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Interference mechanism of seemingly superluminal tunnelling
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Apparently ’superluminal’ transmission, e.g., in quantum tunnelling and its variants, occurs via
a subtle interference mechanism which allows reconstruction of the entire spacial shape of a wave
packet from its front tail. It is unlikely that the effect could be described adequately in simpler

terms.
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INTRODUCTION

In the early 1930’s MacColl [I] noticed that quantum
tunnelling appears to take no time or little time, in the
sense that the peak of a wavepacket, transmitted across
a classically forbidden region, may arrive at a detector
earlier than that of the freely propagating one. If the
advanced peak is used to predict the time 7 the particle
has spent in the barrier region, the result is nearly
zero. Dividing the barrier width by 7 yields a velocity
exceeding the speed of light ¢, suggesting that the
transmission has a ’superluminal’ aspect. The effect has
been predicted and observed for various systems such as
potential barriers, semi-transparent mirrors, refraction
of light and microwaves in undersized wave guides
(for a review see Refs. [2]-[5]). Since below a barrier
evanescent waves decay, rather than propagate, it cannot
be explained in terms of superluminal group velocities
found, for example, in propagation in transparent media
with inverted atomic populations [6]

THE SEARCH FOR A PHYSICAL MECHANISM

One outstanding question concerns the physical mech-
anism of the superluminal effect in tunnelling. Several
authors have made efforts toward answering it. Nimtz
and co-workers suggested that ’superluminality’ in prop-
agation of electromagnetic pulses could be explained in
terms of virtual photons capable of violating Einstein rel-
ativity on a microscopic scale [7]-[9]. Winful, [5], [10]-
[13], refused to take the claim of violation of special rel-
ativity seriously [I3], since the evanescent wave are de-
scribed by classical Lorentz-invariant Maxwell equations.
Instead he argued that the effect could be explained in
terms of the energy (or probability) stored with exponen-
tially decaying density in the classically forbidden region
where no actual propagation of the pulse occurs. Rather,
the energy output at the right end of the barrier adia-
batically follows the input at its left end. Buettiker and
Washburn [14] dismissed the speculation about superlu-
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FIG. 1. (colour online) A naive view of reshaping: the trans-
mitted pulse (solid) is carved from the front of the incident
Gaussian envelope (dashed), whereby its peak is instantly ad-
vanced by a distance d. The problem is that if the Gaussian
is replaced by two-hump shape (dot-dashed), the transmitted
pulse should remain single-peaked, and this contradicts the
experiment.

minal velocities by pointing out, following Refs. [15] and
[16], that the transmitted pulse is shaped out of the front
end of the incident one, in a manner similar to what is
shown in Fig.1l. Winful disagreed [I2], stating ’irrecon-
cilable differences’ between his mechanism and the re-
shaping model. He argued that by carving the front part
of a two-humped pulse one should get a single-humped
transmitted pulse, whereas what goes through in an ex-
periment repeats the original two-humped shape (see the
diagram in Fig.1). This controversy, to our knowledge
still unresolved [I7], is the subject of this paper. We
show that the essential physics is contained in a simple
interference effect, and offer an explanation which doesn’t
involve, explicitly or implicitly, temporal duration of a
tunnelling process.

INTERFERENCE BEHIND THE APPARENTLY
SUPERLUMINAL ADVANCEMENT

The essence of our analysis is captured by a simple
model [I8] shown in Fig.2. A particle of a unit mass car-
ries a large magnetic moment (spin) of (2K + 1) com-
ponents. The particle is described by a wave packet
with a mean momentum pgy, and the spin is first pre-
pared (pre-selected) in a state of our choice, |a) =
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FIG. 2. (colour online) Schematic diagram illustrating our
model. Large spin of a fast particle is pre-selected in a state
|a) prior to entering a magnetic field in which all spin com-
ponents are delayed. The spin state is purified upon passing
the polariser, after which the coordinate part of the wavefunc-
tion is given by a superposition of delayed pulses weighed by
complex quantities 7,,.

ZK K @m|m), and later post-selected in another state

m——
|b) = Zi:—K bm|m). In between, the particle passes
through a region of a width d which contains a small
magnetic field. There the m-th component of the spins
encounters a small rectangular potential wym, where wy,
is the Larmor frequency. Depending on m, the potential
slows the particle down, or speeds it up. One can choose
|a) in such a way that none of the components are sped
up. If the particle is fast, one can also neglect both the
reflection from the edges of rectangular steps and the
spreading of the original pulse. Then, once the spin is
post-selected, (e.g., by passing through a polariser), the
transmitted Gaussian pulse is sum of Gaussians, all (ex-
cept for one with m = 0) delayed relative to the free
propagation, (we use i = 1),

U(x,t) = exp(ipox — pgt/Q)GT(x, t), (1)
K
GT(z,t) = N~1/? Z NmGo(xz — pot + mAzx), (2)
m=0
Nm = exp(—imwrd/po)amby,, (3)
Go(z) = (2/mc?)Y* exp(—2z? /o?), (4)

where Az = wrd/p3 and o is the pulse’s width. We
also assumed that a,, and b,, may take arbitrary values,
and introduced the normalisation factor N = (a|a)(b|b).
With the technical details explained, we can focus on our
main interest, which is to design the shape of the trans-
mitted pulse by choosing appropriate a.,, and b,,. As the
title suggests, we may want to put it a distance o = d
ahead of the freely propagating wave packet, making it
look like the field was crossed infinitely fast. Or even by
n times the distance d, where the same logic would lead
us to a negative duration spent in the field. (This alone
might put one off the idea to describe the transmission in
terms of ’transmission times’.) With K sufficiently large,

our goal can be achieved by choosing n,, to satisfy

(MAZY 0/ Y i = (—nd)!, 0<j<K (5)
m=0

m=0

Then, expanding the Gaussians in Eq. around x = pot
in a Taylor series, and re-summing the series, we have
the desired result G7'(z,t) ~ CG(x — p,t — nd), where
C= Zﬁ:o Nm/N'?. Analytical expressions for 7,, sat-
isfying () are known from Ref.[I8], where it was also
shown that the factor C' rapidly decreases for larger dis-
placements nd, as successful post-selection in |b) becomes
less probable. Since our discussion is one of principles,
this is sufficient for a comparison with the conclusions of
Refs. [5], [10]-[13] and [I4].

Our advancement mechanism is of interference nature,
similar to the one known in the 'weak’ quantum mea-
surements [19], [20]. The setup in Fig.2 splits the in-
cident envelope into K delayed copies, which interfere
destructively everywhere except in the far right, where
their front tails combine to produce a reduced copy of the
original pulse. The transmitted pulse is, indeed, ’front
loaded’ as suggested in Ref.[14], yet the mechanism is not
just the primitive reshaping shown in Fig.1. The device
in Fig.2 reconstructs the global structure of an analytical
function (the pulse’s envelope) from the information con-
tained locally in its front tail. It is also a linear device,
and a two-hump shape shown in Fig.1 is reshaped into a
two-hump transmitted pulse, as is shown in Fig.3a. The
fact that the task becomes more difficult further away
from the main structure of the original pulse, explains
the rapid decrease in the post-selection success rate for
large advancements. The energy, or probability storage
explanation of Refs. [5], [10]-[13] clearly does not apply,
since neither is stored anywhere in the setup.

THE SPEED OF INFORMATION TRANSFER

It is easy to demonstrate that the technique can be
used for fast, but not ’superluminal’ communication, e.g.,
by encoding 0 and 1 in single- and double-hump pulses
respectively. By using a setup similar to the one shown
in Fig.2 one would we able to distinguish between 0 and
1 sooner, than if the carrier pulse were sent by free prop-
agation. There is, however, nothing ’superluminal’ about
this early detection, as the device only interprets the
small amount of information arriving to the detector via
causal ’subliminal’ route. Suppose, for example, that the
sender turns a two-hump pulse into a single-hump one by
cutting it down the middle and discarding the rear part,
yet leaving the front tail untouched. Then the advanced
part of the transmitted pulse will reproduce the now non-
existent two-hump structure, as shown in Fig.3. The
recipient will not realise his/her mistake until he/she re-
ceives the 'subluminal’ part of the signal, produced where
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FIG. 3. (colour online) a) A two-hump pulse transmitted
by a setup shown in Fig.2 (solid) (multiplied by a large fac-
tor z1 = 3.3 % 10%! for better viewing [21]), and the same
initial pulse evolved by free motion. Also shown is the free
evolution of the same pulse cut down the middle with the
rear part amputated (circles). In this case, the transmitted
pulse has the same advanced part followed by a large delayed
signal (dashed). b) Superoscillatory window in the transmis-
sion amplitude and the momentum distribution of the initial
two-hump pulse. The parameters are n = 6, K = 150, and
o/d=1.5.

the destructive interference would make the uncut signal
vanish. This example also contradicts the view [12] that
the output ’adiabatically follows the input’, since there
is no second hump in the input.

The analysis can also be carried out in the momentum
space. The transmitted amplitude can equivalently be
written as (we introduce X = z — p,t to shorten nota-
tions)

GT(X) = N2 / T(p)A(p) exp(ipX)dp,  (6)

where G(z) = [ A(p)exp(ipz)dp and the transmission
amplitude T'(p) is the Fourier transform of the n,,,

K
T(p) = Z Nm exp(impAzx). (7)

m=0

With 7, determined by Eq., the transmission ampli-
tude develops a well defined 'window’ or ’band’, inside
which T'(p), although built from exponentials with only
non-negative frequencies mAx > 0, is proportional to
exp(—ipnd). This is an example of ’super-oscillations’, a
term coined by Berry [23] in order to describe local oscil-
lations of a function with a frequency outside its Fourier
spectrum. Thus, any pulse with a momentum distribu-
tion narrow enough to fit into this super-oscillatory win-
dow will be accurately advanced. A spacial shift by, say,
y of a pulse as a whole does not broaden its momentum
distribution A(p), but only multiplies it by exp(—ipy).
Thus, any initial pulse of the form Zj G(z —yj), single-,
double- or multi-humped, will be advanced as a whole,
to lie ahead of its freely propagating counterpart.

THE INTERFERENCE MECHANISM OF
APPARENTLY SUPERLUMINAL TUNNELLING

Next we show that essentially the same mechanism,
albeit without the flexibility in choosing a desired ad-
vancement, is employed in quantum tunnelling and its
variants, such as transmission of electromagnetic waves
in undersized wave guides. Although the physical setup
of a tunnelling experiment is clearly different from the
one shown in Fig .2, we readily recover the analogues of
Eqgs. , @ and . The transmitted wave packet has
a form similar to Eq.@ (we put the particle’s mass to
unity),

VT (2, 1) = / T(p)Ap — po) explipz — ip*t/2)dp, (8)

where T'(p) is the barrier’s transmission amplitude, and
A(p—po), peaked at the mean momentum py, is the mo-
mentum distribution. If the potential does not support
bound states, the Fourier spectrum of T'(p) cannot con-
tain negative frequencies, and we have an analogue of

Eq.
T(p) = / exp(ipr)é(z)de, (9)

where &(z) = (2m)~! [ T(p) exp(—ipx)dp vanishes for
x < 0, since T'(p) has no poles in the upper half of the
p-plane. Finally, reverting to the coordinate space by re-
writing as a convolution yields the analog of Eq.,

Ul (x,t) = /dw’g(x’)\llo(x —a't), (10)

where Wo(x,t) = [ A(p — po) exp(ipz — ip*t/2)dp is the
freely propagating state, i.e., what the initial wave packet
would have evolved into by the time ¢, had there been no
barrier. As in Eq.7 the transmitted pulse results from
the interference between the freely propagating pulse and
its delayed copies.

As in our first example, we have evidence of superoscilla-
tory behaviour. Consider tunnelling across a broad rect-
angular barrier of a height V' and a width d, pod >> 1.
Expanding the barrier action d(2V — p?)'/2, for p close
to po we can approximate the transmission amplitude by

TP (p) = T(po) exp[—ic(p — po) + B(p — po)?], (11)

where a = d + ipod/(2V — p3)'/? and f = Vd/(2V —
p2)3/2. The factor exp(—ipd), which suggests advance-
ment of the transmitted pulse by the barrier length d,
is clearly ’super-oscillatory’, since there are no negative
frequencies in the Fourier transform @[)

To observe the advancement we require an incident pulse
so broad that the approximation would hold for all
its momenta. A Gaussian wave packet U, initially cen-
tred at some xg, evolves by free motion into

S (x,t|o, 20) = exp(ipoxr — ipit/2) x (12)
[20° /moy]"/* exp[—(a — pot — 20)* /7],
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FIG. 4. (colour online) a) A two-hump pulse tunnelled across
a broad rectangular barrier (solid) (multiplied by a large fac-
tor Z2 = 4x10" /|T(po)|? for better viewing), the same initial
pulse evolved by free motion (dashed), and the incident pulse
at t = 0 (dot-dashed). b) Transmission amplitude and the
momentum distribution of the initial two-hump pulse (mul-
tiplied by a factor of 10). The parameters are pod = 3000,
V/pg =2, t = 1.5d/po, o/d = 0.135.

where oy = V02 + 2it accounts for the broadening of the
pulse. We may want to send a two-hump pulse composed
of two shifted Gaussians, Uo(z,t = 0) = ¥§(z,0/0,0) +
V¢ (z,0|0, —0/2). From Egs. (8)) and , we expect the
transmitted pulse to undergo a reduction, a shift into
the complex coordinate plane by Rea + iIma, and an
additional broadening proportional to 3,

T (z,t) = T(po)[\Ilg(z —a,tl\/o?—45,0) + (13)
U (x — a,t|\/o? — 48, —a/2)).

In the case shown in Fig. 4, the exact result coincides
with Eq. to a graphical accuracy. The transmitted
pulse is two-humped, with the humps advanced by d rel-
ative to free propagation. As in the first example, the
interference mechanism, linear in the input, detects two
Gaussian front tails and faithfully reconstructs each of
the constituent Gaussians. Provided the width of the
pulse is adjusted, one can observe the same effect for
ever broader barriers [20]. In this way, the interference
mechanism provides an explanation for the Hartman ef-
fect [5]: the interference puts the transmitted pulse where
it looks as if it has spent zero time in an arbitrary broad
classically forbidden region. As in the first example, this
analysis does not employ the concept of a duration spent
inside the barrier or, indeed, any other tunnelling time
mentioned [14].

CONCLUSIONS

In summary, the ’superluminal’ transmission occurs
via a subtle interference mechanism. One valid analogy
is that of a beam splitter which splits the initial pulse
into many components, and where nothing moves faster
than in free propagation. The amplitudes and phases
attached to each components are such that, when re-
combined, they cancel each other everywhere, except in

the forward region. This gives the advanced transmitted
wave packet a ’superluminal’ aspect. The necessary and
sufficient condition for the existence of the effect is that
all incident momenta must probe local ’super-oscillatory’
behaviour of the transmission amplitude. This can be
true for a broad analytical pulse, in which case the entire
shape is reconstructed from the information contained
in its front tail [24]. The presence of a non-analytical
feature, such as a sharp cut-off, inevitably broadens the
momentum distribution, and destroys the effect.

Thus, we agree with Ref. [14] that the emerging pulse is
"front-loaded’, with an addition that, unlike the primitive
reshaping shown in Fig.1, the interference mechanism
must turn a multi-hump combination of initial Gaussians
into a multi-hump transmitted pulse since transmission is
linear in the input. We find no evidence to support the
energy storing mechanism where ’the output adiabati-
cally follows the input’ [I2]. One reason is that ’superlu-
minality’ may be achieved in a system where no energy
storage occurs, e.g, in the one shown in Fig.2. Another is
that the advanced field may persist even if with the rear
part of the incident pulse modified or amputated, i.e., in
the case where there is no ’input’ to follow.

We stress the convenience of analysing the spacial shape
of the transmitted pulse, rather than the time variation of
the signal at a fixed location. Once this shape is known,
one can evaluate the physically meaningful times, such
as the arrival of the pulse’s peak at a remote detector.
This, in turn, allows one to avoid the notion of suspi-
ciously short ’'tunnelling times’ and disproportionately
high ’tunnelling velocities’ which have plagued the sub-
ject from its inception in the early 1930’s.

ACKNOWLEDGEMENTS

One of us (DS) acknowledges support of the Basque
Government Grant No. IT472 and MICINN (Ministerio
de Ciencia e Innovacion) Grant No. FIS2009- 12773-C02-
01.

[1] L.A.MacColl, Phys.Rev. 40, 621 (1932)

[2] E. H. Hauge and J. A. Stoevneng, Rev. Mod. Phys. 61,
917 (1989)

3] C. A. A. de Carvalho, H. M. Nussenzweig, Rev. Mod.
Phys. 364, 83 (2002)

[4] V. S. Olkhovsky, E. Recami and J. Jakiel, Rev. Mod.
Phys. 398, 133 (2004)

[5] H. G. Winful, Phys. Rep. 436, 1 (2006)

[6] R. Chiao, Phys. Rev. A, 48, R34 (1993)

[7] G. Nimtz, Lect. Notes Phys. 702, 506531 (Springer,
Berlin, Heidelberg, 2006); General Relativity and Gravi-
tation 31, 737 (1999)

[8] A. A. Stahlhofen and G. Nimtz, Eur. Phys. Lett. 76, 189
(2006)



[9] G. Nimtz and A. A. Stahlhofen, |arXiv:0708.0681] (2007)
| H. G. Winful, Optics Express 25, 1492 (2002)

] H. G. Winful, Phys. Rev. Lett. 90, 023901 (2003)

] H. G. Winful, Nature 424, 638 (2003)

| H. G. Winful, arXiv:0709.2736/ (2007)

] M. Buettiker and S. Washburn, Nature 422, 271-272

(

[15] J. E. Deutch, and F. E. Low. Ann. Phys. 288, 184-202

(1993)

[16] Y. Japha anf G. Kuritzki, Phys. Rev. A 53, 586 (1996)

[17) M. Buettiker and S. Washburn, Nature 424, 638 (2003)

[18] D. Sokolovski, and R. Sala Mayato, Phys. Rev. A, 81,
022105 (2010)

[19] Y. Aharonov, D. Albert and L. Vaidman, Phys. Rev. A
60, 1351 (1988)

[20] D. Sokolovski and E. Akhmatskaya, Phys. Rev. A 84,
022104 (2011)

[21] We used the multi-precision algorithm of D.H. Bailey,
ACM Trans. Math. Softw. 19, 288(1993)

[22] For a relevant experiment see M. D. Stenner, D. J.
Gauthier and M. A. Neifeld Nature, 425, 695 (2003);
bid. doi:10.1038/nature 02587 (2004); G. Nimtz ibid.
doi:10.1038 /nature02586 (2004)

[23] M. V. Berry, J. Phys. A 27, 1391 (1994)

[24] Note that exact reconstruction of the pulse is possible
for the setup shown in Fig. 2. In the case of tunnelling,
an additional deformation caused by the complex shift
by ilma remains even for a pulse so broad that the
quadratic term in the exponent of can be neglected.


http://arxiv.org/abs/0708.0681
http://arxiv.org/abs/0709.2736

	Interference mechanism of seemingly superluminal tunnelling
	Abstract
	 Introduction
	 The search for a physical mechanism
	 Interference behind the apparently superluminal advancement
	 The speed of information transfer
	 The interference mechanism of apparently superluminal tunnelling
	 Conclusions
	 Acknowledgements
	 References


