers in cell mem-branes, showing an improvement in sampling efficiency over regular MD methods. In that case, the authors use aworkaround implementation, in which shell scripting alternates short MD trajectories and Monte Carlo sampling. Inorder to obtain all of its potential advantages, it is necessary to implement GSHMC within a highly efficient MD code. Inthis work we present the implementation of GSHMC into the well-known MD software GROMACS [12] and demonstrateits performance and accuracy on computationally expensive systems like proteins.GROMACS is a software package that is mainly used to perform MD simulations, but it also includes many toolsthat analyze dynamical and non-equilibrium thermodynamical properties of the simulated system. Our modificationintroduces virtually no overhead; it does not restrict any other functionalities; and it can accurately recreate complexbiological processes, including rare event dynamics, improving computational efficiency when compared with conventionalsimulation methods. By being implemented into the highly parallelized code GROMACS, the GSHMC method takesadvantages of the state-of-the-art algorithms adopted in the code. This leads to the optimal implementation of themethod, and improves its sampling efficiency by combining it with other enhanced sampling methods supported in theGROMACS package.As a testing system we have chosen serum Transferrin (sTf), a member of the Transferrin family of enzymes which arepresent in vertebrates and some insects. The physiological role of sTf is of major importance, as it controls the level offree Fe+3 in our bloodstream by capturing and transporting it to cells [1, 17]. In addition, this protein is able to transportother cations, such as aluminum. A number of simulations of Transferrin have been conducted before. In particular, wefocus on the work of Rinaldo and Field [22] to set the initial state of our system. In our simulations we will representthe N-lobe of human serum transferrin (the C-lobe has not been crystallized yet), which is composed of 5027 atoms, andwhich was already used in our previous simulations without GSHMC [21].The paper is organized as follows: in Section 2 we provide the algorithmic summary for the GSHMC method anddescribe how it has been implemented in GROMACS; in Section 3 we present results from our simulations with theserum Transferrin protein comparing them with similar simulations performed with classical MD methods; in Section 4we review the advantages obtained by the implementation of GSHMC within an already optimized MD software.
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2. Methods

2.1. GSHMC algorithmic summary

The original GSHMC method [4], was intended to be an extension of the hybrid Monte Carlo method, in which shortMD trajectories serve as an intelligent move in the MC procedure. In our case however, since we aim to make use of thehigh efficiency MD algorithms implemented in GROMACS, we propose an alternative approach to the method in whichMC sampling is periodically introduced during a long MD trajectory. In this way, we are only running one simulation,which only requires to be loaded and initialized once, but the full trajectory is divided into shorter trajectories and MCsampling is performed between them.The resulting GSHMC method is composed of two main alternating steps: a short molecular dynamics trajectory, anda partial velocity update including Monte Carlo sampling. Both steps must pass a Metropolis acceptance test in whichthey will be accepted or rejected according to the energy change during the last step. See Figure 1 for a flowchart ofthe GSHMC method.

Figure 1.

In the case of a rejection of the molecular dynamics proposal, we need to introduce a momentum flip F : (r, v) 7→ (r,−v)to validate the standard detailed balance condition [18],
A(Γ′|Γ)ρ(Γ) = A(Γ|Γ′)ρ(Γ′),

which in turn verifies the stationarity of a probability density function ρ(Γ) under a given Markov chain, i.e.,
ρ(Γ′) = ∫ A(Γ′|Γ)ρ(Γ)dΓ,
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where the state space of a Markov chain, Ω ⊂ RN , consists of states Γ ∈ Ω, and its transition probability kernel is
A(Γ′|Γ), and Γ′ denotes a proposal state.In practice, however, a momentum flip can be overcome as discussed in [2–4], as long as acceptance rates are maintainedabove 75–80% [3]. We have tested both implementations, with and without momentum flip. Our numerical results indicatethat the implementation with momentum flip displays a favorable behavior in terms of sampling efficiency, whereasavoiding the momentum flip has advantages in reproducing dynamical properties of the system. For the discussion andpractical issues we refer readers to [2, 3]. Both approaches are implemented in the code.
Molecular dynamics trajectoryThis step consists of the integration of a short MD trajectory using the appropriate symplectic integrator, e.g., Verlet,followed by a Metropolis acceptance test.

1. Molecular dynamics: Given an accepted state Γi = (r, v, t), where r is a collective vector of atomic positions, v isa collective vector of atomic velocities and t is time, we apply a time reversible and volume preserving method Ψ∆tover L steps of step-size ∆t to the current state. The proposal state is defined by
Γ̂i = (̂r, v̂, t+L∆t), with r̂ = Ψτ (r)

for τ = L∆t and a given integer L ≥ 1.
2. Metropolis test: The next accepted state Γi+1 is found through a modified Metropolis accept/reject criterion

(r′, v ′, t+L∆t) = Γi+1 = {Γ̂i with probability min(1, e−β∆H∆t),
FΓi otherwise,

using shadow Hamiltonians H∆t instead of true Hamiltonians:
∆H∆t = H∆t (̂r, v̂)−H∆t(r, v).

In the case of rejection we apply a momentum flip F : (r, v) 7→ (r,−v), unless we have decided to avoid it,following [2, 3].
Partial velocity updateThis part of GSHMC consists of a proposal step and a Metropolis accept/reject criterion adapted for this step.

1. Monte Carlo sampling: The velocity vector v ′ is mixed with a 3N-dimensional noise vector u. The partial velocityrefreshment Rφ is given by (
ũ
ṽ ′

) = (cosφ − sinφsinφ cosφ
)(

u
v ′

)
, (1)

where 0 < φ ≤ π/2 is a given angle and u ∼ N[0, (βM)−1/2] is the 3N-dimensional normally distributed vectorwith zero mean and covariance matrix (βM)−1/2, M is the diagonal mass matrix of the molecular system, β = 1/kBTis the inverse temperature. We denote the proposed state vector by Γ̃i+1 = (r′, ṽ ′, t+L∆t).
2. Metropolis test: The accepted state Γi+1 is found through a Metropolis accept/reject criterion:

(r, v, t+L∆t) = Γi+1 = {Γ̃i+1 with probability min(1, e−β∆H̃∆t),Γi+1 otherwise, (2)
with ∆H̃∆t = H∆t(r′, ṽ ′) + 12 ũTMũ − H∆t(r′, v ′)− 12 uTMu. (3)
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The angle φ in equation (1) is a tunable parameter of the method and defines how much of the dynamics is kept ordisregarded during the sampling. With φ = 0 all dynamical information is preserved and there is no gain in sampling.With φ = π/2 the velocities are completely regenerated as in a standard HMC method. Setting the angle with φ = √2γτprovides a statistically rigorous implementation of stochastic Langevin dynamics [2], where γ is the friction coefficient.At this point, in the case of rejection, it is possible to repeat the velocity update several times until it is accepted. Thisis relatively inexpensive compared to the MD step and can very easily raise the acceptance rate. An additional strategyfor improving the acceptance rate of the partial velocity update step is to apply a variable change to the velocity vector vas described in [4, 24]. This method consists of proposing a modified velocity vector v defined by
v = v − ∆t24M (F (t+∆t)− F (t−∆t)), (4)

where F represents the atomic forces, which need to be calculated one time-step backward and forward in time. We canthen apply the partial velocity update in equation (1) to the modified velocities. The variable change needs to be undonebefore evaluating the shadow Hamiltonian for the Metropolis test. Both strategies aimed to increase the acceptancerate at the partial velocity update step are implemented in our code.
Modified HamiltoniansModified or ‘shadow’ Hamiltonians are asymptotic expansions of the true Hamiltonian in powers of the step-size ∆t.They are exactly conserved by symplectic integrators like Störmer–Verlet [10] and are relatively inexpensive to calculate.Efficient algorithms for computing modified energies can be found in [23]. In our implementation we have included 4thand 6th order approximations following the alternative method suggested by Akhmatskaya and Reich [4] for the Stor̈mer–Verlet method.The 4th order shadow Hamiltonian then is given by the following equation:

H4∆t = U + 12 Ṙ [MṘ ] + ∆t212 Ṙ [M ...
R ]− ∆t224 R̈ [MR̈ ],

where U is the potential energy, R is the positions vector and M is the atomic mass matrix. The derivatives of thepositions are obtained using the centered difference approximation, which up to 6th order Hamiltonians requires to savethe positions for t = n−3, . . . , n, . . . , n+3, where n is the time step at which we are evaluating the shadow Hamiltonian.The order of approximation of modified Hamiltonians used in the simulation also affects the acceptance rates. Higherapproximation orders provide better acceptance rates, but they also require more time to compute.For arbitrary p = 2m, m > 2, the p-order shadow Hamiltonian can be derived with the following expression [4]:
H [p]∆t = p−1∑

i=1
 i−1∑

j=0 (−1)j[ djdtj ∂L[p]∆t
∂R (i)

]
R (i−j)

− L
[p]∆t ,

where L
[p]∆t is the p-order modified Lagrangian density and R (i) is the i-order derivative of the positions vector calculatedby the centered differences method.

Data analysisThe key novel step of the proposed GSHMC method is the importance sampling with respect to a shadow Hamiltonian H∆t .This improves the acceptance rate of the Metropolis test for MD trajectories; however, sampling from a modified ensembleimplies that expected values have to be re-weighted. Let {Γi}Ii=1 denote a sequence of I accepted states from a GSHMCsimulation with Γi = (Yi, ti) and Yi = (ri, vi). Average values of a function f(Y ) with respect to the canonical density arecomputed according to the formula
〈f〉 =

I∑
i=1wif(Yi)

I∑
i=1wi
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with weight factors
wi = exp (−β(H(Yi)−H∆t(Yi))).

2.2. Implementation into GROMACS

Implemented algorithm

We have implemented the GSHMC method into the GROMACS molecular dynamics software [12]. GROMACS is anopen-source package available under the GNU General Public License. It is written in the C programming language,highly optimized for maximum computational efficiency and fully parallelized using the MPI protocol. GROMACS isintended for molecular dynamics simulations and energy minimization. Its high efficiency makes it one of the mostpopular codes for the simulation of large molecular systems like proteins. We have included our development in version4.5.4 and are planning to port it to the latest development branch which will benefit from GPU parallelization. Wecurrently offer the development version of our code upon request to the corresponding author.For the time integration of Newton’s equations of motion, GROMACS counts with several symplectic algorithms like theleap-frog and the velocity Verlet method. Our implementation of GSHMC is included within the latter algorithm, insidethe main time-step loop of the function do_md(), see Figure 2, which is called at the end of the function mdrunner(),after the initial atomic positions and all simulation parameters have been loaded from the tpr file. Additional externalroutines need to be implemented for saving/restoring states, calculating shadow Hamiltonians, evaluating Metropolistests and performing the partial velocity updates. The relative encapsulation of this method suggests that the samebehavior can be achieved by executing a shell script that alternates calls to the GROMACS executables (grompp andmdrun) with calls to a GSHMC algorithm implemented externally. However, such an approach is very inefficient due tothe time spent in file reading and writing, which would have to be repeated before and after every short MD trajectory.On the other hand, implementing the algorithm within the MD software ensures that the relevant data structures arealways loaded in memory and the new method does not introduce any additional I/O operations.

Figure 2.
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The execution of a simulation with the GSHMC method is similar to standard molecular dynamics except that every
L time-steps, after completing the Verlet integration but before writing the current state to the output files, we invoke theGSHMC algorithm. The algorithm begins by calculating the modified Hamiltonians as explained in the previous section,both for the current state and for the saved state. Since we are using the centered differences method to calculatederivatives, we require the positions vector for several time-steps before and after the current state for calculating theshadow Hamiltonian. We also require the potential energies for the current and for the saved state. We then use thecalculated Hamiltonians to perform a Metropolis test to decide if we accept the current state or restore the state saved
L time-steps before. If the test is rejected, we restore the state of the system that we saved at the beginning of the last
L time-steps and, if momentum flip is used, we negate the velocities. If the test is accepted, we keep the current stateand move on to the partial velocity update step. In this step we first generate new random velocities by sampling froma Maxwell–Boltzmann distribution at a fixed temperature T . We then perform the partial velocity update described inequation (1). If we are using the change of variables described in (4), we require the forces one time-step before andafter the current state. Finally, we do a second Metropolis test as indicated in equations (2) and (3) to decide if we wantto keep the newly updated velocities or restore the previous ones. This part of the algorithm can be repeated severaltimes until we find a suitable set of velocities. Once we have an accepted state, we can save the values for the currentcoordinates, velocities and energies and move on to writing to the output files.
Parameters

Several new parameters need to be added to GROMACS in order to use and tune GSHMC with optimal efficiency, seeTable 1. Such parameters can be loaded at run time from an additional input file, but it is preferable to introduce themthrough the input MD parameters file (mdp). Here we followed the standard programming guidelines described by theGROMACS developing team [26]. This procedure implies adding new variables to the inputrec data structure, which willstore the new parameters and make them available throughout the runtime execution. Further modifications for readingfrom file, loading in memory and checking the values are straightforward and have been implemented according to thestandard procedure.
Table 1. Parameters used by the GSHMC method.

Parameter Value DescriptionGSHMC yes/no Choose whether to run GSHMC or regular MDflip yes/no Choose whether to perform a velocity reversal after a rejectionGS2HMC yes/no Include a variable change in the velocity update to increase the acceptance rate
φ 0 to π/2 Angle for the partial velocity update
ntrials ≥ 1 Number of velocity update trials to be performed
L ∼ 1000 Length of the MD trajectory between Monte Carlo tests
T > 0 Temperature used for the generation of the random velocities in the momentum updates
p 4 or 6 Order of approximation for the shadow Hamiltonians

The sampling efficiency of the method varies greatly with the choice of GSHMC parameters. It is important to keepthe acceptance rate of both the MD trajectories and the velocity updates as high as possible. If many trajectories arerejected then we are wasting much computational time. If many velocity updates are rejected then we will not gain muchfrom the Monte Carlo sampling.The parameter φ has a strong influence on the velocity update step. Larger values of φ are beneficial for GSHMCsampling. However, the acceptance rate drops quickly as φ is increased. In general, we need ∼ 85% of acceptedproposals to obtain sampling advantages and to keep the system thermalized. The acceptance rate can be furtherimproved by using the GS2HMC method, in which the velocity update is performed with a change of variables like theone proposed in equation (4). Another option is to perform several update trials until one of them is accepted. Sincethe velocity update step is relatively inexpensive in the computational sense, we can very easily raise the acceptancerate in this way without introducing much computational overhead.
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Other tunable parameters are the step-size ∆t and the number of time-steps L in an MD trajectory. ∆t should be chosenso that the desired accuracy of energy approximation using shadow Hamiltonians is achieved. Longer trajectories andlonger time-steps in general would decrease the acceptance rate but at the same time can improve sampling comparedto short trajectories and small time-steps, if the acceptance rate is kept reasonably high.
Simulation setup

In general GSHMC is consistent with the algorithms implemented in GROMACS. There are, however, some limitationsthat need to be considered. First place, all MD trajectories are integrated in the NVE ensemble, so there is notemperature coupling. The temperature will be maintained constant by the Monte Carlo sampling. Second, the onlyavailable integration scheme in the current implementation of GSHMC is velocity Verlet. Because of the way GROMACSis structured, combining GSHMC with other integrators implemented in GROMACS would require further modificationsto the source code. Finally, in order to ensure the high accuracy of the modified Hamiltonians, the LINCS algorithm forapplying constraints must be used with a 6th or 8th order of approximation and with at least two iterations [11].
Parallelization

We have employed the parallelization of MD trajectory integration that is already implemented in standard GROMACS.This includes the possibility of using either domain decomposition or particle decomposition [12]. In any case, thecomputational expense of including GSHMC (mainly shadow Hamiltonians) is small enough compared to MD integration(mainly force evaluations) as all extra calculations can be performed on the master node without any noticeable decreasein performance. Only a few modifications must be included to be able to run GSHMC simulations in parallel. Infirst place, it is necessary to gather the information about atomic positions from all processors before calculating theshadow Hamiltonian, which represents a significant amount of communication but is only required every L time-steps.Additionally, after each Metropolis test we have to broadcast the result to all processors. Finally, after each acceptedproposal step, we have to scatter the new state to all processors.
3. Results and discussion

We have tested the new implementation of GSHMC in GROMACS on a variety of systems including atomic, coarse-grained and meso-scale modeling. Due to its fast sampling rate, the GSHMC algorithm is specially useful whensimulating large macromolecules like proteins. Here we present benchmark results taken from the ongoing researchproject studying metal binding and release by the protein serum Transferrin (sTf), a member of the Transferrin familyof enzymes that are present in vertebrates and some insects. The physiological role of sTf is of major importance, as itcontrols the level of free Fe+3 in our bloodstream by capturing and transporting it to cells [1, 17, 21]. In addition, thisprotein is able to transport other cations, such as Al+3.In our simulations we only represented the N-lobe of human sTf (the C-lobe has not been crystallized yet), which iscomposed of 5027 atoms. The CHARMM27 all-atom force field [20] was employed to build the topology of the protein.The steepest descent (SD) method was employed to minimize the energy of the system. Periodic boundary conditionswere applied in all directions using a rhombic dodecahedron cell, with a minimal distance between the protein and thewall of the cell set to 10 Å. The system was solvated with 13218 water molecules using the TIP3P water model [9]. We thenrun a 100 ps long equilibration imposing weak constrains on the atomic positions of the protein. GSHMC simulationsachieve constant temperature by sampling from a Maxwell–Boltzmann distribution at 300 K and do not require anyadditional thermostat. Other standard MD simulations shown here were performed under canonical thermodynamicensemble (NVT), where the temperature of the protein and the rest of the system were independently coupled to 300 Kusing velocity rescaling with a stochastic term (V-rescale) algorithm [5]. For both simulation approaches, long-rangeCoulombic electrostatics were calculated using the smooth particle mesh Ewald (PME) method [6, 8] with a cut-off of12 Å and a spacing of the Fourier grid of 1.2 Å. For the van der Walls non-bonded interactions, a Lennard–Jones potentialwith a cut-off radius of 12 Å and a switch function with a radius of 9 Å were employed. Bond stretching and bond bendingwere constrained during the simulation using Linear Constraint Solver (LINCS) [11], allowing an integration time stepof 2 fs. Total simulation times for production runs were between 20 and 60 ns.
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For the GSHMC method some additional parameters are necessary to optimize the performance, see Table 1. In allGSHMC simulations discussed in the next section we used velocity reversal after rejection, no variable change in thevelocity update, φ = 1.5, ntrials = 5, L = 1000, and 6th order shadow Hamiltonians. With this set of parameters wehave obtained an acceptance rate of at least 99% for the MD step and 90% for the momentum update. Due to thecomputational cost of these simulations, we did not repeat the long runs without momentum flip.
3.1. Protein folding simulations

When Transferrin is bound to a metal ion such as Al+3, it adopts a closed or folded configuration. When this metalion is released, the Transferrin protein will unfold to an open configuration. In our simulations we try to reproducethis unfolding process both with standard MD and with GSHMC simulations. We can then compare the resultingspatial configurations to test the accuracy of the GSHMC method and the employed computational time to evaluate theperformance.We start with the closed configuration which is obtained experimentally from X-ray diffraction analysis [19]. We thenremove the metal ion and allow the protein to unfold until it reaches a stable or equilibrium configuration. In Figure 3 (a)we represent this unfolding process by plotting the distance measured between the center of mass of the two sub-domainsthat form the protein. We can see that both MD and GSHMC simulations can reproduce the unfolding properly. However,in the GSHMC simulation the process starts after 2–3 ns of simulation, while regular MD requires more than 25 ns ofsimulation before the unfolding begins. In Figure 3 (b) we see the result of a similar experiment but in this case weplot the distances between two of the residues that bind the metal to the protein. Once again we see that the GSHMCsimulation starts unfolding almost immediately and it reaches the same final configuration as the MD simulation butmuch sooner. GSHMC simulations shown in Figure 3 are shorter than MD simulations because there was no need tocontinue them once the equilibrium state had been found. In general, GSHMC can obtain similar results to MD butsaving at least half of the simulation time.

(a) (b)
Figure 3.

In Figure 4 we plot the normalized autocorrelation function (ACF) for the distances shown in Figure 3. It is clear thatin both cases the simulations performed with GSHMC reach the equilibrium value more rapidly than those performedwith MD. For a more rigorous measure of sampling efficiency we calculate the integrated autocorrelation function [16]for a time series Ωk of K samples, where Ω is an observable,
AΩ = K ′∑

l=1 ACF(τl);
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(a) (b)
Figure 4.

here ACF(τl), l = 0, . . . , K ′ < K , is the value of the autocorrelation function for the time series Ωk . To compare thesampling efficiency of both simulation methods we compute the ratio AMDΩ /AGSHMCΩ .We consider separately two time ranges in each simulation: the unfolding phase, where the measured distances areincreasing, and the equilibrated phase, where the protein has finished unfolding and the distances remain stable. Inthe unfolding phase we obtain a ratio AMDUnfold/AGSHMCUnfold of 7.03 for the case of Figure 4 (a) and 4.06 for Figure 4 (b). Inthe equilibrated phase the ratios AMDEquil/AGSHMCEquil are 1.50 and 1.45 respectively. The higher ratios for the unfoldingphase mean that GSHMC is specially efficient for sampling conformational changes, but even in the equilibrated phaseGSHMC still samples ∼ 1.5 times more efficiently than MD.
3.2. Computational performance and accuracy

To assess the accuracy of GSHMC compared to MD and its capability for calculating thermodynamical properties wecompared several averaged magnitudes for the equilibrated configurations of the simulations shown in Figure 3. In allcases the values are averaged over the last 10 ns of simulation, after the protein has finished unfolding and the systemcan be considered equilibrated.We can see in Table 2 that the average values obtained by GSHMC are in agreement with those obtained withstandard MD. In the case of the MD simulation the temperature was coupled to 300 K using velocity rescaling with astochastic term (V-rescale) algorithm [5], while in the GSHMC case temperature was kept constant by sampling froma Boltzmann distribution at a fixed temperature T = 300 K. The total potential energy Epot is slightly lower in theGSHMC simulation, but within the approximation and statistical error.
Table 2. Equilibrium averages ± standard deviations of observables.

Simulation T Epot Ekin ELJ ECoul(K) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)MD 299.98± 0.01 −605488± 12 111692± 23 4836.96± 1.7 66472.0± 43GSHMC 299.87± 0.02 −617350± 11 111649± 11 4845.98± 2.0 66017.8± 45
To benchmark the computational performance of GSHMC we ran two identical simulations using both GSHMC and MDmethods for 24 hours on the same server using one node with 8 processors for each method. The GSHMC performancereached 14.67 GFlops producing 0.807 ns/day, while the MD performance was 14.95 GFlops producing 0.825 ns/day.The resulting overhead introduced by GSHMC is less than 2%, which is negligible compared with the improvement in
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sampling efficiency provided by the method. The total simulated time for GSHMC was 793 ps, while MD completed816 ps. The small difference resides in the time spent performing velocity updates and in rejected MD trajectories, whichideally should be kept to a minimum (< 5%) by choosing a proper set of GSHMC parameters.We have tested parallel scaling by measuring computing performance from 1 to 8 processors for both MD and GSHMCmethods. In Figure 5 we can see that both methods scale almost linearly up to 8 processors, showing that GSHMC doesnot affect the parallelization efficiency of GROMACS.

Figure 5.

4. Conclusions

We have successfully implemented the Generalized Shadow Hybrid Monte Carlo method within the molecular dynamicspackage GROMACS. The implementation implies only moderate modifications to the original source code that do notinterfere with the standard operation and performance of MD simulations. To the best of our knowledge, this is the firsttime that any hybrid Monte Carlo method has been implemented in the GROMACS package.Our implementation can accurately reproduce biological processes such as protein folding at a much smaller computa-tional cost than conventional MD. We have tested GSHMC by simulating the conformational change of the protein serumTransferrin. We have shown that the new method accurately recreates the dynamics of such a complex bio-molecularsystem, and finds the equilibrium state in complete agreement with NVT MD simulations, but saves much computationaltime.Sampling with modified Hamiltonians and using a partial velocity refreshment step have improved sampling efficiencyat the expense of losing some dynamical information. This does not pose a problem for the numerous applicationsaimed at finding equilibrium or minimal energy configurations, such as binding energy calculations, phase transitions,etc. Choosing the parameters of GSHMC with care will provide accurate dynamical information, as shown in [2, 3].In general the GSHMC method offers a better compromise between accuracy and performance than traditional MD.With the additional use of shadow Hamiltonians instead of total energies during the Metropolis tests, we have raisedthe acceptance rate for MD trajectories to almost 100%, even in the case of macromolecular systems, which is a greatadvantage over the standard hybrid Monte Carlo methods.The computational performance for GSHMC simulations is comparable to that of the unmodified version of GROMACS.The new method introduces almost no overhead and is fully compatible with the parallelization schemes available inGROMACS such as domain decomposition and particle decomposition using MPI. We included our implementation in
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the 4.5.4 version and are planning to port it to the latest version, as we expect the advantages offered by GSHMC willbe of general interest for the GROMACS user community.
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