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Abstract

We analyze stability of equilibria for a delayed SIR epidemic model, in which
population growth is subject to logistic growth in absence of disease, with a
nonlinear incidence rate satisfying suitable monotonicity conditions. The model
admits a unique endemic equilibrium if and only if the basic reproduction num-
ber R0 exceeds one, while the trivial equilibrium and the disease-free equilib-
rium always exist. First we show that the disease-free equilibrium is globally
asymptotically stable if and only if R0 ≤ 1. Second we show that the model is
permanent and it has a unique endemic equilibrium if and only if R0 > 1. More-
over, using a threshold parameter R0 characterized by the nonlinear incidence
function, we establish that the endemic equilibrium is locally asymptotically
stable for 1 < R0 ≤ R0 and it loses stability as the length of the delay increases
past a critical value for 1 < R0 < R0. Our result is an extension of the stability
results in [J-J. Wang, J-Z. Zhang, Z. Jin, Analysis of an SIR model with bilinear
incidence rate, Nonl. Anal. RWA. 11 (2009) 2390-2402].
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1. Introduction

From an epidemiological viewpoint, it is important to investigate global dy-
namics of the disease transmission. In the literature, many authors have formu-
lated various epidemic models, in which the stability analysis have been carried
out extensively (see [1]-[15] and references therein). Recently, based on an SIR
(Susceptible-Infected-Recovered) epidemic model, in order to investigate the
spread of an infectious disease transmitted by a vector (e.g. mosquitoes, rats,
etc.), Takeuchi [11] formulated a delayed SIR epidemic model with a bilinear
incidence rate. The global dynamics for the system has now been completely
analyzed in McCluskey [8]. Later, Wang et al. [12] considered the asymptotic
behavior of the following delayed SIR epidemic model:































dS(t)

dt
= r

(

1−
S(t)

K

)

S(t)− βS(t)I(t− τ),

dI(t)

dt
= βS(t)I(t − τ)− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t).

(1.1)

S(t), I(t) andR(t) denote the fractions of susceptible, infective and recovered
host individuals at time t, respectively. In system (1.1), it is assumed that the
population growth in susceptible host individuals is governed by the logistic
growth with a carrying capacity K > 0 as well as intrinsic birth rate constant
r > 0. β > 0 is the average number of constants per infective per unit time
and τ ≥ 0 is incubation time, µ1 > 0 and µ2 > 0 represent the death rates of
infective and recovered individuals, respectively. γ > 0 represents the recovery
rate of infective individuals.

Wang et al. [12] obtained stability results of equilibria of (1.1) in terms
of the basic reproduction number R0: the disease-free equilibrium is globally
asymptotically stable if R0 < 1 while a unique endemic equilibrium can be
unstable if R0 > 1. More precisely, if 1 < R0 ≤ 3, then the endemic equilibrium
is asymptotically stable for any delay τ and if R0 > 3, then there exists a critical
length of delay such that the endemic equilibrium is asymptotically stable for
delay which is less than the value while it is unstable for delay which is greater
than the value. It is also shown that Hopf bifurcation at the endemic equilibrium
occurs when the delay crosses a sequence of critical values.

Since nonlinearity in the incidence rates has been observed in disease trans-
mission dynamics, it has been suggested that the standard bilinear incidence
rate shall be modified into a nonlinear incidence rate by many authors (see,
e.g., [2, 7]). In this paper we replace the incidence rate in (1.1) by a nonlinear
incidence rate of the form βS(t)G(I(t − τ)). We assume that the function G
is continuous on [0,+∞) and continuously differentiable on (0,+∞) satisfying
the following hypotheses.

(H1) G(I) is strictly monotone increasing on [0,+∞) with G(0) = 0,
(H2) I/G(I) is monotone increasing on (0,+∞) with limI→+0 I/G(I) = 1.
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Then we obtain the following system:






























dS(t)

dt
= r

(

1−
S(t)

K

)

S(t)− βS(t)G(I(t − τ)),

dI(t)

dt
= βS(t)G(I(t− τ)) − (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t).

(1.2)

The incidence function G includes some special incidence rates. For instance,
if G(I) = I, then the incidence rate with a distributed delay is in [8, 11] and
if G(I) = I

1+αI
, then the incidence rate, describing saturated effects of the

prevalence of infectious diseases, is in [9, 13, 15].
For simplicity, we nondimensionalize system (1.2) by defining

S̃(t̃) =
S(t)

K
, Ĩ(t̃) =

I(t)

K
, R̃(t̃) =

R(t)

K

and

t̃ = βKt, r̃ =
r

βK
, h̃ = βKh, τ̃ = βKτ, G̃(Ĩ(t̃)) =

G(I(t))

K
,

µ̃1 =
µ1

βK
, µ̃2 =

µ2

βK
, γ̃ =

γ

βK
.

We note that G̃ also satisfies the hypotheses (H1) and (H2). Dropping the ”˜”
for convenience of readers, system (1.2) can be rewritten into the following form:



























dS(t)

dt
= r(1 − S(t))S(t)− S(t)G(I(t− τ)),

dI(t)

dt
= S(t)G(I(t − τ))− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t).

(1.3)

We hereafter restrict our attention to system (1.3). The initial conditions for
system (1.3) take the following form







S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ),
φi(θ) ≥ 0, θ ∈ [−h, 0], φi(0) > 0, i = 1, 2, 3,
(φ1(θ),φ2(θ),φ3(θ)) ∈ C([−h, 0],R3

+0),
(1.4)

where R3
+0 = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}. By the fundamental theory

of functional differential equations, system (1.3) has a unique positive solution
(S(t), I(t), R(t)) satisfying initial condition (1.4). We define the basic reproduc-
tion number by

R0 =
1

µ1 + γ
. (1.5)
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In this paper we analyze the stability of equilibria by investigating location
of the roots of associated characteristic equation and constructing a Lyapunov
functional. System (1.3) always has a trivial equilibrium E0 = (0, 0, 0) and a
disease-free equilibrium E1 = (1, 0, 0). If R0 > 1, then system (1.3) has a unique
endemic equilibrium E∗ = (S∗, I∗, R∗), S∗ > 0, I∗ > 0, R∗ > 0 (see Lemma
3.1).

The organization of this paper is as follows. In Section 2, we investigate
the stability of the trivial equilibrium and the disease-free equilibrium. In Sec-
tion 3, for R0 > 1, we show the unique existence of the endemic equilibrium
and the permanence of system (1.3). Moreover, we investigate the delay effect
concerning the local asymptotic stability of endemic equilibrium. In Section 4,
we introduce an example and visualize stability conditions for the disease-free
equilibrium and the endemic equilibrium in a two-parameter plane. Finally, we
offer concluding remarks in Section 5.

2. Stability of the trivial equilibrium and the disease-free equilibrium

In this section, we analyze the stability of the trivial equilibrium E0. By
constructing a Lyapunov functional, we further establish the global asymptotic
stability of the disease-free equilibrium E1 for R0 ≤ 1. At an arbitrary equilib-
rium (Ŝ, Î, R̂) of (1.3), the characteristic equation is given by

(λ+µ2)[{λ+G(Î)−r(1−2Ŝ)}{λ+(µ1+γ)−ŜG′(Î)e−λτ}+ŜG′(Î)e−λτG(Î)] = 0.
(2.1)

Theorem 2.1 The trivial equilibrium E0 of system (1.3) is always unstable.

Proof. For (Ŝ, Î, R̂) = (0, 0, 0) the characteristic equation (2.1) becomes as
follows.

(λ+ µ2)(λ − r)(λ + µ1 + γ) = 0. (2.2)

Since (2.2) has a positive root λ = r, E0 is unstable. !

Constructing a Lyapunov functional, we prove that the global asymptotic
stability of the disease-free equilibrium E1 is determined by the basic reproduc-
tion number R0.

Theorem 2.2 The disease-free equilibrium E1 of system (1.3) is globally asymp-
totically stable if and only if R0 ≤ 1 and it is unstable if and only if R0 > 1.

Proof. First we assume R0 ≤ 1. We define a Lyapunov functional by

V (t) = g(S(t)) + I(t) +

∫ t

t−τ

G(I(s))ds, (2.3)
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where g(x) = x − 1 − lnx ≥ g(1) = 0 for x > 0. Then the time derivative of
V (t) along the solution of (1.3) becomes as follows.

dV (t)

dt
=

(

1−
1

S(t)

)

{r(1 − S(t))S(t)− S(t)G(I(t− τ)}

+S(t)G(I(t− τ)) − (µ1 + γ)I(t) +G(I(t))−G(I(t − τ))

= −r(S(t)− 1)2 +G(I(t))− (µ1 + γ)I(t).

= −r(S(t)− 1)2 +

{

G(I(t))

I(t)
− (µ1 + γ)

}

I(t).

From the hypothesis (H2), noting that 0 < G(I)
I

≤ 1 for I > 0, we have

dV (t)

dt
≤ −r(S(t) − 1)2 +

(

1−
1

R0

)

I(t) ≤ 0. (2.4)

By Lyapunov-LaSalle asymptotic theorem, we have that limt→+∞ S(t) = 1 if
R0 ≤ 1. By the first and third equations of (1.3), we get that limt→+∞ S(t) = 1
implies limt→+∞ I(t) = 0 and limt→+∞ R(t) = 0. Since it follows that E1 is
uniformly stable from the relation V (t) ≥ g(S(t)) + I(t), we obtain that E1 is
globally asymptotically stable.

Second we assume R0 > 1. For (Ŝ, Î, R̂) = (1, 0, 0) the characteristic equa-
tion (2.1) becomes as follows.

(λ+ µ2)(λ + r)
(

λ+ µ1 + γ − e−λτ
)

= 0. (2.5)

One can see that (2.5) has two negative real part characteristic root λ = −r,
λ = −µ2 and roots of

p(λ) := λ+ µ1 + γ − e−λτ = 0.

From p(0) < 0 and limλ→+∞ p(λ) = +∞, p(λ) = 0 has at least one positive
root. Hence E1 is unstable. The proof is complete. !

3. Permanence of the system and local asymptotic stability of the
endemic equilibrium for R0 > 1

In this section, for R0 > 1, we obtain the permanence of system (1.3) and
establish local asymptotic stability of the endemic equilibrium E∗ and Hopf
bifurcation at E∗ by investigating location of the roots of the characteristic
equation.

3.1. Existence and uniqueness of the endemic equilibrium E∗ for R0 > 1

In this subsection, we give the result on the unique existence of the endemic
equilibrium for R0 > 1.

Lemma 3.1 System (1.3) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗)
if and only if R0 > 1.
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Proof. We assume R0 > 1. In order to find the endemic equilibrium of system
(1.3), for S > 0, I > 0 and R > 0, we consider the following equations:







r(1 − S)S − SG(I) = 0,
SG(I)− (µ1 + γ)I = 0,
γI − µ2R = 0.

(3.1)

Substituting the second equation of (3.1) into the first equation of (3.1), we have

F (I) := r

{

1−
(µ1 + γ)I

G(I)

}

−G(I) = 0.

By the hypothesis (H2), we obtain

lim
I→+0

F (I) = r {1− (µ1 + γ)} = r

(

1−
1

R0

)

> 0.

Since F (I) is a strictly monotone decreasing function on (0,+∞), it sufficies
to show that F (I) < 0 holds for I sufficiently large. From (H1), G(I) is either
unbounded above or bounded above on [0,+∞). First we suppose that G(I)
is unbounded above. Then there exists an I1 > 0 such that G(I1) = r and
F (I) < 0 for I > I1. Second we suppose that G(I) is bounded above. Then,
from (H2), I

G(I) is unbounded above on [0,+∞), that is, there exists an I2 > 0

such that I2
G(I2)

= 1
µ1+γ

and F (I) < 0 for I > I2. Therefore, for the both cases,

there exists a unique I∗ > 0 such that F (I∗) = 0. By the second and third
equations of (3.1), there exists a unique endemic equilibrium E∗ of system (1.3)
if R0 > 1. Second we assume R0 ≤ 1. Then it is obvious that system (1.3) has
no endemic equilibrium. Hence the proof is complete. !

3.2. Permanence of the system for R0 > 1
In this subsection, we obtain the permanence of the system (1.3). We intro-

duce the following lemma without proof.

Lemma 3.2 For system (1.3) with initial conditions (1.4),

lim sup
t→+∞

(S(t) + I(t) +R(t)) ≤
1

µ
,

where µ = min(µ1, µ2, 1).

Similar as in the proof of Wang et al. [12, Theorem 3.2], we obtain the following
theorem. We omit the proof.

Theorem 3.1 There exists a positive constants vi (i = 1, 2, 3) such that for
any initial conditions of system (1.3),

lim inf
t→+∞

S(t) ≥ v1, lim inf
t→+∞

I(t) ≥ v2, lim inf
t→+∞

R(t) ≥ v3,

if and only if R0 > 1.

Combining Lemma 3.2 and Theorem 3.1, we obtain the permanence of system
(1.3) for R0 > 1.
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3.3. Local asymptotic stability of E∗ for R0 > 1

In this subsection, we will study the local asymptotic stability of the endemic
equilibrium E∗ = (S∗, I∗, R∗) for system (1.3). Let us assume thatR0 > 1 holds.
For (Ŝ, Î, R̂) = (S∗, I∗, R∗) the characteristic roots of (2.1) are the root λ = −µ2

and the roots of
λ2 + aλ+ b− e−λτ (cλ+ d) = 0, (3.2)

where






a = S∗

(

G(I∗)

I∗
+ r

)

, b =
r(S∗)2G(I∗)

I∗
,

c = S∗G′(I∗), d = S∗G′(I∗)(rS∗ −G(I∗)).

First we analyze the characterstic equation (3.2) with τ = 0. We prove that all
the roots of the characterstic equation (3.2) have negative real part.

Proposition 3.1 Assume R0 > 1. Then all the roots of (3.2) have negative
real part for τ = 0.

Proof. When τ = 0, (3.2) yields

λ2 + (a− c)λ+ (b − d) = 0. (3.3)

Noting from the hypotheses (H1) and (H2) that G(I∗)− I∗G′(I∗) ≥ 0, we have

a− c = S∗

(

G(I∗)

I∗
−G′(I∗) + r

)

> 0

and

b− d = r(S∗)2
(

G(I∗)

I∗
−G′(I∗)

)

+ S∗G′(I∗)G(I∗) > 0,

which implies that all the roots of equation (3.3) have negative real part. The
proof is complete. !

Next we analyze the characterstic equation (3.2) with τ > 0. Let us define

R0 = 2
I∗

G(I∗)
+

1

G′(I∗)
. (3.4)

Then we prove that R0 = R0 is a threshold condition which determines the
existence of purely imaginary roots of (3.2).

Proposition 3.2 Assume R0 > 1. Then the following statement holds true.

(i) If R0 ≤ R0, then all the roots of (3.2) have negative real part for any
τ > 0.
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(ii) If R0 < R0, then there exists a monotone increasing sequence {τn}∞n=0

with τ0 > 0 such that (3.2) has a pair of imaginary roots for τ = τn
(n = 0, 1, . . .).

Proof. From Proposition 3.1, all the roots of equation (3.2) have negative real
part for sufficiently small τ . Suppose that λ = iω, ω > 0 is a root of (3.2).
Substituting λ = iω into the characteristic equation (3.2) yields equations, which
split into its real and imaginary parts as follows:

{

−ω2 + b = d cosωτ + cω sinωτ,
aω = cω cosωτ − d sinωτ.

(3.5)

Squaring and adding both equations, we have

ω4 + (a2 − 2b− c2)ω2 + (b + d)(b− d) = 0. (3.6)

By the relation r(1 − S∗) = G(I∗) and

2S∗G′(I∗) +
1

R0
=

2I∗G′(I∗)

R0G(I∗)
+

1

R0
=

G′(I∗)

R0

(

2
I∗

G(I∗)
+

1

G′(I∗)

)

=
R0G′(I∗)

R0
,

we obtain

a2 − 2b− c2 =

(

G(I∗)

I∗
+ r

)2

(S∗)2 − 2r
G(I∗)

I∗
(S∗)2 − (S∗)2G′(I∗)2

= (S∗)2
{(

G(I∗)

I∗

)2

−G′(I∗)2 + r2
}

and

b+ d = rS∗

(

2S∗G′(I∗) +
1

R0
−G′(I∗)

)

=
rS∗G′(I∗)

R0
(R0 −R0).

First we assume R0 ≤ R0. Then we have a2−2b−c2 > 0 and b+d ≥ 0, that
is, there is no positive real ω satisfying (3.6). This leads a contradiction and all
the roots of (3.2) have negative real part for any τ ≥ 0. Hence we obtain the
first part of this proposition.

Second we assume R0 < R0. Then it follows from the relation a2−2b−c2 > 0
and b+ d < 0 that there is a unique positive real ω0 satisfying (3.6), where

ω0 =

{

−(a2 − 2b− c2) +
√

(a2 − 2b− c2)2 − 4(b+ d)(b − d)

2

}
1

2

. (3.7)

Noting from (3.5) that λ = −iω0 is also a root of (3.2), this implies that (3.6)
has a single pair of purely imaginary roots ±iω0. Therefore, by the relation

(ac− d)ω2
0 + bd = (c2ω2

0 + d2) cosω0τ,
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τn corresponding to ω0 can be obtained as follows:

τn =
1

ω0
arccos

(ac− d)ω2
0 + bd

c2ω2
0 + d2

+
2nπ

ω0
, n = 0, 1, 2, . . . . (3.8)

Hence we obtain the second part of this proposition. The proof is complete. !

The following proposition indicates that a conjugate pair of the characteristic
roots λ = ±iω0 of (2.1) cross the imaginary axis from the left half complex plane
to the right half complex plane when τ crosses τn (n = 0, 1, . . .) if 1 < R0 < R0.

Proposition 3.3 Assume R0 > 1. If R0 < R0, then the transversality condi-
tion

dRe(λ(τ))

dτ

∣

∣

∣

τ=τn
> 0

holds for n = 0, 1, . . ..

Proof. Differentiating (3.2) with respect to τ , we obtain

(2λ+ a)
dλ

dτ
= {e−λτc− τe−λτ (cλ+ d)}

dλ

dτ
− λe−λτ (cλ+ d),

that is,

(

dλ

dτ

)−1

=
(2λ+ a)− e−λτc+ τe−λτ (cλ+ d)

−λe−λτ (cλ+ d)

=
2λ+ a

−λe−λτ (cλ+ d)
+

c

λ(cλ+ d)
−
τ

λ

= −
λ(2λ+ a)

λ2(λ2 + aλ+ b)
+

cλ

λ2(cλ+ d)
−
τ

λ

= −
(λ2 + aλ+ b) + λ2 − b

λ2(λ2 + aλ+ b)
+

(cλ+ d)− d

λ2(cλ+ d)
−
τ

λ

= −
λ2 − b

λ2(λ2 + aλ+ b)
+

−d

λ2(cλ+ d)
−
τ

λ
.

By the relation

dλ

dτ
=

dRe(λ)

dτ
+ i

dIm(λ)

dτ

=

{(

dRe(λ)

dτ

)2

+

(

dIm(λ)

dτ

)2}(

dRe(λ)

dτ
− i

dIm(λ)

dτ

)−1

,

we have
dRe(λ)

dτ
= Re

(

dλ

dτ

)−1{(dRe(λ)

dτ

)2

+

(

dIm(λ)

dτ

)2}
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and

Re

(

dλ

dτ

)−1
∣

∣

∣

τ=τn
=

(−ω2
0 − b)(b− ω2

0)

ω2
0{(b− ω

2
0)

2 + a2ω2
0}

+
d2

ω2
0(c

2ω2
0 + d2)

=
ω4
0 − b2 + d2

ω2
0(c

2ω2
0 + d2)

=
ω4
0 − (b− d)(b + d)

ω2
0(c

2ω2
0 + d2)

> 0.

Hence we obtain dRe(λ)
dτ |τ=τn > 0 for n = 0, 1, . . .. The proof is complete. !

By Proposition 3.1 and the first part of Proposition 3.2, all the roots of (3.2)
have negative real part for any τ ≥ 0 if 1 < R0 ≤ R0. By Proposition 3.1, the
second part of Proposition 3.2 and Proposition 3.3, all the roots of (3.2) have
negative real part for 0 ≤ τ < τ0 and there exists at least 2 roots having positive
real part for τ > τ0 if 1 < R0 < R0. We then establish the stability condition
for the endemic equilibrium as follows.

Theorem 3.2 Assume R0 > 1. Then the following statement holds true.

(i) If R0 ≤ R0, then the endemic equilibrium E∗ of system (1.3) is locally
asymptotically stable for any τ ≥ 0.

(ii) If R0 < R0, then the endemic equilibrium E∗ of system (1.3) is locally
asymptotically stable for 0 ≤ τ < τ0 and it is unstable for τ > τ0.

Remark 3.1 System (1.3) undergoes Hopf bifurcation at the endemic equilib-
rium E∗ when τ crosses τn (n = 0, 1, . . .) for 1 < R0 < R0.

4. Example

In this section, we consider the following model as an example.






























dS(t)

dt
= r(1 − S(t))S(t) − S(t)

I(t− τ)

1 + αI(t− τ)
,

dI(t)

dt
= S(t)

I(t− τ)

1 + αI(t− τ)
− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t),

(4.1)

where α ≥ 0. One can see that system (4.1) always has the trivial equilibrium
E0 and the disease-free equilibrium E1. Applying Theorems 2.1 and 2.2 we
obtain the following results.

Corollary 4.1 The trivial equilibrium E0 of system (4.1) is always unstable.

Corollary 4.2 The disease-free equilibrium E1 of system (4.1) is globally asymp-
totically stable if and only if R0 ≤ 1 and it is unstable if and only if R0 > 1.
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By Lemma 3.1, system (4.1) has a unique endemic equilibrium E∗ = (S∗, I∗, R∗)
if and only if R0 > 1. Applying Theorem 3.2, we obtain the following result.

Corollary 4.3 Assume R0 > 1. Then the following statement holds true.

(i) If R0 ≤ R0, then the endemic equilibrium E∗ of system (4.1) is locally
asymptotically stable for any τ ≥ 0.

(ii) If R0 < R0, then the endemic equilibrium E∗ of system (4.1) is locally
asymptotically stable for 0 ≤ τ < τ0 and it is unstable for τ > τ0.

The condition R0 = 1 is a threshold condition which determines stability
of the disease-free equilibrium and the existence of the endemic equilibrium.
Moreover, if R0 > 1 then one can see that the condition R0 = R0 works as
a condition which determines delay-dependent stability or delay-independent
stability for the endemic equilibrium. In the following we visualize these condi-
tions by plotting them in a two-parameter plane. We choose α and R0 as free
parameters and fix r. Since it is straightforward to plot the condition R0 = 1
in (α, R0) parameter plane, we explain how to visualize the condition R0 = R0

in the same parameter plane.
Let us assume that R0 > 1 holds. The component of the endemic equilibrium

for I can be given as

I∗(α, R0) =
αr(R0 − 2)−R0 +

√

{αr(R0 − 2)−R0}2 + 4α2r2(R0 − 1)

2α2r
(4.2)

for α > 0 and

I∗(0, R0) = r

(

1−
1

R0

)

. (4.3)

We note that limα→+0 I∗(α, R0) = I∗(0, R0) > 0. Then from the definition
(3.4) R0 is computed as

R0(α, R0) = 2(1 + αI∗(α, R0)) + (1 + αI∗(α, R0))
2

= (1 + αI∗(α, R0))(3 + αI
∗(α, R0)). (4.4)

We define the following function.

H(α, R0) := R0 −R0(α, R0). (4.5)

If there exists (α, R0) satisfying H(α, R0) = 0, then it expresses the condition
R0 = R0(α, R0) in terms of two parameters (α, R0). We note that H(0, 3) = 0
holds true. The following proposition indicates the existence of the solutions of
H(α, R0) = 0 for α > 0 and R0 > 3.

Proposition 4.1 There exists a unique continuously differentiable function α̃ :
(3,+∞) −→ (0,+∞) such that H(α̃(R0), R0) = 0. In addition, it holds that
limR0→3+0 α̃(R0) = 0.
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Figure 1: Delay dependent/independent stability boundary for the endemic equilibrium and
the stability boundary for the disease-free equilibrium in (α, R0) parameter plane. The dashed
curve and the dotted line denotes H(α, R0) = 0 with r = 0.1 and R0 = 1, respectively. In the
region (I) there exists a τ0 := τ0(α, R0) such that the endemic equilibrium E∗ is asmptotically
stable for 0 ≤ τ < τ0 and it is unstable for τ > τ0. In the region (II) the endemic equilibrium
E∗ is asymptotically stable for any τ . In the region (III) the disease-free equilibrium E1 is
globally asymptotically stable.

The proof of Proposition 4.1 is given in Appendix A. In Figure 1 we plot the
line R0 = 1 and the curve H(α, R0) = 0 in (α, R0) parameter plane for a fixed
r. Figure 1 suggests that the parameter α has a positive effect for the stability
of the endemic equilibrium: if α is large enough then the endemic equilibrium
is stable for any delay. On the other hand, if R0 is large enough then for small
α there is a possibility that the stability of the endemic equilibrium depends on
the delay.

5. Concluding remarks

In this paper we consider SIR epidemic model in which population growth
is subject to logistic growth in absence of disease. The force of infection with
a discrete delay is given by a general nonlinear incidence rate satisfying mono-
tonicity conditions (H1) and (H2). We analyze stability of the trivial equilib-
rium, the disease-free equilibrium and the endemic equilibrium by investigating

12



associated characteristic equation and constructing Lyapunov functional. We
show that the global asymptotic stability of the disease-free equilibrium is de-
termined by the basic reproduction number as often in SIR epidemic models
[4, 6, 7, 8, 9, 10]: the disease-free equilibrium is globally asymptotically stable if
and only if the basic reproduction number is less than or equal to one and it is
unstable if and only if the basic reproduction number exceeds one. The system
admits a unique endemic equilibrium if and only if the basic reproduction num-
ber exceeds one. In order to investigate the stability of the endemic equilibrium
we define R0, which is characterized by the nonlinear incidence. The condition
R0 = R0 is a threshold condition which determines delay-independent stability
or delay-dependent stability of the endemic equilibrium: the endemic equilib-
rium is locally asymptotically stable for any delay if R0 ≤ R0 and there exists
a critical length of delay such that the endemic equilibrium is locally asymptot-
ically stable when the delay is less than the value, whereas it is unstable when
the delay is greater than the value if R0 > R0.

Recently, [4, 6, 9, 10] has investigated the stability of equilibria for delayed
SIR epidemic models with nonlinear incidence rates, where population growth is
governed not by the logistic type but by the linear form under the condition that
the incidence function satisfies the monotone properties as in (H1) and (H2).
It is proved that the endemic equilibrium is globally asymptotically stable for
any delay if the basic reproduction number exceeds one. This implies that
the logistic growth of population of susceptible individuals is responsible for
the instability of the endemic equilibrium. On the other hand, Wang et al. [12]
studied the stability of equilibria for (1.3) when the incidence function is a linear
function G(I) = I and proved that R0 = 3 is the threshold condition for delay-
independent stability or delay-dependent stability of the endemic equilibrium.
Since (3.4) implies that R0 is reduced to 3 when G(I) = I, our results for the
stability of endemic equilibrium extends the results of [12, Theorems 3.1 and
4.1].

In Section 4 we consider a special case that the incidence rate has saturation
effect to visualize the threshold condition R0 = R0 in a two-parameter plane.
One can see that G(I) = I

1+αI
satisfies the hypotheses (H1) and (H2). We

choose α and R0 as free parameters and fix other parameter. Since the threshold
value R0 is given by an expression with variables α and R0 in (4.4), the condition
is expressed as H(α, R0) = 0. We further obtain the analytical result of the
unique existence of α > 0 satisfying H(α, R0) = 0 for any fixed R0 > 3 (see
Proposition 4.1). In Figure 1, the two conditions R0 = 1 and H(α, R0) = 0
are depicted. Figure 1 suggests that the function α̃ is a monotone increasing
function on (3,+∞). This implies that the endemic equilibrium is locally stable
for any delay if 1 < R0 ≤ 3.

For R0 > 3, the parameter α which measures crowding effect of infective
individuals, seems to have a positive effect for the stability of the endemic
equilibrium. The endemic equilibrium is locally asymptotically stable for any
delay if the crowding effect is large enough. On the other hand the stability of
the endemic equilibrium depends on the delay if the crowding effect is small.
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Appendix A. Proof of Proposition 4.1

In order to prove Proposition 4.1 by means of the implicit function theorem,
we introduce the following lemma concerning the continuous differentiability of
H .

Lemma A.1 ∂H(α,R0)
∂α

< 0 holds for all α > 0 and R0 > 1. Moreover, H is
continuously differentiable on (0,+∞)× (1,+∞).

Proof. We now show that ∂R0(α,R0)
∂α > 0 holds for all α > 0. From (4.2) and

the relation −1 < x√
x2+k

< 1 (x ∈ R, k > 0) we have

∂αI∗(α, R0)

∂α
=

R0

2α2r







1 +
R0 − 2− R0

rα
√

(

R0 − 2− R0

rα

)2
+ 4(R0 − 1)







> 0.

Hence it follows from (4.4) that

∂R0(α, R0)

∂α
=
∂

∂α
(1 + αI∗(α, R0))(3 + αI

∗(α, R0)) > 0

for all α > 0. This implies that ∂H(α,R0)
∂α

= −∂R0(α,R0)
∂α

< 0 holds for all α > 0.

We note that ∂H(α,R0)
∂α is continuous on (0,+∞) × (1,+∞). In addition, since

∂H(α,R0)
∂R0

exists for all α > 0 and R0 > 1 and it is continuous on (0,+∞) ×
(1,+∞), H is continuously differentiable on (0,+∞) × (1,+∞). The proof is
complete. !

Proof of Proposition 4.1 From (4.4) we obtain

H(0, R0) = R0 −R0(0, R0) = R0 − 3 > 0.

for any R0 > 3. Moreover from (4.2) we have

lim
α→+∞

αI∗(α, R0) = lim
α→+∞

R0 − 2 +
√

(R0 − 2)2 + 4(R0 − 1)

2
= R0 − 1,
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which yields

lim
α→+∞

H(α, R0) = R0 − lim
α→+∞

R0(α, R0)

= R0 − lim
α→+∞

(1 + αI∗(α, R0))(3 + αI
∗(α, R0))

= R0 −R0(R0 + 2)

= −R0(R0 + 1) < 0

for a fixed R0 > 3. Therefore, by Lemma A.1 and the implicit function theorem,
for any R0 > 3 there exists a unique α > 0 such that the following statement
holds true.

(i) H(α, R0) = 0.
(ii) There exist neighborhood Ω ⊆ (3,+∞) of R0 and a unique C1-function

α̃ : Ω −→ (0,+∞) such that α = α̃(R0) and H(α̃(R0), R0) = 0.

Since the parameter R0 > 3 can be arbitrarily chosen, the function α̃ is con-
tinuously differentiable on (3,+∞). Hence we obtain the conclusion of the first
part of this proposition.

Second we prove limR0→3+0 α̃(R0) = 0. From (4.4) and (4.5) the following
equation holds for R0 > 3.

R0 − (1 + α̃(R0)I
∗(α̃(R0), R0))(3 + α̃(R0)I

∗(α̃(R0), R0)) = 0.

Since it follows from (4.2) and (4.3) that

(1 + α̃(R0)I
∗(α̃(R0), R0))(3 + α̃(R0)I

∗(α̃(R0), R0)) ≥ 3

holds with equality if and only if α̃(R0) = 0, we see that α̃ has a right-hand
limit 0 as R0 approaches 3. Hence we obtain the conclusion of the second part
of this proposition. The proof is complete. !
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