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HOMOGENEOUS SINGULARITY AND THE ALEXANDER POLYNOMIAL OF A

PROJECTIVE PLANE CURVE

NGUYEN PHU HOANG LAN, PHO DUC TAI, AND LÊ QUY THUONG

Abstract. The Alexander polynomial of a plane curve is an important invariant in global theories
on curves. However, it seems that this invariant and even a much stronger one the fundamental
group of the complement of a plane curve may not distinguish non-reduced curves. In this article, we
consider a general problem which concerns a hypersurface of the complex projective space Pn defined
by an arbitrary homogeneous polynomial f . The singularity of f at the origin of Cn+1 is studied, by
means of the characteristic polynomials ∆l(t) of the monodromy, and via the relation between the
monodromy zeta function and the Hodge spectrum. Especially, we go further with ∆1(t) in the case

n = 2 and aim to regard it as an alternative object of the Alexander polynomial for f non-reduced.
This work is based on knowledge of multiplier ideals and local systems.

1. Introduction

Let f be a homogeneous polynomial of degree d in n + 1 variables with coefficients in C, which
defines a holomorphic function germ at the origin O of Cn+1. In general, according to [22] and [18],
the Milnor fiber of (f,O) is up to diffeomorphism a manifold M = f−1(δ) ∩ Bε, for Bε ⊂ Cn+1

a ball of radius ε around O and 0 < δ ≪ ε ≪ 1, which has the homotopy type of a bouquet
of µ spheres of dimension n. Since here f is a homogeneous polynomial, however, f−1(δ) ∩ Bε is
a deformation retract of f−1(δ) ∼= f−1(1), thus we may consider M as f−1(1). The monodromy
T : H∗(M,C) → H∗(M,C) of the singularity may be given explicitly to be the C-linear endomorphism

induced by the map (x0, . . . , xn) 7→ (e
2πi
d x0, . . . , e

2πi
d xn). It becomes classical for f being an isolated

homogeneous singularity at O where many important invariants such as the Milnor number µ, the
characteristic polynomials of T , the signature and Hodge numbers of M are computed completely in
topological and algebraic methods as well as via mixed Hodge structures (cf. [23], [29]).

In the case where f is a reduced homogeneous polynomial, Esnault [12] introduced a method to
compute the Betti numbers, the rank and the signature of the intersection matrices of the singularity
(f,O), using mixed Hodge structures on cohomology groups of the Milnor fiberM and the existence of
spectral sequences converging to the cohomology groups, together with resolution of singularity. The
work by Esnault definitely inspired the study by Loeser-Vaquié [21] of the Alexander polynomial of a
reduced complex projective plane curve, where they provided a formula for the Alexander polynomial
of such a curve which generalizes the previous one by Libgober [19, 20]. It is likely that the approaches
of Libgober in [20] and Loeser-Vaquié in [21], as well as the work by Nadel in [25], are also starting
points of the studies on multiplier ideals and local systems, which were thereafter studied strongly by
Esnault-Viehweg [13], Ein-Lazarsfeld [11], Demailly [8], Kollar [16], Budur [3, 5], Budur-Saito [7].

Due to the development of the theory of multiplier ideals and local systems, Budur [6] gives an
explicit description of the local system of the complement in Pn of the divisor defined by a homogeneous
polynomial f without the condition of reducedness. In the present work, we use Budur’s article [6] to
study the characteristic polynomials, the Hodge spectrum and the monodromy zeta function of an
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arbitrary homogeneous hypersurface singularity. Let us now review in a few words what we shall do
in the rest. We denote by D the closed subscheme of Pn defined by the zero locus of a degree d
homogeneous polynomial f and by U the complement of D in Pn. Then, as shown in [5, 6], there is an
eigensheaf decomposition of the OU -module sheaf σ∗CM into the unitary local systems Vk on U given

by the eigensheaf of T with respect to the eigenvalue e−
2πik

d , 0 ≤ k ≤ d− 1, where σ is the canonical
projection M → U . On cohomology level, using the Leray spectral sequence, one gets H l(U,Vk) to be

the eigenspace of the monodromy T on H l(M,C) with respect to the eigenvalue e−
2πik

d , for any l in
N (cf. [6]). Assume that D has r distinct irreducible components Di and that mi is the multiplicity
of Di in D. By [6, Lemma 4.2], for each k, modulo the identification RH in [5, Theorem 1.2], the

local system Vk is nothing but the element (OPn(
∑r

j=1{
kmj

d }dj), ({
km1

d }, . . . , {kmr

d })) in the group

Picτ (Pn, D) of realizations of boundaries of Pn on D (cf. [5, Definition 1.1]).
The problem of computing the complex dimension of H l(U,Vk) can be solved completely under the

works by Budur [3, 4, 5, 6] in terms of resolution of singularity. Let π : Y → Pn be a log-resolution of the
family {D1, . . . , Dr}, with exceptional divisor E = π∗(

⋃r
j=1Dj) =

∑
j∈ANjEj , Ej being irreducible.

Denote by L
(k) the invertible sheaf π∗OPn

(∑r
j=1

{
kmj

d

}
dj

)
⊗ OY

(
−
⌊∑r

j=1

{
kmj

d

}
π∗Dj

⌋)
on Y .

As proved in Lemma 3.10, we get

dimCH
l(U,Vd−k) =

∑

p≥0

dimCH
l−p(Y,Ωp

Y (logE)⊗ L
(k)−1

),

for l ≥ 0 and 1 ≤ k ≤ d, from which the characteristic polynomial ∆l(t) of T on H l(M,C) follows.
Observe that this description is not really useful in practice since it is too difficult to compute the
number on the right hand side of the previous equality. However, in the special case where n = 2
and l = 1, we obtain in Theorem 4.3 an explicit formula for ∆1(t) in terms of the multiplier ideal of∑r

j=1{
kmj

d }Cj , where we write Cj instead of Dj when D is a curve C. This is the most important
result of the article.

There is another result in the present article, Theorem 4.4, which discusses the relation between
the Hodge spectrum and the monodromy zeta function of a homogeneous singularity. This can be
realized directly from [6, Proposition 4.3] and Proposition 3.8. In order to come back to the Alexan-
der polynomial of a complex projective plane curve, we mention in Section 5 the case f reduced,
where Loeser-Vaquié’s formula [21] is recovered and Artal Bartolo’s method to compute the Alexander
polynomial of the curve [2] is recalled with some small remarks.

Acknowledgement. The third author thanks the Basque Center for Applied Mathematics and the
Vietnam Institute for Advanced Study in Mathematics for warm hospitality during his visit.

2. Multiplier ideals and Hodge spectrum

2.1. Multiplier ideals. Let X be a smooth complex algebraic variety and let D = {D1, . . . , Dr} be
a family of closed subschemes of X . A log-resolution of the family D is a proper birational morphism
π : Y → X , where Y is a smooth complex algebraic variety, such that the exceptional set Ex(π) :=
{y ∈ Y | π is not biregular at y}, the support Supp(det Jacπ) of the determinant of the Jacobian of π,
the preimages π−1(Dj), 1 ≤ j ≤ r, and the union Ex(π) ∪ Supp(det Jacπ) ∪

⋃r
j=1 π

−1(Dj) are simple

normal crossing divisors. The existence of such a log-resolution is proved by Hironaka. Let KX (resp.
KY ) denote the canonical divisor of X (resp. Y ). Then KY/X := KY − π∗KX is the divisor defined
by det Jacπ, which is known as the canonical divisor of π. For any α = (α1, . . . , αr) ∈ Qr

>0, we set

J (X,αD) := π∗OY (KY/X − ⌊π∗(αD)⌋),(2.1)

where αD :=
∑r

j=1 αjDj , and ⌊π∗(αD)⌋ is the round-down of the coefficients of the irreducible com-

ponents of the divisor π∗(αD). It is obvious that J (X,αD) is a sheaf of ideals on X , which is an ideal
of π∗OY (KY ) = OX .
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Theorem 2.1 (Lazarsfeld [17]). For any α ∈ Qr
>0, the sheaf of ideals J (X,αD) is independent of

the choice of π, and RiJ (X,αD) = 0 for i ≥ 1. The sheaf of ideals J (X,αD) is called the multiplier
ideal of αD.

For instance, when X = Cn and D is defined by a monomial ideal I, by Howald’s computation [14],
the multiplier ideal J (X,αD) is a monomial ideal generated by xγ1

1 · · ·xγn
n for all (r1, . . . , rn) ∈ Nn such

that (γ1 + 1, . . . , γn + 1) is in the interior Int(αΓ(I)) of αΓ(I), where Γ(I) is the Newton polyhedron
of I.

Now let D be a closed subscheme of X . A jumping number of D in X is a number α ∈ Q>0 such
that J (X,αD) 6= J (X, (α − ε)D) for all ε > 0. The log canonical threshold lct(X,D) of (X,D) is
the smallest jumping number of D in X . In [24], Mustata proves that, with such a log-resolution
π as above, lct(X,D) = minl{(al + 1)/Nl}. To determine how a singular point affects a jumping
number, Budur [3] introduces a notion of inner jumping multiplicity. By definition, the inner jumping
multiplicity mα,p(D) of α at a closed point p ∈ D is the dimension of the complex vector space

Kp(X,αD) := J (X, (α− ε)D)/J (X, (α− ε)D + δ{p}),

for 0 < ε ≪ δ ≪ 1. If mα,p(D) 6= 0, the number α is called an inner jumping number of (X,D) at
p. It is proved by Budur in [3, Proposition 2.8] that if α is an inner jumping number of (X,D) at p,
for some p ∈ D, then α is a jumping number of (X,D). Furthermore, Budur can provide an explicit
formula computing the number mα,p(D), which we recall as follows. Let π : Y → X be a log-resolution
of the family {D, {p}}, with E = π∗(D) =

∑
i∈ANiEi, Ei irreducible components, and, for d ∈ N>0,

let Jd,p := {i ∈ A | Ni 6= 0, d|Ni, π(Ei) = p} and Ed,p :=
⋃

i∈Jd,p
Ei.

Proposition 2.2 (Budur [3], Proposition 2.7). Assume α = k
d , with k and d coprime positive integers.

Then mα,p(D) = χ(Y,OEd,p
(KY/X − ⌊(1− ε)απ∗D⌋)), where χ is the sheaf Euler characteristic and

0 < ε≪ 1.

2.2. Hodge spectrum. Let X be a smooth complex variety of pure dimension n, let f be a regular
function on X with zero locus D 6= ∅, and let p be a closed point in Dred. Fixing a smooth metric
on X we may define a closed ball B(p, ε) around p in X and a punctured closed disc D∗

δ around the
origin of A1

C. It is well known (cf. [22]) that, for 0 < δ ≪ ε≪ 1, the map

f : B(p, ε) ∩ f−1(D∗
δ ) → D∗

δ

is a smooth locally trivial fibration, called Milnor fibration, whose diffeomorphism type is independent
of such ε and δ. Denote the Milnor fiber B(p, ε)∩f−1(δ) byMp, the geometric monodromyMp →Mp

and its cohomology level H∗(Mp,C) → H∗(Mp,C) by the same symbol T .
Let MHSmon

C be the abelian category of complex mixed Hodge structures endowed with an auto-
morphism of finite order. For an object (H,TH) of MHSmon

C , one defines its Hodge spectrum as a
fractional Laurent polynomial

Hsp(H,TH) :=
∑

α∈Q

nαt
α,

where nα := dimCGr
⌊α⌋
F He2πiα , He2πiα is the eigenspace of TH with respect to the eigenvalue e2πiα,

and F is the Hodge filtration. By [28] and [27], for any l, H l(Mp,C) carries a canonical mixed Hodge
structure, which is compatible with the semisimple part Ts of T so that (H l(Mp,C), Ts) is an object
of MHSmon

C . As in [9, Section 4.3] and [3, Section 3], we set

Hsp′(f,p) :=
∑

j∈Z

(−1)jHsp(H̃n−1+j(Mp,C), Ts),

where we use the reduced cohomology H̃ to present the vanishing cycle sheaf cohomology, since

H̃ l(Mp,C)e2πiα = H l(Mp,C)e2πiα if l 6= 0 or α 6∈ Z, H̃0(Mp,C)1 = coker(H0(∗,C) → H0(Mp,C)1)
(cf. also [7, Section 5.1]). Then the Hodge spectrum of f at p, denoted by Sp(f,p), is the following

Sp(f,p) = tnι(Hsp′(f,p)),
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where ι is given by ι(tα) = t−α. Writing Sp(f,p) =
∑

α∈Q nα,p(f)t
α one calls the coefficients nα,p(f)

the spectrum multiplicities of f at p. By [7, Proposition 5.2], nα,p(f) = 0 if α is a rational number
with α ≤ 0 or α ≥ n. Moreover, it implies from [6, Corollary 2.3] that, for α ∈ (0, n) ∩Q,

nα,p(f) =
∑

j∈Z

(−1)j dimCGr
⌊n−α⌋
F Hn−1+j(Mp,C)e−2πiα .(2.2)

Specially, using [9, Corollary 4.3.1] and important computations on multiplier ideals, Budur [3] proved
the following result, which provides an effective way to compute nα,p(f), for α ∈ (0, 1] ∩Q.

Theorem 2.3 (Budur [3]). Let X be a smooth quasi-projective complex variety, and D an effective
integral divisor on X. Assume that p is a closed point of Dred and f is any local equation of D at p.
Then, for any α ∈ (0, 1] ∩Q, nα,p(f) = mα,p(D).

Remark from Theorem 2.3 that, for α ∈ (0, 1], tα appears in Sp(f,p) if and only if α is an inner
jumping number of (X,D) at p. If p is an isolated singularity of D, Theorem 2.3 may be even applied
to the previous remark when replacing X by an open neighborhood of X to obtain Varchenko’s result
[30] (see Corollary in [3, Section 1]).

3. Local systems and Milnor fibers of homegeneous singularities

3.1. Local systems and normal G-covers. Let us recall some basic notions of local systems and
cyclic covers in [13] and [5]. A complex local system V on a complex manifold is a locally constant sheaf
of finite dimensional complex vector spaces. The rank of a locally constant sheaf is the dimension of a
stalk as a complex vector space. As mentioned in Budur [5], local systems of rank one on a complex
manifold U correspond to morphisms of groups H1(U) → C∗. In this correspondence, a local system
is called unitary if it is sent to a morphism of groups H1(U) → S1 = {η ∈ C∗ | |η| = 1}. The constant
sheaf CU and any local system of rank one of finite order are simple examples of unitary local systems.

Let X be a smooth complex projective variety of dimension n, and f a regular function on X with
zero divisor D := f−1(0). Denote U := X \ D and write Dred =

⋃r
j=1Dj , where Dj are distinct

irreducible reduced subvarieties of D. We may use D as the family {D1, . . . , Dr} by abuse of notation
(and the following definition will be in this sense), we write c1(L) for the first Chern class of a line
bundle L and consider the group

Picτ (X,D) :=
{
(L, α) ∈ Pic(X)× [0, 1)r | c1(L) = α[D] ∈ H2(X,R)

}
.

with the following operation

(L, α) · (L′, α′) := (L⊗ L
′ ⊗OX(−⌊(α+ α′)D⌋)), {α+ α′}),(3.1)

where α[D] :=
∑r

j=1 αj [Dj ], an R-linear combination of the cohomology classes [Dj ] in H
2(X,R), and

as above αD :=
∑r

j=1 αjDj, ⌊α⌋ := (⌊α1⌋, . . . , ⌊αr⌋) and {α} := α− ⌊α⌋.

Theorem 3.1 (Budur [5], Theorem 1.2). There is a canonical isomorphism of groups

RH : Picτ (X,D) ∼= Hom(H1(U), S1),

By this theorem, one may identify a unitary local system of rank one on U with an element of
Picτ (X,D).

Let π : Y → X be a log resolution of the family {D1, . . . , Dr}, and E := Y \π−1(U) =
∑

j∈ANjEj ,
with Ej irreducible. We shall use the following two important results.

Proposition 3.2 (Budur [5], Proposition 3.3). The map π∗
par : Picτ (X,D) → Picτ (Y,E) which sends

(L, α) to (π∗
L− ⌊βE⌋, {β}) with β defined by π∗(αD) = βE is an isomorphism of groups.

Theorem 3.3 (Budur [4], Theorem 4.6). Let V be a rank one unitary local system on U which
corresponds to (L, α) ∈ Picτ (X,D). Then, for all p, q ∈ N, we have

GrpFH
p+q(U,V∨) = Hn−q(Y,Ωp

Y (logE)∨ ⊗ ωY ⊗ π∗
L⊗OY (−⌊π∗(αD)⌋))∨.

In particular,
Gr0FH

q(U,V∨) = Hn−q(X,ωX ⊗ L⊗ J (X,αD))∨.
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Let G be a finite group. By [5, Corollary 1.10], the dual group G∗ = Hom(G,C∗) of G gives rise to
a normal G-cover of X unramified above U . Namely, the normal G-cover of X is the morphism

φ : X̃ = SpecOX


⊕

η∈G∗

L
−1
η


 → X

induced by the OX -module structural morphisms OX → Lη, for all η ∈ G∗, where we identify G∗ with
the subgroup {(Lη, αη) | η ∈ G∗} of Picτ (X,D). The group G acts on L

−1
η via the character η, hence

acts on the OX -module sheaf φ∗OX̃ . By [5, Corollary 1.11], φ∗OX̃ admits an eigensheaf decomposition

φ∗OX̃ =
⊕

η∈G∗

L
−1
η ,(3.2)

where the eigensheaf L−1
η is with respect to the eigenvalue η of the action of G on φ∗OX̃ .

Now we consider the log-resolution π. By Proposition 3.2, since {(Lη, αη) | η ∈ G∗} is a finite
subgroup of Picτ (X,D), {(π∗

Lη−⌊βηE⌋, βη) | η ∈ G∗}, with βη defined by π∗(αηD) = βηE, is a finite
subgroup of Picτ (Y,E). By the same way as previous we can construct the corresponding normal
G-cover of Y unramified above π−1(U) ∼= U as follows

ρ : Ỹ = SpecOY


⊕

η∈G∗

π∗
L

−1
η ⊗OY (⌊βηE⌋)


 → Y,

where the group G of acts on Ỹ and on ρ∗OỸ . Moreover, similarly as (3.2), we have

Proposition 3.4 (Budur [5], Corollary 1.12). There is an eigensheaf decomposition

ρ∗OỸ =
⊕

η∈G∗

π∗
L

−1
η ⊗OY (⌊βηE⌋) ,

the eigensheaf π∗
L

−1
η ⊗OY (⌊βηE⌋) is with respect to the eigenvalue η of the action of G on ρ∗OỸ .

3.2. Milnor fibers of homegeneous singularity. Let f(x0, . . . , xn) ∈ C[x0, . . . , xn] be a homoge-
neous polynomial of degree d. We shall take f into two closely interactive entities, a Milnor fiber at
the origin of Cn+1 and a complex projective hypersurface of Pn. By [22, Lemma 9.4], the Minor fiber
M of f at the origin of Cn+1 is diffeomorphic to {(x0, . . . , xn) ∈ Cn+1 | f(x0, . . . , xn) = 1}. The

geometric monodromy M →M is given by multiplication of elements of M by e
2πi
d , which induces an

endomorphism T of the complex vector space H∗(M,C).
Following [6, Section 4], we consider the smooth complex projective variety X = Pn and the closed

subscheme D of X defined by the zero locus of f . Put U := X \D. Since the action of Z/dZ on M is
free, we have a natural isomorphismM/(Z/dZ) ∼= U . Denote by σ the quotient map M → U , which is
the cyclic cover of degree d of U . Then there is an eigensheaf decomposition of the OU -module sheaf
σ∗CM as follows

σ∗CM =
d−1⊕

k=0

Vk,

where Vk is the unitary local system on U given by the eigensheaf of T with respect to the eigenvalue

e−
2πik

d . This implies that

H l(U, σ∗CM ) =
d−1⊕

k=0

H l(U,Vk).

Let us consider the Leray spectral sequence

Ep,q
2 = Hq(U,Rpσ∗CM ) ⇒ Hp+q(M,CM ).

Since σ is a finite morphism of schemes, Rpσ∗CM = 0 for all p ≥ 1, hence, by this spectral sequence,
we have H l(U, σ∗CM ) = H l(M,CM ) = H l(M,C), for l ∈ N. This implies the following important
lemma (cf. [6, Section 4]).
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Lemma 3.5 (Budur [6]). The complex vector space H l(U,Vk) if nontrivial is the eigenspace of the

monodromy action T on H l(M,C) with respect to the eigenvalue e−
2πik

d , that is,

H l(M,C)
e−

2πik
d

= H l(U,Vk),

for 0 ≤ k ≤ d− 1 and l ≥ 0.

In fact, there are two commuting monodromy actions on H l(M,C), where the endomorphism T is
the first one. The second one is, for each k, the monodromy of Vk around a generic point of Dj , which,

by [6, Lemma 4.1], is given by multiplication by e
2πikmj

d . Together with [5, Proposition 3.3], it proves
the following important lemma.

Lemma 3.6 (Budur [6], Lemma 4.2). Assume D =
∑r

j=1mjDj, with Dj irreducible of degree dj.

Then the element in Picτ (X,D) corresponding via the isomorphism RH in Theorem 3.1 to the unitary

local system Vk is (OPn(
∑r

j=1{
kmj

d }dj), ({
km1

d }, . . . , {kmr

d })).

Notice that
∑r

j=1{
kmj

d }dj is an integer, because, if for every 1 ≤ j ≤ r we write kmj = dnj + sj ,
with nj , sj ∈ N, 0 ≤ sj < d, we have

r∑

j=1

{
kmj

d

}
dj =

r∑

j=1

sjdj
d

=

r∑

j=1

kmjdj − dnjdj
d

= k −
r∑

j=1

njdj .

Fix a log-resolution π : Y → Pn of the family of closed subschemes {D1, . . . , Dr} of Pn, and, as
previous, denote E = π∗(

⋃r
j=1Dj) =

∑
j∈ANjEj , with Ej irreducible components of π−1(D). Let

L
(k) := π∗OPn




r∑

j=1

{
kmj

d

}
dj


⊗OY


−


r∑

j=1

{
kmj

d

}
π∗Dj



 .(3.3)

Denote by B the set of integers k such that 0 ≤ k ≤ d− 1 and d divides kmj for all 1 ≤ j ≤ r, and by

B the complement of B in [0, d− 1] ∩ Z.

Remark 3.7. If k is in B, then L
(k) = OY . Furthermore, if k is in B and k 6= 0, so is d − k; if k

and k′ are in B, so is either k + k′ or k + k′ − d; hence we can consider B as a subgroup of Z/dZ.
Let m = gcd(m1, . . . ,mr), and uj ∈ N>0 with mj = muj for 1 ≤ j ≤ r. Then k ∈ B if and only if
0 ≤ k ≤ d− 1 and kus is divisible by

∑r
j=1 djuj for any 1 ≤ s ≤ r. Since u1, . . . , ur are coprime, the

latter means that k is divisible by
∑r

j=1 djuj, hence the cardinal |B| of B equals m.

For simplicity of notation, from now on, if A is a sheaf on Pn, and l ∈ Z, we shall write A(l) in
stead of A⊗OPn(l).

Proposition 3.8. With the notation as in Lemma 3.6 we have

(i) dimCGr
p
FH

p+q(U,Vk) = dimCH
q(Y,Ωp

Y (logE)), for k ∈ B;

(ii) dimCGr
p
FH

p+q(U,Vd−k) = dimCH
q(Y,Ωp

Y (logE)⊗ L
(k)−1

), for k ∈ B.

In particular, for k ∈ B,

dimCGr
0
FH

q(U,Vd−k) = dimCH
n−q

(
Pn,J

(
Pn,

∑r
j=1

{
kmj

d

}
Dj

)(∑r
j=1

{
kmj

d

}
dj − n− 1

))
.

Proof. Due to the group law (3.1) of Picτ (X,D) and definition of Vk, it is obvious that Vk = V∨
k = V0

for k ∈ B, and that Vd−k = V∨
k for k ∈ B. Then, by Lemma 3.6 and Theorem 3.3, we have

GrpFH
p+q(U,Vk) = Hn−q(Y,Ωp

Y (logE)∨ ⊗ ωY )
∨

for k ∈ B, and

GrpFH
p+q(U,Vd−k) = Hn−q(Y,Ωp

Y (logE)∨ ⊗ ωY ⊗ L
(k))∨

= Hn−q(Y, (Ωp
Y (logE)⊗ L

(k)−1
)∨ ⊗ ωY )

∨,

for k ∈ B. Applying the Serre duality we obtain (i) and (ii).
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For the rest statement, we again apply Lemma 3.6 and the particular case in Theorem 3.3, together
with the definition of multiplier ideal. �

Denote L
(k)
red := π∗OPn(k)⊗OY (−⌊k

dE⌋), for 0 ≤ k ≤ d− 1.

Corollary 3.9. With the notation as in Lemma 3.6 and D being reduced, for 1 ≤ k ≤ d,

(i) dimCGr
p
FH

p+q(U,Vd−k) = dimCH
q(Y,Ωp

Y (logE)⊗ L
(k)
red

−1
);

(ii) dimCGr
0
FH

q(U,Vd−k) = dimCH
n−q(Pn,J (Pn, kdD)(k − n− 1)).

Proof. Applying Proposition 3.8 to the special case m1 = · · · = mr = 1 we obtain the statements.
Note that, in this case, B = {0} and B = {1, . . . , d− 1}. �

Lemma 3.10. With the notation as in Lemma 3.6, and by observation L
(d) = L

(0), we have

(i) dimCH
1(U,Vk) = r − 1, if n = 2 and k ∈ B;

(ii) dimCH
l(U,Vd−k) =

∑
p≥0 dimCH

j−p(Y,Ωp
Y (logE)⊗ L

(k)−1
), if j ≥ 0 and 1 ≤ k ≤ d.

Proof. By Proposition 3.8 (i), if k ∈ B, we have dimCGr
p
FH

p+q(U,Vk) = dimCH
q(Y,Ωp

Y (logE)), thus

dimCH
1(U,V0) = dimCH

1(Y,OY ) + dimCH
0(Y,Ω1

Y (logE)).

Assume that n = 2. It is a fact that dimCH
1(Y,OY ) = 0, because Y is birationally equivalent to P2,

and that dimCH
0(Y,Ω1

Y (logE)) = r − 1, due to the proof of Théorème 6 in [12]. This proves (i).
The statement (ii) of this lemma is a consequence of Proposition 3.8 (ii). �

4. Characteristic polynomials and zeta functions of homogeneous singularities

As in Section 3.2, we shall work with a homogeneous polynomial f(x0, . . . , xn) ∈ C[x0, . . . , xn] of
degree d. By considering its germ at the origin of Cn+1 we study some singularity invariants, including
the characteristic polynomials and the zeta function of the monodromy.

4.1. Characteristic polynomials. Recall that the Milnor fiberM of the singularity f(x0, . . . , xn) at
the origin of Cn+1 is diffeomorphic to {(x0, . . . , xn) ∈ Cn+1 | f(x0, . . . , xn) = 1}, and the monodromy T

is induced by e
2πi
d · (x0, . . . , xn) = (e

2πi
d x0, . . . , e

2πi
d xn). By definition, the (monodromy) characteristic

polynomial ∆l(t) of the endomorphism T |Hl(M,C) of H
l(M,C) is the monic polynomial

∆l(t) = det(tId− T |Hl(M,C)).

Assume that

f(x0, . . . , xn) =

r∏

j=1

fj(x0, . . . , xn)
mj ,

where fj(x0, . . . , xn) are distinct irreducible homogeneous polynomials of degree dj , 1 ≤ j ≤ r. As
above, we denote by Dj the complex projective plane curve {(x0 : · · · : xn) ∈ P2 | fj(x0, . . . , xn) = 0},
for 1 ≤ j ≤ r.

Fix a log-resolution π : Y → Pn of the family D = {D1, . . . , Dr}, with normal crossing divisor
E = π−1(

⋃r
j=1Dj). As mentioned in Section 3, there is an isomorphism M/(Z/dZ) ∼= U = P2 \ C

so that the canonical projection σ : M → U induces a eigensheaf decomposition σ∗CM =
⊕d−1

k=0 Vk,
where Vk are the unitary local systems on U given in Lemma 3.6. By Lemma 3.5, for 1 ≤ k ≤ d and
l ∈ N, the vector space H l(U,Vd−k) if nontrivial is the eigenspace of T |Hl(M,C) with respect to the

eigenvalue e
2πik

d . This together with Lemma 3.10 and Remark 3.7 proves the following lemma.

Lemma 4.1. Let ∆l(t) be the characteristic polynomial of the endomorphism T |Hl(M,C) of H
l(M,C).

Then, with the previous notation and l ∈ N, one has

△l(t) =
d−1∏

k=0

(t− e
2πik

d )h
(k)
l ,
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where,

h
(k)
l := dimCH

l(U,Vd−k) =
∑

p+q=l

hq(Ωp
Y (logE)⊗ L

(k)−1
),

with hq(Ωp
Y (logE)⊗ L

(k)−1
) = dimCH

q(Y,Ωp
Y (logE)⊗ L

(k)−1
), and

L
(k) = π∗OPn




r∑

j=1

{
kmj

d

}
dj


⊗OY


−


r∑

j=1

{
kmj

d

}
π∗Dj



 .

As above, we denote by B the set of k in Z such that 0 ≤ k ≤ d − 1 and d divides kmj for all

1 ≤ j ≤ r, by B the complement of B in [0, d− 1]∩Z, and m = gcd(m1, . . . ,mr). Due to Remark 3.7,
B may be considered as a subgroup of Z/dZ. Let G be the quotient group (Z/dZ)/B. For convenience,
we shall identify k ∈ [0, d− 1] ∩ Z with its class in G.

Lemma 4.2. With the notation as in Lemma 4.1, one has

∆l(t) =
∏

k∈G

(tm − e
2πikm

d )h
(k)
l

for l ∈ N. In particular, ∆0(t) = tm − 1.

Proof. If k and k′ belong to the same class in G, we have h
(k)
l = h

(k′)
l . This together with Lemma 4.1

implies the first statement. Since h0(OY ) = 1, it remains to check that h0(L(k)−1
) = 0 for k ∈ G\{0}.

By Lemmas 3.5 and 3.10, we have

dimCH
0(M,C) =

∑

k∈B

h0(L(k)−1
) +

∑

k∈B

h0(L(k)−1
).(4.1)

It is known that dimCH
0(M,C) = m (cf. [10, Proposition 2.3]). Note that |B| = m (cf. Remark 3.7),

and that, for k ∈ B, L(k) = OY and h0(OY ) = 1. Then (4.1) is equivalent to
∑

k∈B h
0(L(k)−1

) = 0,

which implies that h0(L(k)−1
) = 0 for k ∈ B; in particular, h0(L(k)−1

) = 0 for k ∈ G \ {0}. �

Let us now consider the case where n = 2. In this case, we shall denote C (resp. Cj) instead of D
(resp. Dj). Then the characteristic polynomial ∆1(t) is an important invariant of the homogeneous
surface singularity. The following theorem is a main result in the present article.

Theorem 4.3. With the previous notation and n = 2, one has

∆1(t) = (tm − 1)r−1
∏

k∈G\{0}

(
t2m − 2tm cos

2kmπ

d
+ 1

)ℓk

,

where

ℓk := dimCH
1


P2,J


P2,

r∑

j=1

{
kmj

d

}
Cj







r∑

j=1

{
kmj

d

}
dj − 3




 .

Proof. According to Lemma 4.2, it suffices to prove that

h1(L(k)−1
) = ℓk(4.2)

and

h0(Ω1
Y (logE)⊗ L

(k)−1
) = ℓd−k,(4.3)

for k ∈ G \ {0}. The equality (4.2) is a direct corollary of Proposition 3.8 and Lemma 3.10.

To prove (4.3) we consider a common G-equivariant desingularization of X̃ and Ỹ , say, θ : Z → X̃

and ν : Z → Ỹ , in the sense of [1], such that π◦ρ◦ν = φ◦θ =: u. Here, we use the notation in Section 3.1

and work with the caseX = P2. Note that G∗ = {(OP2(
∑r

j=1{
kmj

d }dj), ({
km1

d }, . . . , {kmr

d }))}0≤k≤d−1,

which is by Remark 3.7 a subgroup of order d
m of the group Picτ (P2, C). We may choose Z such that



HOMOGENEOUS SINGULARITY AND ALEXANDER POLYNOMIAL OF A CURVE 9

∆ := Z \ u−1(U) is a normal crossing divisor. An analogue of [12, Corollaire 4] shows that, for any
q ∈ N,

(4.4)
(ρ ◦ ν)∗Ω

q
Z(log∆) ∼= Ωq

Y (logE)⊗ (ρ ◦ ν)∗OZ ,

Rp(ρ ◦ ν)∗Ω
q
Z(log∆) = 0 if p > 0

(see also [13, Lemma 3.22]). By the Leray spectral sequence

Ep,q
2 = Hq(Y,Rp(ρ ◦ ν)∗Ω

1
Z(log∆)) ⇒ Hp+q(Z,Ω1

Z(log∆))

and by (4.4), we get, in particular,

H0(Y,Ω1
Y (logE)⊗ (ρ ◦ ν)∗OZ) = H0(Z,Ω1

Z(log∆)).(4.5)

Since G∗ is a finite subgroup of Picτ (P2, C), we deduce from Proposition 3.4 that

(ρ ◦ ν)∗OZ = ρ∗OỸ =
⊕

k∈G

L
(k)−1

,

where as mentioned previously we identify k ∈ [0, d−1]∩Z with its class in G. This yields the following
decomposition

H0(Y,Ω1
Y (logE)⊗ (ρ ◦ ν)∗OZ) =

⊕

k∈G

H0(Y,Ω1
Y (logE)⊗ L

(k)−1
).(4.6)

Note that, due to the proof of Lemma 3.10, the direct summand of (4.6) corresponding to k = 0 has
complex dimension r − 1.

Now we compute the dimension of complex vector space on the right hand side of (4.5). Similarly
as in the proof of Lemma 7 of [12], one may point out that

dimCH
0(Z,Ω1

Z(log∆)) = dimCH
0(Z,Ω1

Z) + (r − 1).(4.7)

On the other hand, by [5, Corollary 1.13], we have

H0(Z,Ω1
Z)

∼=
⊕

k∈G

H1


P2,J


P2,

r∑

j=1

{
kmj

d

}
Cj







r∑

j=1

{
kmj

d

}
dj − 3




 .(4.8)

In the decomposition (4.8), look at the direct summand corresponding to k = 0. They are nothing
but H1(P2,OP2(−3)) = H1(P2, ωP2). By the Serre duality, dimCH

1(P2, ωP2) = dimCH
1(P2,OP2) = 0.

Therefore, from (4.5), (4.6), (4.7) and (4.8), we get
∑

k∈G\{0}

h0(Ω1
Y (logE)⊗ L

(k)−1
) =

∑

k∈G\{0}

ℓk.(4.9)

Repeating the proof of [21, Proposition 4.6] and using (4.2) we obtain that

h0(Ω1
Y (logE)⊗ L

(k)−1
) ≥ ℓd−k,

for k ∈ G \ {0}. This together with (4.9) means the equality h0(Ω1
Y (logE) ⊗ L

(k)−1
) = ℓd−k, thus

(4.3) is proved. �

4.2. A formula for the monodromy zeta function. By definition, the monodromy zeta function
the homogeneous singularity f(x0, . . . , xn) at the origin O of Cn+1 is the function

ζf,O(t) =
∏

l≥0

det(Id− tT |Hl(M,C))
(−1)l+1

.

This function may be expressed via the polynomials ∆l(t) as ζf,O(t) =
∏

l≥0(t
dimC Hl(M,C)∆l(

1
t ))

(−1)l+1

,
from which, by Lemma 4.2,

(4.10) ζf,O(t) =
∏

k∈G

(
1− e

2πikm
d tm

)∑
l≥0(−1)l+1h

(k)
l

.
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As explained in [6], the only numbers α ∈ (0, n+ 1) ∩Q such that nα,O(f), the coefficients of tα in

Sp(f,O), can be nonzero are of the form k
d + p, with k, p ∈ Z, 1 ≤ k ≤ d and 0 ≤ p ≤ n+ 1. Then it

implies from (2.2) and Lemma 3.5 that

(4.11) n k
d
+p,O(f) =

∑

j∈Z

(−1)j dimCGr
n−p
F Hn+j(U,Vk),

for integers 1 ≤ k ≤ d and 0 ≤ p ≤ n+ 1, where Vk is the local system corresponding to the element

(OP2(
∑r

j=1{
kmj

d }dj), ({
km1

d }, . . . , {kmr

d })) in Picτ (X,D) via the isomorphism RH in Theorem 3.1 (cf.

Lemma 3.6). Note that Vd = V0. By Proposition 3.8 and (4.11), we have

n d−k
d

+p,O(f) =
∑

j∈Z

(−1)jhp+j(Ωn−p
Y (logE)⊗ L

(k)−1
),(4.12)

for k ∈ G when p < n, and k ∈ G \ {0} when p = n, where L
(k) and hq(Ωp

Y (logE)⊗ L
(k)−1

) are as in
Lemma 4.1 (see also (3.3)).

Theorem 4.4. The monodromy zeta function and the Hodge spectrum of the singularity f are fit into
a relation as follows

ζf,O(t)
(−1)n+1

= (1− tm)
1+

∑
n
p=1 np,O(f)

∏

k∈G\{0}

(
1− e

2πikm
d tm

)∑
n
p=0 n d−k

d
+p,O

(f)

.

Proof. Recall from Lemma 4.1 that h
(k)
l =

∑
p+q=l h

q(Ωp
Y (logE) ⊗ L

(k)−1
). Since h0(OY ) = 1 and

hq(OY ) = 0 for all q ≥ 1, the formula (4.12) gives

(−1)n+1 + (−1)n+1
n−1∑

p=0

np+1,O(f) =
∑

j∈Z

(−1)n+j+1h
(0)
n+j .

As in the proof of Lemma 4.2, if k ∈ G \ {0}, then h0(L(k)−1
) = 0, thus by (4.12) we have

(−1)n+1
n∑

p=0

n d−k
d

+p,O(f) =
∑

j∈Z

(−1)n+j+1h
(k)
n+j.

Now applying (4.10) we obtain the statement of the theorem. �

Remark 4.5. The formula (4.12) has the following interesting consequence. Assume that f(x0, . . . , xn)
is a homogeneous polynomial and has isolated singularity at the origin O of Cn+1. Then the non-trivial
characteristic polynomials of the singularity only appear in the degrees 0 and n. This means that

h
(k)
l = 0 for all l 6∈ {0, n} and 0 ≤ k ≤ d− 1. Using the proof of Theorem 4.4, we obtain the identities

h(0)n =

n∑

p=1

np,O(f) and h(k)n =

n∑

p=0

n d−k
d

+p,O(f) for 1 ≤ k ≤ d− 1,

which prove the below result. By convention, we may consider the zero space {0} as an eigenspace of
the monodromy of the singularity with dimension zero.

Corollary 4.6. Let f(x0, . . . , xn) ∈ C[x0, . . . , xn] be a homogeneous polynomial defining an isolated
singularity at the origin O of Cn+1. Then the complex dimension of the eigenspace of the monodromy

of the singularity with respect to the eigenvalue 1 (resp. e
2πik

d , for 1 ≤ k ≤ d − 1) is
∑n

p=1 np,O(f)

(resp.
∑n

p=0 n d−k
d

+p,O(f), for 1 ≤ k ≤ d− 1).
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5. The Alexander polynomial of a complex projective plane curve

5.1. Alexander polynomials. We start this section with the definition of Alexander polynomial of
a projective curve. Let C be a reduced complex projective plane curve of degree d with r distinct
irreducible components. Let L be a line in P2 which is general with respect to C, that is, L intersects
with C at exactly d distinct points. Such a line L exists since C is reduced. Then the manifold
W := P2 \ (C ∪ L) has a homotopy type of a finite CW-complex. By van Kampen’s theorem [15], the
natural map

π1(L \ (L ∩C)) → π1(W )

is an surjective homomorphism and the group π1(W ) is generated by the images of all the d standard
generators of the free group π1(L\(L∩C)). The generators of π1(W ) are loops in L going once around
a point of L ∩ C, and if two loops respectively go around two points of L ∩ C belonging to the same
irreducible component of C they give rise to two conjugate elements in π1(W ). This explains that

H1(W,Z) ∼= π1(W )/[π1(W ), π1(W )] ∼= Zr,

and that the Hurewicz morphism
π1(W ) → H1(W,Z)

is nothing but the canonical projection

π1(W ) → π1(W )/[π1(W ), π1(W )],

with [π1(W ), π1(W )] being the commutator subgroup of π1(W ).
We consider the surjective homomorphism ϕ : π1(W ) → Z which is the composition of the Hurewicz

morphism and the sum function. Then there exists an infinity cyclic cover W̃ϕ → W with respect to

ϕ such that π1(W̃ϕ) = kerϕ. Let t : W̃ϕ → W̃ϕ be the canonical generator of the group of cover

transformations Desk(W̃ϕ/W ) ∼= Z. By this, Z acts naturally on H1(W̃ϕ,C) in the way so that

t · c := t∗(c) for any class c in H1(W̃ϕ,C), from which H1(W̃ϕ,C) has a structure of C[t, t−1]-module.

Since C[t, t−1] is a principal ideal domain the torsion C[t, t−1]-module H1(W̃ϕ,C) admits up to order
of summands a unique decomposition via monic polynomials ∆l(t) ∈ C[t] ⊂ C[t, t−1] with ∆l(0) 6= 0,
1 ≤ l ≤ m, for some m ∈ N>0, namely,

H1(W̃ϕ,C) =

m⊕

l=1

C[t, t−1]/(∆l(t)).

Then the (global) Alexander polynomial ∆C(t) of the curve C is defined to be ∆C(t) =
∏m

l=1 ∆l(t).
One can prove that ∆C(t) is independent of L general with respect to C (cf. [26]).

It is known that if C is irreducible and the fundamental group π1(P
2 \C) is either abelian or finite

then the Alexander polynomial is trivial. One may prove easily that the multiplicity of the factor t− 1
in ∆C(t) is exactly r − 1 as r is the number of irreducible component of C.

Assume that p is a singular point of C. We may consider the Milnor fiber Mp and the monodromy
Tp : H1(Mp,C) → H1(Mp,C) of (C,p). Denote by ∆C,p(t) the characteristic polynomial of the
endomorphism Tp. Let Sing(C) be the set of singular points of the curve C. Then, by Libgober
[19], the Alexander polynomial ∆C(t) divides the product

∏
p∈Sing(C) ∆C,p(t), and it also divides the

Alexander polynomial at infinity (td − 1)d−2(t− 1).

5.2. Loeser-Vaquié’s formula. According to [21], to compute the Alexander polynomial ∆C(t) it
is useful to apply Randell’s result [26]. In fact, viewing the homogeneous polynomial defining C as a
germ of a singularity at the origin of C3 we may consider its Milnor fiber M and the monodromy T
induced by

(x, y, z) 7→ (e
2πi
d x, e

2πi
d y, e

2πi
d z).

Randell [26] shows that ∆C(t) equals the characteristic polynomial ∆1(t) of T |H1(M,C). Applying that
result of Randell and Theorem 4.3 to the case m1 = · · · = mr = 1 we recover the following, which
was proved by Loeser-Vaquié in [21]. For simplicity of notation, we write Jα for J (P2, αC), for any
α ∈ (0, 1] ∩Q.
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Theorem 5.1 (Loeser-Vaquié [21]). If C be a reduced complex projective plane curve of degree d with
r irreducible components, then

△C(t) = (t− 1)r−1
d−1∏

k=1

(
t2 − 2t cos

2kπ

d
+ 1

)dimC H1(P2,J k
d
(k−3))

.

Remark 5.2. We do not need to compute dimension of all the cohomology groups of the sheaves

J k
d
(k − 3). Indeed, by [12] and [21], if the coefficient of t

k
d appears in the Hodge spectrum Sp(f,p)

is zero, for every singular point p of C, then H1(P2,J k
d
(k − 3)) = 0. By Theorem 2.3, t

k
d appears in

Sp(f,p) if and only if k
d is an inner jumping number of (P2, C) at p.

5.3. Computation of dimCH
1(P2,J k

d
(k−3)). Let us use this paragraph to review the work by Artal

Bartolo [2] in computing dimCH
1(P2,J k

d
(k − 3)). For 1 ≤ k ≤ d− 1, we denote as usual by J k

d
,p the

stalk at p ∈ C of the sheaf J k
d
. It may be easily checked that, if p is non-singular, J k

d
,p = OP2,p.

Consider a map

ψk : H0(P2,OP2(k − 3)) →
⊕

p∈C

OP2,p/J k
d
,p

defined as follows. We may identify the vector spaceH0(P2,OP2(k−3)) with the space of polynomials in
C[x, y] of degree ≤ k−3, and that using the Taylor expansion at p each element g ofH0(P2,OP2(k−3))
induces a holomorphic function germ gp at p ∈ C. Then ψk is given by

ψk(g) = (gp + J k
d
,p)p∈Sing(C),

which is a complex linear map.

Lemma 5.3 (Artal Bartolo [2]). dimCH
1(P2,J k

d
(k − 3)) = dimC coker(ψk).

We may also obtain a proof of this lemma using [12, Remarque 11] and Proposition 3.8 (for n = 2).
By a simple computation, we have dimCH

0(P2,OP2(k − 3)) = 1
2 (k − 2)(k − 1). To compute the

dimension of the target space of ψk we follow [12] using a log-resolution of (P2, C). Let π : Y → P2 be
a log-resolution of C, with numerical data given as follows

E = π−1(C) =
∑

i∈A

NiEi, Ep :=
∑

i∈A,π(Ei)=p

NiEi

for p ∈ C, and KY/P2 =
∑

i∈A aiEi, where Ei are irreducible component of π−1(C).

Proposition 5.4. With π as previous, one has

dimCH
1(P2,J k

d
(k − 3)) =

1

2

∑

p∈C

⌊
k

d
Ep⌋ · (KY/P2 − ⌊

k

d
Ep⌋)−

1

2
(k − 2)(k − 1) + dimC ker(ψk).

Proof. From Lemma 5.3 we deduce that

dimCH
1(P2,J k

d
(k − 3)) =

∑

p∈C

dimC OP2,p/J k
d
,p − dimCH

0(P2,OP2(k − 3)) + dimC ker(ψk).

By [12, Remarque 11], dimC OP2,p/J k
d
,p = 1

2⌊
k
dEp⌋·(KY/P2−⌊k

dEp⌋), and the proposition is proved. �

Due to Proposition 5.4, computing dimH1(P2,J k
d
(d − 3 − k)) reduces to computing dimker(ψk),

the dimension of the vector space of complex projective plane curves of degree k − 3 passing through
all the singular points p of C with germ contained in J k

d
,p. Note that, if p is a singular point of C of

type A1, the last formula in the proof of Lemma 5.4 shows that J k
d
,p = OP2,p; therefore, like the case

of a non-singular point, an A1-singularity does not contribute to ∆C(t).
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Example 5.5. Let us consider an irreducible curve C of degree d whose singular points are either of
type A1 or of type Ba,b (i.e., the local equation is xa+yb = 0), where a and b are positive integers such

that ab divides d. The Hodge spectrum of each singularity of C of type Ba,b equals
∑a−1

i=1

∑b−1
j=1 t

i
a
+ j

b .
Therefore, we get that, if p is a singular point of type Ba,b of C, J 1

a
+ 1

b
,p is the maximal ideal of OP2,p,

and in the case, dimCH
1(P2,J 1

a
+ 1

b
( da + d

b − 3)) can be easily computed.
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