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We study two- and three-compartment models of a hierarchical cell production system with
cell division regulated by the level of mature cells. We investigate the structure of equilibria
with respect to parameters as well as local stability properties for the equilibria. To interpret
the results we adapt the concept of reproduction numbers, which is well-known in ecology,
to stem cell population dynamics. In the two-compartment model the positive equilibrium is
stable whereever it exists. In the three-compartment model we find that the intermediate stage
of differentiation is responsible for the emergence of an instability region in the parameter
plane. Moreover we prove that this region shrinks as the mortality rate for mature cells
increases and discuss this result.

1. Introduction

Stem cells are central to the regulatory mechanisms governing development, tissue
regeneration and tissue homeostasis. They are characterised by their ability to self-
renew and differentiate. These two processes are, to some extent, complementary:
whereas self-renewal refers to the ability of stem cells to produce progeny with the
same features as its progenitor, thereby ensuring the persistence of a pool of stem
cells, differentiation, on the contrary, refers to the process in which the progeny
becomes more specialised and loses the characteristics of stem cells, in particular,
their ability to self-renew [15].
The starting point of our investigation is a multi-compartment model of a discrete

collection of cell subpopulations proposed by Marciniak-Czochra and colleagues to
investigate possible mechanisms of regulation and stabilisation of blood cell produc-
tion, following perturbations such as bone marrow transplantation [11, 13]. Different
plausible regulatory feedback mechanisms lead to different types of non-linearities
in the model equations. In [3] it was suggested that two simultaneous feedback loops
(short- and long-range) are necessary to stabilise such hierarchical cell system. On
the contrary to the models investigated by Arino and Kimmel, [3], the model pro-
posed in [11] is based on a single negative feedback loop describing regulation of the
whole process by the mature cells. In particular, in [11] two hypotheses concerning
regulation of haematopoiesis by the external signalling in response to a shortage
of mature blood cells were studied. Hypothesis 1 assumes that the differentiation
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is governed by enhancing the rate of proliferation only, while in hypothesis 2, the
ratio of the rate of self-renewal to the rate of differentiation is regulated by exter-
nal signals. Numerical simulations presented in [11] suggest that a single negative
regulatory loop (corresponding to hypothesis 1 or to hypothesis 2) may be enough
to control the system. In the present paper we aim to validate this observation and
perform qualitative analysis of two- and three-compartment models under hypothe-
sis 1. The system under hypothesis 2 was analysed in [13] and the conditions for the
existence of positive and semi-trivial steady states for a multi-compartment model
were formulated. Mathematical analysis of the structure of steady states led to a
characterisation of stem cell population by the following properties: (i) for some
cytokine levels the death rate is smaller than the reproduction rate and (ii) signal
intensity (cytokine level) needed for maintenance of the population size is smaller
than that of all other cell populations.
In this paper, we focus on two essential issues concerning the cell maturation

process and its stability. In some hierarchical cell systems, such as the haematopoi-
etic system [14], the cascade of events leading from stem cells to fully differentiated
cells is quite well described. On the contrary, in other tissues, such as the mammary
gland [8], the situation is much less clear, as the number of maturation stages is not
known. Therefore, we study the impact of the intermediate stages between stem
and mature cells on the stem cell dynamics by formulating mathematical models
with and without progenitor cells.
The second problem we aim to address is the issue of the stability of the pool of

stem cells: Is the stem cell population constant over the life time of an organism
or does it decay as the organism ages? A modification of the model from [11]
to investigate the dynamics of the system under the assumption that all cells,
including stem cells, undergo replicative senescence was given in [12]. A full answer
to this question is obviously beyond the scope of this paper. However, we hope
that we can offer some insight into this important issue by analysing the stability
of a positive equilibrium solution to the compartmental models. This leads to the
general conditions under which a stem cell population persists in time.
The remainder of the paper is organised as follows. In Section 2, we recall the

model and the different processes taken into consideration. In Section 3, we discuss
the existence of equilibrium and stability results for a two-compartment model
(stem and mature cells). Section 4 is devoted to the local stability analysis of a
three-compartment model. Finally, in Section 5, we outline our results, provide
their biological interpretation and discuss directions for future research.

2. Model formulation

We follow closely the model formulation in [11] and consider two approximations
of the chain of maturation stages by two- and three-compartment models: a two-
compartment model where we only include stem cells and mature cells (Section 3),
and a three-compartment model (Section 4) where in addition to stem and mature
cells, we consider an intermediate population (the so-called progenitor cells) that
corresponds to an intermediate stage between stem cells and fully-differentiated
cells.
Following [11], mentioned above hypothesis 1, we assume that the rates of cell

proliferation are regulated by the mature cells population. In particular, we assume
that the growth of the population of mature cells inhibits this process. The bio-
logical rationale for this is clear: once the number of mature cells has reached the
level necessary to fulfill the needs of the particular tissue, self-renewal and differen-
tiation of stem cells and progenitor cells must be adjusted just to compensate the
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loss of cells due to cell death [11]. In fact, deregulation of this homeostatic mecha-
nism may lead to cancer [1, 2, 4]. The actual mechanisms involved in this negative
feedback are, in general, unclear and may be tissue-dependent: for example in the
haematopoietic system, it seems to be mediated by some growth factors [9].
We consider the following two systems: a two-compartment model which describes

the time evolution of the populations of stem cells, w(t) and mature cells, v(t):{
w′(t) = (2aw − 1)dw(v(t))w(t)− µww(t),

v′(t) = 2(1− aw)dw(v(t))w(t)− µvv(t),
(1)

studied in Section 2 and a three-compartment model in which we consider progen-
itor cells, whose density is referred to as u(t):

w′(t) = (2aw − 1) dw(v(t))w(t)− µww(t),

u′(t) = (2au − 1) du(v(t))u(t) + 2 (1− aw) dw(v(t))w(t)− µuu(t),

v′(t) = 2 (1− au) du(v(t))u(t)− µvv(t),

(2)

studied in Section 3. In Eqs. (1) and (2) aw and au are the fraction of self-renewal of
stem cells and progenitor cells. aw and au describe the fraction of the corresponding
progeny cells, produced by stem and progenitor cells, respectively, which is of the
same type as its mother (see also [13]). dw(v) and du(v) are the division rates of
the stem cell and progenitor cell populations, and, finally, µw, µu, and µv the death
rates of the corresponding population. The explicit dependence of the division rates
refers to the regulation of these two processes by the mature cell population. It is
assumed au, aw ∈ [0, 1) and µw, µu, µv > 0 (see Fig. 1).

Stem cells Progenitor 
cells 

Mature 
cells 

Differentiation


Self-renewal


Mortality


Regulation by the mature cells


Figure 1. Compartmental diagram for the chain of maturation stages

Following [11], we assume that the division rates of stem and progenitor cells
are controlled by extracellular signaling molecules such as cytokines. In particular,
the division rates of stem and progenitor cells are given by pws(t) and pus(t),
respectively, where pw and pu are unregulated division rates of stem and progenitor
cells, respectively, and s(t) is the signal intensity at time t. We assume that cytokines
are secreted by specialized cells and that this secretion is regulated by mechanisms
sensitive to the amount of mature cells such that

s(t) =
1

1 + kv(t)
,

where k is a positive constant to take into account sensitivity to the amount of
mature cells. This dependence can be justified using a quasi-steady state approx-
imation of the plausible dynamics of the cytokine molecules [11]. This expression
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reflects the heuristic assumption that signal intensity achieves its maximum under
absence of mature cells and decreases asymptotically to zero if level of mature cells
increases. Therefore, the division rates of stem cells and progenitor cells depend on
the density of mature cells:

dw(v) =
pw

1 + kv
, du(v) =

pu
1 + kv

,

where pw and pu are positive constants.
We interpret the fraction of self-renewal as the probability that a progeny cell

remains at the same stage of differentiation as the parent cell. Upon division, the av-
erage flow of cells joining the stem cell pool equals (2aw − 1)dw(v)w. On the other
hand, the flow in the pool of progenitor cells due to differentiation of stem cells
equals 2(1−aw)dw(v)w, i.e. the fraction of stem cells which do not self-renew upon
division. The remaining terms in Eqs. (1) and (2) have the same biological interpre-
tation. We are further assuming that mature cells do not proliferate and therefore
the only flow into the mature cell compartment correspond to differentiation of
either stem cells (two-compartment model) or progenitor cells (three-compartment
model).
Finally, we express our model equations in dimensionless terms by dividing by

µw and introducing the non-dimensional time t̃ := µwt:

w̃(t̃) : = w

(
t̃

µw

)
, ũ(t̃) := u

(
t̃

µw

)
, ṽ(t̃) := v

(
t̃

µw

)
,

rw =
pw
µw

, ru =
pu
µw

,mu =
µu
µw

,mv =
µv
µw

.

Dropping the tilde for convenience, (1) and (2) becomes{
w′(t) = (2aw − 1) rw

1+kv(t)w(t)− w(t),

v′(t) = 2 (1− aw) rw
1+kv(t)w(t)−mvv(t),

(3)

and 
w′(t) = (2aw − 1) rw

1+kv(t)w(t)− w(t),

u′(t) = (2au − 1) ru
1+kv(t)u(t) + 2 (1− aw) rw

1+kvw(t)−muu(t),

v′(t) = 2 (1− au) ru
1+kv(t)u(t)−mvv(t),

(4)

respectively. As the initial conditions, we assume that

w(0) = w0 > 0, u(0) = u0 ≥ 0 and v(0) = v0 ≥ 0 (5)

for (1) and (2). Then, similar to Lemma 4.1 in [13], a positive solution exists for all
t > 0.

Lemma 2.1: Every solution of (3) and (4) with (5) is positive and bounded for
any t > 0.

3. Stem cells and mature cells dynamics

In this section, we consider the two-compartment model (3). To characterize the
existence and stability of equilibria we introduce the reproduction number of stem
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cells as the number of stem cells coming in via self-renewal minus the number of
stem cells going out via division in the expected lifetime of a stem cell. We denote
this number by Rw and get that

Rw = (2aw − 1) rw. (6)

3.1. Existence of two possible equilibria

In this subsection, we formulate the result on existence of equilibria in terms of Rw.
We give the following result without proof.

Theorem 3.1 :

(1) There always exists a trivial equilibrium E0 = (0, 0) of (3)
(2) There exists a positive equilibrium E1 = (w1, v1) of (3) given by

E1 =

(
mvRw

2 (1− aw) rw
v1,

1

k
(Rw − 1)

)
,

if

Rw > 1. (7)

3.2. Stability of equilibria

In this subsection, we study the stability of equilibria. We present the stability of
the trivial equilibrium without the proof.

Theorem 3.2 : The trivial equilibrium E0 of (3) has two real eigenvalues Rw − 1
and −mv and is locally asymptotically stable if

Rw < 1 (8)

and unstable if (7).

Next, we study the stability of the positive equilibrium. Let us assume that
(7) holds. For the eigenvalues associated to the positive equilibrium, we introduce
positive constants

ζ1 := mv

(
2− 1

Rw

)
and ζ2 := mv

(
1− 1

Rw

)
. (9)

We prove the following result in Appendix A.

Theorem 3.3 : Let us assume that (7) holds. The positive equilibrium E1 of (3)
has two eigenvalues λi, i = 1, 2 where

λ1,2 =
1

2

{
−ζ1 ±

(
ζ2

1 − 4ζ2

) 1

2

}
(10)

and λ1,2 lie in the left half plane. Hence, the positive equilibrium E1 is locally asymp-
totically stable.

We have checked that for the two-compartment model, the stability of the posi-
tive equilibrium on its whole existence region can also be shown for division rates
with general negative feedback. In this sense we could exclude the possibility of
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oscillations for two-compartment models with more general negative feedback than
discussed in this paper. For the three-compartment model, however, existence of
such results is less obvious and beyond the scope of this paper. Since our objective
is comparison of the two models, we then do not present the more general results
for the two-compartment model either.

4. Stem cells and mature cells dynamics with progenitor cells

In this section, we consider the three-compartment model (4). We introduce the
reproduction number of progenitor cells Ru in an analogous manner to Rw. Ru is
given by

Ru =
(2au − 1)ru

mu
. (11)

The combination of Rw and Ru characterizes the existence and stability of equilib-
ria.

4.1. Existence of three possible equilibria

In this subsection, we consider existence of equilibria. The following theorem de-
scribes that (4) admits three possible equilibria, a trivial, no stem cell and a positive
equilibrium. We omit the proof.

Theorem 4.1 :

(1) There always exists a trivial equilibrium E0 = (0, 0, 0) of (4).
(2) There exists a no stem cell equilibrium E1 = (0, u1, v1) of (4) given by

E1 =

(
0,

mvRu
2 (1− au) ru

v1,
1

k
(Ru − 1)

)
if

Ru > 1. (12)

(3) There exists a positive equilibrium E2 = (w2, u2, v2) of (4) given by

E2 =

(
mu

2 (1− aw) rw
(Rw −Ru)u2,

mvRw
2 (1− au) ru

v2,
1

k
(Rw − 1)

)
if

Rw > 1 (13)

and

Rw > Ru. (14)
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4.2. Stability of equilibria

In this subsection, we study the stability of each equilibrium. We present the sta-
bility of the trivial equilibrium without the proof.

Theorem 4.2 : The trivial equilibrium E0 of (4) has three real eigenvalues Rw−1,
mu (Ru − 1) and −mv and is locally asymptotically stable if

max {Ru, Rw} < 1 (15)

and unstable if

max {Ru, Rw} > 1. (16)

Now, we study the stability of the no stem cell equilibrium. Let us assume that
(12) holds. For the eigenvalues associated to the no stem cell equilibrium, we intro-
duce positive constants

ζu1 := mv

(
2− 1

Ru

)
and ζu2 := mvmu

(
1− 1

Ru

)
. (17)

Then we prove the following theorem in Appendix A.

Theorem 4.3 : Let us assume that (12) holds. The no stem cell equilibrium E1 of
(4) has three eigenvalues λi, i = 1, 2, 3 where

λ1 =
Rw
Ru
− 1 and λ2,3 =

1

2

{
−ζu1 ±

(
(ζu1 )2 − 4ζu2

) 1

2

}
(18)

and λ2,3 lie in the left half plane. The no stem cell equilibrium E1 is locally asymp-
totically stable if

Ru > Rw (19)

and unstable if (14).

Let us investigate the stability of the positive equilibrium. We assume that (13)
holds and define

α := (2au − 1) ru and ρ (a) :=
a

Rw
, a ∈ R. (20)

Then,

mu > max {0, ρ (α)} (21)

defines the existence region in a parameter space (α,mu,mv) as well as (α,mu).
In Appendix B, we will construct the stability boundary in the parameter space
(α,mu,mv) and represent it in terms of two functions ξ+ (α,mv) and ξ− (α,mv).
As the representation of ξ+ (α,mv) and ξ− (α,mv) is somewhat complex and unin-
tuitive, we here restrict ourselves to stating their existence and presenting some of
their qualitative properties. To this aim, we introduce positive parameters

q :=
1− 1

Rw

2− 1
Rw

and ν :=
q

3− 2
Rw
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and functions

δ1 (α) :=
1

2− 1
Rw

(q + ρ (α)) for α ∈ (−qRw, 0) ,

δ2 (α) := ν
(√

ρ (α)− 1
)2

for α ∈ (0, Rw) .

Note that δ1 and δ2 are positive on their respective domains. Next, in the (α,mv)
plane, we introduce the sets

Ω := {(α,mv) |α ∈ R,mv ∈ (0,∞)} , (22)

A1 := {(α,mv) |α ∈ (−qRw, 0) ,mv ∈ (0, δ1(α))} ∪ {(0,mv) |mv ∈ (0, ν)} , (23)

A2 := {(α,mv) |α ∈ (0, Rw) ,mv ∈ (0, δ2(α)]} . (24)

Here we note that limα→0− δ1(α) = q
2− 1

Rw

> ν. Then we prove the following propo-
sition in Appendix B.

Proposition 4.4: Let us assume that (13) holds. There exist two functions
ξ− (α,mv) and ξ+ (α,mv) such that

(1) for (α,mv) ∈ A1

ξ+ (α,mv) > 0, (25)

(2) for (α,mv) ∈ A2

ξ+ (α,mv) ≥ ξ− (α,mv) > ρ (α) (26)

and equality holds only for mv = δ2 (α).

Now we can determine the exact regions of stability and instability in the param-
eter space (α,mu,mv) in terms of the functions ξ− (α,mv) and ξ+ (α,mv).

Theorem 4.5 : Let us assume that (13) holds.

(1) For (α,mv) ∈ Ω \ (A1 ∪A2) the positive equilibrium E2 is locally asymptot-
ically stable if (21) holds.

(2) For (α,mv) ∈ A1 the positive equilibrium E2 is locally asymptotically stable
if

mu > ξ+ (α,mv) (27)

and is unstable if

0 < mu < ξ+ (α,mv) . (28)

(3) For (α,mv) ∈ A2 the positive equilibrium E2 is locally asymptotically stable
if

mu > ξ+ (α,mv) or ξ− (α,mv) > mu > ρ (α) (29)

and is unstable if

ξ− (α,mv) < mu < ξ+ (α,mv) . (30)
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It is shown that the positive equilibrium can be unstable, contrary to the two-
compartment model. The instability region for the positive equilibrium shrinks as
mv increases.

Theorem 4.6 : Let us assume that (13) holds.

(1) For (α,mv) ∈ A1

∂ξ+ (α,mv)

∂mv
< 0. (31)

(2) For (α,mv) ∈ A2

∂ξ− (α,mv)

∂mv
> 0 and

∂ξ+ (α,mv)

∂mv
< 0. (32)

In Fig. 2, we show regions of stability and instability of the positive equilibrium
and no stem cell equilibrium in the parameter space (α,mu) for numerical examples
including six different values of mv. The figure shows how the instability region
of the positive equilibrium shrinks as mv increases as stated in the conclusion of
Theorem 4.6.

5. Discussion

We have analysed two models of stem cell maturation that account for self-renewal,
differentiation, cell death and regulation of cell division by the mature cell popu-
lation. We have considered two approximations of the chain of maturation stages:
one in which only stem cells and fully mature cells are taken into account (the
two-compartment model (3)) and one in which we also consider an intermediate
differentiation stage between stem cells and fully differentiated cells, the so-called
progenitor cells, (the three-compartment model (4)). We have focused on the exis-
tence of equilibrium points and their local stability properties.
The extension of the concept of reproduction numbers, that is well known in

ecology and epidemiology [7], facilitates our analysis. To our knowledge, this is
the first time that the concept of reproduction number is used in the context of
stem cell population dynamics. We have shown in Theorems 3.1 and 4.1 that the
reproduction numbers of stem cells and progenitor cells can be used to characterise
existence boundaries for equilibria and we will discuss in the following that these
characterisations allow for interpretations of the boundaries.
Regarding the two-compartment model (3), we have found that a positive equi-

librium exists when Rw > 1. To understand this, we introduce the regulated repro-
duction number of stem cells as

Sw(v) =
Rw

1 + kv
.

It is easy to see that Sw(v) = 1 defines the equilibrium condition for the mature
cells. Since regulation means reduction of division, Rw should exceed Sw(v) and
thus Rw > 1. Furthermore, we have proved that the positive equilibrium is stable
whereever it exists (see Theorem 3.3).
The behaviour exhibited by our three-compartment model is, expectedly, richer

and more interesting. In this case we can distinguish two scenarios: Rw < 1 and
Rw > 1. In the former case, for similar reasons as in the two-compartment model,
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(f) mv = 0.25

Figure 2. Stability region of the positive and no stem cell equilibrium for Rw = 2.25 in the parameter
space (α,mu). The straight solid line and the dotted line represent mu = ρ(α) and mu = α, that is,
the existence boundary of the positive and no stem cell equilibrium, respectively. The curve represents
mu = ξ±(α,mv), that is, the stability boundary of the positive equilibrium. P:S and P:U denote the
stability and instability region of the positive equilibrium, respectively and, similarly, NS:S and NS:U
denote the stability and instability region of the no stem cell equilibrium, respectively.

there cannot be a positive equilibrium. However, a no stem cell equilibrium exists
provided that Ru > 1, i.e. if the reproduction number of the progenitor cells is
larger than one. If Rw > 1 a positive equilibrium may exist. Now we introduce the
regulated reproduction number of progenitor cells:

Su(v) =
Ru

1 + kv
.

The equilibrium condition for the mature cells is defined by Sw(v) = 1. On the
other hand, Su(v) < 1 holds at the equilibrium condition because if Su(v) ≥ 1
then, together with inflow of stem cells, the progenitor cells would certainly grow.
Therefore, it follows that

Sw(v) > Su(v),
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i.e., in equilibrium progenitor cells should be less productive than the stem cells, as
the former have additional inflow from the latter. Thus Rw > Ru is necessary for
the existence of the positive equilibrium.
The first interesting result concerning the positive equilibrium for the three-

compartment model is related to its co-existence with the trivial equilibrium. Wher-
ever in parameter space the positive equilibrium exists, the trivial equilibrium is
unstable. This implies that, in biological terms, the cell population cannot be erad-
icated by de-stabilising the positive equilibrium.
Contrary to the behaviour observed in the two-compartment model, the stability

region for the positive equilibrium is, generally speaking, smaller than its existence
region (see Fig. 2). An interesting aspect regarding the instability region for the
positive equilibrium is proved in Theorem 4.6: The instability region shrinks as the
mortality rate of the mature cells, mv increases. Theorem 4.6 and Fig. 2 show that
the area of the instability region is maximal when mv → 0 and collapses to a point
and eventually disappears asmv increases. The physical rationale for this behaviour
can be understood as follows. Consider a sufficiently small mv. For a steady and
finite v to be maintained the flux from the progenitor cell compartment into the
mature cell compartment must vanish. This, in turn, implies that death and inflow
within the progenitor cell compartment must exactly balance. On the other hand,
as mv increases, the steady and finite v can be sustained even when there is flow
of population between the progenitor cell and the mature cell compartment, which
removes the requirement that inflow and cell death are perfectly balanced in the
progenitor cell compartment. It is clear that the region of the parameter space in
which the former condition is satisfied is smaller than the region corresponding to
the latter situation.
Another interesting result concerning the instability region of the positive equi-

librium in our three-compartment model is that within this region no equilibrium,
including the trivial equilibrium, is stable. This means that within that region the
system either exhibits oscillations or unbounded growth. In the latter case, our
model could thus be re-interpreted as a model for studying the emergence of malig-
nancies such as cancer. Oscillations might also be considered in terms of pathological
situations as it is the cases in several diseases of haematopoietic system [5, 6]. This
is left as a subject for future research.
Regarding the two questions we posed in the Introduction, our two models in-

dicate significant differences in the behaviour of the system as a function of the
number of intermediate steps between stem and mature cells. Homeostasis can be
reproduced by two- and three-compartment models (models with and without pro-
genitor cells). However, instability can be found only in the three-compartment
model. Therefore, the intermediate stage of differentiation is responsible for the
emergence of an instability region. On the other hand, we have found that the no
stem cell equilibrium is unstable whenever the positive equilibrium exists (see The-
orem 4.3 and Fig. 2). Since the parameter region where the positive equilibrium
exists can be regarded as the more realistic parameter region, our model seems
to point out to a scenario in which a (steady) pool of stem cells is maintained
throughout the lifetime of the organism.

Acknowledgement

The authors are very grateful to the anonymous referees for carefully reading and
constructive comments which led to an improvement of the manuscript. AM-C
was supported by ERC Starting Grant “Biostruct”, Emmy Noether Programme of
German Research Council (DFG) and SFB 873 “Maintenance and Differentiation



December 24, 2010 10:34 Journal of Biological Dynamics stem_cells_multicomp_6_anna

12 REFERENCES

of Stem Cells in Development and Disease”.

References

[1] B. Alberts, A. Johnson, J. Lewis, M, Raff, K. Roberts and P. Walter. Molecular Biology of the Cell.
4th Ed. Garland Science. New York, USA (2002)

[2] M. Al-Hajj and M. F. Clarke. Self-renewal and solid tumor stem cells. Oncogene 23 (2004), pp 7274-
7282.

[3] O. Arino and M. Kimmel. Stability analysis of models of cell production systems. Math. Modelling.
7 (1986), pp 1269-1300.

[4] P. A. Beachy, S. S. Karhadkar and D. M. Berman. Tissue repair and stem cell renewal in carcino-
genesis . Nature 432 (2004), pp 324-331

[5] C. Colijn, and M. C. Mackey. A mathematical model of hematopoiesis: I. Periodic chronic myeloge-
nous leukemia.. J. Theor. Biol. 237 (2) (2005), pp 117-132.

[6] C. Colijn, and M. C. Mackey. A mathematical model of hematopoiesis: II. Cyclical neutropenia.. J.
Theor. Biol. 237 (2) (2005), pp 133-146.

[7] K. Dietz and J. A. P. Heesterbeek. The concept of R0 in epidemic theory . Statistica neerlandica 50
(1) (1996), pp 89-110.

[8] G. Dontu, M. Al-Hajj, W. M. Abdallah, M.F. Clarke and M.S. Wicha. Stem cells in normal breast
development and breast cancer. Cell Prolif. 36 (Supp 1) (2003), pp 59-72.

[9] C. Foley, S. Bernard and M. C. Mackey. Cost-effective G-CSF therapy strategies for cyclical neu-
tropenia: Mathematical modelling based hypotheses. J. Theor. Biol. 238 (2006), pp 754-763.

[10] F. R. Gantmacher. The Theory of Matrices. Vol. 2, Chelsea, NewYork, 1959.
[11] A. Marciniak-Czochra, T. Stiehl, W. Jaeger, A. Ho and W. Wagner. Modelling asymmetric cell di-

vision in haemtopoietic stem cells - regulation of self-renewal is essential for efficient re-population.
Stem Cells Dev. 17 (2008), pp 1-10.

[12] A. Marciniak-Czochra, T. Stiehl and W. Wagner. Modeling of replicative senescence in hematopoietic
development. Aging 1 (2009), pp 723-732.

[13] T. Stiehl and A. Marciniak-Czochra. Characterization of stem cells using mathematical models of
multistage cell lineages. Math. Comp. Modelling (2010), doi:10.1016/j.mcm.2010.03.057

[14] A. J. Wagers, J. L. Christensen and I. L. Weissman. Cell fate determination from stem cells. Gene
Ther. 10 (2002), pp 606-612.

[15] I. L. Weissman. Stem cells: Units of development, units of regeneration, and units of evolution. Cell.
100 (2000), pp 157-168.



December 24, 2010 10:34 Journal of Biological Dynamics stem_cells_multicomp_6_anna

REFERENCES 13

Supplementary material:Stability analysis of multi-compartment
models for cell production systems

Yukihiko Nakata, Philipp Getto, Anna Marciniak-Czochra and Tomás Alarcón

Appendix A. Proof of Theorems 3.3 and 4.3

In this subsection, we study the stability of the positive equilibrium for (3) and the
no stem cell equilibrium for (3). We introduce the following

fw,1(v) : = (2aw − 1)
rw

1 + kv
, fw,2(v) := 2 (1− aw)

rw
1 + kv

, (A1)

fu,1(v) : = (2au − 1)
ru

1 + kv
, fu,2(v) := 2 (1− au)

ru
1 + kv

. (A2)

Proof of Theorem 3.3: For the positive equilibrium E1 = (w1, v1) we have

fw,1(v1)− 1 = 0 and w1 =
mvv1

fw,2(v1)
.

By dropping the index from w1 and v1, we obtain the characteristic equation:

0 = λ

{
λ+mv

(
1−

f ′w,2(v)

fw,2(v)
v

)}
− f ′w,1(v)mvv. (A3)

By a direct calculation, it follows that

−
f ′w,2(v)

fw,2(v)
v = −f ′w,1(v)v = 1− 1

Rw
,

and hence, (A3) becomes 0 = λ2 + ζ1λ+ ζ2. Then λ1,2 are as stated in (10) and lie
in the left half plane. �

Proof of Theorem 4.3: Since we have

fu,1(v1)−mu = 0 and u1 =
mvv1

fu,2(v1)
,

by dropping the index from u1 and v1, we obtain the characteristic equation:

0 = {λ− (fw,1(v)− 1)}
[
λ

{
λ+mv

(
1−

f ′u,2(v)

fu,2(v)
v

)}
− f ′u,1(v)mvv

]
.

We obtain

λ1 = fw,1(v)− 1 =
Rw
Ru
− 1

from (A2) and 1 + kv = Ru. By a direct calculation, it follows that

−
f ′u,2(v)

fu,2(v)
v = 1− 1

Ru
and − f ′u,1(v)v = fu,1(v)

(
1− 1

Ru

)
= mu

(
1− 1

Ru

)
.
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Then other roots are determined as λ2,3 which lie in the left half plane, similar to
the proof of Theorem 3.3. Therefore, the stability of the no stem cell equilibrium
E1 is determined by λ1 and we obtain the conclusion. �

Appendix B. Proof of Proposition 4.4 and Theorems 4.5 and 4.6

In this subsection, we prove Proposition 4.4 and Theorems 4.5 and 4.6.
Since we have

fw,1(v2)− 1 = 0, u2 =
mvv2

fu,2(v2)
and w2 =

(mu − fu,1(v2))mvv2

fw,2(v2)fu,2(v2)
,

by dropping the index from w2, u2 and v2, we obtain the characteristic equation:

0 =λ

[
(λ− fu,1(v) +mu)

{
λ−mv

(
f ′u,2(v)

fu,2(v)
v − 1

)}
−mvv

{
f ′u,1(v) + (mu − fu,1(v))

f ′w,2(v)

fw,2(v)

}]
− f ′w,1(v) (mu − fu,1(v))mvv.

(B1)

By a direct calculation, we have the following relations:

−
f ′u,2(v)

fu,2(v)
v = −

f ′w,2(v)

fw,2(v)
v = 1− 1

Rw
,

−f ′u,1(v)v = fu,1(v)

(
1− 1

Rw

)
,

−f ′w,1(v)v = fw,1(v)

(
1− 1

Rw

)
= 1− 1

Rw
,

−fu,1(v) +mu = mu

(
1− Ru

1 + kv

)
= mu

(
1− Ru

Rw

)
and then, (B1) becomes

0 = λ

[{
λ+mu

(
1− Ru

Rw

)}{
λ+mv

(
2− 1

Rw

)}
+mvmu

(
1− 1

Rw

)]
+mumv

(
1− Ru

Rw

)(
1− 1

Rw

)
. (B2)

Now we rewrite the equation (B2) with using mu
Ru

Rw
= ρ (α) as

0 = λ3 + b1λ
2 + b2λ+ b3, (B3)

where 
b1 = mu − ρ (α) +

(
2− 1

Rw

)
mv,

b2 = mv

{(
3− 2

Rw

)
mu −

(
2− 1

Rw

)
ρ (α)

}
,

b3 = mv

(
1− 1

Rw

)
(mu − ρ (α)) .

(B4)
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By the Routh–Hurwitz theorem (see [10]) for (B3), all roots have negative real
parts if and only if b1 > 0, b3 > 0 and b1b2 − b3 > 0. We see that b1 and b3 are
positive, since we have Rw > 1 and (21). Therefore, we focus only on the sign of
b1b2 − b3.
Let us introduce the functions

ϕ1 (x, y) = −x−
(

2− 1

Rw

3− 2

Rw

x+
1− 1

Rw

3− 2

Rw

)
+
(

2− 1
Rw

)
y,

ϕ2 (x, y) = x

{(
2− 1

Rw

3− 2

Rw

x+
1− 1

Rw

3− 2

Rw

)
−

(
2− 1

Rw

)2

3− 2

Rw

y

}
.

(B5)

From (B4) we have

b1b2 − b3 = mv

(
3− 2

Rw

){
m2
u + ϕ1 (ρ (α) ,mv)mu + ϕ2 (ρ (α) ,mv)

}
. (B6)

Hence, we consider (B6) under (21). Now we transform variables as

x = ρ (α) and y = mv (B7)

and then introduce a parameter set

Ωx := {(x, y) |x ∈ R, y ∈ (0,∞)} .

Consequently, we consider the set of quadratic polynomials

F(x,y) (mu) = m2
u + ϕ1 (x, y)mu + ϕ2 (x, y) , for (x, y) ∈ Ωx (B8)

under

mu > max {0, x} . (B9)

At first, we determine the existence of real roots of

F(x,y)(mu) = 0. (B10)

We define functions

D(x, y) := ϕ1 (x, y)2 − 4ϕ2 (x, y) for (x, y) ∈ Ωx (B11)

and for x > 0

η2 (x) :=
(√
x− 1

)2
ν and η3 (x) :=

(√
x+ 1

)2
ν.

We introduce a set

Bd := {(x, y) |x > 0, y ∈ (η2 (x) , η3 (x))} .

In the following lemma, we show that (B10) admits no real roots for (x, y) ∈ Bd
and one or two real roots for (x, y) ∈ Ωx \Bd.

Lemma B.1: The following holds.
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(1) D(x, y) < 0 if and only if (x, y) ∈ Bd.
(2) D(x, y) ≥ 0 if and only if (x, y) ∈ Ωx \Bd. In particular, D(x, y) = 0 if and

only if y = ηj (x), j = 2, 3.
Moreover, for (x, y) ∈ Ωx \ Bd there exist one or two real roots of (B10)

given by

γ± (x, y) :=
1

2

{
−ϕ1 (x, y)±

√
D (x, y)

}
(B12)

with γ− (x, y) = γ+ (x, y) for y = ηj (x), j = 2, 3.

Proof : We study the sign of D(x, y). For simplicity, we put

x =
2− 1

Rw

3− 2
Rw

x+
1− 1

Rw

3− 2
Rw

.

From (B5), we obtain

D(x, y) =

(
2− 1

Rw

)2

y2 +

{
2 (−x− x) + 4x

2− 1
Rw

3− 2
Rw

}(
2− 1

Rw

)
y + (x− x)2

=

(
2− 1

Rw

)2

y2 − 2 (x+ 1)
1− 1

Rw

3− 2
Rw

(
2− 1

Rw

)
y +

{
(x− 1)

1− 1
Rw

3− 2
Rw

}2

=

(
2− 1

Rw

)2 [
{y + (x− 1) ν}2 − 4νxy

]
. (B13)

Therefore, it follows that

D (x, y) > 0 for (x, y) ∈ {(x, y) |x < 0, y > 0} . (B14)

Let us consider the case x ≥ 0. From (B13), we obtain

D (x, y) =

(
2− 1

Rw

)2

(y − η2 (x)) (y − η3 (x)) , x ≥ 0.

Therefore, we see

D (x, y)

{
< 0 for (x, y) ∈ Bd,
≥ 0 for (x, y) ∈ {(x, y) |x ≥ 0, y > 0} \Bd,

(B15)

Now we easily obtain the formula of the roots as (B12), since (B10) is a quadratic
polynomial. Then, from (B14) and (B15), we obtain the conclusion of the lemma.
We also see that D(x, y) = 0 if and only if either y = η2(x) or y = η3(x) holds.
Hence, the proof is complete. �

Next we study the polynomial F(x,y)(mu) to determine the sign.

Lemma B.2:

(1) For x < 0 the following hold.
a) If ϕ2 (x, y) ≥ 0, then F(x,y)(mu) > 0 for any mu > 0.
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b) If ϕ2 (x, y) < 0,

γ+ (x, y) > 0. (B16)

(2) For x = 0 the following hold.
a) If ϕ1(0, y) ≥ 0, then F(0,y)(mu) > 0 for any mu > 0.
b) If ϕ1(0, y) < 0, then (B16) holds.

(3) For x > 0 the following hold.
a) If either 2x + ϕ1(x, y) ≥ 0 or (x, y) ∈ Bd holds, then F(x,y)(mu) > 0

for any mu > x.
b) If 2x+ ϕ1(x, y) < 0 and (x, y) ∈ Ωx \Bd, then

γ+ (x, y) ≥ γ− (x, y) > x. (B17)

Proof : (1) a) By substituting mu = 0 in (B8), we obtain F(x,y)(0) = ϕ2(x, y).
We claim that if ϕ2(x, y) ≥ 0 then F ′(x,y)(0) > 0 for x < 0. Since F(x,y) (mu) is a
quadratic polynomial with the positive coefficient of m2

u, this claim shows that if
ϕ2(x, y) ≥ 0 then F(x,y)(mu) is monotone increasing for mu > 0 with F(x,y)(0) ≥ 0
and hence the conclusion holds.
We show that the claim holds. From (B5) ϕ2(x, y) ≥ 0 implies

2− 1
Rw

3− 2
Rw

x+
1− 1

Rw

3− 2
Rw

≤

(
2− 1

Rw

)2

3− 2
Rw

y. (B18)

Then, by (B5) and (B8) it follows that

F ′(x,y)(0) = ϕ1(x, y) ≥ −x+

(
2− 1

Rw

)
1− 1

Rw

3− 2
Rw

y > 0.

Hence, the claim holds and we obtain the conclusion. b) There exist one or two real
roots, γ− (x, y) and γ+ (x, y), of (B10) by Lemma B.1. Since we have F(x,y)(0) =
ϕ2(x, y), ϕ2(x, y) < 0 implies that

γ− (x, y) < 0 < γ+ (x, y)

holds and hence (B16) follows.
(2) a) By substituting mu = 0 in (B8), we have

F(0,y) (0) = ϕ2(0, y) = 0 (B19)

and F ′(0,y) (0) = ϕ1(0, y). Therefore, ϕ1(0, y) ≥ 0 implies that F(0,y) (mu) is mono-
tone increasing for mu > 0 with F(0,y) (0) = 0. Hence, we obtain the conclusion.
b) By Lemma B.1 we have that γ− (x, y) and γ+ (x, y), which are the roots of
(B10), are real. From (B19), one of the roots is given by 0. On the other hand,
since F ′(0,y) (0) = ϕ1(0, y), ϕ1(0, y) < 0 and F(0,y)(0) = 0 imply that other root is
positive. Thus, we obtain (B16).
(3) a) Since F(x,y) (mu) is a quadratic polynomial with the positive coefficient

of m2
u and F ′(x,y) (x) = 2x + ϕ1(x, y), 2x + ϕ1(x, y) ≥ 0 implies that F(x,y) (mu) is

monotone increasing formu > x. On the other hand, (x, y) ∈ Bd impliesD(x, y) < 0
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by Lemma B.1 and, hence, that there exists no real roots of (B10). Therefore, if
F(x,y) (x) > 0 then, we immediately obtain the conclusion. Now we see

F(x,y) (x) =

(
2− 1

Rw

)
1− 1

Rw

3− 2
Rw

xy > 0, (B20)

by substituting mu = x in (B8). Hence, we obtain the conclusion. b) By Lemma
B.1, we have D(x, y) ≥ 0 for (x, y) ∈ Ωx\Bd and, hence, that there exist one or two
real roots, γ− (x, y) and γ+ (x, y), of (B10). Since F ′(x,y) (x) = 2x + ϕ1(x, y) holds,
2x+ ϕ1(x, y) < 0 and (B20) imply (B17).
Hence, the proof is complete. �

Let us identify the parameter space in Ωx which ensures each conditions in Lemma
B.2. We introduce a function

η1 (x) :=
1

2− 1
Rw

(q + x) for x ∈ (−q, 0)

In the (x, y) plane we introduce the sets (cf. (23) and (24))

B1 := {(x, y) |x ∈ (−q, 0) , y ∈ (0, η1 (x))} ∪ {(0, y) |y ∈ (0, ν)} ,

B2 := {(x, y) |x ∈ (0, 1) , y ∈ (0, η2 (x)]} .

Note that η1 is positive on the domains and limx→0− η1(x) > ν.

Lemma B.3:

(1) If (x, y) ∈ Ωx \ (B1 ∪B2) then F(x,y)(mu) > 0 for any mu > max {0, x}.
(2) If (x, y) ∈ B1 then (B16) and

F(x,y)(mu)

{
< 0 for mu < γ+ (x, y) ,

> 0 for mu > γ+ (x, y) .
(B21)

hold.
(3) If (x, y) ∈ B2 then (B17) and

F(x,y)(mu)

{
> 0 for mu > γ+ (x, y) or γ− (x, y) > mu > x,

< 0 for γ− (x, y) < mu < γ+ (x, y) ,
(B22)

hold.

Proof : (1) At first, we divide the set Ωx \ (B1 ∪B2) into three sets

L1 := {(x, y)|y ≥ η1 (x) , x ∈ (−q, 0)} ∪ {(x, y)|x ≤ −q} ,

L2 := {(x, y)|y ≥ ν, x = 0} ,

L3 := {(x, y)|y > η2 (x) , x ∈ (0, 1)} ∪ {(x, y)|x ≥ 1} ,

and verify the conditions of Lemma B.2 for (x, y) ∈ Lj , j = 1, 2, 3.
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For (x, y) ∈ L1, we have x < 0 and

2− 1
Rw

3− 2
Rw

x+
1− 1

Rw

3− 2
Rw

−

(
2− 1

Rw

)2

3− 2
Rw

y ≤ 0.

Hence, ϕ2(x, y) ≥ 0 holds.
For (x, y) ∈ L2, it holds

ϕ1(0, y) = −
1− 1

Rw

3− 2
Rw

+

(
2− 1

Rw

)
y =

(
2− 1

Rw

)
(y − ν) ≥ 0.

Let us consider the case (x, y) ∈ L3. Since it holds that

2x+ ϕ1(x, y) =
1− 1

Rw

3− 2
Rw

(x− 1) +

(
2− 1

Rw

)
y, (B23)

2x+ ϕ1(x, y) ≥ 0 holds for

(x, y) ∈ L31 := {(x, y)|y ≥ ν (1− x) , x ∈ (0, 1)} ∪ {(x, y)|x ≥ 1} .

Since it holds that

η2 (x) < ν (1− x) < η3 (x) for x ∈ (0, 1) ,

we obtain that L3 = L31 ∪Bd.
(2) For (x, y) ∈ {(x, y) |x ∈ (−q, 0) , y ∈ (0, η1 (x))} we obtain ϕ2(x, y) < 0 from

the above discussion. For (x, y) ∈ {(0, y) |y ∈ (0, ν)}, we also see that ϕ1(0, y) < 0.
(3) For (x, y) ∈ B2, we obtain 2x+ ϕ1(x, y) < 0 and (x, y) ∈ Ωx \Bd. �

Finally, by using the transformation (B7) again, from Lemma B.3, we obtain the
roots of (B10) given by

γ± (ρ (α) ,mv) for (α,mv) ∈ A1 ∪A2, (B24)

where A1 and A2 are defined by (23) and (24), respectively. Then, we can define
the functions

ξ± (α,mv) := γ± (ρ (α) ,mv) for (α,mv) ∈ A1 ∪A2. (B25)

We prove Proposition 4.4.
Proof of Proposition 4.4: By (B25), it is obvious that there exist ξ± (α,mv)

for (α,mv) ∈ A1 ∪ A2. From Lemma B.3 and (B16) and (B17) in Lemma B.2, we
obtain (25) and (26), respectively. Since {(α,mv)|mv = δ3(α)} 6⊂ A2 , ξ+(α,mv) =
ξ−(α,mv) holds only for mv = δ2(α) by Lemma B.1. Hence the proof is complete.
�

Proof of Theorem 4.5: By the Routh–Hurwitz theorem (see [10]) for (B3), all
roots have negative real parts if and only if b1 > 0, b3 > 0 and b1b2 − b3 > 0. We
have b1 > 0 and b3 > 0 from (B4). By Lemma B3, we obtain the sign of b1b2 − b3
for any (α,mv) ∈ Ω after the transformation of variables (B7) again. Hence, the
proof is complete. �
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Proof of Theorem 4.6: (1) Let us assume that (x, y) ∈ B1. We consider γ+ (x, y)
and show that

γ+ (x, y + ε)− γ+ (x, y)

ε
< 0 (B26)

for any ε > 0 such that (x, y + ε) ∈ B1. To show that (B26), we substitute mu =
γ+ (x, y + ε) in F(x,y)(mu) and then consider the sign. If the sign is negative, then
(B26) holds, since F(x,y)(mu) is a quadratic polynomial with positive coefficient of
m2
u and F(x,y)(mu) = 0 with mu = γ+ (x, y).
From (B5), it follows

ϕ1 (x, y) = ϕ1 (x, y + ε)−
(

2− 1

Rw

)
ε and ϕ2 (x, y) = ϕ2 (x, y + ε)+

(
2− 1

Rw

)2

3− 2
Rw

xε.

Therefore, by using F(x,y+ε) (γ+ (x, y + ε)) = 0, we obtain

F(x,y) (γ+ (x, y + ε)) = ε

(
2− 1

Rw

)(
2− 1

Rw

3− 2
Rw

x− γ+ (x, y + ε)

)
< 0, (B27)

since we have x ≤ 0 and γ+ (x, y + ε) > 0 by Lemmas B.2 and B.3. This shows
(B26) holds.
(2) Let us assume that (x, y) ∈ B2. Similar to (1), we consider γ± (x, y) and show

that

γ− (x, y + ε)− γ− (x, y)

ε
> 0 and

γ+ (x, y + ε)− γ+ (x, y)

ε
< 0 (B28)

for any ε > 0 such that (x, y + ε) ∈ B2. To show that (B28), we substitute mu =
γ± (x, y + ε) in F(x,y)(mu). We obtain (B27) and

F(x,y) (γ− (x, y + ε)) =

(
2− 1

Rw

)
ε

(
2− 1

Rw

3− 2
Rw

x− γ− (x, y)

)
< 0

since x < γ− (x, y + ε) by Lemmas B.2 and B.3. Hence, (B28) holds and the proof
is complete. �


