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Abstract

In this paper, we study the long-time behavior of a nonautonomous SEIRS epidemic model.
We obtain new su�cient conditions for the permanence (uniform persistence) and extinction
of infectious population of the model. By numerical examples we show that there are cases
such that our results improve the previous results obtained in [T. Zhang and Z. Teng, On a
nonautonomous SEIRS model in epidemiology, Bull. Math. Bio., (2007) 69, 2537-2559]. We
discuss a relation between our results and open questions proposed in the paper.
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dS(t)
dt

= Λ(t)− β(t)S(t)I(t)− µ(t)S(t) + δ(t)R(t),

dE(t)
dt

= β(t)S(t)I(t)− (µ(t) + ε(t))E(t),

dI(t)
dt

= ε(t)E(t)− (µ(t) + γ(t)) I(t),

dR(t)
dt

= γ(t)I(t)− (µ(t) + δ(t))R(t)

(1.1)

with initial value
S(0) > 0, E(0) ≥ 0, I(0) > 0, R(0) ≥ 0. (1.2)

Here S(t), E(t), I(t) and R(t) denote the size of susceptible, exposed (not infectious but
infected), infectious and recovered population at time t ≥ 0, respectively. Λ(t) denotes the
birth rate, β(t) denotes the disease transmission coe�cient, µ(t) denotes the mortality,
ε(t) denotes the rate of developing infectivity, γ(t) denotes the recovery rate and δ(t)
denotes the rate of losing immunity at time t.
In the �eld of mathematical epidemiology, the qualitative analysis of mathematical

epidemic models has been carried out by many authors (see [1-22] and references therein).
One of the main streams of the �eld is the analysis of autonomous models (see for
instance [8, 9, 13, 14, 18, 19] and references therein). For instance, in case where system
(1.1) is autonomous (that is, all parameters are given by time-independent functions
Λ(t) = Λ, β(t) = β, µ(t) = µ, ε(t) = ε, γ(t) = γ and δ(t) = δ), we obtain the basic
reproduction number (see e.g., [5]) as

R0 =
εβ

(µ + ε)(µ + γ)
Λ
µ

. (1.3)

It is well known that the infectious disease dies out if R0 ≤ 1 and the disease persists if
R0 > 1 (see [10,14]).
On the other hand, in the real world, quite a few infectious diseases spread seasonally

(one of the reasons of such a phenomenon is, for instance, the seasonal change of the
number of infectious vectors [3]). Therefore, the study of periodic epidemic models has
recently been carried out enthusiastically (see e.g., [2�4,11,12,15,16,20�23] and references
therein). The de�nition of the basic reproduction number R0 for periodic epidemic models
was �rstly given by Bacaër and Guernaoui [3]. For system (1.1) with periodic parameters,
Nakata and Kuniya [12] proved that R0 plays the role as a threshold parameter for
determining the global dynamics of solutions, that is, the disease-free periodic solution
is globally asymptotically stable if R0 < 1 and the disease persists if R0 > 1.
The nonautonomous case is an extension of the periodic case. The study of the basic

reproduction number R0 for general time-heterogeneous epidemic models has recently
been carried out by Inaba [7] and Thieme [17].
Zhang and Teng [22] analyzed the dynamics of nonautonomous SEIRS epidemic model

(1.1) and obtained some su�cient conditions for the permanence and extinction of the
infectious population. One can notice that results obtained in Theorems 4.1 and 5.1 in
their paper do not determine the disease dynamics completely, since those conditions do
not give a threshold-type condition even in the autonomous case.
In this paper we obtain new su�cient conditions for the permanence and extinction

of system (1.1). We prove that our condtions gives the threshold-type result by the
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basic reproduction number given as in (1.3) when every parameter is given as a constant
parameter. Thus our result is an extension result of the threshold-type result in the
autonomous system. Our results may contribute to predict the disease dynamics, such as
permanence and extinction of the infectious population, when the phenomena is modeld
as a nonautonomous system.
This paper is organized as follows. In Section 2 we present preliminary setting and

propositions, which we use to analyze the long-time behavior of system (1.1) in the
following sections. In Sections 3 and 4 we prove our main theorems on the extinction
and permanence of infectious population of system (1.1). In Section 5, we derive explicit
conditions for the existence and permanence of infectious population of system (1.1) for
some special cases. We prove that when every parameter is given as a constant parameter
our conditions for the permanence and extinction becomes the threshold condition by the
basic reproduction number. In Section 6 we provide numerical examples to illustrate the
validity of our results. Moreover, those examples illustrate the cases where our theoretical
result can determine the dynamics even conditions proposed in [22] are not satis�ed.

2. Preliminaries

As in [22] we put the following assumptions for system (1.1).
Assumption 2.1 (i) Functions Λ, β, µ, δ, ε and γ are positive, bounded and continu-

ous on [0, +∞) and β(0) > 0.
(ii) There exist constants ωi > 0 (i = 1, 2, 3) such that

lim inf
t→+∞

∫ t+ω1

t

β(s)ds > 0, lim inf
t→+∞

∫ t+ω2

t

µ(s)ds > 0, lim inf
t→+∞

∫ t+ω3

t

Λ(s)ds > 0.

In what follows, we denote by N∗(t) the solution of

dN∗(t)
dt

= Λ(t)− µ(t)N∗(t) (2.1)

with initial value N∗(0) = S(0) + E(0) + I(0) + R(0) > 0. By adding equations of (1.1),
we easily see that N∗(t) = S(t) + E(t) + I(t) + R(t) means the size of total population
at time t. From Lemma 2.1, Theorem 3.1 and Remark 3.2 in [22], we have the following
results.
Proposition 2.2 (i) There exist positive constants m > 0 and M > 0, which are inde-

pendent from the choice of initial value N∗(0) > 0, such that

0 < m ≤ lim inf
t→+∞

N∗(t) ≤ lim sup
t→+∞

N∗(t) ≤ M < +∞. (2.2)

(ii) The solution (S(t), E(t), I(t), R(t)) of system (1.1) with initial value (1.2) exists,
uniformly bounded and

S (t) > 0, E (t) > 0, I (t) > 0, R (t) ≥ 0

for all t > 0.
For p > 0 and t > 0 we de�ne

G (p, t) := β(t)N∗(t)p + γ(t)−
(

1 +
1
p

)
ε(t)
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and
W (p, t) := pE(t)− I(t), (2.3)

where E and I are solutions of system (1.1). In Sections 3 and 4 we use the following
lemma in order to investigate the long-time behavior of system (1.1).
Lemma 2.3 If there exist positive constants p > 0 and T1 > 0 such that G (p, t) < 0
for all t ≥ T1, then there exists T2 ≥ T1 such that either W (p, t) > 0 for all t ≥ T2 or
W (p, t) ≤ 0 for all t ≥ T2.

PROOF. Suppose that there does not exist T2 ≥ T1 such that either W (p, t) > 0 for
all t ≥ T2 or W (p, t) ≤ 0 for all t ≥ T2 hold. Then, there necessarily exists s ≥ T1 such
that W (p, s) = 0 and dW (p, s)/dt > 0. Hence we have

pE(s) = I(s) (2.4)

and

p {β(s)S(s)I(s)− (µ(s) + ε(s))E(s)} − {ε(s)E(s)− (µ(s) + γ(s)) I(s)}
= I(s) {β(s)S(s)p + (µ(s) + γ(s))} − pE(s)

{
(µ(s) + ε(s)) +

1
p
ε(s)

}
> 0. (2.5)

Substituting (2.4) into (2.5) we have

0 < pE(s)
{

β(s)S(s)p + γ(s)−
(

1 +
1
p

)
ε(s)

}
≤ pE(s)G (p, s) .

From (ii) of Proposition 2.2, we have G (p, s) > 0, which is a contradiction. 2

3. Extinction of infectious population

In this section, we obtain su�cient conditions for the extinction of infectious population
of system (1.1). The de�nition of the extinction is as follows:
De�nition 3.1 We say that the infectious population of system (1.1) is extinct if

lim
t→+∞

I(t) = 0.

We give one of the main results of this paper.
Theorem 3.2 If there exist positive constants λ > 0, p > 0 and T1 > 0 such that

R1 (λ, p) := lim sup
t→+∞

∫ t+λ

t

{β(s)N∗(s)p− (µ(s) + ε(s))}ds < 0, (3.1)

R∗1 (λ, p) := lim sup
t→+∞

∫ t+λ

t

{
ε(s)

1
p
− (µ(s) + γ(s))

}
ds < 0 (3.2)

and G (p, t) < 0 for all t ≥ T1, then the infectious population of system (1.1) is extinct.

PROOF. From Lemma 2.3, we only have to consider the following two cases.
(i) pE(t) > I(t) for all t ≥ T2.
(ii) pE(t) ≤ I(t) for all t ≥ T2.
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First we consider the case (i). From the second equation of system (1.1), we have

dE(t)
dt

= β(t) (N∗(t)− E(t)− I(t)−R(t)) I(t)− (µ(t) + ε(t)) E(t)

< β(t) (N∗(t)− E(t)− I(t)−R(t)) pE(t)− (µ(t) + ε(t)) E(t)

< E(t) {β(t)N∗(t)p− (µ(t) + ε(t))} .

Hence, we obtain

E(t) < E(T2) exp
(∫ t

T2

{β(s)N∗(s)p− (µ(s) + ε(s))}ds

)
(3.3)

for all t ≥ T2. From (3.1) we see that there exist constants δ1 > 0 and T3 > T2 such that
∫ t+λ

t

{β(s)N∗(s)p− (µ(s) + ε(s))}ds < −δ1 (3.4)

for all t ≥ T3. From (3.3) and (3.4) we have limt→+∞E(t) = 0. Then it follows from
pE(t) > I(t) for all t ≥ T2 that limt→+∞ I(t) = 0.
Next we consider the case (ii). Since we have E(t) ≤ I(t)/p for all t ≥ T2, it follows

from the third equation of system (1.1) that

dI(t)
dt

≤ I(t)
{

ε(t)
1
p
− (µ(t) + γ(t))

}
.

Hence we have

I(t) ≤ I(T2) exp
(∫ t

T2

{
ε(s)

1
p
− (µ(s) + γ(s))

}
ds

)
(3.5)

for all t ≥ T2. Now it follows from (3.2) that there exist constants δ2 > 0 and T4 > T2

such that ∫ t+λ

t

{
ε(s)

1
p
− (µ(s) + γ(s))

}
ds < −δ2 (3.6)

for all t ≥ T4. From (3.5) and (3.6) we have limt→+∞ I(t) = 0. 2

4. Permanence of infectious population

In this section, we obtain su�cient conditions for the permanence of infectious popu-
lation of system (1.1). The de�nition of the permanence is as follows:
De�nition 4.1 We say that the infectious population of system (1.1) is permanent if
there exist positive constants I1 > 0 and I2 > 0, which are independent from the choice
of initial value satisfying (1.2), such that

0 < I1 ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ I2 < +∞.

We give one of the main results of this paper.
Theorem 4.2 If there exist positive constants λ > 0, p > 0 and T1 > 0 such that

R2 (λ, p) := lim inf
t→+∞

∫ t+λ

t

{β(s)N∗(s)p− (µ(s) + ε(s))}ds > 0, (4.1)

R∗2 (λ, p) := lim inf
t→+∞

∫ t+λ

t

{
ε(s)

1
p
− (µ(s) + γ(s))

}
ds > 0 (4.2)
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and G (p, t) < 0 for all t ≥ T1, then the infectious population of system (1.1) is perma-
nent.
Before we give the proof of Theorem 4.2, we introduce the following lemma.

Lemma 4.3 If there exist positive constants λ > 0, p > 0 and T1 > 0 such that (4.1),
(4.2) and G (p, t) < 0 hold for all t ≥ T1, then W (p, t) ≤ 0 for all t ≥ T2 ≥ T1, where T2

is given as in Lemma 2.3.

PROOF. From Lemma 2.3 we have only two cases, W (p, t) > 0 for all t ≥ T2 or
W (p, t) ≤ 0 for all t ≥ T2. Suppose that W (p, t) > 0 for all t ≥ T2. Then, we have
E(t) > I(t)/p for all t ≥ T2. It follows from the third equation of system (1.1) that

dI(t)
dt

> ε(t)
1
p
I(t)− (µ(t) + γ(t)) I(t) = I(t)

{
ε(t)

1
p
− (µ(t) + γ(t))

}

for all t ≥ T2. Hence, we obtain

I(t) > I(T2) exp
(∫ t

T2

{
ε(s)

1
p
− (µ(s) + γ(s))

}
ds

)
(4.3)

for all t ≥ T2. From the inequality (4.2), we see that there exist positive constants η > 0
and T > 0 such that ∫ t+λ

t

{
ε(s)

1
p
− (µ(s) + γ(s))

}
ds > η (4.4)

for all t ≥ T . Since the inequality (4.3) holds for all t ≥ max (T2, T ), it follows from (4.4)
that limt→+∞ I(t) = +∞. This contradicts with the boundedness of I, stated in (ii) of
Proposition 2.2. 2

Using Lemma 4.3 we prove Theorem 4.2.

PROOF. (Proof of Theorem 4.2.) For simplicity, let mε := m − ε and Mε := M + ε,
where ε > 0 is a constant. From the inequality (2.2) of (i) of Proposition 2.2, we see that
for any ε > 0, there exists T > 0 such that

mε < N∗(t) < Mε (4.5)

for all t ≥ T . The inequality (4.1) implies that for su�ciently small η > 0 there exists
T1 ≥ T such that ∫ t+λ

t

{β(s)N∗(s)p− (µ(s) + ε(s))}ds > η (4.6)

for all t ≥ T1. We de�ne

β+ := sup
t≥0

β(t), µ+ := sup
t≥0

µ(t), ε+ := sup
t≥0

ε(t), γ+ := sup
t≥0

γ(t).

From (4.5) and (4.6) we see that for positive constants η1 < η and T2 ≥ T1 there exist
small εi > 0, i ∈ {1, 2, 3} such that

∫ t+λ

t

{β(s) (N∗(s)− ε1 − kε2 − ε3) p− (µ(s) + ε(s))}ds > η1, (4.7)

N∗(t)− ε1 − kε2 − ε3 > mε (4.8)
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hold for all t ≥ T2, where k := 1 + (β+Mε + γ+)ω2. From (ii) of Assumption 2.1, ε2 can
be chosen su�ciently small so that

∫ t+ω2

t

{β(s)Mεε2 − (µ(s) + ε(s)) ε1}ds < −η1, (4.9)

∫ t+ω2

t

{γ(s)ε2 − (µ(s) + δ(s)) ε3}ds < −η1 (4.10)

hold for all t ≥ T2.
First we claim that

lim sup
t→+∞

I(t) > ε2.

In fact, if it is not true, then there exists T3 ≥ T2 such that

I(t) ≤ ε2 (4.11)

for all t ≥ T3. Suppose that E(t) ≥ ε1 for all t ≥ T3. Then, from (4.5) and (4.11), we
have

E(t) = E(T3) +
∫ t

T3

{β(s) (N∗(s)− E(s)− I(s)−R(s)) I(s)− (µ(s) + ε(s)) E(s)}ds

≤ E(T3) +
∫ t

T3

{β(s)Mεε2 − (µ(s) + ε(s)) ε1}ds

for all t ≥ T3. Thus, from (4.9), we have limt→+∞E(t) = −∞, which contradicts with (ii)
of Proposition 2.2. Therefore, we see that there exists an s1 ≥ T3 such that E(s1) < ε1.
Suppose that there exists an s2 > s1 such that E(s2) > ε1 + β+Mεω2ε2. Then, we see
that there necessarily exists an s3 ∈ (s1, s2) such that E(s3) = ε1 and E(t) > ε1 for all
t ∈ (s3, s2]. Let n be an integer such that s2 ∈ [s3 + nω2, s3 + (n + 1) ω2]. Then, from
(4.9), we have

ε1 + β+Mεω2ε2

< E(s2)

= E(s3) +
∫ s2

s3

{β(s) (N∗(s)− E(s)− I(s)−R(s)) I(s)− (µ(s) + ε(s)) E(s)}ds

< ε1 +
{∫ s3+nω2

s3

+
∫ s2

s3+nω2

}
{β(s)Mεε2 − (µ(s) + ε(s)) ε1}ds

< ε1 +
∫ s2

s3+nω2

β(s)Mεε2 ds

< ε1 + β+Mεω2ε2,

which is a contradiction. Therefore, we see that

E(t) ≤ ε1 + β+Mεω2ε2 (4.12)

for all t ≥ s1. In a similar way, from (4.10), we can show that there exists s̃1 ≥ T3 such
that

R(t) ≤ ε3 + γ+ω2ε2 (4.13)
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for all t ≥ s̃1. Now, from Lemma 4.3, there exists T4 ≥ max (s1, s̃1) such that W (p, t) =
pE(t)− I(t) ≤ 0 for all t ≥ T4. Then

d
dt

E(t) = {β(t) (N∗(t)− E(t)− I(t)−R(t)) I(t)− (µ (t) + ε (t)) E(t)}
≥E(t) {β(t) (N∗(t)− E(t)− I(t)−R(t)) p− (µ (t) + ε (t))}
≥E(t) {β(t) (N∗(t)− ε1 − kε2 − ε3) p− (µ (t) + ε (t))}

since it follows from (4.11)-(4.13) that E(t) + I(t) + R(t) ≤ ε1 + kε2 + ε3 for all t ≥ T4.
Hence, we have

E(t) ≥ E(T4) exp
(∫ t

T4

{β(s) (N∗(s)− ε1 − kε2 − ε3) p− (µ (s) + ε (s))}ds

)
.

It follows from (4.7) that limt→+∞E(t) = +∞ and this contradicts with the boundedness
of E, stated in (ii) of Proposition 2.2. Thus, we see that our claim lim supt→+∞ I(t) > ε2
is true.
Next, we prove

lim inf
t→+∞

I(t) ≥ I1,

where I1 > 0 is a constant given in the following lines. From inequalities (4.7)-(4.9) and
(ii) of Assumption 2.1, we see that there exist constants T̃3 (≥ T2), λ2 > 0 and η2 > 0
such that

∫ t+λ3

t

{β(s)Mεε2 − (µ(s) + ε(s)) ε1}ds < −Mε, (4.14)

∫ t+λ3

t

{γ(s)ε2 − (µ(s) + δ(s)) ε3}ds < −Mε, (4.15)

∫ t+λ3

t

{β(s) (N∗(s)− ε1 − kε2 − ε3) p− (µ(s) + ε(s))}ds > η2, (4.16)

∫ t+λ3

t

β(s)ds > η2 (4.17)

for all λ3 ≥ λ2 and t ≥ T̃3. Let C > 0 be a constant satisfying

e−(µ++ε+)λ2mεv2η2e
Cη2 > ε1 + β+Mεω2ε2, (4.18)

where v2 = ε2e
−(γ++µ+)2λ2 . Since we proved lim supt→+∞ I(t) > ε2, there are only two

possibilities as follows:
(i) I(t) ≥ ε2 for all t ≥ ∃T̃4 ≥ T̃3.
(ii) I(t) oscillates about ε2 for large t ≥ T̃3.
In case (i), we have lim inft→+∞ I(t) ≥ ε2 =: I1. In case (ii), there necessarily exist two
constants t1, t2 ≥ T̃3 (t2 ≥ t1) such that

{
I(t1) = I(t2) = ε2,

I(t) < ε2 for all t ∈ (t1, t2).

Suppose that t2 − t1 ≤ C + 2λ2. Then, from (1.1) we have

dI(t)
dt

≥ − (
µ+ + γ+

)
I(t). (4.19)
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Hence, we obtain

I(t) ≥ I(t1) exp
(∫ t

t1

− (
µ+ + γ+

)
ds

)
≥ ε2e

−(µ++γ+)(C+2λ2) := I1 (4.20)

for all t ∈ (t1, t2). Suppose that t2 − t1 > C + 2λ2. Then, from (4.19), we have

I(t) ≥ ε2e
−(µ++γ+)(C+2λ2) = I1

for all t ∈ (t1, t1 + C + 2λ2). Now, we are in a position to show that I(t) ≥ I1 for all
t ∈ [t1 + C + 2λ2, t2). Suppose that E(t) ≥ ε1 for all t ∈ [t1, t1 + λ2]. Then, from (4.14),
we have

E(t1 + λ2)≤E(t1) +
∫ t1+λ2

t1

{β(s)Mεε2 − (µ (s) + ε (s)) ε1} ds

< Mε −Mε = 0,

which is a contradiction. Therefore, there exists an s4 ∈ [t1, t1 +λ2] such that E(s4) < ε1.
Then, as in the proof of lim supt→+∞ I(t) > ε2, we can show that E(t) ≤ ε1 +β+Mεω2ε2
for all t ≥ s4. Similarly, from (4.15), we can show that there exists an s̃4 ∈ [t1, t1 + λ2]
such that R(t) ≤ ε3 + γ+ω2ε2 for all t ≥ s̃4. Thus, we have

E(t) ≤ ε1 + β+Mεω2ε2 and R(t) ≤ ε3 + γ+ω2ε2 (4.21)

for all t ≥ t1 + λ2 ≥ max (s4, s̃4). From (4.19), we have

I(t) ≥ v2 = ε2e
−(µ++γ+)2λ2 (4.22)

for all t ∈ [t1, t1 + 2λ2]. Thus, from (4.8), (4.21) and (4.22), we have

dE(t)
dt

= β(t) (N∗(t)− E(t)− I(t)−R(t)) I(t)− (µ(t) + ε(t)) E(t)

≥ β(t)mεv2 −
(
µ+ + ε+

)
E(t)

for all t ∈ [t1 + λ2, t1 + 2λ2]. Hence, from (4.17),

E(t1 + 2λ2)

≥ e−(µ++ε+)(t1+2λ2)

{
E(t1 + λ2)e(µ++ε+)(t1+λ2) +

∫ t1+2λ2

t1+λ2

β(s)mεv2e
(µ++ε+)sds

}

≥ e−(µ++ε+)(t1+2λ2)

∫ t1+2λ2

t1+λ2

β(s)mεv2e
(µ++ε+)sds

≥ e−(µ++ε+)λ2η2mεv2. (4.23)

Now we suppose that there exists a t0 > 0 such that t0 ∈ (t1 + C + 2λ2, t2), I(t0) = I1

and I(t) ≥ I1 for all t ∈ [t1, t0]. Note that from Lemma 4.3, without loss of generality,
we can assume that t1 is so large that W (p, t) = pE(t) − I(t) ≤ 0 for all t ≥ t1 + 2λ2.
Then, from (4.21), we have

d
dt

E(t) = {β(t) (N∗(t)− E(t)− I(t)−R(t)) I(t)− (µ (t) + ε (t)) E(t)}
≥E(t) {β(t) (N∗(t)− E(t)− I(t)−R(t)) p− (µ (t) + ε (t))}
≥E(t) {β(t) (N∗(t)− ε1 − kε2 − ε3) p− (µ (t) + ε (t))}
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for all t ∈ (t1 + 2λ2, t2). Thus, from (4.16) and (4.23), we have

E(t0)

≥ E(t1 + 2λ2) exp
(∫ t0

t1+2λ2

{β(s) (N∗(s)− ε1 − kε2 − ε3) p− (µ(s) + ε(s))}ds

)

≥ e−(µ++ε+)λ2η2mεv2e
Cη2 .

Thus, from (4.21), we have

ε1 + ω2β
+Mεε2 ≥ e−(µ++ε+)λ2η2mεv2e

Cη2 ,

which contradicts with (4.18). Therefore, I(t) ≥ I1 for all t ∈ [t1 + C + 2λ2, t2), which
implies lim inft→+∞ I(t) ≥ I1.
Since lim supt→+∞ I(t) ≤ lim supt→+∞N∗(t) < M < +∞, the infectious population

of system (1.1) is permanent. 2

5. Applications

In this section, we consider some special cases of system (1.1). Applying Theorems 3.2
and 4.2, we derive explicit conditions for the extinction and permanence of infectious
population of system (1.1).
First, we assume that all coe�cients of system (1.1) are given by identically constant

functions. Then, (1.1) becomes an autonomous system. We show that, in this case, our
results obtained in Sections 3 and 4 become a well-known threshold-type result formulated
by the basic reproduction number R0 given as in (1.3).
For p > 0 we de�ne

R (p) := β
Λ
µ

p− (µ + ε) , R∗ (p) := ε
1
p
− (µ + γ)

and

G (p) := β
Λ
µ

p + γ −
(

1 +
1
p

)
ε.

Then, one can see that Ri (λ, p) = R(p), R∗i (λ, p) = R∗(p) (i = 1, 2) and G (p, t) = G(p)
in the autonomous case.
Proposition 5.1 Suppose that functions Λ, β, µ, ε, γ and δ of system (1.1) are iden-
tically positive constant functions. Then we have
(i) There exists p > 0 such that R(p) < 0, R∗(p) < 0 and G(p) < 0 if and only if
R0 < 1.

(ii) There exists p > 0 such that R(p) > 0, R∗(p) > 0 and G(p) < 0 if and only if
R0 > 1.

Here R0 is de�ned as in (1.3).

PROOF. We only prove (i) because (ii) is proved in a similar manner. Suppose that
there exists p > 0 such that R(p) < 0, R∗(p) < 0 and G(p) < 0 hold. Then, it follows
from R(p) < 0 and R∗(p) < 0 that

ε

µ + γ
< p <

(µ + ε)µ

βΛ
. (5.1)

10



Hence we obtain R0 < 1. Suppose, on the contrary, that R0 < 1. Then, it is obvious that
there exists p > 0 such that (5.1) holds. Since we have

G

(
ε

µ + γ

)
=

εβΛ
(µ + γ)µ

+ γ −
(

1 +
µ + γ

ε

)
ε = (µ + ε) (R0 − 1) < 0,

there exists p > 0 being close enough to ε/ (µ + γ) so that both (5.1) and G(p) < 0 hold.
For such p we have R(p) < 0, R∗(p) < 0 and G(p) < 0. 2

Proposition 5.1 implies that our conditions for the extinction and permanence for the
nonautonomous system (1.1) cover the threshold-type result in the autonomous case.
Next we focus on the case where only µ, ε and γ are constant functions. We have the

following threshold-type results.
Corollary 5.2 Suppose that µ, ε and γ of system (1.1) are identically positive constant
functions. Then, we have
(i) The infectious population of system (1.1) is extinct if there exists T1 > 0 such that

εβ(t)N∗(t)
(µ + ε) (µ + γ)

< 1 (5.2)

for all t ≥ T1.
(ii) The infectious population of system (1.1) is permanent if there exists T1 > 0 such

that
εβ(t)N∗(t)

(µ + ε) (µ + γ)
> 1 (5.3)

for all t ≥ T1.

PROOF. We only prove (i) because (ii) is proved in a similar manner. For the proof of
(i), it su�ces to show that there exist constants p > 0 and λ > 0 such that (3.1) and
(3.2) hold and G (p, t) < 0 for all t ≥ T1. From (5.2), we have

ε

µ + γ
<

µ + ε

lim supt→+∞
∫ t+1

t
β(s)N∗(s)ds

.

We choose p > 0 such that

ε

µ + γ
< p <

µ + ε

lim supt→+∞
∫ t+1

t
β(s)N∗(s)ds

. (5.4)

Then one can see that (3.1) and (3.2) with λ = 1 hold. Next we show that for such p, we
have G (p, t) < 0 for all t ≥ T1. In fact, from (5.2), we have

β(t)N∗(t)
ε

µ + γ
− (µ + ε) = β(t)N∗(t)

ε

µ + γ
+ γ −

(
1 +

µ + γ

ε

)
ε < 0

for all t ≥ T1. Thus, one can �nd small enough ε̄ > 0 such that G (p, t) < 0 holds for

p ∈
(

ε

µ + γ
,

ε

µ + γ
+ ε̄

)
⊂

(
ε

µ + γ
,

µ + ε

lim supt→+∞
∫ t+1

t
β(s)N∗(s)ds

)

and t ≥ T1, due to the continuity of G with respect to p. 2

11



It is easily seen that the existence of T1 > 0 such that (5.2) or (5.3) hold for all t ≥ T1

is a su�cient condition for

lim sup
t→+∞

∫ t+λ

t

{εβ(s)N∗(s)− (µ + ε) (µ + γ)}ds < 0 (5.5)

or

lim inf
t→+∞

∫ t+λ

t

{εβ(s)N∗(s)− (µ + ε) (µ + γ)}ds > 0 (5.6)

with λ = 1, respectively, where (5.5) and (5.6) are conditions proposed in Questions 1
and 2 in [22] for the extinction and permanence of infectious population of system (1.1),
respectively. However, one can see that those conditions do not imply the conditions
given in Corollary 5.2. In fact, conditions (5.5) and (5.6) are not suitable as a threshold
condition for the global dynamics of system (1.1) because they overestimate the value
of the basic reproduction number R0 even in the situation where only function β(t) is
periodic and other coe�cients are constant functions (see Section 5.1.2 of [2]) and it
was shown in [12] that whether the infectious population of system (1.1) is extinct or
permanent is perfectly determined by R0 in the periodic case.

6. Numerical examples

In this section we perform numerical simulations in order to verify the validity of
Theorems 3.2 and 4.2 and to show that in some special cases, our results can improve
the previous results for the permanence and extinction of system (1.1) obtained by Zhang
and Teng [22].
Fix

Λ(t) ≡ 1, µ(t) ≡ 1, ε(t) = 0.3 (1 + 0.5 cos(2πt)) , γ(t) = 0.5 (1 + 0.5 cos(2πt))

and δ(t) ≡ 0.1. Then, from (2.1), we have limt→+∞N∗(t) = 1. Here we assume N∗(0) = 1
and thus N∗(t) ≡ 1.
Let β(t) = 6.49 (1 + 0.5 cos(2πt)). Then, system (1.1) becomes periodic with period 1.

We choose λ = 1 and p = 0.20011. Then we have

R1 (λ, p) =
∫ 1

0

{6.49 (1 + 0.5 cos(2πs))× 0.20011− (1 + 0.3 (1 + 0.5 cos(2πs)))}ds

w−0.0012861 · · · < 0,

R∗1 (λ, p) =
∫ 1

0

{
0.3 (1 + 0.5 cos(2πs))× 1

0.20011
− (1 + 0.5 (1 + 0.5 cos(2πt)))

}
ds

w−0.000824546 · · · < 0

and

G (p, t) = 6.49 (1 + 0.5 cos(2πt))× 0.20011 + 0.5 (1 + 0.5 cos(2πt))

−
(

1 +
1

0.20011

)
× 0.3 (1 + 0.5 cos(2πt))

w−0.000461554 (1 + 0.5 cos(2πt)) < 0

12
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Figure 1. The �rst example of dynamics of I(t) and E(t) of system (1.1) (E(0) = I(0) = 0.0005).
β(t) = 6.49 (1 + 0.5 cos(2πt)) and p = 0.20011. The infectious population is extinct.

for all t > 0. From (i) of Theorem 3.2, we see that the infectious population of system
(1.1) is extinct, see Figure 1 for a numerical simulation of solution behavior. In this
example we have

∫ t+λ

t
β(s)N∗(s)ds

∫ t+λ

t
µ(s)ds

=

∫ 1

0
6.49 (1 + 0.5(cos(2πs))) ds

1
= 6.49 > 1.

This implies that a su�cient condition proposed in Theorem 5.1 in [22] for the extinc-
tion of infectious population does not hold. Thus their criterion can not determine the
extinction of infectious population in this example.
Next we set β(t) = 6.51 (1 + 0.5 cos(2πt)). We choose λ = 1 and p = 0.1997. Then,

R2 (λ, p) =
∫ 1

0

{6.51 (1 + 0.5 cos(2πs))× 0.1997− (1 + 0.3 (1 + 0.5 cos(2πs)))}ds

w 0.000047 · · · > 0,

R∗2 (λ, p) =
∫ 1

0

{
0.3 (1 + 0.5 cos(2πs))× 1

0.1997
− (1 + 0.5 (1 + 0.5 cos(2πt)))

}
ds

w 0.00225338 · · · > 0

and

G (p, t) = 6.51 (1 + 0.5 cos(2πt))× 0.1997 + 0.5 (1 + 0.5 cos(2πt))

−
(

1 +
1

0.1997

)
× 0.3 (1 + 0.5 cos(2πt))

w−0.00220638 (1 + 0.5 cos(2πt)) < 0

for all t > 0. Thus, from (ii) of Theorem 4.2, we see that the infectious population of
system (1.1) is permanent, see Figure 2 for a numerical simulation of solution behavior.
On the other hand, one can compute
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Figure 2. The second example of dynamics of I(t) and E(t) of system (1.1) (E(0) = I(0) = 0.0005).
β(t) = 6.51 (1 + 0.5 cos(2πt)) and p = 0.1997. The infectious population is permanent.

∫ t+λ

t
2
√

β(s)ε(s)N∗(s)du
∫ t+λ

t
(µ(s) + ε(s) + µ(s) + γ(s)) du

=

∫ 1

0
2
√

6.51 (1 + 0.5 cos(2πs))× 0.3 (1 + 0.5 cos(2πs))ds∫ 1

0
(2 + 0.8 (1 + 0.5 cos(2πs))) ds

w 0.99821 < 1.

This implies, similar to the previous example, that a su�cient condition proposed in
Theorem 4.1 in [22] for the permanence of infectious population fails in this example.

7. Discussion

In this paper, we have investigated the global dynamics of a nonautonomous SEIRS
epidemic model (1.1). We obtain new su�cient conditions for the extinction and perma-
nence of infectious population of system (1.1) in Theorems 3.2 and 4.2, respectively. We
analyze the dynamics of system (1.1) via considering the behavior of a function de�ned
as in (2.3), see Lemmas 2.3 and 4.3.
In Section 5, we prove that when every parameter of system (1.1) is given as a constant

parameter, our conditions in Theorems 3.2 and 4.2 become the threshold condition by
the basic reproduction number R0, We remark that conditions given in Theorems 4.1
and 5.1 in [22] for the permanence and extinction do not give a threshold-type condition
even in the autonomous case. In the same section we also discuss a relation between
our results and open problems proposed in [22]. For a special case, we show that our
conditions are su�cient, but not necessary for (5.5) and (5.6), which were conjectured
as conditions for the permanence and extinction of infectious population. For the case
in which every parameter is given as a periodic function, in [12] it was proved that
the basic reproduction number R0 works as a threshold parameter to determine the
global stability of the disease-free equilibrium and permanence of infectious population.
An approximation method for the basic reproduction number R0 in [3] shows that the
conjectured condition does not determine the permanence and extinction completely, see
Section 5 in [12] for the detail.
In Section 6 we provide numerical examples to illustrate the validity of our results.

In those examples we show that conditions in Theorems 4.1 and 5.1 in [22] for the
permanence and extinction of infectious population of system (1.1) are not satis�ed.
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One may argue that our conditions for the permanence and extinction may not sharp.
It is still an open problem that if the basic reproduction number R0 for (1.1) works as a
threshold parameter to determine the permanence and extinction of infectious population
like in the autonomous system.
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