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Abstract— This paper proposes a systematic direct approach to 

carry out effective multi-objective optimization of space orbit 

transfer with high-level thrust acceleration. The objective is to 

provide a transfer trajectory with acceptable accuracy in all 

orbital parameters while minimizing spacecraft fuel 

consumption. 

With direct control parameterization, in which the steering 

angles of thrust vector are interpolated through a finite 

number of nodes, the optimal control problem is converted into 

the parameter optimization problem to be solved by nonlinear 

programming. Besides the thrust vector direction angles, the 

thrust magnitude is also considered as variable and unknown 

along with initial conditions. Since the deviation of thrust 

vector in spacecraft is limited in reality, mathematical 

modeling of thrust vector direction is carried out in order to 

satisfy constraints in maximum deviation of thrust vector 

direction angles. In this modeling, the polynomial function of 

each steering angle is defined by interpolation of a curve based 

on finite number of points in a specific range with a nominal 

center point with uniform distribution. This kind of definition 

involves additional parameters to the optimization problem 

which results the capability of search method in satisfying 

constraint on the variation of thrust direction angles. 

Thrust profile is also modeled based on polynomial functions 

of time with respect to solid and liquid propellant rockets. 

Imperialist competitive algorithm is used in order to find 

optimal coefficients of polynomial for thrust vector and the 

optimal initial states within the transfer. Results are mainly 

affected by the degree of polynomials involved in mathematical 

modeling of steering angles and thrust profile which results 

different optimal initial states where the transfer begins. It is 

shown that the proposed method is fairly beneficial in the 

viewpoint of optimality and convergence. The optimality of the 

technique is shown by comparing the finite thrust optimization 

with the impulsive analysis. 

Comparison shows that the accuracy is acceptable with respect 

to fair precision in orbital elements and minimum fuel mass. 

Also, the convergence of the optimization algorithm is 

investigated by comparing the solution of the problem with 

other optimization techniques such as Genetic Algorithm. 

Results confirms the practicality of Imperialist Competitive 

Algorithm in finding optimum variation of thrust vector which 

results best transfer accuracy along with minimizing fuel 

consumption. 
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1. INTRODUCTION 

Most successful trajectory optimization methods are 

gradient-based, mainly due to their computational 

efficiency. However, these algorithms are local in nature 

and it is easy for the solution to get trapped in a local 

minimum. To avoid this, global rather than local search 

must be performed. In recent years, interest in the 

application of evolutionary algorithms (EAs) to trajectory 

optimization has grown, substantially due to their global 

search capabilities.  

In [1] Genetic Algorithm (GA) is used by Taheri and 

Abdelkhalik to generate initial trajectories in a three-body 

dynamical framework assuming the use of a low-thrust 

propulsion system. The GA can also be employed to 

optimize the rendezvous trajectory for asteroid deflection 

missions [2], or used to control of asteroid retrieval 

trajectories to libration point orbits [3]. 

Besides GA, Particle Swarm Optimization (PSO), an 

evolutionary algorithm based on observation and simulation 

of the social behavior of flocks of birds, has been widely 

used in space orbit trajectory design. Dileep et al. [4] used 

PSO in ascent phase launch vehicle trajectory optimization 

problem. Alonso Zotes and Santos Penas [5] employed PSO 

in designing an interplanetary trajectory for Earth to Jupiter 

and Saturn missions. 

A recently introduced evolutionary meta-heuristic which has 

not received much attention in the aerospace community is 

the Imperialist Competitive Algorithm (ICA) [6], which is a 

global optimization technique based on the behavior of 

imperialists in their attempt to conquer colonies. The 

algorithm is simple and can be implemented in a few lines 
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of computer code. Moreover, it is gradient-free and can 

solve irregular optimization problems. These characters 

make ICA an easy-to-use algorithm for real-life problems 

such as the trajectory optimization, and multidisciplinary 

design optimization (MDO). 

This algorithm has been applied in optimization problems in 

many engineering researches such as controller design [7], 

logic circuit optimization [8], power flow optimization [9] 

and virtual machine placement [10]. The only fair 

application of ICA in trajectory optimization of spacecraft 

has been presented by Shafieenejad et al. [11] in which the 

optimal control problems in a low-thrust space orbit transfer 

problem is tackled using ICA with regard to path design 

viewpoint and free initial condition. 

In this work, ICA is employed to find the optimum transfer 

trajectory for spacecraft based on using high-thrust 

propulsion systems. The use of ICA in high-thrust orbital 

maneuvers can be considered as a novel approach in 

trajectory optimization since this algorithm hasn’t been 

previously employed in such orbit transfers. 

The rest of this paper is organized as follows. Statement of 

the problem is given in Section 2. Section 3 presents the 

high-thrust dynamic model, various performance indexes, 

and boundary constraints. Section 4 describes the 

optimization approach of high-thrust orbit transfers. 

Structure of Imperialist Competitive Algorithm for design 

of high-thrust trajectories is defined in Section 5. In Section 

6, the simulation case of optimal transfer trajectories with 

boundary constraints is studied to validate the general rapid 

design and optimization framework developed in this paper. 

Finally, Section 7 contains conclusion and future work. 

2. STATEMENT OF THE PROBLEM  

Consider a general orbit transfer from initial orbit 

),,,,( iiiii iea   to final orbit ),,,,( fffff iea   as depicted 

in Figure 1.  

 

Figure 1. Schematic view of trajectories in finite-thrust orbital maneuver 

 

Based on impulsive assumption, orbit transfer occurs at 

the intersection of initial and final orbits (O). However, 

regarding finite-thrust assumption in which the transfer 

time is not equal to zero, spacecraft motion will be on a 

non-Keplerian trajectory known as burn arc during orbit 

transfer. The burn arc starts and ends in unknown points 

on initial and final orbits respectively (M,N). While the 

spacecraft moves on burn arc, orbital parameters have 

continuous changes. The orbit transfer will be optimal if 

the orbital parameters at the end of transfer are equal or 

near equal to desired values while the spacecraft have 

minimum fuel consumption. In order to achieve optimal 

transfer, variation of thrust vector needs to be specified so 

that the orbital parameters reach the desired values related 

to final orbit while minimizing the fuel mass. The 

optimization technique in this article is applied to space 

missions where two orbits intersect at a point. However, if 

two orbits don’t have any intersections, the space mission 

can simply be divided into two orbit transfers using 

Hohmann transfer approach [12] or any other transfer 

orbit which have intersections with both initial and final 

orbits. 

3. OPTIMIZATION MODEL OF HIGH-THRUST 

TRAJECTORIES 

High-thrust dynamic model 

The high-thrust spacecraft is mainly affected by the 

gravitation of the center celestial body and engine thrust 

during transfer phase. For convenience, all perturbation 

effects are intentionally ignored since the burning time is 

short and the acceleration of the engine is too much in 

comparison to orbital perturbations, and then the 

equations of motion of the spacecraft with a high-thrust 

engine in the Cartesian coordinate can be formulated as 

follows [13]: 
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where r


 and v


 are the position and velocity vector of 

the high-thrust spacecraft respectively. m  denotes the 

mass of spacecraft.   is the gravitational parameter of 

the central attracting body. u


 represents the thrust 

acceleration direction, which is defined as a unit vector. 

T  stands for the thrust magnitude. g  is the Earth sea-

level gravitational acceleration. 
spI  denotes the specific 

impulse of a high-thrust engine. 

Performance indexes and boundary constraints 

The problem of high-thrust trajectory optimization is 

essentially an optimal control problem, where the control 

variables are the thrust direction vector, and the state 

variables are the velocity, position and mass of the 

spacecraft. Unlike low-thrust transfers, the objective 

function of high-thrust trajectory optimization depends on 

the detailed mission requirements, and the common 

objective functions usually include the form of fuel 

consumption and transfer accuracy. 

The problem of high-thrust trajectory optimization can be 

defined as searching for the appropriate thrust direction 

such that the fuel consumption and the transfer accuracy 

is optimal in a specific sense. At the same time, the 

constraints of equations of motion, ephemeris and 

maximum value of thrust magnitude and maximum thrust 

deviation should be not violated. 

In order to optimize a transfer trajectory, a scalar cost 

function must be defined to measure the trajectory’s 

merit. Since the transfer is not coplanar in general, both 

the shape and orientation of final orbit is considered as the 

target in optimization. Therefore, the goal is to maximize 

the accuracy of final orbits in this transfer with respect to 

provided thrust profile. Considering ft  as the total burn 

time in orbit transfer, the cost function representing the 

transfer accuracy may be defined as [14]: 
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where a , e , i ,   and   denote the semi-major axis, 

eccentricity, argument of perigee and right ascension of 

ascending node at the end of orbit transfer respectively. 

Similarly, 
desa ,

dese , 
desi , 

des  and 
des represent the desired 

values of related parameters at the end of orbit transfer. 

Also, 
a , 

e , 
i , 

  and 
  

are weighting coefficients 

related to each parameters which are specified based on 

desired accuracy according to mission objective. 

Derivation of orbital parameters in Eq. (4) from state 

variables ( vr


, ) is provided in Appendix. 

This definition of cost function fairly scales the weighting 

coefficients. As based on this definition, if 1eJ , all of 

the parameters at the end of orbit transfer reach the 

desired values with acceptable accuracies. 

Besides 
eJ  which represents the orbit accuracy, another 

cost function need to be specified representing the fuel 

consumption of the spacecraft as below: 

 2)(
m

imf

m

mm
J




  (5) 

where 
fm  represents the actual required fuel mass for the 

transfer in finite thrust simulation while 
m  is the 

weighting coefficient of fuel mass. Considering 
imm  as 

the required fuel mass regarding impulsive analysis, the 

inequality 
imf mm   holds since the fuel mass calculated 

by the impulsive assumption is the least fuel mass that is 

required for a space mission in reality. However, since 

there is always an acceptable radius of error in the final 

orbital elements defined by weighting coefficients in Eq. 

5, 
m  can be considered equal to 

imm as a proper choice 

for every mission objective. 

Similarly, if 1mJ , the fuel mass of the spacecraft will be 

less than the expected value defined by m . 

Having the cost functions for transfer accuracy )( eJ  and 

fuel consumption )( mJ , the overall cost function can be 

defined as below: 

 ))/1((
2

1
me JJJ    (6) 

where   is the overall scale factor with boundary of 

0  which represents the balance between fuel 

optimality and orbit accuracy. The scale factor is 

specified based on the desirability of two criteria. 

In overall, regarding the above definitions, the multi-

objective optimization problem turns into single objective 

one regarding weighting coefficients and scale factor. The 

stopping criterion of the optimization process would be

1J  since the two minor cost functions have been 

already scaled using weighting coefficients. The main 

problem which is tackled in this research is minimizing 

the overall cost function defined as Eq. 6 by finding 

optimal thrust vector direction and optimal thrust 

magnitude profile as functions of time along with optimal 

starting position of spacecraft on initial orbit. 
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4. TRAJECTORY DESIGN BASED ON DIRECT 

STRATEGY 

Mathematical modeling of thrust vector 

The variation of thrust direction angles and thrust 

magnitude are to be specified so that the performance 

index defined by Eq. (6) becomes minimal. Considering 

the thrust acceleration direction as 

)]sin()sin()cos()cos()[cos( u


, the guidance 

commands ),(   along with thrust magnitude )(T  are 

initially assumed as the polynomial functions of time as: 
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where t  represents the time that starts with the ignition of 

engine rocket, ia , ib  and ic  are the polynomial 

coefficients of direction angles and thrust magnitude 

respectively and n  is the degree of polynomials.  

Since the thrust vector is given by the polynomial 

functions of time in the form of Eq. (7) , (8) and (9), there 

is no limitation in their variation in general form. 

Therefore, finding optimal ia , ib  and ic  will result large 

variations of direction angles and thrust magnitude. 

However, the deviation of thrust vector along with the 

magnitude in spacecraft is limited in reality. Most solid 

rocket engines can have steering deviation of 20 at 

most during the burn time [15]. This maximum value has 

been assumed to be up to 
10 in some researches 

involving thrust vector controllers [16]. Similarly, the 

time profile of thrust magnitude is also a restricted 

function of time which is affected by the core shape of the 

propellant, rocket inhibitors and grain geometry [17, 18]. 

However, the design process of the propulsion system 

which satisfies a predefined thrust magnitude profile is a 

challenging issue and its possibility is totally depends on 

the available technology. Therefore; it is required to 

redefine the unknown parameters in optimization with 

respect to these limitations. 

In order to apply the range constraint of steering angles 

and thrust magnitude in optimization process, the concept 

of optimization in orbit transfer problem is modified in a 

way so that the boundary of ,   and T can be specified.  

The polynomial function of each unknown function ( ,

  and T ), hereinafter referred as )(t , is defined by 

interpolation of a curve with degree of n  based on  m  

number of points ( 
mppp ...., 21

) in range of 
R with 

center of a nominal point
c  with uniform distribution. 

This kind of definition involves additional parameters to 

the optimization problem which results the capability of 

search method in satisfying constraint on the variation of 

thrust direction angles and thrust magnitude. 

Interpolation of a thn  degree polynomial of )(t  is 

desired in the following form: 

 
n

nttt   ...)( 10
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Where i  represent unknown polynomial coefficients (

ia , ib and ic ). Knowing the m  number of points (


mppp ...., 21

) in uniform distribution of time steps (

mttt ...., 21 ), the residual ( 2R ) is given by: 
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The partial derivatives are: 

 





 m

i

n

i

n

ini

n

tttp
R

1

2

110

2

)]...([2
)(




  (12) 

Setting residual equations equal to zero leads to the 

equations: 
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Rewriting the equations in the matrix form yields: 
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In matrix notation, the matric form of equations for a 

polynomial fit can be reformed to: 

 ][XY   (15) 

This can be solved by pre-multiplying by the transpose
TX . 

 ][XXYX TT   (16) 

This matrix equation can be solved numerically, or can be 

inverted directly if it is well formed, to yield the unknown 

polynomial coefficients: 



 

 5 

 YXXX TT 1)(][   (17) 

Regarding the proposed definitions, the optimization 

algorithm will find the optimal center point c  plus a set 

of points

mp  in the range of R relative to c  for each 

input ( ,   and T ) instead of finding optimal 

polynomial coefficients of ia  , ib  and ic . 

Optimization approach 

Once the system of differential equations is solved up, 

orbital parameters as well as the overall performance 

index ( J ) will be revealed at the end of orbit transfer. 

Schematic view of system performance in high-thrust 

orbit transfer is depicted in Figure 2. 

 

Figure 2. Diagram of cost function evaluation 

Figure 2 shows system dynamics of the orbit transfer 

problem. Input parameters are initial states ),( 00 vr


, 

steering functions ),(  , thrust magnitude )(T  and the 

total burn time )( bt . The optimal values of these 

parameters that results the best transfer accuracy will be 

found using the evolutionary algorithm. 

The initial states are related to each other since the initial 

orbit is known. Therefore, initial true anomaly )( 0 where 

the engine starts is considered instead of
00 ,vr


. Specifying 

this parameter yields all six initial states. For steering 

angles, the nominal center points ),( cc   along with 

several numbers of points ( 
mppp ..., 21

 and 
mppp ..., 21

) 

subject to the constraint range of R and R  relative to

c  and c are considered as described previously. The 

total of n2  points is considered for generating the 

polynomial functions with degree of n in current 

simulation. Therefore, we have nm 2  in specifying 

polynomials. Same approach is considered for thrust 

magnitude which is defined based on a center point )( cT  

and selective points )...,( 21

T

m

TT ppp  and allowable range

)( TR . However, the degree of polynomials in defining 

thrust profile is not the same as direction angles since the 

variation of thrust magnitude is more restricted. Based on 

different thrust profiles in researches [19] including 

neutral, regressive and progressive thrust profiles [20], 

linear and cubic functions can also be considered for this 

variable in order to have producible thrust profile at the 

end of optimization. Regarding this method, the actual 

optimal control problem will turn into a parameter 

optimization problem which can be solved using ICA. 

5. IMPERIALIST COMPETITIVE ALGORITHM 

STRUCTURE  

Imperialist Competitive Algorithm (ICA), is an 

evolutionary algorithm that mimics the competition 

between imperialist countries to control more colonies in 

order to strengthen   their   empires   through   a   process   

of   imperialistic competition. 

The ICA process is similar to other evolutionary 

algorithms in that it begins with an initial population, 

which with the ICA consists of countries. These countries 

are then divided into two categories: imperialists and 

colonies. To generate empires, the colonies are distributed 

among the imperialists based on their relative strength, as 

determined by a pre-defined criterion. The empires then 

compete with each other to control more colonies and 

expand their power. As this competition loops, stronger 

empires expand their power by taking possession of weak 

colonies from weaker empires. This process is repeated 

until a pre-defined stopping criterion is satisfied. A 

detailed description of the steps involved in this algorithm 

is presented in the subsection below [21]. 

The initiation of empires starts with the creation of 

several arrays that contain different problem variables (
iP

). These arrays are called “countries” in the ICA 

terminology. Countries are analogous to individuals in the 

GA. Any country can be defined as a 1 x number of 

variables )( varN  array, which is used for cost function 

evaluation. A country can be either an imperialist or a 

colony. 

 ],...,,[ var21 NpppCountry   (18) 

 )(CountryfCost   (19) 

Next, an initial population that consists of both 

imperialists 
imprN and colonies 

lncoN is generated to form 

the total population
popN . The formation of initial empires 

starts by the assignment of colonies to the imperialists, 

based on the imperialists’ relative power. The number of 
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colonies an imperialist acquires is also directionally 

proportional to its power. This is achieved by normalizing 

the cost of each imperialist (
nC ) and then dividing it by 

the total normalized cost of all the imperialists (
nP ). 

 }max{ inn ccC   (20) 
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After the determination of the imperialists’ power, 

colonies are randomly distributed among imperialists to 

create empires. The number of colonies held by each 

imperialist (
nCN. ) is determined as follows: 

 }.{. lnconn NproundCN   (22) 

By the end of this process, several empires have been 

created with their relative imperialists and colonies.  

After the creation of empires, colonies are moved toward 

their relative imperialists. If the position of a new colony 

happens to yield a lower cost function, then the colony 

exchanges its position with its imperialist. This place-

exchange process is carried out for all other colonies and 

their imperialists as well. Then, the total power of each 

empire, which is the summation of its imperialist and 

colonial power, is evaluated in order to rank empires 

based on their lowest cost functions. We note that an 

empire's power is mainly affected by the power of its 

imperialist, and that the powers of colonies are very low 

to almost negligible. 
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n

nn

empireofcoloniesCostMean

timperialisCostCT
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where 
nCT. is the total cost of an empire and   is a value 

less than 1. The usage of   is to assign less importance to 

the colonies’ cost and makes the empire's cost mainly 

dependent on the cost of its imperialist. 

Next, the empires are ready to participate in the main ICA 

process imperialist competition. In this process, the 

empires compete to take possession of the weakest 

colonies that belong to the weakest empires. The 

competition is initiated by assigning a possession 

probability to each empire. The possession probability 

increases as an empire's power increases (lowest cost). To 

perform this process, first, a normalized total cost (
nCTN ..

) is evaluated for each empire. Then, each empire's total 

normalized cost (
nCTN .. ) is divided by the sum of the 

total normalized cost of all the empires to obtain the 

possession probability for each empire ( pnP ). 

 ).max(... inn CTCTCTN   (24) 
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After evaluating the possession probability of each 

empire, three vectors are formed as follows: 

 ],...,,[ 21 pnpp pppP   (26) 

 ],...,,[ 21 NimprrrrR   (27) 

 ],...,[ 1 nDDRPD   (28) 

The weakest colony is then given to the empire with the 

maximum D  index. Further details are provided in [22]. 

The competitive process will repeat and iterate until 

meeting a predetermined stopping criterion or until only 

one empire exists.  

6. SIMULATION  

Consider an elliptical orbit with semi-major axis of 20000 

km and eccentricity of 0.1 inclined by o20 as the initial 

orbit with argument of perigee of o40  and right ascension 

of o60 . The objective of space mission is to deliver its 

payload from initial orbit to another orbit as depicted in 

Figure 3. 
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Figure 3. Three-dimensional view of sample orbit transfer 

 
This example represents a practical problem of trajectory 

optimization in high-thrust transfers in which all of the 

orbital elements will change during the orbital maneuver. 

Table 1 contains orbits characteristics in this space 

mission. 

Table 1. Orbital parameters of initial and final trajectories 

Parameter Initial Orbit Final Orbit 

Eccentricity )(e  0.1 0.4 

Semi-major axis )(a  20000 km 25000 km 

Inclination )(i  o20  
o30  

Argument of perigee
)(  

o40  
o64  

Right ascension of 

ascending node )(  
o60  

o2.27  

Angular Momentum 
)(h  

88838 km2/s 
91490 

km2/s 

Specific energy )(  -9.965 km2/s2 
-7.972 

km2/s2 

 

The expected accuracies are as follows: Acceptable errors 

of semi-major axis )( a  and eccentricity )( e  are 

considered as 100 km and 0.1. Errors of inclination )( i , 

right ascension of ascending node )(   and argument of 

perigee are all considered as 1 deg. Also, ten percent of 

least required fuel mass is considered as the acceptable 

excessive fuel mass. i.e. 
imm m 1.0 .  

Intersection of initial and final orbits occurs at

kmkr


1536j7822i17914-0  . This radius is related to 

true anomalies of o70 and o76 in initial orbit and final 

orbits respectively. 

Since this transfer is a 3D orbital maneuver, all orbital 

parameters are considered in calculating 
eJ . Setting 

1  yields to have a unique weighting coefficient for 

accuracy )( eJ  and mass consumption )( mJ . 

Before starting the optimization problem with thrust 

vector defined as fully polynomial functions, the gradient 

of solution domain can be illustrated as a 3D contour by 

assuming constant thrust direction and magnitude. Setting 

the thrust magnitude to kN11 for a spacecraft with 

payload mass of kg600  results the five cost function 

terms in equation (4) as two constant thrust directions 

),(   as depicted in Figure 4. 
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Figure 4. Variation of orbital elements regarding constant thrust direction 
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The value of each cost function is scaled in 0 to 1. As 

shown in Figure 4, the gradient of solution domain 

consists of several local minimum points which clearly 

prove the inapplicability of gradient-based techniques. 

Back at the main process, the optimization is carried out 

using ICA with the following parameters. 

Table 2. Parameters, boundaries and stopping criteria in 

ICA 

Parameter Value 

Number of initial countries 500 

Number of initial imperialist 20 

Maximum number of decades 100 

Revolution rate 0.4 

Assimilation coefficient 1.8 

Assimilation angle coefficient 0.7 

Overall scale factor 1 

Stopping criteria 1 

Thrust vector 

shaping boundaries 

and parameters 

 9090 c  

 30R
 

 180180 c  
 30R
 

kNTc 200 
 

NRT 1000
 

Initial true anomaly  7565 0  

Burn time st 2000   

In this case, a total of 50 points is adopted for each thrust 

direction angles and a total of 20 points for the thrust 

magnitude which results in the optimization problem with 

125 input variables. 

The optimization is conducted using the proposed strategy 

based on using ICA. Solution converged after 24 

iterations. The following solutions are achieved as the 

optimal thrust vector for the space mission. 

 
24

2

)101268.3(

)105630.3(4971.10)(

t

ttT









 (29) 

 

5845

3322

1

)107572.3()102995.1(

)105122.1()104375.6(

)105858.5(5982.32)(

tt

tt

tt













 (30) 

 

5845

3322

1

)103545.4()104897.1(

)106777.1()107465.6(

)109792.5(1909.166)(

tt

tt

tt













 (31) 

As mentioned previously, different polynomial degrees 

are considered for direction )5( n  and magnitude 

)2( n  because of different allowable behavior of these 

parameters. These variations are illustrated as below: 

 

Figure 5. Optimal thrust vector magnitude and direction 

angles 

Regarding Figure 5, it can be seen that the direction 

angles fairly satisfy the variation margin of 30  while 

employing a cubic thrust magnitude variation. Changes of 

orbital elements within this transfer are depicted in Figure 

6 and Figure 7. 

 

Figure 6. Semi-major axis and eccentricity within the 

orbit transfer 
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Figure 7. Inclination, argument of perigee and right 

ascension angle within the orbit transfer 

Regarding Figure 6 and 7, the values of semi-major axis 

and eccentricity at the end of transfer are 2510.32 and 

0.4018 respectively. Also, inclination, argument of 

perigee and right ascension angle are 29.71, 63.28 and 

27.41 respectively. It can be seen that the orbital elements 

reach the desired values with acceptable accuracies 

defined as mission objective. 

The obtained results are based on using a propulsion 

system which is able to produce cubic thrust profile as 

illustrated in Figure 5. However, other type of thrust 

profile can be considered for the space mission based on 

different propulsion systems. As mentioned previously, 

the mathematical modeling of thrust magnitude enables 

the use of different thrust vector behavior for a space 

mission. Besides neutral variation, regressive and 

progressive variation is considered for current mission. 

Clearly the mathematical modeling of thrust magnitude 

will be more simplistic in this case, leading to use only 

two points in an acceptable range of thrust magnitude 

which is considered as kN5  in this research. The optimal 

regressive and progressive thrust profiles regarding this 

approach are depicted in Figure 8. 

 

Figure 8. Optimal thrust profiles 

As shown in Figure 8, the optimal thrust profiles are 

generated within the desired margin. The obtained cost 

functions are shown in Table 3. 

Table 3. Characteristics of optimal thrust profiles 

Thrust profile Quadratic Progressive Regressive 

Fuel Mass 535.04 536.15 537.27 

Maximum 

Thrust 
11.512 kN 13.030 kN 12.137 kN 

Minimum 

Thrust 
9.127 kN 8.817 kN 9.756 kN 

Cost function 0.3268 0.5503 0.8852 

This table shows the practicality of the proposed approach 

in finding optimal transfer trajectory regarding different 

thrust profile behavior. 

Because of the finite time required for computation, 

optimization algorithms with fast convergence time are 

needed in such systems. Figure 9 compares the 

convergence process of the presented method and GA. 

 

Figure 9. Convergence of the optimization algorithms 

(ICA, GA) 

From Figure 9, it can be seen that the solution converges 

after 24 generations using ICA, while GA needs 37 

generations to reach the optimal solution.  

Also, the minor cost functions 
eJ  and 

mJ  which 

represent the transfer accuracy and fuel consumption 

respectively are depicted in Figure 10 for ICA. 

It can be observed that the algorithm simultaneously tries 

to satisfy both objectives while marching through the 

optimal solution. This means that the selected weighting 

coefficients for each objective and the orbital parameters 

are fairly taken into account while using this optimization 

algorithm. 
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Figure 10. variation of mission objectives within the 

optimization process (ICA, GA) 

By changing the value of the overall weighting 

coefficients, different multi-objective solutions can be 

obtained. Pareto frontier is depicted in Figure 11 for 

current mission. 

 

 

Figure 11. Feasible points of Pareto frontier in trajectory 

optimization 

According to the data provided by Figure 11, it is clear 

that the physical programming has successfully generated 

the Pareto-solution front.  

Variation of thrust vector direction is depicted in Figure 

12. 

 

Figure 12. Variation of thrust vector in orbit transfer 

There is an obvious relationship between the fuel mass 

and the transfer accuracy as shown in Figure 11. The less 

fuel mass dedicated to the spacecraft would result in 

worse transfer accuracy since the orbital parameters won’t 

reach the desired values. As the fuel mass increases, the 

transfer will become more optimal. Lastly, the choice of 

the desired optimal solution depends on the acceptable 

accuracy along with allowable fuel mass for the space 

mission. 

Simultaneous comparison of Figure 12 and Figure 5 

shows that the optimal solution contains noticeable 

variations for thrust direction angles at special time steps 

of orbit transfer resulting curved burn arc in which the 

variation of thrust direction angles are high. 
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7. CONCLUSION AND DISCUSSION 

In this paper, Imperialist Competitive Algorithm was 

successfully combined with the direct approach and used 

to solve a high-thrust trajectory optimization problem. 

ICA uses the concepts of imperialism and imperialistic 

competition process as a source of inspiration. ICA starts 

with an initial population consisting of countries 

(individuals in other evolutionary algorithms) which are 

divided in two groups. The ones with the best objective 

function values are selected to be the imperialists, 

whereas the remaining ones are their colonies. The 

colonies are then shared among the imperialists according 

to each imperialist’s power (objective function value). 

The more powerful an imperialist is, the more colonies it 

will possess. In the language of ICA an imperialist with 

his colonies forms an empire. 

Polynomials are used as the mathematical modeling of 

thrust vector magnitude and direction angles. 

Modifications are made on the basic employment of 

polynomials to deal with the constrained optimization 

problem and the premature convergence of the ICA. 

Considering the computational efficiency of the 

algorithm, three various thrust profiles were modeled and 

tested numerically by finding the solution of a fixed-time 

fuel-optimal high-thrust transfer problem. 

The mathematical modeling of inputs has the global 

search behavior of the ICA as well as the relatively large 

radius of convergence of the direct technique. These 

features enable it to obtain a complex high-thrust 

trajectory with many thrust and coast segments. 

It can be furthermore observed that during imperialistic 

competition the most powerful empires tend to increase 

their power, while weaker ones tend to collapse. These 

two mechanisms lead the algorithm to gradually converge 

into a single empire, in which the imperialist and all the 

colonies tend to have the same culture. 

Combining the ICA and other heuristic optimization 

algorithms with the indirect approach will be a direction 

for further research because the indirect approach can 

provide the high accurate solution for optimal control 

problem. Certainly, reducing the sensitivity of the indirect 

approach will be a challenging problem in the research. 

APPENDIX 

Obtaining orbital elements from the state vector can be 

represented in a few steps [23-28]. Having the state 

vectors r

  and v


 , the magnitude of radius and velocity 

can be calculated as: 

 

 rrr


.  (A.1) 

 vvv


.  (A.2) 

The magnitude of radial velocity is obtained as: 

 

 
r

vr
vr


.

  (A.3) 

 

if 0rv , the spacecraft is flying away from perigee. If 

0rv , it is flying toward perigee. The specific angular 

momentum vector and its magnitude are calculated as: 

 vrh


  (A.4) 

 hhh


.  (A.5) 

Inclination )(i  is achieved as: 

 )(cos 1

h

h
i z  (A.6) 

Node line vector )(N


 and its magnitude are calculated 

as: 

 

 hkN


 ˆ  (A.7) 

 

 NNN


.  (A.8) 

Right ascension of the ascending node is calculated as: 
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


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


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



)0(cos360

)0(cos

1
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x

N
N

N

N
N

N



 (A.9) 

Eccentricity vector and its magnitude are calculated as: 

 NNN


.  (A.10) 

 

 eee


.  (A.11) 

Having the eccentricity, semi-major axis )(a  can be 

obtained as: 

 
|1| 2

2

e

h
a





 (A.12) 

Argument of perigee is calculated as: 
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