
ar
X

iv
:1

61
2.

00
74

8v
1 

 [
m

at
h.

A
G

] 
 2

 D
ec

 2
01

6

A specialization property of index
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Abstract

In [Kol13] Kollár defined i-th index of a proper scheme over a field. In this note
we study how index behaves under specialization, in any characteristic.

1 Introduction

In [Kol13], Kollár generalized the classical definition of index of a variety. For a proper
scheme X defined over a field k (of any characteristic), he defines elwi(X) to be the
ideal in Z generated by χ(F) as F ranges over all coherent sheaves on X supported in
a subscheme of dimension at most i. One can easily notice,

elw0(X) ⊂ elw1(X) ⊂ ... ⊂ elwdimX(X).

Among other important properties, it is known that elwi(−) is birational invariant. In
this note we ask whether this property is locally constructible i.e., given a flat family
π : X → B of proper k-schemes and any closed irreducible subset Y ⊂ B, does there exist
a non-empty open subset U of Y on which the function u 7→ elwi(π

−1(u)) is constant?
We observe that this is not the case in general (see Example 3.1). However, we prove
that the function elwi(−) is invariant under specialization. In particular, we prove:

Theorem 1.1. Let R be a discrete valuation ring, π : XR → Spec(R) be a flat, projective
morphism and XR is an integral scheme. Suppose that the dimension of the fibers is
equal to n. Denote by K (resp. k) the fraction field (resp. residue field) of R. Then, for
any 0 ≤ i ≤ n, elwi(XK) = elwi(Xk).

We note that there is no assumption on the characteristic of K or k in this article.
We now discuss the strategy of the proof. The inequality elwi(XK) ≥ elwi(Xk)

is a direct consequence of [Kol13, Proposition 4]. To prove the reverse inequality we
introduce a concept of semistable elw-indices. The key observation is that this coincides
with Kollár’s definition of the elw-index (see Proposition 2.4). We then check that any
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semistable sheaf on the special fiber can be lifted to the generic fiber (see Proposition
3.3). This gives the reverse inequality, hence proves the theorem.
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2 Semi-stable Esnault-Levine-Wittenberg index

Recall, the definition of the i-th index as given in [Kol13]:

Definition 2.1. Let Y be a projective scheme over a field k. For 0 ≤ i ≤ dimY , the
i-th Esnault-Levine-Wittenberg index, denoted by elwi(Y ) is defined as the ideal of Z
generated by χ(F) as where F runs through all coherent sheaves on Y of dimension
dimF := dimSuppF ≤ i.

We now define a new semi-stable version of the above index:

Definition 2.2. Let Y be as before. For 0 ≤ i ≤ dimY , the semi-stable Esnault-Levine-

Wittenberg index, denoted by elwss
i (Y ) is defined as the ideal of Z generated by χ(F) as

F runs through all coherent semi-stable sheaves over Y of dimension dimF ≤ i.

Abuse of Notations 2.3. We will sometimes abuse notation elwi(Y ) to mean the
generator of the ideal. This usage will be clear from the context.

Proposition 2.4. Let Y be a projective scheme of pure dimension n. Then, for all
0 ≤ i ≤ dimY , elwss

i (Y ) = elwi(Y ).

Proof. Clearly, elwss
m(Y ) ⊂ elwm(Y ) for all 0 ≤ m ≤ n. We now prove the converse. Let

F be a coherent sheaf of dimension m. There exists an unique torsion filtration:

0 ⊂ T0(F) ⊂ ... ⊂ Tm(F) = F

where Ti(F) is the maximal subsheaf of F of dimension at most equal to i. Note by
definition, Ti(F)/Ti−1(F) is zero or pure of dimension i. If Ti(F)/Ti−1(F) is non-zero
then, by [HL10, Theorem 1.3.4], there exists an unique Harder-Narasimahan filtration

0 = E−1 ( E0 ( E1 ( ... ( El = Ti(F)/Ti−1(F)

of the pure sheaf Ti(F)/Ti−1(F) such that Ej/Ej−1 is semistable of dimension i, for
every j = 1, ..., l. As Euler characteristic is additive,

χ(Ti(F)/Ti−1(F)) =
∑

j

χ(Ej/Ej−1) and χ(F) =
∑

i

χ(Ti(F)/Ti−1(F)).

Since i ≤ m, this implies elwm(Y ) ⊂ elwss
m(Y ). Therefore, elwss

m(Y ) = elwm(Y ), for all
0 ≤ m ≤ n. This proves the proposition.
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3 Specialization properties of the index function

We first observe (Example 3.1) that the Esnault-Levine-Wittenberg index does not
vary in an algebraic way in flat families of projective varieties (in particular, not semi-
continuous). But elwi(−) is invariant under specialization (Theorem 3.4).

Example 3.1. Denote by Y := A1
R and X the hypersurface in P2 × Y defined by the

polynomial X2 + Y 2 = t, where t is the coordinate corresponding to A1. Denote by
π : X → Y the natural projection map. Observe that π is a flat morphism.

Denote by Iiπ : Y → Z the function that associates to any y ∈ Y , the number
elwi(Xy). We prove that I0π is not semi-continuous. Observe that for t > 0, there
always exists rational point on the fiber Xt, hence elw0(Xt) = 1. For t ≤ 0, there does
not exist a rational point but the resulting curve Xt contains a C-point. But C is an
extension of degree 2 over R. Hence, elw0(Xt) = 2 for t ≤ 0. This shows that I0π is not
semi-continuous (in the Zariski topology).

Notation 3.2. Let R be a discrete valuation ring, π : XR → Spec(R) be a flat, projective
morphism and XR is an integral scheme. Suppose that the dimension of the fibers is
equal to n. Denote by K (resp. k) the fraction field (resp. residue field) of R. Denote
by Xk the special fiber and by XK the generic fiber. There is no assumption on the
characteristic of k and K.

Proposition 3.3. Suppose Fk is a semistable coherent sheaf on Xk. Then, there exists
a semistable coherent sheaf FR on XR such that FR ⊗R k ∼= Fk.

Proof. As Fk is semistable there exists a free OXk
-module Hk such that Fk is a quotient

of Hk. Let the resulting short exact sequence be of the form:

0 → Gk → Hk → Fk → 0.

As Hk is a free OXk
-module, there exists an unique free OXR

-module HR such that
HR ⊗R k. Denote by GR the fiber product HR ×Hk

Gk i.e., the set of sections of HR,
which when restricted to Hk gives us Gk. Denote by FR the quotient of HR by GR.
As GR ⊗R k ∼= Gk, the universal property of cokernel implies FR ⊗R k ∼= Fk. Since GR

is a subsheaf of a free sheaf it is torsion free and as R is principal ideal domain, GR

is R-flat (see [Har77, Example III.9.1.3]). Using [HL10, Lemma 2.1.4], we have FR is
R-flat. By the open nature of semi-stability [HL10, Proposition 2.3.1], this implies FR

is semi-stable. This proves the proposition.

We finally prove the main theorem of this article.

Theorem 3.4. The following is true: for any 0 ≤ i ≤ n, elwi(XK) = elwi(Xk).

Proof. By [Kol13, Proposition 4]

elwi(XK) = (χ(OZ)|Z ⊂ X, of dimension ≤ i).
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Given, any Z on XK , the scheme-theorectic closure Z̄ is flat over Spec(R) (see [Har77,
Proposition III.9.8]). As Euler characteristic is invariant in flat families, χ(OZ) =
χ(OZ̄k

), where Z̄k is the special fiber for the flat morphism from Z̄ to Spec(R). Hence,
for 0 ≤ i < n, elwi(XK) ≥ elwi(Xk).

Using Proposition 3.3, we conclude that elwss
i (XK) ≤ elwss

i (Xk), for all 0 ≤ i ≤ n.
By Proposition 2.4, we get

elwi(XK) = elwss
i (XK) ≤ elwss

i (Xk) = elwi(Xk).

This implies elwi(XK) = elwi(Xk).
This completes the proof of the theorem.
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