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Abstract

An efficient surveillance system is a crucial factor in identifying, monitoring and tackling outbreaks
of infectious diseases. Scarcity of data and limited amounts of economic resources require a targeted
effort from public health authorities. In this paper we propose a mathematical method to identify areas
where surveillance is critical and low reporting rates might leave epidemics undetected. Our approach
combines the use of reference-based SEI models and observed reporting data. We propose two different
specifications, for constant and time-varying surveillance, respectively. Our case study is centered around
the spread of the raccoon rabies epidemic in the state of New York, using data collected between 1990
and 2007. Both methods offer a feasible solution to analyze and identify areas of intervention.
Keywords: public health | risk monitoring | raccoon rabies | modeling | data assimilation

Introduction

As pointed out in Microbial Threats to Health: Emergence, Detection and Response (IOM 2003, [1]),
the degree of success of global and national efforts to create public health infrastructure with effective
systems of surveillance and response is a key variable influencing the future impact of infectious dis-
eases. According to WHO, surveillance is an ongoing, systematic collection, analysis and interpretation
of health-related data essential to planning, implementation, and evaluation of public health practice [2].
Surveillance plays a major role in devising public health strategies to curtail the spread of infectious
diseases and early detection remains the first line of defense in preventing the emergence of novel disease
outbreaks. Often, surveillance is the decisive factor in triggering early intervention (see [3,4]), in order to
avoid the higher public health costs associated with a widespread infection in the case an outbreak has
gone undetected.

The definition of an epidemic/epizootic or outbreak is varied and has a long history of confusion (see
Rosenburg [5] for an account of the history of the concept of an epidemic). Contemporary discussions
have assumed at least two definitions of epidemic or outbreak occurrence. Childs et al. [6], for example,
consider a rabies outbreak as occurring when the observed number of cases falls above a baseline for a
specified number of consecutive observation periods and where the average number of cases in a given
location determines the base line. They suggest an above average reported rate at the county level for
three consecutive months. The other most common definition treats any occurrence of an infectious
disease as an outbreak where it is detected in a novel geographic location and poses a significant public
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health threat because of its novel appearance in that location. Throughout this paper we adhere to this
latter definition since we are concerned with uncovering appropriate surveillance strategies for detecting
novel occurrences of disease.

Resources for infectious disease surveillance are always in limited supply and any strategy that pro-
vides insight into the optimal guidance of surveillance programs is a valued addition to our public health
infrastructure [7]. Guidance strategies should include the identification of both areas and populations
that are at increased risk of disease exposure. This is the key idea associated with the concept of tar-
geted surveillance (also known as risk-based surveillance) defined as a surveillance strategy that focuses
sampling on high-risk populations in which specific, and commonly known risk factors exist [8]. The con-
cept of targeted surveillance was first formally introduced following the emergence of bovine spongiform
encephalopathy (BSE) in the UK during the 1996 epidemic [9]. This idea is also behind the recently
emerging field of model-guided surveillance [10].

In the United States, the Council of State and Territorial Epidemiologists (CSTE), in collaboration
with the Center for Disease Control (CDC), maintains a list of notifiable diseases constituting the Na-
tional Notifiable Diseases Surveillance System (NNDSS). For human diseases, health care providers are
an essential component of any surveillance program, but their impact is significantly reduced when con-
fronted with an epidemic of zoonotic origin. Monitoring of wildlife reservoirs is an essential component
of detection but rarely undertaken routinely. What we understand of zoonotic epidemics is largely con-
structed from passive reporting of occurrences gleaned from haphazard and incomplete surveillance of
animal populations usually as the result of an animal-human interaction (see [11]). For the purposes of
our analysis, the reporting rate (or equivalently, the detection rate) is taken to constitute the fraction of
reported cases over the total number of infections. Reporting rates vary significantly over both time and
space and may deviate significantly from the true underlying distribution of infections due to a variety
of sources (e.g. variation in the size and extent of infection clusters, heterogeneity in human and host
population densities, etc. [12]). However these factors explain only partially the spatial and temporal
heterogeneity in reporting rate. Variation in the implementation and structure of surveillance programs
can themselves be a significant source of reporting rate variation and a mapping of different levels of
reporting rate and surveillance efforts across space or time can help identify specific areas in need of
intervention.

A variety of mathematical models are available in the literature to describe the dynamics of infectious
diseases using the generalized SEIR modeling structure (see, for instance, [13,14], or [15] for a continuous
space model), and some work has been done at estimating the reporting rates for some human diseases
confering life-long immunity (see [16, 17]), but little effort has been directed at elucidating how to in-
corporate reporting data into models of surveillance (see [18]), especially from an ecological viewpoint
(see [19]). The goal of this paper is to show how to use reporting data (both reports of positive and
negative occurrences) to identify geographical areas where surveillance levels are potentially insufficient
to detect outbreaks.

Our approach is intended to provide a useful tool for public health agents who monitor critical areas
for surveillance and allocate funds for increased intervention. We introduce two different methods de-
pending on whether agents have fixed or time-varying reporting rate data. The first method is based on a
simple, constant reporting rate, intended to model a constant level of surveillance over time. Considering
that surveillance levels usually change as a consequence of case detection and local public health concerns,
we relax this assumption in our second method, where we formulate a reporting rate that changes over
time and depends on the total number of reports (positive and negative) and the estimated host popu-
lation. Provided that such an estimate is moderately accurate at any given time, it is possible to track
disease dynamics through a model for infectious spread. The first approach identifies a surveillance risk,
while the second one identifies a surveillance efficacy. The concepts are not mutually exclusive, and the
observed correlation between our results from the two approaches supports their mutual consistency. As
a consequence, either method can be used to identify areas where surveillance levels are critical, possibly
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underassessed, and potentially leaving an outbreak unidentified. Such evaluation relies on comparing
the values of computable parameters (risk or efficacy) across different counties. From the public health
standpoint, the areas identified by the method as at risk are the ones where additional resources should
be allocated for targeted monitoring. The proposed models provide input for explicit assessment of which
counties need active intervention by public health decision makers.

The approach we introduce combines process-driven and observational methods. It is quite general
and suitable to a wide range of infectious disease systems and datasets. Moreover, it has great potential
for application to human diseases. The approach relies on good estimates of the population size, and a
good knowledge of the epidemiology of the disease. Both aspects are crucial, and often poorly specified. In
the case of human diseases, the knowledge of the susceptible population and a mitigate uncertainty about
the epidemiological parameters of the disease would significantly increase the accuracy of the method.
The model then can serve as a basis to improve surveillance strategies, particularly in disadvantaged
regions.

For illustrative purposes we apply our method specifically to the spread of raccoon rabies virus (RRV)
among its raccoon (Procyon lotor) hosts in the State of New York. Rabies, a viral encephalomyelitis
specific to mammals, and has been a CDC notifiable disease since the mid-1970s. Rabies has the longest
extant record of reports of any zoonotic disease in the USA. Rabies virus is transmitted from one animal to
another usually by a bite [20,21]. Because its transmission modality is favorable to interspecies infection,
including human beings, rabies is a major public health concern. Raccoons are the major terrestrial
vector of the disease in the eastern United States, though many foxes, bats, and skunks carry the disease
as well [11,22]. The potential risks to humans coupled with an extensive database with high geographical
resolution, exact occurrence dates and knowledge of the species of host involved engenders the application
particularly relevant and amenable to testing our methods and approach.

Methods

Model

We consider the dynamics of a lethal disease, as described by a compartmentalized model of SEI type.
The model subdivides the population into susceptible, exposed (hosts that have been exposed to the
virus but not yet infectious), and infectious (host with the capability of transmitting the pathogen).
The spatial resolution of the model is set at regional level (from township to state). Consequently, the
computational model consists of a system of ODEs

S′ = aA− bNS − βIS
E′ = β IS − bNE − σ E
I ′ = σ E − αI
A = S + E

N = S + E + I

completed by suitable initial conditions. In the above equations we denote by β the transmission of
pathogen by contact between a susceptible and an infectious individual, by v the vaccination rate, by σ
the reciprocal of the latency period, by α the reciprocal of the life expectancy of an infectious host.

We assume a density dependent mortality rate in the absence of the disease, bN . We denote by
a the reproduction rate, which represents a yearly average, to take into account the reduced fecundity
of juveniles. Seasonality is not explicitly included here, but could easily be with a time dependent
reproduction rate [23]. Moreover, we assume that only susceptible and exposed individuals are able
to reproduce. Such an assumption is reasonable for a very aggressive disease in wildlife, assuming the
expected survival of an infectious host much too short to give birth or care of the offspring. To show
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the dynamics of the epidemic model, we ran a simulation of the SEI model within one single virtual
region. We report in Table 1 the model parameter values, that are adapted to raccoon rabies for the
eastern US, and have either been drawn from published values and US Department of Agriculture sources
(http://www.usda.org), or estimated indirectly. In particular, the birth rate a, the transmission rate β,
the latency period 1/σ, and the infectious period 1/α are taken from literature [24–28]. The rate of
density dependent mortality, b, is estimated indirectly to produce a disease free equilibrium of 27,000
individuals, corresponding to a density of 11 animals/km2 (average for raccoons in the Eastern US [29])
in a region of 2,457 km2 (average size of a New York county, outside the five boroughs of New York City).
We simulate 922 weeks of epizootic. The plot of the temporal dynamics of the full SEI model (top left
to bottom right: Susceptible, Exposed, Infectious, and total population) is available in the supplement.

In order to simplify the dynamics of the SEI system, we aggregate the model to a planar system in
terms of the infectious individuals I and the total population N . Since A = N − I, by summing up the
first three equations in the model we get

N ′ = aN − (a+ α)I − bN(N − I)

I ′ = σE − αI.

A fourth class of removed could be included in a more general model, consisting of hosts that recovered
from the disease or have been vaccinated. Since there is no evidence for natural recovery in rabies, which
is our case study in this paper, and we do not consider vaccination at this level, the removed class is not
considered. However, the following results are based on an aggregated method, and the use of a SEIR
model would not affect the conclusions.

Main features of the aggregated model

The aggregated model is not in closed form due to the presence in the second equation of the term
σE. However, the knowledge of the new infectious σE temporal dynamics is sufficient to reproduce
the dynamics of the full SEI model by means of the aggregated one. If the new infectious are known
as function of time, their dynamics can be considered a source term Φ in the second equation of the
aggregated model, that can be written in the more general form

N ′ = aN − (a+ α)I − bN(N − I)

I ′ = −αI + Φ.

To support our claim, we ran a simulation of the reduced model using as a source term in the second
equation the temporal dynamics of the new infectious σE, obtained by simulating the full SEI. We
compare in Figure 1 its dynamics with those of the aggregated model. We plot the dynamics of both
the total population (left) and the number infectious (right). In both pictures, the dashed line represents
the values obtained with the full SEI model, while the circles represent the values obtained with the
aggregated model. The numerical results confirm that the knowledge of the temporal dynamics of the
new infectious σE is sufficient to reproduce the SEI dynamics with the aggregated model.

A direct stability analysis for the aggregate model is not feasible. However, we can identify the N -
nullcline, namely the set of points in the plane (N, I) where N ′ = 0, that is shown in Figure 2 (left). If
the number of infectious is constant, the upper branch of the nullcline is stable, whereas the lower branch
is unstable. Moreover, as expected, the persistence of infectious hosts (i.e. an endemic state) reduces the
carrying capacity of the host.

Different temporal dynamics of the new infectious Φ entail complex behaviors of the system in terms
of epidemic outbreak, including persistency and possible extinction of the host population. We simulated
different temporal dynamics by rescaling the new infectious from the full SEI, as Φ = ζ × (σE), with
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ζ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2. The resulting trajectories in the phase plane (N, I) are plotted in
Figure 2 (right). If the growth rate of the newly infectious hosts Φ is too large, the population goes
extinct along the bisector of the phase plane N = I (note the different scales on the axes). Otherwise,
the trajectories show different levels of population drops in epidemic outbreaks, and a recovery process
towards the stable endemic equilibrium on the upper branch of the N -nullcline.

Modeling detection rate for surveillance

Effective surveillance within a region amounts to the ability to identify newly infectious individuals. In
the SEI model this amounts to the correct assessment of σE, and to estimate the surveillance levels in
the different counties we need an accurate evaluation of this value. However, this value is unknown. We
propose to extrapolate the value σE from the available data in a given observational window, whose
length we denote by τ . Specifically, we consider the reported positive and negative cases. We denote by
r+(t) and r−(t) the reported positive and negative cases at time t, respectively, and the total amount of
reports (positive and negative) along the observation window It = [t− τ, t] are given by

R+(t) =
∑

{s∈It | r+(s)6=0}

r+(s) R−(t) =
∑

{s∈It | r−(s)6=0}

r−(s).

Notice that the istantaneous reports r+(t) and r−(t) are 0 for most times t, according to the reporting
frequency of the public health departments. In what follows, the dependency on time will be left out.

We introduce a suitable function of the available reports, that we denote with F (R+, R−), whose role
is to expand the actual number of reported cases to take into account the effectiveness of the surveillance
procedure, leading to the extrapolation model

N ′ = aN − (a+ α)I − bN(N − I)

I ′ = −αI + F (R+, R−).

Compatibility of the extrapolation functions

The extrapolation function F (R+, R−) has to satisfy any compatibility requirements arising from the
disease dynamics under consideration. Our case study in this paper concerns raccoon rabies, which is a
lethal disease for the host, killing an infected animal within two weeks from the emergence of symptoms.
For a lethal disease, the total population drop (namely the percentage of animals killed by the first
outbreak) is known to be related to the basic reproductive rate R0 associated with the disease [31], and
can be used as a compatibility constraint. We would like to observe that estimating the population drop
with this method is not needed for most human diseases, as public health data regarding the number of
deaths is usually available.

For the SEI model introduced earlier, the basic reproductive rate is given by

R0 =
σ

σ + bN

β

α
N,

while the expected population drop (see [31]) is

1− 1

R0
.

The reported values in literature for raccoon rabies R0 lie between 1.2 and 1.4 (see [25]). As a consequence,
a population drop between 16% and 28% can be used as a reliable compatibility constraint for the system

N ′ = aN − (a+ α)I − bN(N − I)

I ′ = −αI + F (R+, R−).
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Modeling extrapolation

We propose here two different extrapolation functions to model surveillance efficacy that depend upon a
family of parameters. The first models a constant level of surveillance, while the second models dynamic
surveillance over time. We base our analysis on the assumption that an outbreak actually occurred in
every area featuring positive reports.

Constant surveillance in time is modeled using only the positive reports R+, together with a linear
extrapolation function

Fconst(R+) =
1

γ
R+.

In the above expression, γ is the reporting rate, namely the percentage of new rabid cases that are
actually detected.

Reporting activity varies in space, and is also known to be correlated with the population density [11].
In order to identify the local surveillance efficacy for a given area, we express γ in terms of the human
population density of the area (h)

γ =

(
1 +

K

h

)−1
.

This choice models an increase in the reporting rate with the human density: in particular, if h is zero
then γ vanishes, and as h increases γ approaches 1 (that is, in the case where human population density
is infinite, every new infectious case would be detected). The positive parameter K is a risk index: the
larger its value, the lower the reporting rate for a given human population density.

Knowing the initial population in a given area, we can identify the parameter γ fulfilling the com-
patibility requirements on the extrapolation function. In order to assess the level of surveillance in the
region we choose the corresponding risk index K.

We iterate the procedure over all the areas of interest and identify the corresponding values for γ. This
procedure clearly depends on the epidemic under study. To eliminate such dependence, we normalize the
risk index to a scale from 1 to 10, where a small value indicates a high level of surveillance in the region,
while a large value entails a significant risk of an outbreak to go undetected in the area.

Dynamic surveillance in time is modeled by using both positive R+ and negative R− reports, combined
through a nonlinear extrapolation function

Fdyn(R+, R−) =

(
N

R+ +R−

)1/θ
R+.

where θ > 1 is a parameter that represents the surveillance efficacy. The choice of the function
Fdyn(R+, R−) relies on two assumptions. First, we want a change in a small number of total reports
to be more significant than a change in a larger number (a concept similar to diminishing returns in
economics). Then, we assume that the testing procedure has sensitivity 1 (that is, if we could test all
individuals we would be able to identify all the new infectious cases) and specificity 1 (we have no false
positives). As a consequence, the function depends also on the total population N .

Also in this case, knowing the initial population, we can identify the parameter θ fulfilling the com-
patibility requirements on the extrapolation function. We iterate the procedure over all the areas of
interest and identify the corresponding values for θ. In this case, a large value of θ indicates a high level
of surveillance in the area, while a small value of θ highlights a significant risk that an outbreak can go
undetected in the region.
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New York State epidemiological data (1990-2007)

On May 4th, 1990, the first case of a rabid raccoon was recorded in the State of New York, in Addison
Township, Steuben County, on the New York/Pennsylvania border, as part of an advancing wavefront
of rabies spread. By the end of 1994, the epizootic had propagated extensively across the state. The
epizootic wave across NY was actually part of a larger epizootic that began at the boundary between
Virginia and West Virginia in the mid-1970s and spread Northeast through Pennsylvania and Connecticut
and Southeast to North Carolina [6] but entering NY in 1990.

At the time of the outbreak, rabies posed a particularly pressing public health problem with the num-
ber of post-exposure prophylactic treatments increasing from around 70 before the outbreak to over 1200
by 1991 [30]. Consequently, intensive surveillance and monitoring of wildlife populations was undertaken
by the State and continues today. An extensive database has been collected by the New York State
Department of Health. Each entry was recorded at the township level (754 locations) from 1990 to the
present. The data we use in our analysis are those positive and negative cases verified by the New York
State Department of Health from 1990 to 2007.

We aggregated the data at the county level, at which surveillance and intervention policies are actually
implemented. Table 2 collects the 56 counties that featured reported cases of rabid raccoons in the
period 1990-2007, their human population density, and the total positive cases. Figure 3 illustrates the
progression of the epidemic across the state at four different times, in terms of total reported cases at
the county level.

Estimate of the raccoon population

One of the major limitations in studying wildlife epidemics is the difficulty in establishing the actual size
of the at-risk population under investigation. Best estimates from the literature suggest that raccoon
density in the eastern US falls in the range of 5 to 17 animals per km2 [29, 32].

We consider in this study all 56 counties (see Table 1) that featured reported cases of rabid raccoons in
the period 1990-2007. We mitigate the uncertainty about the actual raccoon population size by drawing,
for each county, 50 values from a normal distribution with mean 11 and standard deviation 2 (in order
to cover the variability among the different ranges in the literature, see [29, 32] and references therein).
We add a correction to this distribution by taking into account the human population density: according
to the New York State Department of Environmental Conservation [33], raccoons are more prone to
establish in areas where the human presence is higher. Suburban/Metropolitan areas are often associated
with the highest recorded raccoon population densities. We thus added an extra term to the counties
with human density above the average for the State (157.81 individuals/km2), by adding draws from
a normal distribution with mean 0.3

√
h (h being the human density for the i-th county) and standard

deviation 12. The concerned counties are Albany, Erie, Monroe, Nassau, Niagara, Rockland, Schenectady,
Suffolk, and Westchester. We plot, in Figure 4 the minimal (left) and maximal (right) initial populations
stochastically generated by the procedure described above, and we report in Table 3 the corresponding
values.

Model simulation and risk identification

We ran simulations of the aggregated system with extrapolation from the data for all 56 counties with the
50 values of the initial population described above. The reports’ behavior along time seems to suggest the
presence of an epidemic in almost all counties featuring positive reports, with the exception of Clinton,
Hamilton, Suffolk and Warren, where the scarcity of reports does not allow to draw evidence. The results
for these counties have thus to be considered with care. We assumed that at the beginning of the epizootic
the host population is entirely susceptible and at equilibrium, and that an epidemic has actually taken
place in the counties included in the study. As a consequence, a drop in the population occurred, that
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was compatible with the epizootic of the disease. We tested both the static and the dynamic model
approaches, by running the SEI model with sampled values for γ and θ. Different values for γ and θ
produce different temporal dynamics for the total population and different population drops (see Figure
5, right). We sampled values of γ between 0 and 1, and values of θ between 1 and 7. For all 56 counties,
we identify for all values of the initial population, the ranges of the parameters that produce population
drops between 16% and 28% during the first outbreak.

Knowing the initial population, we can then assess the level of risk for each county (labeled by
i = 1, . . . , 56) for the constant surveillance model. We choose the risk index Ki

m, obtained algebraically
from the midpoint of the compatibility interval for γ. If the compatible values of γ for the ith county lie
in the interval Γi = (γimin, γ

i
max), the corresponding risk index is given by Ki

m = hi

γi
m

(1 − γim), where hi

is the human population of the county, and γim is the midpoint of the interval Γi. The procedure clearly
depends on the epidemic under study. In order to eliminate such dependence, we normalize the risk index
to a scale from 1 to 10. Hence, we introduce for the ith county a surveillance risk ρi, which is defined as
the natural logarithm of Ki

m weighted by its maximum over all counties. The corresponding surveillance
risk for th ith county is then given by

ρi = 10× log
(
Ki
m

)
max
i

log
(
Ki
m

) ,
where a small value of ρi indicates a high level of surveillance in the county, while a large value of ρi
entails a significant risk of an epidemic going undetected in the area.

In a similar manner, we can assess the surveillance efficacy for the dynamic surveillance model. In this
case we consider as indicator for the surveillance efficacy in the ith county, the value of θi corresponding
to the midpoint of the interval associated with the initial population. A large value of θi indicates a high
level of surveillance in the area, while a small value of θi highlights a significant risk that an epidemic
will go undetected in the region.

Finally, the values of ρi and θi can be plotted on a geographic map to get a comprehensive view of
the global risk across the state.

Results

Detailed results are shown for Albany County. This county has a very high count of reports, probably
associated with the presence of the rabies diagnostic lab of the Wadsworth Center (New York State
Health Department). We would like to observe that the presence of this large facility might induce bias
in the estimated surveillance risk for the neighboring counties. However the observed disease dynamics
is not different from what was observed in the majority of other counties. The left plots in Figure 5
show, respectively for constant and dynamic surveillance, the curves obtained connecting the values of
the parameters (γ and θ) paired with the associated population drop. The dashed blue line corresponds
to the lower bound for the initial raccoon population and the red line corresponds to the upper bound.
The intersections of the two curves with the horizontal lines at 16% and 28% drop locate the intervals
where the compatibility constraints are satisfied. For static surveillance we have γ ∈ (0.02, 0.05) in the
case we believe that the raccoon population is on the higher end of the estimate, and γ ∈ (0.12, 0.23)
for the lower end. As we can see the lack of overlap between the compatibility intervals associated to
the minimal and maximal initial population, implies that optimal surveillance levels can be potentially
very different. The importance of an accurate estimate of the initial raccoon population is crucial. A
similar argument can be drawn for θ in the dynamic surveillance model, as shown in the bottom left plot
of Figure 5.

The right hand side of Figure 5 shows different time series for the total raccoon population associated
with different surveillance scenarios. We believe that the outbreak that occurred in Albany County was
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typical and we expect disease dynamics consistent with the values of R0 in the literature. For a population
of roughly 60,000 raccoons we can observe the drop caused by the outbreak, some damped oscillations
and a slow recovery to the endemic equilibrium carrying capacity.

On the left hand side of Figure 6 we have comprehensive plots for γ and θ for the estimated intervals
for all the 56 counties alphabetically ordered. The same level of surveillance can produce completely
different interpretation of the disease dynamics: for instance, a value γ = 0.07 is associated with an
outbreak so violent that it leads to extinction if the initial population is the minimal one, and at the
same time with a complete absence of outbreak in the case where the initial population is the maximal
one. Such a feature is shared by almost all the counties when a constant level of surveillance is assumed
(Figure 6, top left), with the exception of Clinton and Suffolk. In the case of dynamic surveillance, on the
contrary, only 12 counties do not feature an overlap between the intervals of θ corresponding to minimal
and maximal initial population (Figure 6, bottom left). Moreover, among those 12, only 2 feature a
significant gap, comparable with the length of the smaller interval (Albany, Schenectady).

Since the actual raccoon population is not known with absolute certainty, we choose to geographically
map (see right side plots of Figure 6) the values of ρi and θi corresponding to the maximal estimated initial
population. This is a conservative choice, justified by the consideration that the higher the population,
the higher the risk (and relative consequences in terms of public health) of an undetected epidemic.

Finally, a somewhat expected duality between the intrinsic surveillance risk ρ associated to the con-
stant extrapolation and the surveillance efficacy θ associated with the dynamic extrapolation is apparent,
and can be assessed directly from the risk and efficacy mappings: areas with low surveillance risk display
higher levels of surveillance efficacy.

Discussion

Surveillance is a key element in detecting, monitoring and studying infectious disease outbreaks over
time and space. In this paper, we present some methodological aspects that can be used to evaluate
the impact of localized surveillance for infectious diseases, and help devising public health strategies.
Intervention is based on information and the aim of this paper is to provide some of the information to
decision makers. As an illustration to the methodology we showed an example based on a real dataset,
consisting of positive and negative reported cases of rabid raccoons in the state of New York over a period
spanning from 1990 to 2007.

We introduce two methods, both based on the idea of combining process-driven models with an ob-
servational approach, to take advantage of the features of both. The first method is based on a simple,
constant reporting/detection rate, intended to model a constant level of surveillance over time. Consider-
ing that surveillance levels usually change because of news effects and public health concerns over possible
outbreaks [19], we relax this assumption in our second model, where we formulate a reporting/detection
rate that changes over time and depends on the total number of reports (positive and negative) and the
estimated host population. Provided that such an estimate is accurate at any given time, it is possible
to track disease dynamics through a model for disease spread [13]. With each of the two methods, we
are able to identify locations where surveillance levels are critical and can potentially leave an outbreak
unidentified.

The first method identifies surveillance risk, while the second one identifies a surveillance efficacy. An
expected negative correlation between risk and efficacy emerged (-0.5652384). Besides being intuitive,
such correlation is actually a sign that the two approaches are consistent, and either one can be used to
identify areas at greater risk, to which resources should be allocated in priority. The dynamic surveillance
method (which assesses surveillance efficacy) provides results that are less sensitive to the initial popu-
lation size. This aspect is very promising in view of extending the approach presented here to human
diseases, where accurate accounts of the total population, with high resolution in space and more stable
self reporting rates are available.
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Two significant assumptions underlay our analyses. The first pertains to possible scenarios for the
initial population size (before the first cases were recorded) and the second is that an epidemic actually
occurred in each county where there was a positive reported case. We note that the first assumption is
less limiting in the instance of human diseases. Since our study focuses on raccoon rabies, an a priori
knowledge about the epidemiology of the disease is well known and established [28]. This is not a limiting
aspect as long as the methodology is applied to extant diseases, but could prove problematic when applied
to a newly emerging pathogen for which the epidemiology is not yet available. In this case, the method
should be adapted by introducing some stochasticity in the key model parameters such as the transmission
rate and the latency period.

Our work has the potential to be extended at both the methodological and applied level. For instance,
the raccoon rabies surveillance analysis can potentially benefit from the inclusion of information regarding
vaccinations programs. Oral Rabies Vaccination (ORV) was initiated during the collection of our data [37]
and may have affected, for instance Essex and Clinton counties as suggested by a slight decline in the
number of reports in those counties post ORV establishment. Unfortunately, we do not know if these
modest declines are due to ORV or simply the decline is cases as the epizootic moved through the county.
Very little is known about the rate of transition of individuals from the susceptible to the immune class
through artificial immunization and we can not, at this point, include such dynamics in our modeling.
Investigating the efficacy of ORV programs and verifying their eventual impact on disease dynamics
might help better understanding targeted-surveillance, although it is unclear whether the conclusions we
reached in our work will be sensitive to this extension.

Although uncertainty in outbreak size is taken into account by estimating system trajectories for
different levels of R0 [22] and of initial host population [29], the model can be further generalized by
including randomness in some of the parameters. A current work in progress involves estimation of
parameters in a full Bayesian hierarchical setting. Combining the information from previous studies (prior
elicitation) with the evidence arising from observational data (likelihood) we are able to produce estimates
and uncertainty assessment for all the model parameters. This form of modeling bears directly on our
understanding of the underlying disease process. Nonetheless, however the results can be incorporated
also into the surveillance setting.

In future work, one could also estimate optimal levels of surveillance, by maximizing an utility function
that depends on the social or environmental benefits of detecting an epidemic and on a penalty term
with the costs associated with implementing surveillance policies. Furthermore, writing a stochastic
model, possibly with the introduction of a spatial dynamics not considered in the present work (see,
eg. [15,34–36]), will allow us to actually estimate parameters and optimal surveillance levels in a likelihood
framework. Finally, we also envision applications to other types of diseases where accurate estimates for
the host population are available (for instance, some infectious diseases in humans).
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Figure 9. Comparison between the temporal dynamics of total population and the
infectious for the complete SEIR (dashed line) and the aggregated model (bullets)
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Figure 10. Left. N -nullcline and stability for constant values of infectious: the upper branch of the
curve is stable, while the lower one is unstable. Right. Trajectories in the phase plane (N, I)
associated with different temporal dynamics of the new infectious Φ = ζ × (σE), with
ζ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, and σE from the complete SEIR model.

Figure 1. Comparison between the temporal dynamics of total population and the infectious for the
complete SEI (dashed line) and the aggregated model (bullets)
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Figure 10. Left. N -nullcline and stability for constant values of infectious: the upper branch of the
curve is stable, while the lower one is unstable. Right. Trajectories in the phase plane (N, I)
associated with different temporal dynamics of the new infectious Φ = ζ × (σE), with
ζ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, and σE from the complete SEIR model.

Figure 2. Left: N -nullcline and stability for constant values of infectious: the upper branch of the
curve is stable, while the lower one is unstable. Right: trajectories in the phase plane (N, I) associated
with different temporal dynamics of the new infectious Φ = ζ × (σE), with
ζ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, and σE from the complete SEI model. In red we highlight the
trajectory asociated with ζ = 1, corresponding to the one of the complete SEI model.
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Figure 12. Minimal (left) and maximal (right) initial population stochastically generated
in the 56 counties included in the study

Figure 3. Total reported cases aggregated by county at different times.
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Figure 2. Albany county. Top: constant surveillance. Bottom: dynamic surveillance. Top left: population drops in Albany county as a function of the surveillance accuracy

γ for the estimated minimal and maximal population. Top right: temporal dynamics of the total population for different surveillance accuracies, given a maximal level as

initial condition. Bottom left: population drops in Albany county as a function of the surveillance efficacy θ for the estimated minimal and maximal population. Bottom right:

temporal dynamics of the total population for different surveillance efficacies, given a maximal level as initial condition. In all pictures the horizontal dashed lines identify the

range of population drop expected for raccoon rabies.
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Figure 13. Albany county. Top: constant surveillance. Bottom: dynamic surveillance.
Top left: population drops in Albany county as a function of the surveillance accuracy γ for the
estimated minimal and maximal population. Top right: temporal dynamics of the total population for
different surveillance accuracies, given a maximal level as initial condition. Bottom left: population
drops in Albany county as a function of the surveillance efficacy θ for the estimated minimal and
maximal population. Bottom right: temporal dynamics of the total population for different surveillance
efficacies, given a maximal level as initial condition. In all pictures the horizontal dashed lines identify
the range of population drop expected for raccoon rabies.

Figure 5. Albany county. Top: constant surveillance. Bottom: dynamic surveillance. Top left:
population drops in Albany county as a function of the surveillance accuracy γ for the estimated
minimal and maximal population. Top right: temporal dynamics of the total population for different
surveillance accuracies, given a maximal level as initial condition. Bottom left: population drops in
Albany county as a function of the surveillance efficacy θ for the estimated minimal and maximal
population. Bottom right: temporal dynamics of the total population for different surveillance
efficacies, given a maximal level as initial condition. In all pictures the horizontal dashed lines identify
the range of population drop expected for raccoon rabies.



1620

0 10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

Counties

 

 
Min population
Max population NA

0−5
5−6
6−6.5
6.5−7
7−10

Surveillance risk map

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

Counties

 

 
Min population
Max population

NA
1−1.5
1.5−2
2−2.5
2.5−3
3−4

Surveillance efficacy map

Figure 3. Compatibility intervals for minimal and maximal initial raccoon population for the 56 New York counties with reported positive cases. Top: constant surveillance.

Bottom: dynamic surveillance. Maps of surveillance risk and efficacy for the 56 New York counties with reported positive cases. Top: surveillance risk map associated with

constant surveillance. Small values indicate an high level of surveillance in the region, while large values entail a significant risk of an epidemic going undetected in the area.

Bottom: surveillance efficacy map associated with dynamic surveillance. Large values indicate a high level of surveillance in the area, while small values highlight a significant

risk that an epidemics can go undetected in the region. Counties are numbered in alphabetical order matching Table 1.
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Figure 14. Compatibility intervals for minimal and maximal initial raccoon population for
the 56 New York counties with reported positive cases. Top: constant surveillance.
Bottom: dynamic surveillance. Maps of surveillance risk and efficacy for the 56 New York
counties with reported positive cases. Top: surveillance risk map associated with constant surveillance.
Small values indicate an high level of surveillance in the region, while large values entail a significant
risk of an epidemic going undetected in the area. Bottom: surveillance efficacy map associated with
dynamic surveillance. Large values indicate a high level of surveillance in the area, while small values
highlight a significant risk that an epidemics can go undetected in the region. Counties are numbered in
alphabetical order matching Table 1.

Figure 6. Left column: compatibility intervals for minimal and maximal initial raccoon population for
the 56 New York counties with reported positive cases. Top: constant surveillance. Bottom: dynamic
surveillance. Right column: maps of surveillance risk and efficacy for the 56 New York counties with
reported positive cases. Top: surveillance risk map associated with constant surveillance. Small values
indicate an high level of surveillance in the region, while large values entail a significant risk of an
epidemic going undetected in the area. Bottom: surveillance efficacy map associated with dynamic
surveillance. Large values indicate a high level of surveillance in the area, while small values highlight a
significant risk that an epidemics can go undetected in the region. Counties are numbered in
alphabetical order matching Table 1.
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Tables

Table 1. Coefficients of the SEI model.

a Birth rate 2.67 k/f/y
µ0 Natural death rate variable
β Contact rate 1e-4 (a d)−1

1/σ Latency period 50 days
1/α Infectious period 14 days

The natural death rate is chosen to be density dependent to provide a carrying capacity compatible
with the published values in literature of 5 to 17 animals per km2 [29, 32]. The birth rate a, the
transmission rate β, the latency period 1/σ, and the infectious period 1/α are taken from [24–28].
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Table 2. New York State epidemiological data (1990-2007)

County Area (km2) Density Reports County Area (km2) Density Reports
1. Albany 1380 213.45 1547 29. Oneida 3142 74.94 198
2. Allegany 2678 18.64 223 30. Onondaga 2088 219.51 290
3. Broome 1852 108.28 102 31. Ontario 1715 58.44 135
4. Cattaraugus 3393 24.74 237 32. Orange 2173 157.09 236
5. Cayuga 1797 45.61 688 33. Orleans 1013 43.6 208
6. Chautauqua 2751 49.59 191 34. Oswego 2468 49.59 171
7. Chemung 1064 85.59 230 35. Otsego 2598 23.74 114
8. Chenango 2328 22.08 85 36. Putnam 637 150.31 93
9. Clinton 2896 27.59 5 37. Rensselaer 1722 88.58 448
10. Columbia 1678 37.6 306 38. Rockland 515 556.8 120
11. Cortland 1300 37.38 403 39. St. Lawrence 7306 15.32 223
12. Delaware 3802 12.64 132 40. Saratoga 2186 91.78 337
13. Dutchess 2137 138.11 265 41. Schenectady 544 269.4 145
14. Erie 2704 351.43 341 42. Schoharie 1621 19.48 160
15. Essex 4962 7.83 40 43. Schuyler 886 21.7 112
16. Fulton 1380 39.91 52 44. Seneca 842 39.6 120
17. Genesee 1282 47.09 117 45. Steuben 3636 27.15 222
18. Greene 1704 28.28 130 46. Suffolk 2362 600.92 17
19. Hamilton 4683 1.15 2 47. Sullivan 2582 28.65 98
20. Herkimer 3776 17.06 87 48. Tioga 1355 38.22 232
21. Jefferson 3294 33.92 223 49. Tompkins 1233 78.27 415
22. Lewis 3341 8.06 99 50. Ulster 3007 59.11 273
23. Livingston 1658 38.8 169 51. Warren 2253 28.1 34
24. Madison 1715 40.49 119 52. Washington 2191 27.86 198
25. Monroe 1707 430.78 124 53. Wayne 1564 59.95 465
26. Montgomery 1062 46.81 95 54. Westchester 1295 713.1 164
27. Nassau 743 1796.16 67 55. Wyoming 1544 28.12 121
28. Niagara 1355 162.25 285 56. Yates 974 25.28 86

Counties, area, human population densities, and total reported rabid cases from 1990 to 2007
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Table 3. New York State: estimate of raccoon population

County Min Max County Min Max County Min Max
1. Albany 10595 24885 20. Herkimer 29039 60441 39. St. Lawrence 56409 121406
2. Allegany 16463 43054 21. Jefferson 26845 47734 40. Saratoga 11646 34663
3. Broome 14253 31771 22. Lewis 25472 51688 41. Schenectady 4171 11343
4. Cattaraugus 19482 51551 23. Livingston 11322 25528 42. Schoharie 10948 25644
5. Cayuga 11567 28961 24. Madison 11431 26676 43. Schuyler 6519 13585
6. Chautauqua 15383 40411 25. Monroe 14077 30749 44. Seneca 5295 14056
7. Chemung 7043 19532 26. Montgomery 5163 15227 45. Steuben 26508 52381
8. Chenango 17840 33385 27. Nassau 8600 16983 46. Suffolk 21985 46092
9. Clinton 19015 44168 28. Niagara 11861 23499 47. Sullivan 18035 38966

10. Columbia 11193 23194 29. Oneida 16844 49377 48. Tioga 8029 19435
11. Cortland 7285 22220 30. Onondaga 14216 36543 49. Tompkins 9703 18054
12. Delaware 22355 61437 31. Ontario 13526 25470 50. Ulster 20425 46220
13. Dutchess 15692 33017 32. Orange 14761 41116 51. Warren 14664 35641
14. Erie 24051 56638 33. Orleans 7136 14544 52. Washington 14131 34818
15. Essex 31369 66867 34. Oswego 13904 39270 53. Wayne 11001 26300
16. Fulton 6647 22492 35. Otsego 17512 40891 54. Westchester 14462 25374
17. Genesee 7491 19424 36. Putnam 5270 10650 55. Wyoming 10081 24834
18. Greene 10976 26937 37. Rensselaer 11556 26893 56. Yates 5669 14404
19. Hamilton 31505 78448 38. Rockland 4850 9914

Minimal and maximal initial raccoon population for the counties included in the study


