
Price of Anarchy in Non-Cooperative Load Balancing
Games

U. Ayesta1,3 , O. Brun2,4,∗ , B.J. Prabhu2,4

1 BCAM – Basque Center for Applied Mathematics, 48170 Derio, Spain
2 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
3 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

4Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

Abstract

We investigate the price of anarchy of a load balancing game with K dispatch-
ers. The service rates and holding costs are assumed to depend on the server,
and the service discipline is assumed to be processor-sharing at each server.
The performance criterion is taken to be the weighted mean number of jobs
in the system, or equivalently, the weighted mean sojourn time in the system.
Independently of the state of the servers, each dispatcher seeks to determine
the routing strategy that optimizes the performance for its own traffic. The
interaction of the various dispatchers thus gives rise to a non-cooperative game.

For this game, we first show that, for a fixed amount of total incoming traffic,
the worst-case Nash equilibrium occurs when each player routes exactly the same
amount of traffic, i.e., when the game is symmetric. For this symmetric game,
we provide the expression for the loads on the servers at the Nash equilibrium.
Using this result we then show that, for a system with two or more servers, the
price of anarchy, which is the worst-case ratio of the global cost of the Nash
equilibrium to the global cost of the centralized setting, is lower bounded by
K/(2

√
K − 1) and upper bounded by

√
K, independently of the number of

servers.

Keywords: atomic games, load balancing, processor sharing, price of anarchy.

1. Introduction

Server farms are used nowadays in as diverse areas as e-service industry,
database systems and grid computing clusters. Figure 1 depicts the typical

Email addresses: ayesta@bcamath.org (U. Ayesta1,3), brun@laas.fr (O. Brun2,4,∗),
bjprabhu@laas.fr (B.J. Prabhu2,4)

Corresponding author: O. Brun
The work of U. Ayesta is partially supported by grant MTM2010-17405 of the Ministry of
Science and Innovation (MICINN), Spain, and grant PI2010-2 of the Department of Educación
and Research, Basque Government.

Preprint submitted to Elsevier September 12, 2011

architecture of a server farm with a single centralized dispatcher who receives
jobs from different sources and routes them to a set of servers. Server farms
have become a popular architecture in computing centers, used for example in
the Cisco Local Director, IBM Network Dispatcher and Microsoft Sharepoint
(see [5] for a recent survey). This configuration can also be used to model a web
server farm, where requests for files (or HTTP pages) arrive to a dispatcher and
are dispatched immediately to one of the servers in the farm for processing.

Servers

Dispatcher

Figure 1: Centralized architecture for a server farm.

One of the fundamental issue in this context is to characterize the optimal
routing strategy. The problem amounts to find the routing strategy of the dis-
patcher that will optimize a certain performance objective, such as the mean
processing time (or sojourn time) of jobs for instance. By Little’s law, this per-
formance objective is equivalent to the mean number of jobs in the system. Such
a routing strategy is known as social optimum or social welfare since it mini-
mizes the mean processing time of jobs (we will also talk of a global optimum).
This load balancing problem is perhaps one of the most studied one in the oper-
ations research community, and many works have been devoted to the analysis
of the optimal routing in various static and dynamic scenarios [11, 16, 24].

In practice, it may however happen that a single centralized dispatcher is
simply not feasible due to scalability or complexity reasons. In this case, the
system designer will certainly have to resort to a distributed scheme in which
several dispatchers are used as shown in Figure 2. In this case, each dispatcher
will independently seek to minimize the processing time perceived by the traffic
it routes. Thus the shift from a centralized to a distributed scheme will give rise
to a non-cooperative game between the dispatchers.

Game theory provides the systematic framework to study and understand
such problems. We can distinguish two different settings depending on the num-
ber of dispatchers. If the number of dispatchers is finite, then it is said that
the game is “atomic” and a well-known equilibrium strategy is given by the
so-called Nash equilibrium, that is, a routing strategy from which unilateral
deviation does not help any dispatcher in improving the performance perceived
by the traffic it routes. When the number of dispatcher grows to infinity (every

2

Dispatcher

Dispatcher

Dispatcher

Servers

Figure 2: Decentralized architecture for a server farm.

arriving job is handled by a dispatcher and it takes its own routing decision) the
game is referred as “non-atomic” and the corresponding equilibrium is given by
the notion of Wardrop Equilibrium. In this case, the equilibrium point is char-
acterized by the fact that the performance in every (used) server is the same.
In the present article we are mostly interested in the “atomic” setting, and we
refer to Section 2 for related work in the “non-atomic” setting.

From the system’s designer perspective a very important question pertains
to the loss of performance incurred when shifting to a decentralized architecture.
Indeed, in the decentralized architecture each dispatcher performs an individ-
ual optimization for its own jobs and thus, it can be expected that the overall
performance of the decentralized scheme will be worse than in the centralized
scheme. The system designer is probably ready to accept a distributed rout-
ing scheme provided the gain in scalability is not achieved at the expense of a
significant loss in performance. In this context, the question turns out to be:
can we provide performance guarantees for these decentralized routing schemes?
This is the main question addressed in this paper. We would like to emphasize
that the problem we study finds applications not only in server-farms, but in
fact in any distributed or parallel computer system where the workload must
be balanced.

Our objectives are two fold. Firstly we investigate the properties of the non-
cooperative game. We show that there exists always a unique Nash Equilibrium,
that is, a routing strategy from which no dispatcher has any incentive to devi-
ate. We also show that the worst Nash Equilibrium occurs when the amount
of traffic that every dispatcher routes is exactly the same. To the best of our
knowledge this property has not been shown previously, and it may find appli-
cations in other games. For this particular case, we show that the game belongs
to a particular class of games known as Potential Games [21] which is known
to have several desirable properties. For instance, for a Potential Game, the
best response algorithm converges to the equilibrium. Secondly we compare the
performance of the global optimum with that given by the Nash Equilibrium, or

3

in other words, the performance when there is only one dispatcher which routes
all the traffic, and the performance when there are several dispatchers each one
seeking to optimize its own performance. In order to do so we look at the Price
of Anarchy (PoA) which was introduced by Koutsoupias and Papadimitriou [19].
The PoA is a measure of the inefficiency of a decentralized scheme. It is defined
as the ratio between the performance obtained by the worst Nash equilibrium
and the global optimal solution. Thus, the PoA lies in the interval [1,∞). We
show that the PoA is of the order of the square root of the number of dispatch-
ers. This result indicates that when the number of dispatchers is finite, so is
the loss of efficiency. However as the number of dispatchers increases, the loss
of efficiency may grow unboundedly. Thus, we recover the result in [1] where it
was shown that when the number of dispatchers is infinite (the “non-atomic”
as pointed out above) the PoA is infinite.

The rest of the paper is organized as follows. In Section 3, we describe the
model and state the problem. Section 4 explores the structure of the underly-
ing Nash equilibria and prove their existence and uniqueness. It also establish
several properties of these equilibria that form the foundation of the subsequent
analysis. In Section 5, we analyze the global cost at the Nash equilibria and
show that the maximum of this cost is achieved in the symmetric case. With
this result at hand, we prove in Section 6 that the PoA is upper bounded by the
square root of the number of dispatchers. Finally, some conclusions are drawn
and possible extensions are discussed in Section 7.

2. Related work

Load balancing in multi-server systems has been widely studied in the lit-
erature. Global and Individual optimality in load balancing are considered in
the monograph [16], which does not consider decisions based on knowledge of
the amount of load. Systems with general service time distribution and FCFS
scheduling discipline were studied in [7, 3, 4, 13], while [22, 15] studied systems
with exponential service time distributions and arbitrary scheduling discipline.
In [14] the authors analyzed a multi-server system where requests join the server
that has the smallest number of requests. In a recent work [6] the authors in-
vestigate the performance of a server farm where the scheduling discipline in
each server is SRPT (Shortest Remaining Processing Time First). In [10] the
authors studied the performance of selfish routing in a server farm with a min-
max objective, that is, when the objective is to minimize the maximum sojourn
time in the servers.

In recent years the study of PoA in multi-server queues has started to receive
attention. In [15] the authors considered the scenario where every arriving job
can select the server in which it will be served. An important assumption is
that the holding cost is the same in every server. Building upon results from
[3], it is shown in [15] that the PoA is upper bounded by the number of servers.
We also refer to [25] for similar results. Another closely related work is [1]. The

4

main difference between the models studied in [15] and [1] was that in the latter
the holding costs in every server could be arbitrarily chosen. Using potential
game theory, it is shown in [1] that the PoA is unbounded in the non-atomic
setting, i.e., it can be arbitrarily close to infinity. This was a surprising result
since it indicated that unequal holding costs may have a profound impact on
the system’s performance.

Our present work is closely related to work by Orda and co-authors [18, 23].
In these references the atomic non-cooperative setting was studied, but the focus
was on existence, uniqueness and the properties of the Nash equilibrium rather
than on the PoA. Moreover, it was also assumed that the holding cost per unit
of time is the same in every server, which as we have mentioned can have a
profound impact on the performance. Several of the arguments used in the
present work are directly inspired from those references, but we emphasize that
our main results and characterizations are new.

Kameda and co-authors have investigated a related load balancing problem
in [12, 20, 11] where communication delays between servers are explicitly taken
into account. In [12] they illustrate by simulations that Braess-like paradox
occur, and that the worst-case degree of the paradox is obtained in the complete
symmetric case.

3. Problem Formulation and Main Results

We consider a non-cooperative routing game with K dispatchers and S
Processor-Sharing servers. Denote S = {1, . . . , S} to be the set of servers
and C = {1, . . . ,K} to be the set of dispatchers. Jobs received by dispatcher
i = 1, . . . ,K are said to be jobs of class i.

Server j ∈ S has capacity rj and a holding cost cj per unit time is incurred
for each job sent to this server. It is assumed that servers are numbered in
the order of increasing cost per unit capacity, i.e. cm

rm
≤ cn

rn
if m ≤ n. Let

r = (rj)j∈S and c = (cj)j∈S denote the vectors of server capacities and server
costs, respectively, and let r =

∑
n∈S rn denote the total capacity of the system.

Jobs of class i ∈ C arrive to the system according to a Poisson process and
have generally distributed service times. We do not specify the arrival rate and
the characteristics of the service times distribution due to the fact that in an
M/G/1 − PS queue the mean number of jobs depends on the arrival process
and service time distribution only through the traffic intensity, i.e., the product
of the arrival rate and the mean job size (see for example [17] or [8]).

Let λi be the traffic intensity of class i. It is assumed that λi ≤ λj for i ≤ j.
Moreover, it will also be assumed that the vector λ of traffic intensities belongs

5

to the following set :

Λ =

{
λ ∈ IRK :

∑
i∈C

λi = λ, λi ≥ 0, i ∈ C

}
,

where λ̄ denotes the total incoming traffic intensity. It will be assumed through-
out the paper that λ̄ < r, which is the necessary and sufficient condition to
guarantee the stability of the system.

Let xi = (xi,j)j∈S denote the routing strategy of dispatcher i, with xi,j being
the amount of traffic it sends towards server j. Let

Xi =

xi ∈ IRS : 0 ≤ xi,j ≤ rj ,∀j ∈ S;
∑
j∈S

xi,j = λi


denote the set of feasible routing strategies for dispatcher i. The vector x =
(xi)i∈C will be called a multi-strategy. The multi-strategies belong to the prod-
uct strategy space X =

⊗
i∈C Xi.

Dispatcher i seeks to find a routing strategy that minimizes the mean weighted
sojourn times of its jobs, which, by Little’s law, is equivalent to minimizing the
mean weighted number of jobs in the system as seen by this class. This opti-
mization problem, which depends on the routing decisions of the other classes,
can be formulated as follows :

minimize
xi∈Xi

Ti(x) =
∑
j∈S

cj
xi,j

rj − yj

where yj =
∑

k∈C xk,j is the traffic offered to server j. Note that, introducing
ri,j = rj −

∑
k ̸=i xk,j , the available capacity of server j as seen by class i, the

problem can alternatively be formulated as

minimize
xi∈Xi

∑
j∈S

cj
xi,j

ri,j − xi,j
. (1)

A Nash equilibrium of the routing game is a multi-strategy from which no
class finds it beneficial to unilaterally deviate. Hence, x ∈ X is a Nash Equilib-
rium Point (NEP) if

xi ∈ arg minz∈Xi
Ti(x1, . . . ,xi−1, z,xi+1, . . . ,xK), i ∈ C.

Let Tij(x) denote the partial derivative of Ti with respect to xi,j at point x:

Tij(x) = cj

[
1

rj − yj
+

xi,j

(rj − yj)2

]
. (2)

6

According to the Karush-Kuhn-Tucker optimality conditions, x ∈ X is a
NEP if and only if there exist multipliers µi such that

Tij(x) =
cj

rj − yj
+

cjxi,j

(rj − yj)2
= µi if xi,j > 0, (3)

Tij(x) =
cj

rj − yj
≥ µi if xi,j = 0. (4)

For each server j ∈ S, let Cj = {i ∈ C : xi,j > 0} be the set of classes which
route traffic to server j. Similarly, let Si = {j ∈ S : xi,j > 0} be the set of
servers to which class i routes traffic. Note that i ∈ Cj ⇐⇒ j ∈ Si. We can
now rewrite equations (3) and (4) as

cj
rj − yj

< µi ⇐⇒ i ∈ Cj ⇐⇒ j ∈ Si. (5)

Let x be a NEP for the system with K dispatchers. The global performance
of the system can be assessed using the global cost

DK(λ, r, c) =
∑
i∈C

Ti(x) =
∑
j∈S

cj
yj

rj − yj
,

where the offered traffic yj are those at the NEP. The above cost represents the
mean weighted number of jobs in the system. Note that when there is a single
dispatcher, we have a single class whose traffic intensity is λ1 = λ̄. The global
cost can therefore be written as D1(λ̄, r, c) in this case.

We shall use the price of anarchy as a metric in order to asses the inefficiency
of a decentralized scheme with K dispatchers. For our problem, it is defined as

PoA(K) = sup
λ∈Λ,r∈RS ,c∈RS

DK(λ, r, c)

D1(λ̄, r, c)
.

In the following section, we establish several important properties of the Nash
equilibrium when the input parameters λ, r, and c are fixed. These properties
will be used to prove the main results of this paper related to the PoA.

3.1. Main Results

Before getting into the technical details, we present here an overview of the
most important results obtained in the paper. The first theorem, which is proved
in Section 5, states that that the global cost DK(λ, r, c) achieves its maximum

when λ is the symmetric vector λ= =
(

λ̄
K , . . . , λ̄

K

)
.

Theorem 1.

sup
λ∈Λ

DK(λ, r, c) = DK(λ=, r, c), ∀r ∈ RS , c ∈ RS .

7

To get some intuition behind Theorem 1 consider the particular case of two
dispatchers. When one of the dispatchers routes all the traffic, the Nash Equi-
librium coincides with the social optimum, and thus there is no inefficiency. The
opposite extreme corresponds to the case when each dispatcher routes half of the
traffic. In this case both dispatchers have the same “weight”, and since they
selfishly compete for resources, they end up operating in the most inefficient
equilibrium.

Theorem 1 implies that, for the calculation of the PoA, we can restrict our-
selves to the symmetric game. This, coupled with the fact that in our setting
the symmetric game is also a potential game, makes it more tractable for the
analytic computation of the NEP and the global cost, thereby greatly simplify-
ing the derivation of the lower and upper bounds on the PoA.

The second theorem, which is proved in Section 6, gives these lower and
upper bounds on the PoA.

Theorem 2. For a system with two or more servers,

K

2
√
K − 1

≤ PoA(K) ≤
√
K.

This result states that the PoA is of the order of
√
K independently of the

number of servers, and thus remains bounded for a finite number of dispatchers.

Remark 1. For a system with only one server, PoA(K) = 1. Hence, we do
not consider this case.

4. Existence, Uniqueness and Monotonicity Properties of the NEP

In this section, we show the existence and uniqueness of the NEP and in-
vestigate properties of the traffic flow at this point. Some of these properties
are generalization of those presented in [23] and [18] in the case of unit holding
costs.

4.1. Existence and Uniqueness

We have assumed that λ < r. Since the cost function Ti(x) of each user
i ∈ C satisfies the conditions defining a type-A cost function in [23], we can
apply Theorem 2.1 in [23] and conclude to the existence of a unique NEP.

4.2. Properties related to traffic intensities

We prove below that there is a monotonicity among classes in their use of
servers: a class with a higher demand uses more of each and every server. Our
main results are stated in Proposition 1 and Corollary 1.

Proposition 1. The following statements are equivalent :

8

1. µi < µk.

2. ∃j ∈ Sk : xi,j < xk,j.

3. xi,j < xk,j ,∀j ∈ Sk.

4. λi < λk.

Proof. Please, see Appendix A.1.

The following corollary is an immediate consequence of Proposition 1.

Corollary 1. The following statements hold :

1. µi = µk ⇐⇒ xi,j = xk,j ,∀j ∈ Sk ⇐⇒ λi = λk.

2. If λi < λk then Si ⊂ Sk.

3. If λi = λk then Si = Sk.

The above results show that a class with a higher demand uses more of each
and every server. If two classes have the same traffic intensity, then they send
the same amount of flow on each server. In particular, if all classes have the
same demand, i.e. λ = λ=, then, for all server j ∈ S and for all i ∈ C we have
xi,j = yj/K.

Recall that we have assumed that λi ≤ λk for i ≤ k. Therefore, according to
the above results, if we consider two classes i and k > i, then we have Si ⊆ Sk,
µi ≤ µk and xi,j ≤ xk,j for all servers j ∈ Sk, with the equalities holding if and
only if λi = λk.

4.3. Properties related to server costs per unit capacity

The above results tell how an order on λi translates to an order on xi,j , µi

and Si, i.e., quantities of class i. We now give the analogous results for similar
quantities of server j. Denote

rj−yj

cj
=: κj . We can rewrite (5) as

µ−1
i < κj ⇐⇒ i ∈ Cj ⇐⇒ j ∈ Si. (6)

Note that κm is to server m what µi is to class i. The following proposition
states another interesting monotonicity property regarding the order of prefer-
ence of servers as seen by each class.

Proposition 2. The following statements are equivalent :

1. κm < κn.

2. ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
.

3.
xi,m

cm
<

xi,n

cn
,∀i ∈ Cn.

4. rm
cm

< rn
cn
.

Proof. Please, see Appendix A.2.

The following corollary is an immediate consequence of Proposition 2.

9

Corollary 2. The following statements hold :

1. κm = κn ⇐⇒ xi,m

cm
=

xi,n

cn
,∀i ∈ Cn ⇐⇒ rm

cm
= rn

cn
.

2. If rm
cm

< rn
cn

then Cm ⊂ Cn.
3. If rm

cm
= rn

cn
then Cm = Cn.

The above corollary shows that we get a partition of classes among servers
at the NEP : starting with a server m of maximal cost per unit capacity cm

rm
and moving towards servers n with lower cost per unit capacity cn

rn
< cm

rm
, we

observe more and more classes joining the servers, i.e. Cm ⊂ Cn.

Recall that the servers were numbered in the following order: c1/r1 ≤
c2/r2 ≤ . . . ≤ cS/rS . According to the above properties, it implies that if
we consider two servers n and m > n, then we have Cm ⊆ Cn, rn−yn

rm−ym
≥ cn

cm

and
xi,n

xi,m
≥ cn

cm
for each class i ∈ Cn, with the equalities holding if and only if

cn/rn = cm/rm.

Before moving to the analysis of the set of servers used by each class at
the equilibrium, we conclude this section with a last property related to the
server costs per unit capacity. This technical result will play a key role when
comparing the cost of two different equilibria.

Lemma 1.
cjrj

(rj − yj)2
≥ cj+1rj+1

(rj+1 − yj+1)2
, ∀j ∈ S,

with strict inequality if Cj \ Cj+1 ̸= ∅.

Proof. Please, see Appendix A.3.

The above lemma also leads to the following ordering on the ratio of the
traffic offered to a server to its service capacity - also known as the load on that
server.

Corollary 3.
yj
rj

≥ yj+1

rj+1
,∀j.

Proof. We use the fact that rj/cj ≥ rj+1/cj+1 together with Lemma 1 to
deduce that (

rj
rj − yj

)2

≥
(

rj+1

rj+1 − yj+1

)2

,

from which we can conclude the stated result.

10

4.4. Characterization of the set of servers used

The following proposition shows that the set of servers used by each class
has the so-called water-filling structure. It is an extension of Proposition 1 in
[18] to the case of unequal holding costs. The proof is based on the fact that
dispatcher i solves the optimization problem (1). The proof closely parallels [18]
and can be found in the technical report [2].

Proposition 3. For each class i ∈ C, there exist Si such that the set Si of
servers used by class i is Si = {1, . . . , Si}. Moreover, the threshold Si is such
that Gi,Si < λi ≤ Gi,Si+1, where

Gi,s =
s−1∑
j=1

ri,j −
√

ri,s
cs

s−1∑
j=1

√
cj ri,j s = 2, . . . , S (7)

with Gi,1 = 0 and Gi,S+1 =
∑

j∈S rj − λ + λi. Note that Gi,S+1 is the system
capacity as seen by class i jobs.

Remark 2. In the special case λi = Gi,Si+1, inequality (4) holds tight for j =
Si + 1. Therefore, in this case, we can define the set of servers used by class
i as Si = {1, . . . , Si, Si + 1}, where server Si + 1 is “marginally” used, with
xi,Si+1 = 0.

From Corollary 1, we can conclude that the thresholds S1, . . . , SK satisfy
the order S1 ≤ S2 ≤ . . . ≤ SK .

5. Analysis of the Global Cost

In this section, it will be assumed that the capacity vector r and the cost
vector c are fixed. Our goal is to prove that the global cost DK(λ, r, c) achieves
its maximum in the symmetric case, i.e. when λ = λ=.

For each rate vector λ ∈ Λ, we already know that there exists a unique NEP
x ∈ X . Let us define the function N : Λ → X such that for each vector λ ∈ Λ,
N (λ) ∈ X is this unique NEP. In the sequel, the function N will be called the
Nash mapping. We have the following result which is an adaption of Theorem 1
in [18](see [2] for the proof).

Theorem 3. The Nash mapping N is a continuous function from Λ into X .

In order to prove that the global cost achieves its maximum in the symmetric
case, we need to compare the equilibria N (λ) and N (λ̂) that are induced by

two different rate vectors λ and λ̂ in Λ. If the resulting equilibria are such that
the set of servers over which each class sends its flow do not coincide at both
equilibria, then the comparisons become extremely complex, if possible at all.
To avoid this difficulty, we proceed as follows. In Section 5.1, we compare the
equilibria induced by two different rate vectors λ and λ̂, assuming that (i) these

11

equilibria are such that each class sends its flow to the same servers under both
equilibria, and (ii) λ̂ is obtained from λ through a basic transformation (see
below). In Section 5.2 we exploit the continuity of the Nash mapping to show
that the global cost increases under this transformation even when the set of
servers is different at the two equilibria. Finally, in Section 5.3, we show that
the symmetric rate vector λ= can be obtained from any rate vector λ with a
finite number of such transformations.

5.1. Basic Transformation of a Rate Vector

For each rate vector λ ∈ Λ, recall that by convention λ1 = mini∈C λi and
λK = maxi∈C λi. Define the sets Cmin and Cmax as follows :

Cmin = {i ∈ C : λi = λ1} and Cmax = {i ∈ C : λi = λK} ,

and let nmin = |Cmin| and nmax = |Cmax|.

Definition 1. For each vector λ ∈ Λ, define the function hλ : [0, nmax λK] → Λ
as follows :

hλ(ϵ) = λ+ ϵ

(
1

nmin

∑
i∈Cmin

ei − 1

nmax

∑
i∈Cmax

ei

)
, (8)

where ei denotes the vector in IRK with the i-th component equal to 1 and all
other components equal to 0. A rate vector λ̂ ∈ Λ is said to be obtained from
λ under a basic transformation if and only if there exist ϵ ∈ [0, nmaxλK] such
that λ̂ = hλ(ϵ). In this case, ϵ is called the step of the transformation.

Note that the above transformation increases the traffic of classes i ∈ Cmin

(the classes with the smallest amount of traffic) and decrease correspondingly
the traffic of classes i ∈ Cmax (the classes with the largest amount of traffic).

In the following, we will compare two rate vectors λ and λ̂. If z is a cer-
tain quantity related to the Nash equilibrium induced by the vector λ then we
shall denote the corresponding quantity for vector λ̂ by ẑ. The comparison of
equilibria carried out in this section is done under the following assumption.

Assumption 1. The rate vectors λ ∈ Λ and λ̂ ∈ Λ are such that:

1. λ̂ is obtained from λ under a basic transformation,

2. Cj = Ĉj, ∀j ∈ S.

In other words, we assume that the transformation of λ into λ̂ leaves unaf-
fected the set of servers used by each class.

The key point here is that in order to determine the impact of a basic
transformation of the rate vector λ on the global cost, we need to compare the

12

server loads under the equilibria x = N (λ) and x̂ = N (λ̂). To this end, let us
define the sets S+ and S− as follows :

S+ = {j ∈ S : ŷj > yj} and S− = S \ S+,

i.e., S+ is the set of servers whose load increases under the transformation while
S− is the set of servers whose load is non-increasing under the transformation.
Note that S− ̸= ∅ due to flow conservation. Note also that S+ is empty if and
only if the load of each and every server is constant under the transformation.

We now state several results regarding the impact of the transformation
on server loads. In Proposition 4, we give two properties of the set S+. We
show that (i) if there exists at least one server whose load increases under the
transformation then the load of each and every server used by class 1 increases,
and that (ii) the load of all servers is non-increasing under the transformation
if and only if all traffic classes use the same set of servers.

Proposition 4. The following statement hold :

1. If S+ ̸= ∅ then S1 ⊂ S+,

2. S+ = ∅ ⇐⇒ S1 = SK .

Proof. Please see Appendix B.2.

As a direct consequence of the above proposition, we get the following corol-
lary that tells us that if at equilibria x and x̂ all classes use the same set of
servers, then the server loads are constant under the transformation.

Corollary 4. yj = ŷj ,∀j ∈ S ⇐⇒ S1 = SK .

We now turn our attention to the set S−.

Proposition 5. For all j ∈ S, if j ∈ S− then j + 1 ∈ S−.

Proof. Please see Appendix B.3.

Proposition 5 says that the transformation induces a monotonic partition of
servers: there exists a threshold J < S such that for all servers j > J the load
is non-increasing under the transformation.

Using the above results regarding the impact of the transformation on the
server loads, the following two theorems compare the costs D(λ) and D(λ̂).
The first theorem uses the following two lemmata.

Lemma 2. If Cm = Cn, then ŷm ≥ ym ⇐⇒ ŷn ≥ yn.

Proof. From Lemma 17 in Appendix B.1, ŷm ≥ ym is equivalent to
∑

i∈Sm
µ̂i ≥∑

i∈Sm
µi, which, since Cm = Cn, is equivalent to

∑
i∈Sn

µ̂i ≥
∑

i∈Sn
µi. Again,

from Lemma 17, we can conclude that ŷn ≥ yn.

Corollary 5. For m,n ∈ S1, ŷm > ym ⇐⇒ ŷn > yn.

13

Lemma 3. If bi, i = 1, 2, ... is such that

• b1 > 0; bi ≤ 0 ⇒ bi+1 ≤ 0; and
∑

i bi = 0,

and ai, i = 1, 2, ..., is such that

• ai ≥ ai+1; and aI − aI+1 > 0, where I = max{i : bi > 0},

then
∑

i aibi > 0.

Proof. Please see Appendix B.4.

We are now in position to state our main results.

Theorem 4. D(λ) < D(λ̂) ⇐⇒ S1 (SK .

Proof. We first show that if S1 (SK then D(λ) < D(λ̂). As a function of
the loads, the global cost is given by

D(λ) =
∑
j∈S

cjrj
rj − yj

−
∑
j∈S

cj . (9)

Let ∆yj = ŷj − yj . Note that ∆yj > 0 ⇐⇒ (rj − ŷj)
−1 > (rj − yj)

−1, which
leads to ∆yj ̸= 0 ⇐⇒ ∆yj(rj − ŷj)

−1 > ∆yj(rj − yj)
−1. Thus,

D(λ̂)−D(λ) =
∑
j∈S

cjrj(ŷj − yj)

(rj − ŷj)(rj − yj)
≥
∑
j∈S

cjrj
(rj − yj)2

∆yj . (10)

We now show that the RHS in the above inequality is positive. Since S1 (
SK , from Proposition 4, we can infer that S+ ̸= ∅ and S− ̸= ∅. From Proposition
4, we can also infer that S1 ⊂ S+. Hence, ∆y1 > 0. From Proposition 5, if
j ∈ S− then j + 1 ∈ S−. Therefore, the sequence ∆yj , j ∈ S is such that

∆y1 > 0, ∆yj ≤ 0 ⇒ ∆yj+1 ≤ 0 and
∑
j∈S

∆yj = 0

Let J = max{j : j ∈ S+}. Then, J + 1 = min{j : j ∈ S−}. Note that
CJ ̸= CJ+1, otherwise from Lemma 2, either both J and J + 1 belong to S+ or
both belong to S−. From Lemma 1, we can conclude that

cjrj
(rj − yj)2

≥ cj+1rj+1

(rj+1 − yj+1)2
, ∀j and

cJrJ
(rJ − yJ)2

>
cJ+1rJ+1

(rJ+1 − yJ+1)2

Since the sequences cjrj/((rj − yj)
2 and ∆yj satisfy the conditions of Lemma

3, we can conclude that the RHS of (10) is strictly positive, and thus that
D(λ) < D(λ̂).
To show the converse, if D(λ) < D(λ̂) then necessarily there exists an m such
that ym ̸= ŷm. From Proposition 4, we obtain S1 ̸= SK . Since S1 ⊂ SK , we can
conclude that S1 (SK .

14

Theorem 4 shows that if all the classes do not use the same set of servers at
the equilibrium x, then the transformation will strictly increase the cost. The
following theorem proves that the cost is constant under the transformation if
all classes use the same set of servers.

Theorem 5. D(λ) = D(λ̂) ⇐⇒ S1 = SK .

Proof. From Proposition 4, if S1 = SK then yj = ŷj ,∀j ∈ S and therefore,

D(λ) = D(λ̂). To prove the inverse, if S1 ̸= SK then necessarily S1 (SK .
From Theorem 4, we can conclude that D(λ) ̸= D(λ̂).

5.2. Maximum Step of a Basic Transformation

Theorems 4 and 5 enable the comparison of the equilibria induced by two
different rate vectors λ and λ̂, provided that λ̂ can be obtained from λ under a
basic transformation which leaves unaffected the set of servers used by each class.
The main limitation of these results comes from the latter assumption. However,
as will be shown below, the continuity of the Nash mapping can be exploited
to prove that, under certain conditions, the global cost is non-decreasing under
the transformation even if some classes change the set of servers they use.

Definition 2. For each rate vector λ ∈ Λ, the maximum step of the transfor-
mation hλ is

∆ = min (nmin ∆min, nmax ∆max) , (11)

where ∆min = −λ1+min

(
λ̄
K , min

i∈C\Cmin

λi

)
and ∆max = λK−max

(
λ̄
K , max

i∈C\Cmax

λi

)
.

For each rate vector λ, let λ(ϵ) = hλ(ϵ) for ϵ ∈ [0,∆]. All quantities of
interest can be treated as functions of ϵ. Therefore, in the following, if z is a
certain quantity related to the Nash equilibrium induced by the vector λ then
we shall denote the corresponding quantity for vector λ(ϵ) by z(ϵ).

The following lemma details how the sets Cmin and Cmax evolve under the
transformation. The proof is tedious and long, but mathematically not involved,
and can be found in the technical report [2].

Lemma 4. For each ϵ ≤ ∆,

1. ϵ < ∆ =⇒ Cmin = Cmin(ϵ) and Cmax = Cmax(ϵ),

2. Cmin ∪ Cmax ̸= C =⇒ Cmin ∪ Cmax (Cmin(∆) ∪ Cmax(∆),

3. Cmin ∪ Cmax = C =⇒ λ(∆) = λ=.

In other words, if the step ϵ of a basic transformation is lower than the
maximum step ∆, then the sets Cmin and Cmax will be unaffected by the trans-
formation. On the contrary, if ϵ = ∆, then, after the transformation, we will

15

have either (i) one more class in the set Cmin or Cmax, or (ii) λ = λ=.

The following proposition states that if we consider two rate vectors obtained
from λ under a basic transformation of steps lower than the maximum step, then
one can be obtained from the other by a basic transformation.

Proposition 6. Let ϵ1, ϵ2 ∈ [0,∆], ϵ1 < ϵ2. Then λ(ϵ2) can be obtained from
λ(ϵ1) under a basic transformation.

Proof. Since ϵ1 < ϵ2 implies ϵ1 < ∆, we have Cmin(ϵ1) = Cmin and Cmax(ϵ1) =
Cmax. Accordingly, λ(ϵ2) can be written as

hλ(ϵ1) + (ϵ2 − ϵ1)

 ∑
i∈Cmin(ϵ1)

ei
nmin(ϵ1)

−
∑

i∈Cmax(ϵ1)

ei
nmax(ϵ1)

 ,

i.e., λ(ϵ2) = hλ(ϵ1)(ϵ2 − ϵ1).

We now show that even if some classes change the set of servers they use, the
global cost is non-decreasing under the transformation λ(ϵ) = hλ(ϵ) provided
that ϵ ≤ ∆. The proof closely parallels the discussion in Section III.B of [18].

Theorem 6. For ϵ ≤ ∆, D(λ(ϵ)) ≥ D(λ).

Proof. To prove the result, it suffices to show that D is a non-decreasing
function of ϵ on [0,∆]. Let Ai,j = {ϵ ∈ [0,∆] : Gi,j(ϵ) ≤ λi(ϵ) ≤ Gi,j+1(ϵ)},
denote the set of ϵ ∈ [0,∆] for which class i sends flow to servers {1, . . . , j}
under equilibrium N (λ(ϵ)). Continuity of the Nash mapping then implies that
the functions Gi,j(ϵ) and λi(ϵ) are continuous on ϵ ∈ [0,∆]. Hence, Ai,j is a
closed set.

For each S ∈ SK , define As = ∩i∈CAi,Si , which is also a closed set. If
ϵ1, ϵ2 ∈ AS, then each class sends its flow to the same set of servers under
equilibria N (λ(ϵ1)) and N (λ(ϵ2)). Consider a vector S ∈ SK and assume that
we can find ϵ1, ϵ2 ∈ AS such that ϵ1 < ϵ2. According to Proposition 6, the
vector λ(ϵ2) can be obtained from λ(ϵ1) under a basic transformation. Since
ϵ1, ϵ2 ∈ AS, we can conclude using Theorems 4 and 5 that D(ϵ2) ≥ D(ϵ1).

Since [0,∆] = ∪S∈SKAS, all conditions of Theorem 5 in [18] are fulfilled,
and we can conclude that D is a non-decreasing function of ϵ on [0,∆].

5.3. Maximum of the Global Cost

The purpose of this section is to prove that the global cost achieves its

maximum in the symmetric case, i.e., when λ = λ= =
(

λ̄
K , . . . , λ̄

K

)
. To this end,

starting from a fixed rate vector λ, we build a sequence
(
λk
)
k∈IN

of rate vectors

such that λ0 = λ and λk+1 is obtained from λk under a basic transformation
of maximum step, i.e., λk+1 = hλk(∆k). The following proposition shows that

the sequence
(
λk
)
k∈IN

converges to λ= in a finite number of steps.

16

Proposition 7. The sequence
(
λk
)
k∈IN

converges to λ= in at most K steps.

Proof. Let wk be the number of classes in Ck
min ∪ Ck

max. Note that w0 ≥ 2.
According to Lemma 4.3, if wk = K, then λk+1 = λ=. Otherwise, according to
Lemma 4.2, we have Ck

min ∪ Ck
max (Ck+1

min ∪ Ck+1
max, and thus wk < wk+1 ≤ K.

This structure implies that in at most K steps we have wk = K, and thus
λk+1 = λ=.

We now prove Theorem 1.

Proof of Theorem 1. For each λ ∈ Λ, the sequence
(
λk
)
k∈IN

converges to

λ= in a finite number of steps. According to Theorem 6, we have D(λk+1) ≥
D(λk). This implies that D(λ=) ≥ D(λ).

6. Price of Anarchy

According to Theorem 1, we have

PoA(K) = sup
λ,r,c

DK(λ, r, c)

D1(λ̄, r, c)
= sup

r,c

DK(λ=, r, c)

D1(λ̄, r, c)
. (12)

Therefore, in order to analyze the PoA, we can focus on the symmetric case.
We analyze the symmetric game in Section 6.1 and derive an explicit expression
for the equilibrium flows. These results are then used in Section 6.2 to prove
that the PoA is upper-bounded by the square root of the number of dispatchers.
In Section 6.3 we prove the lower bound on the PoA by exhibiting an example for

which the ratio DK(λ,r,c)

D1(λ̄,r,c)
is K/(2

√
K−1). Finally, in Section 6.4, we summarize

our result on the PoA and discuss its consequences.

6.1. Analysis of the Symmetric Game

It is well known that in this case the non-cooperative routing game is a
potential game, i.e., the equilibrium flows are the global minima of a standard
convex optimization problem (see e.g. Theorem 4.1 in [9]). This is formally
stated in the following proposition.

Proposition 8. The multi-strategy x is a NEP of the symmetric game if and
only the loads yj =

∑
i∈C xi,j, j ∈ S, are the global optima of the following

convex optimization problem:

minimize
y

∑
j∈S

cj
K

[
yj

rj − yj
+ (K − 1) log

(
rj

rj − yj

)]
s.t. ∑

j∈S yj = λ̄,

0 ≤ yj < rj , ∀j ∈ S.

17

Note that whenK = 1, the above problem reduces to the global optimization
problem solved by the centralized scheme, whereas when K → ∞, the above
problem reduces to the problem stated in Proposition 4 of [1]. In the latter
case, the equivalent problem states the common function optimized jointly by
an infinite number of players and is characteristic of the Wardrop equilibrium.

In order to describe the solution of the above equivalent problem, let us
define uj = cj/rj , j ∈ S, and uS+1 = ∞. Note that, by definition, the sequence
uj is increasing in j. Let us also define the function

Wj(K, z) = 1{z∈[uj ,uj+1)}·

 j∑
s=1

2rs√
(K − 1)2+4Ku−1

s z − (K − 1)
−

j∑
s=1

rs+λ̄

 ,

and let W (K, z) =
∑

j∈S Wj(K, z).

The following lemma states some properties of the function W (K, z).

Lemma 5. The function W (K, z) is such that:

1. for a fixed K, the function W : [u1,∞) → R is continuous and decreasing
in z,

2. for a fixed z, W (K, z) is decreasing in K,

3. for a fixed K, W (K, z) = 0 has a unique solution in the interval (u1,∞).

Proof. Please see Appendix C.1.

The following proposition gives the solution of the potential game.

Proposition 9. The subset of servers that are used at the NEP is S∗(K) =
{1, 2, . . . , j∗(K)}, where j∗(K) is the greatest value of j such that W (K,uj+1) ≤
0 < W (K,uj). The equilibrium flows are xi,j =

yj

K , i ∈ C, j ∈ S∗(K), where the
offered traffic of server j is given by

yj = rj

√
(K − 1)2 + 4Kγ(K)rj/cj − (K + 1)√
(K − 1)2 + 4Kγ(K)rj/cj − (K − 1)

, (13)

with γ(K) the unique root of W (K, z) = 0 in [u1,∞).

Proof. Please see Appendix C.2.

We now prove that the distributed scheme with K dispatchers uses only a
subset of the servers used by the centralized scheme. The proof is based on the
following proposition.

Proposition 10. The function γ(K) is decreasing in K.

18

Proof. For K1 < K2, we have 0 = W (K1, γ(K1)) > W (K2, γ(K1)), where the
inequality follows from Lemma 5.2. Using W (K2, u1) = λ̄ > 0, and Lemma 5.3,
we can conclude that u1 < γ(K2) < γ(K1).

The fact that γ(K) is decreasing in K implies that j∗(K) is non-increasing
in K. We therefore have the following important corollary.

Corollary 6. For K ≥ 1, S∗(K + 1) ⊂ S∗(K).

As an immediate consequence, we can conclude that S∗(K) ⊂ S∗(1), i.e.,
the distributed scheme with K dispatchers uses only a subset of the servers used
by the centralized scheme.

6.2. Upper Bound on the PoA

In order to distinguish between the offered traffic in server j for different
values of K, we denote by yj(K) the offered traffic in equilibrium in the K
player symmetric game, where yj(K) is given by (13).

The following lemma gives a bound on the mean number of jobs in a server
in the decentralized case in terms of the mean number of jobs in the same server
in the centralized case.

Lemma 6.
yj(K)

rj − yj(K)
≤

√
K

yj(1)

rj − yj(1)
,∀j ∈ S∗(1).

Proof. Please see Appendix D.

The above lemma leads to the following upper bound on PoA(K).

Proposition 11.
PoA(K) ≤

√
K.

Proof. Since S∗(K) ⊂ S∗(1),

DK(λ=, r, c) =
∑

j∈S∗(K)

cj
yj(K)

rj − yj(K)
≤

∑
j∈S∗(1)

cj
yj(K)

rj − yj(K)
.

which, on substituting from Lemma 6, gives

DK(λ=, r, c)

D1(λ̄, r, c)
≤

√
K.

Since this bound in independent of r and c, we can conclude that PoA(K) ≤√
K.

19

6.3. Lower Bound on the PoA

We now give an example which shows that the PoA is bounded below by
K/(2

√
K − 1).

Proposition 12.

PoA(K) ≥ K

2
√
K − 1

.

Proof. To prove this statement, we give a particular choice of the r and c for

which DK(λ,r,c)

D1(λ̄,r,c)
= K

2
√
K−1

, independently of the number of servers S ≥ 2. It

follows closely the example in Theorem 5 in [1]. We take cj = rj = 1, for j > 1.
Using Proposition 3, one can verify that if

(r1 − λ̄)2

r1
< c1 <

(r1 − λ̄)2

r1 − λ̄+ 1
K λ̄

(14)

then the centralized scheme will use all servers whereas, at the NEP, the dis-
tributed scheme with K dispatchers will only use the first server. In order to
ensure that (14) is always satisfied we set c1 = (r1 − λ̄)2 α(r1) for α(r1) such

that r−1
1 < α(r1) <

(
r1 − λ̄+ λ̄

K

)−1

. Note that c1
r1

< 1 = c2
r2
. Taking the limit

as r1 ↓ λ, we get (the details are in [2])

DK(λ=, r, c)

D1(λ̄, r, c)
=

λ̄α(λ̄)

2
(
λ̄α(λ̄)

)1/2 − 1
.

Note that the RHS in the above equation is increasing in λ̄α(λ̄), and that
λ̄α(λ̄) has to be chosen in the interval (1,K). Choosing the larger value, we
obtain

DK(λ=, r, c)

D1(λ̄, r, c)
=

K

2
√
K − 1

,

which proves the inequality (12).

6.4. Discussion on the PoA

We first give the proof of Theorem 2.

Proof of Theorem 2. From Propositions 11 and 12 we can conclude that

K

2
√
K − 1

≤ PoA(K) ≤
√
K.

We first note that the bounds on the PoA are valid for all values of K and
not just asymptotically. From these bounds, we can infer that the PoA grows

20

as
√
K as K grows to infinity. Thus, the PoA can be made arbitrarily large

in the limit K → ∞, which is an alternative proof of Theorem 5 in [1] for the
Wardrop equilibrium. In the other extreme case of K = 1, the bounds lead to
PoA(1) = 1, which is consistent with the fact that the case K = 1 corresponds
to the centralized setting.

We also observe that the PoA is independent of the number of servers —
the bounds are valid as long as there are at least two servers. This result is in
contrast to the corresponding one for the case when server costs are equal, for
which the PoA was shown to be bounded by the number of servers ([15], [25]) in
the non-atomic game. Thus, we infer that the inclusion of unequal server costs
has a non-negligible impact on the PoA in the sense that, even in a system with
two servers, the PoA can be of the order of

√
K.

7. Conclusions and future work

We investigated the performance of non-cooperative load-balancing in processor-
sharing server-farms. We have first shown that the worst global performance is
obtained when all K dispatchers route exactly the same amount of traffic. This
result implies that the analysis of the PoA can be done by focusing on the sym-
metric case, and therefore using the potential function method. We have then
proved that, for a system with two or more servers, the PoA is lower bounded
by K/(2

√
K − 1) and upper bounded by

√
K, independently of the number of

servers.

We believe that this methodology can be generalized to other network topolo-
gies than the parallel link scenario considered in this paper. We therefore plan
to investigate under which conditions the symmetry of traffic demands leads to
a maximum global cost for general network topologies.

References

[1] E. Altman, U. Ayesta, and B. Prabhu. Load balancing in processor sharing
systems. Telecommunication Systems, 47(1–2):35–48, 2011.

[2] U. Ayesta, O. Brun, and B. J. Prabhu. Price of anarchy in non-
cooperative server-farms. LAAS Research Report. Available at http:

//hal.archives-ouvertes.fr/hal-00416123.

[3] C. H. Bell and S. Stidham. Individual versus social optimization in the
allocation of customers to alternative servers. Management Science, 29:831–
839, 1983.

[4] S. C. Borst. Optimal probabilistic allocation of customer types to servers.
In Proceedings of ACM SIGMETRICS, pages 116–125, Sept. 1995.

21

[5] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The state of the
art in locally distributed web-server systems. ACM Computing Surveys,
34(2):263–311, 2001.

[6] H. L. Chen, J. Marden, and A. Wierman. The effect of local scheduling in
load balancing designs. In Proceedings of IEEE Infocom, 2009.

[7] Y.-C. Chow and W. H. Kohler. Models for dynamic load balancing in a het-
erogeneous multiple processor system. IEEE Transactions on Computers,
28(5):354–361, 1979.

[8] J. Cohen. The multiple phase service network with generalized processor
sharing. Acta Informatica, 12:245–284, 1979.

[9] R. Cominetti, J. R. Correa, and N. E. Stier-Moses. The impact of oligopolis-
tic competition in networks. Oper. Res., 57:1421–1437, 2009.

[10] A. Czumaj, P. Krysta, and B. Vocking. Selfish traffic allocation for server
farms. In Proceedings of STOC, 2002.

[11] S. El-Zoghdy, H. Kameda, and J. Li. Comparison of dynamic vs. static
load-balancing policies in a mainframe-personal computer network model.
Information, 5(4):431–446, 2002.

[12] S. El-Zoghdy, H. Kameda, and J. Li. Numerical studies on a paradox
for non-cooperative static load balancing in distributed computer systems.
Computers and Operations Research, (33):345–355, 2006.

[13] H. Feng, V. Misra, and D. Rubenstein. Optimal state-free, size-aware dis-
patching for heterogeneous M/G/-type systems. Performance Evaluation,
62(1–4):36–39, 2005.

[14] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis of join-
the-shortest-queue routing for web server farms. In Proceedings of Perfor-
mance, 2007.

[15] M. Haviv and T. Roughgarden. The price of anarchy in an exponential
multi-server. Operations Research Letters, 35:421–426, 2007.

[16] H. Kameda, J. Li, C. Kim, and Y. Zhang. Optimal load balancing in
distributed computer systems. Springer-Verlag, 1997.

[17] F. Kelly. Stochastic Networks and Reversibility. Wiley, Chichester, 1979.

[18] Y. Korilis, A. Lazar, and A. Orda. Capacity allocation under noncooper-
ative routing. IEEE Transactions on Automatic Control, 42(3):309–325,
March 1997.

[19] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In STACS
1999, 1999.

22

[20] J. Li and H. Kameda. Load balancing problems for multiclass jobs in
distributed/parallel computer systems. IEEE Transactions on Computers,
47(3):322–332, 1998.

[21] D. Monderer and L. S. Shapley. Potential games. Games and Econ. Be-
havior, 14:124–143, 1996.

[22] L. M. Ni and K. Hwang. Optimal load balancing in a multiple processor
with many job classes. IEEE Trans. Software Eng., 11(5):491–496, 1985.

[23] A. Orda, R. Rom, and N. Shimkin. Competitive routing in multi-user
communication networks. IEEE/ACM Transactions on Networking, 1:510–
521, October 1993.

[24] B. Shirazi, A. Hurson, and K. Kavi. Scheduling and load-balancing in par-
allel and distributed systems. Silver Spring, MD: IEEE Computer Society
Press, 1995.

[25] T. Wu and D. Starobinski. A comparative analysis of server selection in
content replication networks. IEEE/ACM Trans. Netw., 16(6):1461–1474,
2008.

Appendix A. Proof of results in Section 4

Appendix A.1. Proof of Proposition 1

We first prove a series of technical lemmata before proving the main state-
ment.

Lemma 7. Si ∩ Sk ̸= ∅.

Proof. Assume the contrary, i.e., if m ∈ Si then m /∈ Sk, and if n ∈ Sk

then n /∈ Si. For one such pair m and n, from (5), we can conclude that
µi >

cm
rm−ym

≥ µk and µk > cn
rn−yn

≥ µi, which is a contradiction.

Since Si ∩ Sk ̸= ∅, from (3), we have

µi − µk =
cj

(rj − yj)2
(xi,j − xk,j), ∀j ∈ Si ∩ Sk. (A.1)

Lemma 8. µi < µk ⇐⇒ ∃j ∈ Sk : xi,j < xk,j.

Proof. Straight part: From Lemma 7, Si ∩ Sk ̸= ∅. If µi < µk, then, from
(A.1), ∃j ∈ Sk : xi,j < xk,j .

Converse part: ∃j ∈ Sk : xi,j < xk,j . Either j ∈ Si or j /∈ Si. If j ∈ Si then,
from (A.1), µi < µk. If j /∈ Si, then, from (5), µi ≤ cj

rj−yj
< µk.

Lemma 9. If µi < µk, then Si ⊂ Sk.

Proof. If j ∈ Si, then, from (5),
cj

rj−yj
< µi. If µi < µk then

cj
rj−yj

< µk.

Hence, from (5) we can conclude that j ∈ Sk. Therefore, Si ⊂ Sk.

23

Lemma 10. ∃m ∈ Sk : xi,m < xk,m ⇐⇒ xi,j < xk,j , ∀j ∈ Sk.

Proof. Straight part: If ∃m ∈ Sk : xi,m < xk,m, then, from Lemmata 8 and 9,
we have µi < µk and Si ⊂ Sk. For j ∈ Si, from (A.1), we have xi,j < xk,j . For
j ∈ Sk \ Si, xi,j = 0 and 0 < xk,j . Hence, xi,j < xk,j , ∀j ∈ Sk.

Converse part: It is true from the statement.

We are now in position of proving Proposition 1: Proof. 1 ⇐⇒ 2 ⇐⇒ 3
follows from Lemmata 8 and 10. Now, we show 3 ⇐⇒ 4.

Straight part: If xi,j < xk,j , ∀j ∈ Sk, then, from the fact that 3 ⇐⇒ 1 and
Lemma 9, we can conclude that λi =

∑
j∈Si

xi,j =
∑

j∈Sk
xi,j <

∑
j∈Sk

xk,j =
λk.

Converse part: Since λk =
∑

j∈Sk
xk,j , if λi < λk, then ∃j ∈ Sk : xi,j < xk,j .

Since 2 ⇐⇒ 3, if λi < λk, then xi,j < xk,j , ∀j ∈ Sk.

Appendix A.2. Proof of Proposition 2

We first prove a series of technical lemmata before proving the main state-
ment.

We recall that κm is to class m what µi is to class i. Also, for i ∈ Cm, we
can rewrite (3) as

µi =
cm

rm − ym

(
1 +

cm
rj − ym

xi,m

cm

)
= κ−1

m

(
1 + κ−1

m

xi,m

cm

)
. (A.2)

Lemma 11. Cm ∩ Cn ̸= ∅.

Proof. Assume the contrary, i.e., if i ∈ Cm, then i /∈ Cn, and if k ∈ Cn,
then k /∈ Cm. For one such pair i and k, from (6), we can conclude that
κm > µ−1

i ≥ κn and κn > µ−1
k ≥ κm, which is a contradiction.

Since Cm ∩ Cn ̸= ∅, from (A.2), we have

κ−1
m

(
1 + κ−1

m

xi,m

cm

)
= κ−1

n

(
1 + κ−1

n

xi,n

cn

)
, ∀i ∈ Cm ∩ Cn. (A.3)

Lemma 12. κm < κn ⇐⇒ ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
.

Proof. Straight part: From Lemma 11, Cm ∩ Cn ̸= ∅. If κm < κn, then, from
(A.3), ∃i : xi,m

cm
<

xi,n

cn
.

Converse part: ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
. Either i ∈ Cm or i /∈ Cm. If i ∈ Cm,

then, from (A.3), κm < κn. If i /∈ Cm, then, from (6), κm ≤ µ−1
i < κn.

Lemma 13. If κm < κn, then Cm ⊂ Cn.

Proof. If i ∈ Cm, then, from (6), µi < κm. If κm < κn, then µi < κn. Hence,
from (6) we can conclude that i ∈ Cn. Therefore, Cm ⊂ Cn.

24

Lemma 14. ∃m ∈ Ci : xi,m

cm
<

xi,n

cn
⇐⇒ xi,m

cm
<

xi,n

cn
,∀i ∈ Cn.

Proof. Straight part: If ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
, then, from Lemmata 12 and

13, we have κm < κn and Cm ⊂ Cn. For i ∈ Cm, from (A.3),
xi,m

cm
<

xi,n

cn
. For

i ∈ Cn \ Cm, xi,m = 0 and 0 < xi,n. Hence,
xi,m

cm
<

xi,n

cn
, ∀i ∈ Cn.

Converse part: It is true from the statement.

We are now in position to show Proposition 2: Proof. 1 ⇐⇒ 2 ⇐⇒ 3
follows from Lemmata 12 and 14. Next, we show 3 ⇐⇒ 4.

Straight part: If
xi,m

cm
<

xi,n

cn
, ∀i ∈ Cn, then from the fact that 3 ⇐⇒ 1 and

Lemma 13, we can conclude that rm
cm

= κm +
∑

i∈Cm

xi,m

cm
< κn +

∑
i∈Cn

xi,n

cn
=

rn
cn
.

Converse part: Since rn
cn

= κn+
∑

i∈Cn

xi,n

cn
, if rm

cm
< rn

cn
, then either κm < κn

or ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
. Since 1 ⇐⇒ 2 ⇐⇒ 3, we can conclude that if rm

cm
< cn

rn
,

then
xi,m

cm
<

xi,n

cn
, ∀i ∈ Cn.

Appendix A.3. Proof of Lemma 1

Proof. From (3), if xi,j > 0, then

µi =
cj

rj − yj
+

cjxi,j

(rj − yj)2
,

from which we obtain∑
i∈Cj

µi =
cjNj

rj − yj
+

cjyj
(rj − yj)2

=
cj(Nj − 1)

rj − yj
+

cjrj
(rj − yj)2

.

Since
∑

i∈Cj+1
µi =

∑
i∈Cj

µi −
∑

i∈Cj\Cj+1
µi,

cj+1(Nj+1 − 1)

rj+1 − yj+1
+

cj+1rj+1

(rj+1 − yj+1)2
=

cj(Nj+1 − 1)

rj − yj
+

cjrj
(rj − yj)2

−
∑

i∈Cj\Cj+1

cjxi,j

(rj − yj)2
.

Thus,

cjrj
(rj − yj)2

− cj+1rj+1

(rj+1 − yj+1)2
=

(
cj+1

rj+1 − yj+1
− cj

rj − yj

)
(Nj+1−1)+

∑
i∈Cj\Cj+1

cjxi,j

(rj − yj)2
.

From Proposition 2,
cj
rj

≤ cj+1

rj+1
implies κj ≥ κj+1, i.e.

cj+1

rj+1−yj+1
≥ cj

rj−yj
. Since∑

i∈Cj\Cj+1

cjxi,j

(rj−yj)2
is strictly positive if Cj \ Cj+1 ̸= ∅, we can conclude that

cjrj
(rj − yj)2

− cj+1rj+1

(rj+1 − yj+1)2
≥ 0,

with strict inequality if Cj \ Cj+1 ̸= ∅.

25

Appendix B. Proofs of results in Section 5.1

In this appendix, we present the proofs of Propositions 4 and 5. These proofs
use some preliminary results which are stated below.

Appendix B.1. Preliminary Results

The following two lemmata compare the Nash equilibria induced by two
different rate vectors λ and λ̂. They do not rely on Assumption 1.

Lemma 15. For i ∈ Cj,
1. if ŷj < yj and x̂i,j ≤ xi,j, then µ̂i < µi.

2. if ŷj ≤ yj and x̂i,j ≤ xi,j, then µ̂i ≤ µi.

3. if ŷj ≤ yj and x̂i,j < xi,j, then µ̂i < µi.

4. if ŷj = yj and µ̂i < µi, then x̂i,j < xi,j.

Proof. Proof of part 1 : for i ∈ Cj , we rewrite (3) as

xi,j = (rj − yj)

(
rj − yj

cj
µi − 1

)
.

Therefore, x̂i,j ≤ xi,j is equivalent to

(rj − ŷj)

(
rj − ŷj

cj
µ̂i − 1

)
≤ (rj − yj)

(
rj − yj

cj
µi − 1

)
,

Since rj − yj < rj − ŷj , we can conclude that µ̂i < µi. The proofs of parts 2, 3,
and 4 follow similarly.

Lemma 16. For m and n in S, and i ∈ Cm ∩ Cn,
if ŷm > ym, x̂i,m ≥ xi,m, and ŷn ≤ yn, then x̂i,n > xi,n.

Proof. Assume the contrary, that is, ∃n,m ∈ S and i ∈ Cm ∩ Cn such that
ŷm > ym, x̂i,m ≥ xi,m, ŷn ≤ yn and x̂i,n ≤ xi,n. From Lemma 15.1, ŷm > ym
and x̂i,m ≥ xi,m implies µ̂i > µi. However, from Lemma 15.2, ŷn ≤ yn and
x̂i,n ≤ xi,n implies µ̂i ≤ µi, which is a contradiction.

We will also use the following result which is valid under Assumption 1.

Lemma 17. Under Assumption 1, for any j ∈ S,
ŷj ≥ yj ⇐⇒

∑
i∈Cj

µ̂i ≥
∑

i∈Cj
µi.

Proof. From (2) and (3),∑
i∈Cj

µi = Njcj
1

rj − yj
+ cj

yj
(rj − yj)2

.

Since Nj = N̂j (from Assumption 1), we can conclude that
∑

i∈Cj
µi is an

increasing function of yj .

26

Appendix B.2. Proof of Proposition 4

Proof. Proof of part 1 : Assume by contradiction that we can find a server
s ∈ S1 such that s ∈ S−. Then, according to Corollary 5, S1 ⊂ S−. Since
S+ ̸= ∅ and ŷj > yj for all j ∈ S+, we have

∑
j∈S+ ŷj >

∑
j∈S+ yj , i.e.,

∑
i∈C

∑
j∈S+

x̂i,j

 >
∑
i∈C

∑
j∈S+

xi,j

,

from which we conclude that there exists i such that
∑

j∈S+ x̂i,j >
∑

j∈S+ xi,j .

Since Sk = S1 ⊂ S− for all k ∈ Cmin, we necessarily have i ̸∈ Cmin and thus
λ̂i ≤ λi. Therefore,

λ̂i =
∑
j∈S−

x̂i,j +
∑
j∈S+

x̂i,j ≤
∑
j∈S−

xi,j +
∑
j∈S+

xi,j = λi.

Thus,

∑
j∈S−

x̂i,j ≤
∑
j∈S−

xi,j +

∑
j∈S+

xi,j −
∑
j∈S+

x̂i,j

 <
∑
j∈S−

xi,j .

We therefore conclude that class i is such that
∑

j∈S+ x̂i,j >
∑

j∈S+ xi,j and∑
j∈S− x̂i,j <

∑
j∈S− xi,j . Therefore, we can find a server m ∈ S+ and a server

n ∈ S− such that x̂i,m > xi,m and x̂i,n < xi,n. But according to Lemma 16,
this is impossible. We therefore conclude that S1 ⊂ S+.

Proof of part 2 : We first prove that if S+ = ∅ then S1 = SK . This is equivalent
to proving that if yj = ŷj , ∀j ∈ S then S1 = SK . Assume the contrary, that is
S1 (SK . Then, ∃m : m ∈ SK ,m /∈ S1. Since ym = ŷm, from Lemma 17, we
get

∑
i∈Cm

µi =
∑

i∈Cm
µ̂i, which we can rewrite as∑

i∈Cmax

µi +
∑

i∈Cm\Cmax

µi =
∑

i∈Cmax

µ̂i +
∑

i∈Cm\Cmax

µ̂i. (B.1)

We shall show that the above equality is not possible, which then proves the
claim. For i ∈ Cmax, since λi > λ̂i,

∑
j∈Si

xi,j >
∑

j∈Si
x̂i,j . Thus, there

exists an n ∈ Si such that xi,n > x̂i,n. Since yn = ŷn, from Lemma 15.3, we
can conclude that µi > µ̂i, and that

∑
i∈Cmax

µi >
∑

i∈Cmin
µ̂i, which, upon

substitution in (B.1), leads to∑
i∈Cm\Cmax

µi <
∑

i∈Cm\Cmax

µ̂i.

If Cm\Cmax = ∅, then the above inequality cannot be possible which then proves
the claim. So, assume Cm \ Cmax ̸= ∅. Then the above inequality implies that
∃i /∈ Cmin ∪ Cmax : µi < µ̂i. Since yj = ŷj ,∀j ∈ Si, application of Lemma 15.4
leads to xi,j < x̂i,j ,∀j ∈ Si, and consequently to λi =

∑
j∈Si

xi,j <
∑

j∈Si
x̂i,j =

λ̂i. However, λi = λ̂i for i /∈ Cmin ∪ Cmax. Hence, there is a contradiction, and
we can conclude that S1 = SK .

27

Appendix B.3. Proof of Proposition 5

Proof. If S+ = ∅ then the proposition is true. So, assume S+ ̸= ∅. Then,
from Proposition 4, S1 ⊂ S+. In order to prove the proposition, assume by
contradiction that there exists a server j ∈ {S1 + 1, . . . , SK − 1} such that
j ∈ S− and j +1 ∈ S+. Again, if S1 +1 = SK then the proposition is true. So,
assume that S1 + 1 < SK .

Since j ∈ S− and j + 1 ∈ S+, from Lemma 2,∑
i∈Cj

µ̂i ≤
∑
i∈Cj

µi, (B.2)

and ∑
i∈Cj+1

µ̂i >
∑

i∈Cj+1

µi, (B.3)

Moreover, from the contrapositive of Lemma 2, we can conclude that Cj \Cj+1 ̸=
∅. Note that since j < SK , classes i ∈ Cmax do not belong to Cj \Cj+1. Similarly,
since j > S1, classes i ∈ Cmin do not belong to Cj \ Cj+1.

Since Cj+1 ⊂ Cj ,
∑

i∈Cj+1
µ̂i >

∑
i∈Cj+1

µi is equivalent to

Nj+1
cj

rj − ŷj
+

cj
(rj − ŷj)2

∑
i∈Cj+1

x̂i,j > Nj+1
cj

rj − yj
+

cj
(rj − yj)2

∑
i∈Cj+1

xi,j ,

and since ŷj ≤ yj , this implies that
∑

i∈Cj+1
x̂i,j >

∑
i∈Cj+1

xi,j . Since ŷj ≤ yj ,

necessarily
∑

i∈Cj\Cj+1
x̂i,j <

∑
i∈Cj\Cj+1

xi,j . However, since all classes k ∈
Cmin∪Cmax do not belong to Cj \Cj+1, we know that λ̂i = λi for all i ∈ Cj \Cj+1,
and thus

j∑
l=1

∑
i∈Cj\Cj+1

xi,l =

j∑
l=1

∑
i∈Cj\Cj+1

x̂i,l,

from which we obtain

∑
l<j

∑
i∈Cj\Cj+1

xi,l =
∑
l<j

∑
i∈Cj\Cj+1

x̂i,l +

 ∑
i∈Cj\Cj+1

x̂i,j −
∑

i∈Cj\Cj+1

xi,j

 ,

and therefore ∑
l<j

∑
i∈Cj\Cj+1

xi,l <
∑
l<j

∑
i∈Cj\Cj+1

x̂i,l. (B.4)

Substracting (B.3) from (B.2), we obtain
∑

i∈Cj\Cj+1
µ̂i <

∑
i∈Cj\Cj+1

µi.
Hence, for each server l < j,

(Nj−Nj+1)
cl

rl − ŷl
+

cl
(rl − ŷl)2

∑
i∈Cj\Cj+1

x̂i,l < (Nj−Nj+1)
cl

rl − yl
+

cl
(rl − yl)2

∑
i∈Cj\Cj+1

xi,l.

28

But, for l < j and l ∈ S+, it implies that
∑

i∈Cj\Cj+1
x̂i,l <

∑
i∈Cj\Cj+1

xi,l, and
thus ∑

l<j,l∈S+

∑
i∈Cj\Cj+1

x̂i,l <
∑

l<j,l∈S+

∑
i∈Cj\Cj+1

xi,l. (B.5)

From (B.4), we have

∑
l<j,l∈S−

∑
i∈Cj\Cj+1

x̂i,l >
∑

l<j,l∈S−

∑
i∈Cj\Cj+1

xi,l+

 ∑
l<j,l∈S+

∑
i∈Cj\Cj+1

xi,l −
∑

l<j,l∈S+

∑
i∈Cj\Cj+1

x̂i,l

 ,

and using (B.5) it leads to∑
l<j,l∈S−

∑
i∈Cj\Cj+1

x̂i,l >
∑

l<j,l∈S−

∑
i∈Cj\Cj+1

xi,l. (B.6)

According to (B.3), for each server l < j,

Nj+1
cl

rl − ŷl
+

cl
(rl − ŷl)2

∑
i∈Cj+1

x̂i,l > Nj+1
cl

rl − yl
+

cl
(rl − yl)2

∑
i∈Cj+1

xi,l.

But, for l < j, l ∈ S−, it implies that
∑

i∈Cj+1
x̂i,l >

∑
i∈Cj+1

xi,l, and thus∑
l<j,l∈S−

∑
i∈Cj+1

x̂i,l >
∑

l<j,l∈S−

∑
i∈Cj+1

xi,l (B.7)

Now, summing (B.7) and (B.6) gives∑
l<j,l∈S−

∑
i∈Cj

x̂i,l >
∑

l<j,l∈S−

∑
i∈Cj

xi,l. (B.8)

However, for each server l ∈ S−, we have ŷl ≤ yl and thus
∑

l<j,l∈S− ŷl ≤∑
l<j,l∈S− yl. Since, for l < j, yl can also be written as yl =

∑
i∈Cj

xi,l +∑
i ̸∈Cj

xi,l, it yields

∑
l<j,l∈S−

∑
i/∈Cj

x̂i,l ≤
∑

l<j,l∈S−

∑
i/∈Cj

xi,l +

 ∑
l<j,l∈S−

∑
i∈Cj

xi,l −
∑

l<j,l∈S−

∑
i∈Cj

x̂i,l

 ,

and using (B.8), ∑
l<j,l∈S−

∑
i/∈Cj

x̂i,l <
∑

l<j,l∈S−

∑
i/∈Cj

xi,l. (B.9)

Therefore, there exists a class i /∈ Cj such that∑
l<j,l∈S−

x̂i,l <
∑

l<j,l∈S−

xi,l. (B.10)

29

It implies that, for this class i, we can find a server n /∈ Si and n ∈ S− such
that x̂i,n < xi,n. Since Cmax (Cj , we know that i ̸∈ Cmax. Moreover, since

Sk = S1 ⊂ S+ for all k ∈ Cmin, i ̸∈ Cmin. We therefore have λ̂i = λi. Thus,∑
l∈S−

x̂i,l +
∑
l∈S+

x̂i,l =
∑
l∈S−

xi,l +
∑
l∈S+

xi,l,

which implies

∑
l∈S+

x̂i,l =
∑
l∈S+

xi,l +

(∑
l∈S−

xi,l −
∑
l∈S−

x̂i,l

)
,

and with (B.10), it yields
∑

l∈S+ x̂i,l >
∑

l∈S+ xi,l. This implies that there exists
a server m < j, m ∈ S+ such that x̂i,m > xi,m. But, according to Lemma 16,
there cannot be two servers m,n ∈ S such that ŷm > ym, ŷn ≤ yn, x̂i,m > xi,m

and x̂i,n < xi,n. This is a contradiction. Therefore, if j ∈ S−, then j + 1 ∈ S−

for all servers j ∈ S.

Appendix B.4. Proof of Lemma 3

Proof. Writting
∑

i aibi as
∑

i≤I aibi +
∑

i>I aibi, we get∑
i≤I

aibi +
∑
i>I

aibi ≥ aI
∑
i≤I

bi − aI+1

∑
i>I

|bi| ≥ (aI − aI+1)
∑
i≤I

bi > 0.

Appendix C. Proofs of results in section 6.1

Appendix C.1. Proof of Lemma 5

Proof. Let us first prove property 1. By definition W (k, x) = Wj(K,x) in
the interval [uj , uj+1). Since Wj is continuous and decreasing in (uj , uj+1)
so is W . To conclude the proof, we need to verify that W is continuous at
uj , j = 2, 3, . . . , S. We have

lim
x→u+

j

W (K,x)− lim
x→u−

j

W (K,x) = lim
x→u+

j

Wj(K,x)− lim
x→u−

j

Wj−1(K,x)

=
2rj√

(K − 1)2 + 4Ku−1
j uj − (K − 1)

− rj = 0,

which shows that the function W (K,x) is also continuous at the points uj , j =
2, 3, ..., S.

To prove property 2 it is sufficient to show that
√
(K − 1)2 + 4Ku−1

i uj −
(K − 1) is increasing in K, for which we show below that its derivative with
respect to K is positive.

30

1
2

2(K−1)+4u−1
i uj√

(K−1)2+4Ku−1
i uj

− 1 > 0

⇔ (K − 1) + 2u−1
i uj >

√
(K − 1)2 + 4Ku−1

i uj

⇔ 4(u−1
i uj)

2 − 4u−1
i uj > 0.

Since u−1
i uj > 1 the above inequality holds.

Finally, let us now prove property 3. First, we note that W (K,u1) = λ̄
and W (K,∞) = −r + λ̄ which is negative (by assumption). Also according to
property 1, W (K,x) is continuous and decreasing in the interval [u1,∞). Hence,
there is a unique value of x for which W (K,x) = 0.

Appendix C.2. Proof of Proposition 9

Proof. Let y be an optimal solution of the equivalent problem stated in
Proposition 8. For ease of notation, let ϕj = rj/(rj − yj), j ∈ S. According to
the KKT conditions, there exist γ such that for each j ∈ S,

K u−1
j γ ≤ ϕj(ϕj +K − 1), ∀j ∈ S, (C.1)

yj
[
ϕj(ϕj +K − 1) − K u−1

j γ
]

= 0, ∀j ∈ S, (C.2)

with equality in (C.1) if and only if yj > 0.
Let us now consider a server j. Let us first assume that uj < γ. In this case,

a necessary condition for (C.1) to hold is ϕj(ϕj + K − 1) > K, which implies
ϕj > 1 and hence yj > 0. We therefore obtain from (C.2) that

ϕ2
j + (K − 1)ϕj −Ku−1

j γ = 0.

The above equation has a single positive root given by

ϕj =
1

2

[√
(K − 1)2 + 4Ku−1

j γ − (K − 1)

]
.

We thus conclude that if uj < γ, then the load yj = rj (ϕj − 1)/ϕj of the server
j is given by

yj = rj

√
(K − 1)2 + 4Ku−1

j γ − (K + 1)√
(K − 1)2 + 4Ku−1

j γ − (K − 1)
.

Let us now assume on the contrary that uj > γ. If yj > 0, then ϕj > 1, which
implies that ϕj(ϕj + K − 1) > K. However, according to the complementary
slackness condition (C.2), the left hand side is just Ku−1

j γ, and we therefore
obtain that γ > uj , i.e., a contradiction. As a consequence, if uj > γ, then
yj = 0. Finally, we conclude from the above analysis that

yj =


rj

√
(K−1)2+4Ku−1

j γ−(K+1)√
(K−1)2+4Ku−1

j γ−(K−1)
if uj < γ,

0 otherwise.

(C.3)

31

Let j∗(K) be such that uj∗(K) < γ ≤ uj∗(K)+1. Then the subset of servers
used at the Nash equilibrium is S∗(K) = {1, . . . , j∗(K)}. Using (C.3), we
deduce from

∑
j∈S∗(K) yj = λ̄ that∑

j∈S∗(K)

rj − λ̄ =
∑

k∈S∗(K)

2rk√
(K − 1)2 + 4Ku−1

k γ − (K − 1)
,

i.e., W (K, γ) = 0, which implies that γ = γ(K) according to Lemma 5.3.
Moreover, since for a fixed K the function W : [u1,∞) → R is decreasing in
z, we deduce from uj∗(K) < γ(K) ≤ uj∗(K)+1 that W (K,uj∗(K)+1) ≤ 0 <
W (K,uj∗(K)).

Appendix D. Proof of Lemma 6

Proof. From Corollary 6, we have S∗(K) ⊂ S∗(1). For j ∈ S∗(1) \ S∗(K),
ρj(K) = 0. Hence (6) holds. It now remains to be shown that (6) holds for
every j ∈ S∗(K). From (13),

yj(K) = rj

√
(K − 1)2 + 4Kγ(K)rj/cj − (K + 1)√
(K − 1)2 + 4Kγ(K)rj/cj − (K − 1)

, (D.1)

from which it follows that

yj(K)

rj − yj(K)
=

√
(K − 1)2 + 4Kγ(K)rj/cj − (K + 1)

2
. (D.2)

We shall now use the fact that yj(K)/(rj − yj(K)) is increasing in γ(K). Since
γ(K) ≤ γ(1), from (D.2),

yj(K)

rj − yj(K)
≤

√
(K − 1)2 + 4Kγ(1)rj/cj − (K + 1)

2

=

√
(K − 1)2 + 4Kγ(1)rj/cj − (K + 1)

2

√
(K − 1)2 + 4Kγ(1)rj/cj + (K + 1)√
(K − 1)2 + 4Kγ(1)rj/cj + (K + 1)

= 2K
γ(1)rj/cj − 1√

(K − 1)2 + 4Kγ(1)rj/cj + (K + 1)
.

Since K − 1 ≥ 0 and K + 1 ≥ 2
√
K, it yields

yj(K)

rj − yj(K)
≤

√
K

γ(1)rj/cj − 1√
γ(1)rj/cj + 1

=
√
K

(√
γ(1)rj/cj − 1

)
. (D.3)

From (D.2),

yj(1)

rj − yj(1)
=

√
4γ(1)rj/cj − 2

2
=
√
γ(1)rj/cj − 1, (D.4)

which upon substitution in (D.3) gives the desired result.

32

