Original article

Global stability for a discrete SIS epidemic model with immigration of infectives

Yoichi Enatsu ${ }^{\text {a* }}$, Yukihiko Nakata ${ }^{\text {b }}$, Yoshiaki Muroya ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan;
${ }^{\mathrm{b}}$ Basque Center for Applied Mathematics, Bizkaia Technology Park, Building 500 E-48160 Derio, Spain;
${ }^{\text {c }}$ Department of Mathematics, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan;

(Received 23 November 2010)

Abstract

In this paper, we propose a discrete-time SIS epidemic model which is derived from continuoustime SIS epidemic models with immigration of infectives by the backward Euler method. For the discretized model, by applying new Lyapunov function techniques, we establish the global asymptotic stability of the disease-free equilibrium for $R_{0} \leq 1$ and the endemic equilibrium for $R_{0}>1$, where R_{0} is the basic reproduction number of the continuous-time model. This is just a discrete analogue of continuous SIS epidemic model with immigration of infectives.

Keywords: Backward Euler method; SIS epidemic model; global asymptotic stability; Lyapunov function

AMS Subject Classification: 34K20; 34K25; 92D30

1. Introduction

In the literature of epidemiology, many authors have recently proposed mathematical models and studied the global behavior of the transmission of infectious disease for the models (see also [1-16] and references therein).

Brauer and van den Driessche [1] have formulated the following continuous SIS epidemic model with immigration of infectives:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} S(t)}{\mathrm{d} t}=(1-p) A-\beta S(t) I(t)-d S(t)+\gamma I(t) \tag{1.1}\\
\frac{\mathrm{d} I(t)}{\mathrm{d} t}=p A+\beta S(t) I(t)-(d+\alpha+\gamma) I(t)
\end{array}\right.
$$

and the initial condition of system (1.1) is $S(0)>0, I(0)>0$.
$S(t)$ and $I(t)$ denote the number of a population who are susceptible to a disease and infective members at time t, respectively. It is assumed that all newborns are susceptible. In addition, all recruitments are into the susceptible class at a constant rate $(1-p) A>0$ and the infective class at a constant immigration rate $p A>0$. The positive constant d represents the death rates of susceptible and infectious

[^0]classes, and the positive constant α represents the rate at which the infective dies from the infection. The mass action coefficient is $\beta>0$.

Let the basic reproduction number R_{0} defined by

$$
\begin{equation*}
R_{0}=\frac{\beta A}{d(d+\alpha+\gamma)} \tag{1.2}
\end{equation*}
$$

We here note that R_{0} is the product of the population size at the disease-free steady state with no infectives (i.e. $p=0$), the transmission coefficient and the mean infective period [1].

For the case $p=0$, system (1.1) always has a disease-free equilibrium $E^{0}=$ $(A / d, 0)$. Furthermore, if $p=0$ and $R_{0}>1$ or $0<p \leq 1$, then system (1.1) has a unique endemic equilibrium $E^{*}=\left(S^{*}, I^{*}\right)$, where

$$
\left\{\begin{array}{l}
S^{*}=\frac{A+\gamma I^{*}}{\beta I^{*}+d} \tag{1.3}\\
I^{*}=\frac{\sigma+\sqrt{\sigma^{2}+4 \beta d p A(d+\alpha)}}{2 \beta(d+\alpha)}, \sigma=(1-p) \beta A-d(d+\gamma+\alpha) .
\end{array}\right.
$$

By using Bendixson-Durac criterion [6, p. 373] and Poincaré-Bendixson theorem [6, p.366], stability results of the disease-free equilibrium E^{0} and the endemic equilibrium E^{*} for system (1.1) has been established by Brauer and van den Driessche [1] as follows:

Theorem A For system (1.1), if $p=0$ and $R_{0}<1$, then the disease-free equilibrium E^{0} is globally attractive, and if $p=0$ and $R_{0}>1$ or $0<p \leq 1$, then there exists a unique endemic equilibrium E^{*} which is globally asymptotically stable.

Later, for a delayed SIS epidemic model with a wide class of nonlinear incidence rates, by using the special property $\lim _{t \rightarrow+\infty} N(t)=1$ for the total population $N(t)=S(t)+I(t)$ and the model can be transformed into a form of the SIR epidemic model as in McCluskey [12], Huang and Takeuchi [7] have fully solved the global asymptotic stability of a disease-free equilibrium and a unique endemic equilibrium by the basic reproduction number of the model.

On the other hand, there occur situations such that constructing discrete epidemic models is more appropriate approach to understand disease transmission dynamics and to evaluate eradication policies because they permit arbitrary timestep units, preserving the basic features of corresponding continuous-time models. Furthermore, this allows better use of statistical data for numerical simulations due to the reason that the infection data are compiled at discrete given time intervals. For a discrete SIS epidemic model with immigration of infectives, by means of Micken's nonstandard discretization method (see Mickens [14]), Jang and Elaydi [10] showed the global asymptotic stability of a disease-free equilibrium, the local asymptotic stability of a unique endemic equilibrium and strong persistence of susceptible class of the model. A conjecture that one may construct a Lyapunov function to show the global stability of the endemic equilibrium for the model is also proposed. Using a discretization called "mixed type" formula in Izzo and Vecchio [8] and Izzo et al. [9], Sekiguchi [15] obtained the permanence of a class of SIR discrete epidemic models with one delay and SEIRS discrete epidemic models with two delays if an endemic equilibrium of each model exists. For the detailed property for a class of discrete epidemic models, we refer to $[2,3,8-11,15,16]$.

However, in those cases, how to choose the discrete schemes which preserves the global asymptotic stability for the endemic equilibrium of corresponding continoustime models was still unsolved.

For a delayed SIR epidemic model, applying a variation of backward Euler discretization, Enatsu et al. [4] firstly solved this problem and established the complete global stability results by a discrete time analogue of a Lyapunov functional proposed by McCluskey [12]. Enatsu et al. [5] also have obtained the similar results for a discrete SIR epidemic model with a variation of backward Euler discretization which has a separable nonlinear incidence rate.

Motivated by the above results, in this paper, to preserve key properties of Lyapunov functional techniques in Enatsu et al. [4] for discretization, we apply the backward Euler method to the following iteration system;

$$
\left\{\begin{array}{l}
S_{n+1}=\frac{(1-p) A+S_{n}+\gamma I_{n+1}}{1+d+\beta I_{n+1}}, \tag{1.4}\\
I_{n+1}=\frac{-\tilde{B}_{n}+\sqrt{\tilde{B}_{n}^{2}+4 \tilde{A} \tilde{C}_{n}}}{2 \tilde{A}}=\frac{2 \tilde{C}_{n}}{\tilde{B}_{n}+\sqrt{\tilde{B}_{n}^{2}+4 \tilde{\tilde{A}} \tilde{C}_{n}}}, \quad n=0,1,2, \cdots,
\end{array}\right.
$$

with the initial condition

$$
\begin{equation*}
S_{0}>0, \text { and } I_{0}>0, \tag{1.5}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\tilde{A}=\beta(1+d+\alpha), \tag{1.6}\\
\tilde{B}_{n}=(1+d)(1+d+\alpha+\gamma)-\beta\left(A+S_{n}+I_{n}\right), \\
\tilde{C}_{n}=(1+d)\left(p A+I_{n}\right) .
\end{array}\right.
$$

For the initial condition (1.5), let $\left(S_{n}, I_{n}\right)(n>0)$ be the solutions of system (1.4). Then $S_{n}>0, I_{n}>0$ holds for any $n>0$ (see Lemma 2.1). Moreover, (1.4) is equivalent to the following discrete SIS epidemic model:

$$
\left\{\begin{array}{l}
S_{n+1}-S_{n}=(1-p) A-\beta S_{n+1} I_{n+1}-d S_{n+1}+\gamma I_{n+1}, \tag{1.7}\\
I_{n+1}-I_{n}=p A+\beta S_{n+1} I_{n+1}-(d+\alpha+\gamma) I_{n+1}, \quad \text { and } \quad I_{n+1}>0
\end{array}\right.
$$

which is derived from system (1.1) by applying the backward Euler method.
Note that for any positive solution $\left(S_{n}, I_{n}\right)$, there exist just two solutions (S_{n+1}, I_{n+1}) of (1.7) without the condition $I_{n+1}>0$, one is $I_{n+1}<0$ and the other is $I_{n+1}>0$. Therefore, for any positive solution $\left(S_{n}, I_{n}\right)$, we need the restriction $I_{n+1}>0$ to consider only the positive solution $\left(S_{n+1}, I_{n+1}\right)$ in (1.7).

Similar to the case of continuous system (1.1), for the case $p=0$, system (1.7) always has a disease-free equilibrium $E^{0}=(A / d, 0)$. Furthermore, if $p=0$ and $R_{0}>1$, or $0<p \leq 1$, then system (1.7) has a unique endemic equilibrium $E^{*}=$ $\left(S^{*}, I^{*}\right)$ which is defined by (1.3).

Remark 1.1 To prove the positivity of S_{n} and I_{n} for $n>0$ and apply key properties of Lyapunov functional techniques in Enatsu et al. [4], we need to use the backward Euler discretization instead of the forward Euler discretization which is a different discretization from that in Jang and Elaydi [10].
Using the same threshold $R_{0}=\frac{\beta A}{d(d+\alpha+\gamma)}$ and $0 \leq p \leq 1$, we establish that the following global stability result:

Theorem 1.1 For the case $p=0$ in system (1.7), there exists a unique diseasefree equilibrium E^{0} which is globally asymptotically stable, if and only if, $R_{0} \leq 1$. For the case $p=0$ and $R_{0}>1$, or $0<p \leq 1$ in system (1.7), then there exists a unique endemic equilibrium E^{*} which is globally asymptotically stable.

Remark 1.2 Theorem 1.1 for system (1.7) is just a discrete analogue of Theorem A for system (1.1).

The key ideas of our Lyapunov function techniques are as follows (see also Section $3)$.
(i) By letting $N_{n}:=S_{n}+I_{n}$, we rewrite system (1.7) as follows.

$$
\left\{\begin{array}{l}
I_{n+1}-I_{n}=p A+\beta\left(N_{n+1}-I_{n+1}\right) I_{n+1}-(d+\alpha+\gamma) I_{n+1}, I_{n+1}>0 \\
N_{n+1}-N_{n}=A-d N_{n+1}-\alpha I_{n+1}
\end{array}\right.
$$

(ii) Let $N=S+I, N^{0}=\frac{A}{d}, N^{*}=S^{*}+I^{*}$, and define

$$
\begin{equation*}
U(n)=\frac{I}{\beta} g\left(\frac{I_{n}}{I}\right)+\frac{1}{\alpha N} \frac{\left(N_{n}-N\right)^{2}}{2} \tag{1.8}
\end{equation*}
$$

where $g(x)=x-1-\ln x \geq g(1)=0$ defined on $x>0$. By the relation

$$
\lim _{x \rightarrow+0} x g\left(\frac{y}{x}\right)=y \text { for any } y>0
$$

we offer a unified construction of discrete time analogue of Lyapunov functions $U^{0}(n)$ and $U^{*}(n)$ in the proof of global stability of the disease-free equilibrium and the endemic equilibrium as follows, respectively;

$$
U^{0}(n)=\lim _{I \rightarrow+0, N \rightarrow N^{0}} U(n)=\frac{1}{\beta} I_{n}+\frac{1}{\alpha N^{0}} \frac{\left(N_{n}-N^{0}\right)^{2}}{2},
$$

and

$$
U^{*}(n)=\lim _{I \rightarrow I^{*}, N \rightarrow N^{*}} U(n)=\frac{I^{*}}{\beta} g\left(\frac{I_{n}}{I^{*}}\right)+\frac{1}{\alpha N^{*}} \frac{\left(N_{n}-N^{*}\right)^{2}}{2} .
$$

(iii) Assume $p=0$ and $R_{0}>1$ or $0<p \leq 1$. In order to prove the second part of Theorem 1.1, by using a key idea in Enatsu et al. [4], we use the following relation.

$$
-\ln \frac{I_{n+1}}{I_{n}}=\ln \left\{1-\left(1-\frac{I_{n}}{I_{n+1}}\right)\right\} \leq-\left(1-\frac{I_{n}}{I_{n+1}}\right)=-\frac{I_{n+1}-I_{n}}{I_{n+1}}
$$

Adding

$$
I^{*}\left(\frac{N_{n+1}}{N^{*}}-1\right)\left(\frac{I_{n+1}}{I^{*}}-1\right)
$$

in $\frac{I^{*}}{\beta N^{*}}\left\{g\left(\frac{I_{n+1}}{I^{*}}\right)-g\left(\frac{I_{n}}{I^{*}}\right)\right\}$ to

$$
-\frac{d N^{*}}{\alpha}\left(1-\frac{N_{n+1}}{N^{*}}\right)^{2}-I^{*}\left(\frac{N_{n+1}}{N^{*}}-1\right)\left(\frac{I_{n+1}}{I^{*}}-1\right)
$$

in $\frac{1}{\alpha N^{*}}\left\{\frac{\left(N_{n+1}-N^{*}\right)^{2}}{2}-\frac{\left(N_{n}-N^{*}\right)^{2}}{2}\right\}$, we obtain $U^{*}(n+1)-U^{*}(n) \leq 0$ with equality if and only if $I_{n+1}=I^{*}$ and $N_{n+1}=N^{*}$.
(iv) Assume $p=0$ and $R_{0} \leq 1$. In order to prove the second part of Theorem 1.1, along with the similar discussion in (i)-(iii), we have $U^{0}(n+1)-U^{0}(n) \leq 0$ with equality if and only if $I_{n+1}=0$ and $N_{n+1}=N^{0}$.

The organization of this paper is as follows. In Section 2, we offer some basic results for system (1.7). In particular, by Lemma 2.4, we offer a simplified proof for the permanence of system (1.7) for $p=0$ and $R_{0}>1$, or $0<p \leq 1$ (cf. Sekiguchi [15]). The first part of Theorem 1.1 concerning the global asymptotic stability of the disease-free equilibrium for $p=0$ and $R_{0} \leq 1$ and the second part of Theorem 1.1 concerning the permanence and the global stability of the endemic equilibrium for $p=0$ and $R_{0}>1$ or $0<p \leq 1$ are given in Section 3. Finally, we offer conclusion in Section 4.

2. Basic properties

In this section, we introduce basic lemmas as follows.
Lemma 2.1 Let $\left(S_{n}, I_{n}\right)$ be the solutions of system (1.7) with the initial condition (1.5). Then $S_{n}>0, I_{n}>0$ for any $n>0$, and (1.7) is equivalent to (1.4).

Proof. Assume that there exists a nonnegative integer such that $S_{n}, I_{n}>0, n=$ $0,1, \cdots, n_{0}$. Then, (1.7) is equivalent to (1.4). It is evident that for $S_{n}>0, I_{n}>0$, I_{n+1} is a unique positive solution of the following quadratic equation:

$$
\begin{align*}
P(x)= & \left\{(1+d+\alpha+\gamma) x-\left(p A+I_{n}\right)\right\}(1+d+\beta x)-\beta\left\{(1-p) A+S_{n}+\gamma x\right\} x \\
= & \beta(1+d+\alpha) x^{2}+\left\{(1+d)(1+d+\alpha+\gamma)-\beta\left(A+S_{n}+I_{n}\right)\right\} x \\
& -(1+d)\left(p A+I_{n}\right) \tag{2.1}
\end{align*}
$$

and we have (1.4). Moreover, by the first equation of (1.4), we have $S_{n_{0}+1}>0$, and by the second equation of (1.4), we have $I_{n_{0}+1}>0$. Hence, by induction, we prove this lemma.

Lemma 2.2 Any solution $\left(S_{n}, I_{n}\right)$ of system (1.7) satisfies

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty}\left(S_{n}+I_{n}\right) \leq S^{0}=A / d \tag{2.2}
\end{equation*}
$$

Proof. Let $V(n)=S_{n}+I_{n}$. From system (1.7), we have that

$$
\begin{aligned}
V(n+1)-V(n) & =A-d\left(S_{n+1}+I_{n+1}\right)-\alpha I_{n+1} \\
& \leq A-d V(n+1)-\alpha I_{n+1}
\end{aligned}
$$

from which we have that

$$
\limsup _{n \rightarrow+\infty} V(n) \leq S^{0}=\frac{A}{d}
$$

Hence, the proof is complete.

Lemma 2.3 Assume that $p=0$ and $R_{0}>1$. If $I_{n+1}<I_{n}$, then $S_{n+1}<S^{*}$. Inversely, if $S_{n+1} \geq S^{*}$, then $I_{n+1} \geq I_{n}$.

Proof. By the second equation of (1.7), we have that

$$
I_{n+1}=\frac{I_{n}-I_{n+1}}{d+\alpha+\gamma}+\frac{S_{n+1}}{S^{*}} I_{n+1} .
$$

Therefore, if $I_{n+1}<I_{n}$, then we have that

$$
I_{n+1}>\frac{S_{n+1}}{S^{*}} I_{n+1},
$$

from which we obtain $S_{n+1}<S^{*}$. The remained part of this lemma is evident.
By Lemma 2.3, we obtain the following lemma which implies the permanence of system (1.7).

Lemma 2.4 The following statements hold true.
(i) Let $0<p \leq 1$. Then, for any solution $\left(S_{n}, I_{n}\right)$ of system (1.7), it holds that

$$
\begin{aligned}
& 0<\frac{(1-p) A}{1+d+\beta A / d} \leq \liminf _{n \rightarrow+\infty} S_{n} \leq \limsup _{n \rightarrow+\infty} S_{n} \leq \frac{(1-p) A+(1+\gamma) A / d}{1+d}, \\
& 0<\underline{\hat{I}} \leq \liminf _{n \rightarrow+\infty} I_{n} \leq \limsup _{n \rightarrow+\infty} I_{n} \leq \hat{\bar{I}},
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
\underline{\hat{I}}=\frac{2 \underline{C}}{\bar{B}+\sqrt{\bar{B}^{2}+4 \tilde{A} \underline{C}}}, \hat{\bar{I}}=\frac{2 \bar{C}}{\underline{B}+\sqrt{\underline{B}^{2}+4 \tilde{A} \bar{C}}}, \tag{2.3}\\
\tilde{A}=\beta(1+d+\alpha), \\
\bar{B}=(1+d)(1+d+\alpha+\gamma)-\beta(A+A / d), \\
\underline{B}=(1+d)(1+d+\alpha+\gamma)-\beta A, \\
\underline{C}=(1+d) p A, \bar{C}=(1+d)(p A+A / d) .
\end{array}\right.
$$

(ii) Let $p=0$ and $R_{0}>1$. Then, for any solution $\left(S_{n}, I_{n}\right)$ of system (1.7), it holds that

$$
\begin{align*}
& 0<\frac{A}{1+d+\beta \frac{A}{d}} \leq \liminf _{n \rightarrow+\infty} S_{n} \leq \limsup _{n \rightarrow+\infty} S_{n} \leq \frac{A+(1+\gamma) A / d}{1+d}, \tag{2.4}\\
& 0<\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{l_{0}} q I^{*} \leq \liminf _{n \rightarrow+\infty} I_{n} \leq \limsup _{n \rightarrow+\infty} I_{n} \leq \hat{\bar{I}}, \tag{2.5}
\end{align*}
$$

where $0<q<1$ and $l_{0} \geq 1$ satisfy $S^{*}<S^{\triangle}:=\frac{A}{k}\left\{1-\left(\frac{1}{1+k}\right)^{l_{0}}\right\}$ for $k=d+\beta q I^{*}$.

Proof. Since for $p(x)=x+\sqrt{x^{2}+c}$ with $c>0$, it holds that $p^{\prime}(x)=1+\frac{x}{\sqrt{x^{2}+c}}>0$, the function $p(x)$ is an increasing function of x on $(0 \leq x<+\infty)$. Thus, by (1.4) and (2.2), we obtain the conclusion of (i) in this lemma.
From the proof of (i), it suffices to show that $\lim _{\inf _{n \rightarrow+\infty}} I_{n} \geq\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{l_{0}} q I^{*}$ holds. For any $0<q<1$, by (1.3), one can see that $S^{*}=\frac{A}{d+\beta I^{*}}<\frac{A}{d+\beta q I^{*}}$. We first prove the claim that any solution $\left(S_{n}, I_{n}\right)$ of system (1.7) does not have the following property: there exists a nonnegative integer n_{1} such that $I_{n} \leq q I^{*}$ for all
$n \geq n_{1}$. Suppose on the contrary that there exist a nonnegative integer n_{1} such that $I_{n} \leq q I^{*}$ for all $n \geq n_{1}$. From system (1.7), one can obtain that

$$
S_{n+1} \geq \frac{S_{n}}{1+k}+\frac{A}{1+k} \quad \text { for any } n \geq n_{1}
$$

which yields that

$$
\begin{aligned}
S_{n+1} & \geq\left(\frac{1}{1+k}\right)^{n+1-n_{1}} S_{n}+\frac{A}{1+k} \sum_{l=0}^{n-n_{1}}\left(\frac{1}{1+k}\right)^{l} \\
& \geq \frac{A}{1+k} \frac{1-\left(\frac{1}{1+k}\right)^{n+1-n_{1}}}{1-\frac{1}{1+k}} \\
& \geq \frac{A}{k}\left\{1-\left(\frac{1}{1+k}\right)^{n+1-n_{1}}\right\} \quad \text { for any } n \geq n_{1}
\end{aligned}
$$

Therefore, we have that

$$
\begin{equation*}
S_{n+1} \geq \frac{A}{k}\left\{1-\left(\frac{1}{1+k}\right)^{l_{0}}\right\}=S^{\triangle}>S^{*} \quad \text { for any } n \geq n_{1}+l_{0}-1 \tag{2.6}
\end{equation*}
$$

Then, by the second part of Lemma 2.3, we obtain that there exists a positive constant \hat{i} such that $I_{n} \geq \hat{i}$ for any $n \geq n_{1}+l_{0}-1$. Hence, one can see that

$$
\begin{aligned}
I_{n+1}-I_{n} & =\beta S_{n+1} I_{n+1}-(d+\alpha+\gamma) I_{n+1} \\
& >\left\{\beta S^{\triangle}-(d+\alpha+\gamma)\right\} I_{n+1} \\
& >\left\{\beta S^{\triangle}-(d+\alpha+\gamma)\right\} \hat{i} \text { for any } n \geq n_{1}+l_{0}-1,
\end{aligned}
$$

which implies by $\beta S^{\triangle}-(d+\alpha+\gamma)=\beta\left(S^{\triangle}-S^{*}\right)>0$, that $\lim _{n \rightarrow+\infty} I(n)=+\infty$. However, by Lemma 2.2, this leads a contradiction. Hence, the claim is proved.

By the claim, we are left to consider two possibilities; First, $I_{n} \geq q I^{*}$ for all n sufficiently large. Second, we consider the case that I_{n} oscillates about $q I^{*}$ for all n sufficiently large. We now show that $I_{n} \geq\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{l_{0}} q I^{*}$ for all n sufficiently large for the both cases. If the first condition that $I_{n} \geq q I^{*}$ holds for all sufficiently large, then we get the conclusion of the proof. For the second case that I_{n} oscillates about $q I^{*}$ for all sufficiently large, let $n_{2}<n_{3}$ be sufficiently large such that

$$
I_{n_{2}}, I_{n_{3}} \geq q I^{*}, \quad \text { and } \quad I_{n}<q I^{*} \quad \text { for any } n_{2}<n<n_{3}
$$

Then, by the second equation of system (1.7), we have that

$$
I_{n+1}-I_{n} \geq-(d+\alpha+\gamma) I_{n+1}, \text { that is, } I_{n+1} \geq \frac{1}{1+(d+\alpha+\gamma)} I_{n}
$$

for any $n \geq n_{2}$, from which we have that

$$
I_{n+1} \geq\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{n+1-n_{2}} I_{n_{2}} \geq\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{n+1-n_{2}} q I^{*}
$$

for any $n \geq n_{2}$. Therefore, we obtain that

$$
\begin{equation*}
I_{n+1} \geq\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{l_{0}} q I^{*} \tag{2.7}
\end{equation*}
$$

for any $n_{2} \leq n \leq n_{2}+l_{0}-1$. If $n_{3} \geq n_{2}+l_{0}$, then by applying the similar discussion to (2.6), we obtain that $I_{n+1} \geq\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{l_{0}} q I^{*}$ for $n_{2}+l_{0} \leq n \leq n_{3}$. Hence, we prove that $I_{n+1} \geq\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{l_{0}} q I^{*}$ for $n_{2} \leq n \leq n_{3}$. Since the interval $n_{2} \leq n \leq n_{3}$ is arbitrarily chosen, we conclude that $I_{n+1} \geq\left(\frac{1}{1+(d+\alpha+\gamma)}\right)^{l_{0}} q I^{*}$ for all n sufficiently large for the second case and obtain the conclusion of (ii) in this lemma. This completes the proof.

3. Global stability

In this section, by applying Lyapunov function techniques, we prove Theorem 1.1. By letting $N_{n}:=S_{n}+I_{n}$, system (1.7) is equivalent to the following system:

$$
\left\{\begin{array}{l}
I_{n+1}-I_{n}=p A+\beta\left(N_{n+1}-I_{n+1}\right) I_{n+1}-(d+\alpha+\gamma) I_{n+1}, I_{n+1}>0 \tag{3.1}\\
N_{n+1}-N_{n}=A-d N_{n+1}-\alpha I_{n+1}
\end{array}\right.
$$

with the initial condition $I_{0}>0$ and $N_{0}>0$. If $p=0$, then system (3.1) always has a disease-free equilibrium $\tilde{E}^{0}=\left(0, N^{0}\right), N^{0}=\frac{A}{d}$ and if $p=0$ and $R_{0}>1$, or $0<p \leq 1$, then system (3.1) has a unique endemic equilibrium $\tilde{E}^{*}=\left(I^{*}, N^{*}\right)$. Therefore, in order to prove Theorem 1.1, it suffices to show the global stability of the disease-free equilibrium \tilde{E}^{0} for $p=0$ and $R_{0} \leq 1$ (see Section 3.2) and the global stability of the endemic equilibrium \tilde{E}^{*} for $p=0$ and $R_{0}>1$, or $0<p \leq 1$ (see Section 3.1).

3.1 The case $p=0$ and $R_{0}>1$, or $0<p \leq 1$

In this subsection, we prove the second part of Theorem 1.1.
Proof. For the endemic equilibrium \tilde{E}^{*} of system (3.1), we consider the following discrete time analogue of Lyapunov function:

$$
\begin{equation*}
U^{*}(n)=\frac{I^{*}}{\beta N^{*}} U_{1}^{*}(n)+\frac{1}{\alpha N^{*}} U_{2}^{*}(n) \tag{3.2}
\end{equation*}
$$

with

$$
\begin{equation*}
U_{1}^{*}(n)=g\left(\frac{I_{n}}{I^{*}}\right), \quad \text { and } \quad U_{2}^{*}(n)=\frac{1}{2}\left(N_{n}-N^{*}\right)^{2}, \tag{3.3}
\end{equation*}
$$

where $g(x)=x-1-\ln x \geq g(1)=0$ defined on $x>0$. From the equilibrium condition of (3.1), we have

$$
\begin{equation*}
d+\alpha+\gamma=\frac{p A}{I^{*}}+\beta\left(N^{*}-I^{*}\right) \tag{3.4}
\end{equation*}
$$

By using a key idea in Enatsu et al. [4], we use the following relation.

$$
\begin{equation*}
-\ln \frac{I_{n+1}}{I_{n}}=\ln \left\{1-\left(1-\frac{I_{n}}{I_{n+1}}\right)\right\} \leq-\left(1-\frac{I_{n}}{I_{n+1}}\right)=-\frac{I_{n+1}-I_{n}}{I_{n+1}} \tag{3.5}
\end{equation*}
$$

From (3.5), we obtain

$$
\begin{aligned}
U_{1}^{*}(n+1)-U_{1}^{*}(n) & =\frac{I_{n+1}-I_{n}}{I^{*}}-\ln \frac{I_{n+1}}{I_{n}} \\
& \leq \frac{I_{n+1}-I_{n}}{I^{*}}-\frac{I_{n+1}-I_{n}}{I_{n+1}} \\
& =\frac{1}{I^{*}} \frac{I_{n+1}-I^{*}}{I_{n+1}}\left(I_{n+1}-I_{n}\right) \\
& =\frac{1}{I^{*}}\left(1-\frac{I^{*}}{I_{n+1}}\right)\left\{p A+\beta S_{n+1} I_{n+1}-(d+\alpha+\gamma) I_{n+1}\right\}
\end{aligned}
$$

By using the relation (3.4), we have

$$
\begin{aligned}
& U_{1}^{*}(n+1)-U_{1}^{*}(n) \\
\leq & \frac{1}{I^{*}}\left(1-\frac{I^{*}}{I_{n+1}}\right)\left\{p A+\beta\left(N_{n+1}-I_{n+1}\right) I_{n+1}-\left(\frac{p A}{I^{*}}+\beta\left(N^{*}-I^{*}\right)\right) I_{n+1}\right\} \\
= & \frac{1}{I^{*}}\left(1-\frac{I^{*}}{I_{n+1}}\right)\left\{p A\left(1-\frac{I_{n+1}}{I^{*}}\right)-\beta I_{n+1}\left(I_{n+1}-I^{*}\right)+\beta I_{n+1}\left(N_{n+1}-N^{*}\right)\right\} \\
= & \frac{p A}{I^{*}}\left(1-\frac{I^{*}}{I_{n+1}}\right)\left(1-\frac{I_{n+1}}{I^{*}}\right)-\beta I^{*}\left(\frac{I_{n+1}}{I^{*}}-1\right)^{2} \\
& +\beta N^{*}\left(\frac{I_{n+1}}{I^{*}}-1\right)\left(\frac{N_{n+1}}{N^{*}}-1\right)
\end{aligned}
$$

Moreover, it holds that

$$
\begin{aligned}
U_{2}^{*}(n+1)-U_{2}^{*}(n) & =\frac{1}{2}\left(N_{n+1}+N_{n}-2 N^{*}\right)\left(N_{n+1}-N_{n}\right) \\
& =\left(N_{n+1}-N^{*}\right)\left(N_{n+1}-N_{n}\right)-\frac{1}{2}\left(N_{n+1}-N_{n}\right)^{2} \\
& \leq\left(N_{n+1}-N^{*}\right)\left(N_{n+1}-N_{n}\right) \\
& =\left(N_{n+1}-N^{*}\right)\left\{A-d N_{n+1}-\alpha I_{n+1}\right\} \\
& =\left(N_{n+1}-N^{*}\right)\left\{-d\left(N_{n+1}-N^{*}\right)-\alpha\left(I_{n+1}-I^{*}\right)\right\} \\
& =-d\left(N_{n+1}-N^{*}\right)^{2}-\alpha\left(N_{n+1}-N^{*}\right)\left(I_{n+1}-I^{*}\right) \\
& =-d\left(N^{*}\right)^{2}\left(1-\frac{N_{n+1}}{N^{*}}\right)^{2}-\alpha N^{*} I^{*}\left(\frac{N_{n+1}}{N^{*}}-1\right)\left(\frac{I_{n+1}}{I^{*}}-1\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& U^{*}(n+1)-U^{*}(n) \\
\leq & \frac{p A}{\beta N^{*}}\left(1-\frac{I^{*}}{I_{n+1}}\right)\left(1-\frac{I_{n+1}}{I^{*}}\right)-\frac{\left(I^{*}\right)^{2}}{N^{*}}\left(\frac{I_{n+1}}{I^{*}}-1\right)^{2} \\
& +I^{*}\left(\frac{N_{n+1}}{N^{*}}-1\right)\left(\frac{I_{n+1}}{I^{*}}-1\right) \\
& -\frac{d N^{*}}{\alpha}\left(1-\frac{N_{n+1}}{N^{*}}\right)^{2}-I^{*}\left(\frac{N_{n+1}}{N^{*}}-1\right)\left(\frac{I_{n+1}}{I^{*}}-1\right) \\
= & \frac{p A}{\beta N^{*}}\left(1-\frac{I^{*}}{I_{n+1}}\right)\left(1-\frac{I_{n+1}}{I^{*}}\right)-\frac{\left(I^{*}\right)^{2}}{N^{*}}\left(\frac{I_{n+1}}{I^{*}}-1\right)^{2}-\frac{d N^{*}}{\alpha}\left(1-\frac{N_{n+1}}{N^{*}}\right)^{2} \\
\leq & 0
\end{aligned}
$$

for any $n \geq 0$. Since $U^{*}(n) \geq 0$ is monotone decreasing sequence, there is a limit $\lim _{n \rightarrow+\infty} U^{*}(n) \geq 0$. Then, we have $\lim _{n \rightarrow+\infty}\left(U^{*}(n+1)-U^{*}(n)\right)=0$, which implies that $\lim _{n \rightarrow+\infty} I_{n+1}=I^{*}$ and $\lim _{n \rightarrow+\infty} N_{n+1}=N^{*}$. Since $U^{*}(n) \leq U^{*}(0)$ for all $n \geq 0, \tilde{E}^{*}$ is uniformly stable. Hence, \tilde{E}^{*} is globally asymptotically stable and the proof is complete.

3.2 The case $p=0$ and $R_{0} \leq 1$

In this section, we prove the first part of Theorem 1.1.
Proof. For the disease-free equilibrium \tilde{E}^{0} of system (3.1), we consider the following discrete time analogue of Lyapunov function:

$$
\begin{equation*}
U^{0}(n)=\frac{1}{\beta N^{0}} I_{n}+\frac{1}{\alpha N^{0}} U_{1}^{0}(n) \tag{3.6}
\end{equation*}
$$

with

$$
\begin{equation*}
U_{1}^{0}(n)=\frac{1}{2}\left(N_{n}-N^{0}\right)^{2} \tag{3.7}
\end{equation*}
$$

Then, from $I_{n+1}-I_{n}=\beta\left(N_{n+1}-I_{n+1}\right) I_{n+1}-(d+\alpha+\gamma) I_{n+1}$ and

$$
\begin{aligned}
U_{1}^{0}(n+1)-U_{1}^{0}(n) & =\frac{1}{2}\left(N_{n+1}+N_{n}-2 N^{0}\right)\left(N_{n+1}-N_{n}\right) \\
& =\left(N_{n+1}-N^{0}\right)\left(N_{n+1}-N_{n}\right)-\frac{1}{2}\left(N_{n+1}-N_{n}\right)^{2} \\
& \leq\left(N_{n+1}-N^{0}\right)\left(N_{n+1}-N_{n}\right) \\
& =\left(N_{n+1}-N^{0}\right)\left\{A-d N_{n+1}-\alpha I_{n+1}\right\} \\
& =\left(N_{n+1}-N^{0}\right)\left\{-d\left(N_{n+1}-N^{0}\right)-\alpha I_{n+1}\right\} \\
& =-d\left(N_{n+1}-N^{0}\right)^{2}-\alpha\left(N_{n+1}-N^{0}\right) I_{n+1} \\
& =-d\left(N^{0}\right)^{2}\left(1-\frac{N_{n+1}}{N^{0}}\right)^{2}-\alpha I_{n+1}\left(N_{n+1}-N^{0}\right)
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
U^{0}(n+1)-U^{0}(n) \leq & \frac{1}{N^{0}}\left(N_{n+1}-I_{n+1}\right) I_{n+1}-\frac{d+\alpha+\gamma}{\beta N^{0}} I_{n+1} \\
& -\frac{d N^{0}}{\alpha}\left(1-\frac{N_{n+1}}{N^{0}}\right)^{2}-I_{n+1}\left(\frac{N_{n+1}}{N^{0}}-1\right) \\
= & -\frac{I_{n+1}^{2}}{N^{0}}+\left(1-\frac{d+\alpha+\gamma}{\beta N^{0}}\right) I_{n+1}-\frac{d N^{0}}{\alpha}\left(1-\frac{N_{n+1}}{N^{0}}\right)^{2} \\
= & -\frac{I_{n+1}^{2}}{N^{0}}+\left(1-\frac{1}{R_{0}}\right) I_{n+1}-\frac{d N^{0}}{\alpha}\left(1-\frac{N_{n+1}}{N^{0}}\right)^{2} \\
\leq & 0
\end{aligned}
$$

for any $n \geq 0$. Since $U^{0}(n) \geq 0$ is monotone decreasing sequence, there is a limit $\lim _{n \rightarrow+\infty} U^{0}(n) \geq 0$. Then, $\lim _{n \rightarrow+\infty}\left(U^{0}(n+1)-U^{0}(n)\right)=0$, from which we obtain that $\lim _{n \rightarrow+\infty} I_{n+1}=0$ and $\lim _{n \rightarrow+\infty} N_{n+1}=N^{0}$. Since $U^{0}(n) \leq U^{0}(0)$ for all $n \geq 0, \tilde{E}^{0}$ is uniformly stable. Hence, \tilde{E}^{0} is globally asymptotically stable and the proof is complete.

4. Conclusion

Recently, it was still unsolved how to choose the discrete schemes which preserves the global asymptotic stability for the endemic equilibrium of corresponding continuous models.
By applying a discrete time analogue of a Lyapunov functional proposed by McCluskey [12], Enatsu et al. [4] established the complete analysis of global stability of equilibria for a discrete SIR epidemic model with a variation of the backward Euler discretization. On the other hand, for a continuous delayed SIS epidemic model which has the special property $\lim _{t \rightarrow+\infty} N(t)=1$ for the total population $N(t)=S(t)+I(t)$ and can be transformed into a form of a delayed SIR epidemic model as in McCluskey [12], Huang and Takeuchi [7] have fully solved the global asymptotic stability of a disease-free equilibrium and a unique endemic equilibrium by the basic reproduction number of the model.

In this paper, in order to preserve key properties of Lyapunov functional techniques in Enatsu et al. [4] for discretization, we use the backward Euler method on a continuous SIS epidemic model with immigration of infectives in Brauer and van den Driessche [1]. Moreover, by means of a unified construction of discretized Lyapunov functions $U^{0}(n)$ and $U^{*}(n)$, we establish the global stability of the diseasefree equilibrium E^{0} when $R_{0} \leq 1$ and the endemic equilibrium E^{*} when $R_{0}>1$ for the discrete SIS epidemic model (1.7), respectively.

This is just a discrete analogue of continuous SIS epidemic model with immigration of infectives.

Acknowledgements

The authors wish to express their gratitude to the editor and anonymous referees for the helpful comments and valuable suggestion which improved the quality of this paper. The authors' work was supported in part by JSPS Fellows, No. 237213 of Japan Society for the Promotion of Science to the first author, by the Grant

MTM2010-18318 of the MICINN, Spanish Ministry of Science and Innovation to the second author, and by Scientific Research (c), No. 21540230 of Japan Society for the Promotion of Science to the third author.

References

[1] F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci. 171 (2001) 143-154.
[2] C. Castillo-Chavez and A-A. Yakubu, Dispersal, disease and life-history evolution, Math. Biosci. 173 (2001) 35-53
[3] C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with complex dynamics, Nonlinear Anal. 47 (2001) 4753-4762.
[4] Y. Enatsu, Y. Nakata and Y. Muroya, Global stability for a class of discrete SIR epidemic models, Math. Biosci. Engi. 2 (2010) 347-361.
[5] Y. Enatsu, Y. Nakata, Y. Muroya, G. Izzo and A. Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, To appear.
[6] J. K. Hale and H. Kocak, Dynamics and Bifurcations, Springer, Berlin, 1991.
[7] G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, Math. Biol. doi:10.1007/s00285-010-0368-2.
[8] G. Izzo and A. Vecchio, A discrete time version for models of population dynamics in the presence of an infection, J. Comput. Appl. Math. 210 (2007) 210-221.
[9] G. Izzo, Y. Muroya and A. Vecchio, A general discrete time model of population dynamics in the presence of an infection, Discrete Dynamics in Nature and Society doi:10.1155/2009/143019.
[10] S. Jang and S.N. Elaydi, Difference equations from discretization of a continuous epidemic model with immigration of infectives, Can. Appl. Math. Q. 11 (2003) 93-105.
[11] J. Li, Z. Ma and F. Brauer, Global analysis of discrete-time SI and SIS epidemic models, Math. Biosci. Engi. 4 (2007) 699-710.
[12] C.C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete, Nonl. Anal. RWA. 11 (2010) 55-59.
[13] C.C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonl. Anal. RWA. 11 (2010) 3106-3109.
[14] R. Mickens, Nonstandard Finite Difference Methods of Differential Equations, World Scientific, Singapore, 1994.
[15] M. Sekiguchi, Permanence of Some Discrete Epidemic Models, Int. J. Biomath. 2 (2009) 443-461.
[16] Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control in China, Mathematical and Computer Modeling 40 (2004) 1491-1506.

[^0]: *Corresponding author. Email: yo1.gc-rw.docomo@akane.waseda.jp

