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Abstract If x( is an equilibrium of an autonomous differential equation & =
f(z) and det ||f'(zo)]| # O, then z( persists under autonomous perturba-
tions and zg transforms into a T-periodic solution under non-autonomous
T-periodic perturbations. In this paper we discover a similar structural stabil-
ity for Moreau sweeping processes of the form —i € Ng(u) + fo(u), u € R?,
i. e. we consider the simplest case where the derivative is taken with respect
to the Lebesgue measure and where the convex set B of the reduced system
is a non-moving unit ball of R%. We show that an equilibrium |jug|| = 1 per-
sists under periodic perturbations, if the projection f : 9B — R? of f, on the
tangent to the boundary 9B is nonsingular at wug.
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1 Introduction

We investigate the dynamics of a particle u(t) € R? which is governed by the
differential equation

—u(t) = f(t,u@), if [u®)] <1, (1)
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and which satisfies the differential inclusion

—a(t)e |J Au()+ ftu®), i @) =1 (2)

A€[0,00)

Fig. 1 illustrates the two situations.

Jau®)

A€[0,20)

—u=f(tu) —u= [ Jau+f(tu)

2e[0,00)

Fig. 1 The occurrence of an unbounded vector field when u(t) reaches the boundary 0B of
B (colored in gray).

System (1)-(2) is the simplest Moreau sweeping process, which is usually
formulated as
—u(t) € Np(u(t)) + f(t, u(t)), 3)
where

Nc(z)={§€R2 (&, ec—1x) <0, for anchC’},

is the so-called outward normal cone to a closed convex set C' € R? and
B ={x € R? : ||z|| < 1}. The solution of (3) is understood in the classical sense
(see e.g. [1,13]), i.e. an absolutely continuous function u : [0,7] — R? is said
to be a solution of (3), if u satisfies (3) for almost all ¢ € [0,T]. The existence
of such a solution doesn’t follow from the theory of differential inclusions
because the right-hand-side in (3) is unbounded. The respective theory for
sweeping processes has its roots in the pioneering work of Moreau [20], who
proposed a discrete approximation of (3) that converges to a solution u, see
also Monteiro-Marques [19, Theorem 2.1] and Castaing & Monteiro-Marques
[10]. In addition, the work [20] states that the solution u is unique in the class
of right-continuous functions with values in B.

Sweeping process (3) with Lipschitz f and convex Lipschitz ¢t — B(t) is a con-
venient framework to construct solutions of equations of elastoplasticity (see
Moreau [21], Kunze & Monteiro-Marques [17] and references therein). The
case of a polyhedral set B provides a powerful deterministic tool towards the
Skorokhod problem for a reflecting Brownian motion (Krejei & Vladimirov
[15]). Multi-functions f and ¢t — B(t) of bounded variation BV (i.e. a way less
regular that the Lipschitz ones) and respective Radon-Nikodym derivatives
appear in the context of mechanical problems with frictional contacts where
the differential equations framework turns out to be ill-posed. The best exam-
ple is the resolution of the Painlevé paradox by Stewart [27], where a Moreau
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discretization scheme is used too. Sweeping process (3) with a BV moving set
t — B(t) describes repeated collisions in vibro-impact problems, see Paoli [22].
The reader is referred to the book by Brogliato [6] for introduction and fur-
ther references. A possible way to investigate the solutions of the BV sweeping
processes is through a suitable Lipschitz approximation (Valadier [32], see also
Monteiro-Marques [19, §5.2]). Recupero [25] transforms a BV sweeping process
into a Lipschitz one by means of a suitable reparameterization.

We stick to a C''-smooth f and a non-moving ball B in order to avoid technical
details and to make the essential contribution of our work clear. Our proofs
carry over in the case where f is Lipschitz and ¢ — B(t) is an arbitrary convex
set Lipschitz in .

The theory of Moreau sweeping processes has been rapidly developing over
the recent years. Since the celebrated results by Moreau [20] about the con-
vergence of a discrete scheme to a solution of (3) (see also [2,17], where the
set B is state dependent), there were several important contributions towards
the dependence of solutions of (3) on initial conditions (Castaing & Monteiro-
Marques [10], Paoli [24], Ballard [3], Krejci & Roche [16]) and the moving
set (Kunze & Monteiro-Marques [17]). There were further developments on
relaxing the regularity of time- and state- dependent function B, on dropping
the convexity assumption on B, on replacing the cone Kp(u) by more gen-
eral convex sets, etc., see Thibault [30], Bounkhel & Thibault [5], Tolstonogov
[31], Stewart [29]. A significant attention in the literature has been devoted to
identifying relevant structures in Moreau sweeping processes, primarily peri-
odic solutions, see e.g. the above-mentioned papers [17] and [10]. A Lyapunov
functions approach capable to study Lyapunov stability of periodic solutions
of (3) has been developed as well (see Brogliato [6], Leine & Wouw [18] and
references therein).

The goal of this paper is to make a significant step towards understanding
the structural stability of Moreau sweeping processes. Specifically, we identify
a prototypic Moreau sweeping process (3) that possesses a simplest possible
periodic solution (i.e. equilibrium) and investigate the response of this periodic
solution to periodic perturbations. The result that we propose for the Moreau
sweeping processes (3) is similar to the classical results of Berstein & Halanai
[4] and Cronin [11] in the theory of ordinary differential equations. Results
[4,11] found many applications and stimulated several studies in geometric
perturbation theory (continuation) for ODEs, see Capietto, Mawhin & Zanolin
[9] for details. We, therefore, anticipate that this paper will serve as a starting
point for the development of perturbation theory for sweeping processes.

2 Main result

Consider an autonomous sweeping process

—u(t) € Np(u(t)) + fo(u(t)), ueR? (4)
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that possesses a boundary equilibrium
u, € 0B, (5)

1. e. uy verifies
fo(us) € =Np(u.) and  fo(u.) # 0. (6)

If fo(ux) # 0, then such a boundary equilibrium generically persists under
small autonomous perturbations'. Our goal is to study the response of u, to
T-periodic perturbations. Specifically, we consider

—u(t) € Np(u(t)) + f=(t, u(t)), (7)

where
fet+Tu) = fo(t,u)
and

fe(t,u) — fo(u) as e—0

uniformly in ¢ € [0,7] and u € B. To achieve the goal, we are going to prove
the existence of an invariant region for the Poincaré map P. of (7) near u..
This can be viewed as a version of the classical Berstein-Halanay result [4] or
Cronin [11] available for ordinary differential equations.

The Poincaré map P.(§) is the value at time ¢ = T of the solution of (7) with
the initial condition u(0) = £ € B. The existence and continuity of P. follows
from Castaing & Monteiro Marques [10, theorem 4.4].

Let N : R — R? be some C'! parameterization of dB in the neighborhood of

Uy, S0 that u, = N(0). We assume that the parameterization N is positive, i.e.

N (r) moves counterclockwise as r increases. For a vector u € R?, we denote

ut = <u2u ) . In this section we prove that the B part of the d-neighborhood
—u1

of u, (see Fig. 2) is invariant for P. for small € > 0 and § > 0. The main role

in our analysis is played by the following (bifurcation) function

F@r) = (fo(N(r)), N(r)*).

Property (6) implies that f(0) = 0. Our main result is that nondegeneracy of
f near 0 is crucial for the persistence of u, under periodic perturbations. The
next theorem is a rigorous formulation of this assertion. In what follows, the
notation [z, y] stays for the closed line segment of R? that connects x and y.

1 The implicit function theorem ensures that <fg(u5),u§-> = 0 for some us — ux as
e = 0, if fo — fo as € — 0 generically (i.e. when the respective determinant at e = 0
doesn’t vanish). Here ut = (ugz, —u1)T.
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N (r)
u,=N(0)

(1-8)N(r) N(=r)

Conen T

Fig. 2 Black arc: a part of 0B in the neighborhood of w.. Gray set: a é-neighborhood of
ux restricted to the set B.

Theorem 1 Let f. be C* for all e € R and assume that f-(t,u) — fo(u) as
e — 0 uniformly int € [0,T) and u € B. Consider a positive parameterization
r — N(r) of OB such that u, = N(0) is an equilibrium of (4), i.e. (6) holds.
If the function f is strictly decreasing at 0, then, for any r > 0 sufficiently
small, there exists 69 > 0 such that, given any § € [0,0¢], one can find g9 > 0
so that

P.(U)cCU, forallecele,

where

U= |J MA=ON(=r)+ 1= N1 =N (r),N(=Xr+ (1 - \)r)].
A€0,1]

Moreover, none of the solutions of (7) with u(0) € U leave U through [0, T].

The following lemma is required for the proof of the theorem.

Lemma 1 Let g € B and let N € R? be the unit normal vector to OB at
xo pointing outwards B. Assume that for g € C1(R x R™ R?) we have

g(tllhu‘) =0 and <gi/t(tlla/u')7N> ’ <gzl£(tﬂvﬂ)aNL> 7£ 0 fOT all e M?

where M C R™ is a compact set and pu — t, is a continuous function. Then
there exists At > 0, such that for any € € [0,20] and any u € M, the solution
v of
—0(t) € Npg(t,u) (v(1)),
(8)
o(t,) =¢

verifies
[(N*0(t) = )] < llglt, wl - [(N* gt w)| . for all t € [ty t, + At].

Figures 3 and 4 illustrate the notations of this statement as well as all the
notations throughout the proof.
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o[(7)

0=g(t,,u)
Fig. 3 Illustration of the proof when (g'(t.,n), N) > 0.

Proof. The case {(g;(t,, 1), N) > 0 for all p € M. The square of the distance
between £ € [0, o] and g(¢, 1) can be computed as

r(t) = {g(t.1), NY° + (€ — g(t, u), N)?
(see Fig. 3). One has
() =2 (g(t, 1), N*) - (gt 1), N&) +2(6 = g(t, 1), N) - (—gy (£, 1), N)

and so

P (t) = <26, N) (g1t ). N) < = min (g7t ). N) for all € € [%xo] :

This property allows to define At as follows: Let us choose At > 0 such
that 7(t) doesn’t increase on [t,,t, + At]. Therefore,

€ —g(t, > <1, forall€e [%mo] CLE [t t, + At p € M.

By diminishing At > 0 to ensure that
€ = glt,m)I? <1, foral €€ o, %} CLE [tunty + AL, pe M,

we get At > 0 such that all the points of [0, x¢] lie inside B + ¢(t, u) when
t € [ty ty+ At] and p € M, ie. v(t) — £ stays identically zero on [t,,t, + At]
in this case.

The case (g;(t,, ), N) <0 for all p € M. Defining At initially: let At > 0
be such that
”g(tvﬂ)H S 1 for alltE [tlht#+At]a /LGM

Reduce At > 0 until

(g(t, ), N) strictly decreases on [t,,t, + At], for any u € M,
(g(t, ), N+) is strictly monotone on [t,,t, + At], for any p € M.
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oB+g(t,1)N[0, xo]

a
Wi

B

""""" 0
g(t**,ﬂ?’/'
0=g(t,. )
e[ g(tu+7) b
(@) (b)

Fig. 4 (a) The line segment that measures the distance of the point 0B + g(¢, 1) N [0, zo]
to the origin. (b) The image of point w under the mapping w + proj(w, B + g(tu + T, it))
(and all the notations we use throughout the proof of lemma 1).

Then the function

I(t) = \/1 — (NL gt 1) = gltu, 1))* = (N, gty 1) — g(t, 1))

is 1) well defined and strictly positive, and 2) strictly decreasing on [t,,, t,,+ At]
starting from I(¢,) = 1. This is equivalent to saying that (see Fig. 4a)

1) unit ball centered at g(t, ) intersects [0,x0] (at the point [(t)N)
2) the above mentioned point of intersection (0B + g(t,u)) N [0,20] moves
outwards xo strictly monotonically when t increases from t,, to t, + At.

Consider £ € [0,z0], 7 € (0, At], and p € M.

If £ € B+ g(t, + 7,1) then £ € B + g(t,pn) for any t € [t,,t, + 7] by the
monotonicity property we just proved, and, therefore, the solution of (8) is
the constant £ on this interval.

Assume that £ € B + g(t, + 7, 1t). Let a = proj(§, B+ g(t, + 7, 1)) and let
B = (0B + g(t, + 7,1)) N[0, 0], see Fig. 4b. Denote by W C R? the closed set
whose boundary is composed by the arc a8 (denoted by [«, 5] in the sequel)
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and by the line segments [«, &] and [€, 8]. We claim that there exists At > 0
such that given any T € (0, At], p € M, and € ¢ B+ g(t, + 7, 1) the set W is
invariant for the map w — proj(w, B + g(t, n)) for all t € [t,,t, + 7]
Proof: Reducing At: let us show that At > 0 can be diminished in such
a way that

91t 1) K lg(ty + 7, 10), €] ()
fOI‘ all t € [tuatﬂ +T]7 f ¢B+g(tu +T,,U,), TE (07At]v ,u € M

Indeed, assuming that the latter is incorrect, we would get g; (¢, , %) || N
for some puy € M, which is impossible per the assumptions of the Lemma.

Property (9) ensures that the line segment [w, g(¢, )] belongs to the right
triangle formed by the line segment [g(t,, +7, 1), €] and its projection on N
(denoted by W at Fig. 4b). If [w, g(t, )] ¢ W1, then the curve t — g(t, 1)
needs to leave W7 at some time moment. This would imply the existence of
tes € [ty,t, + 7] where g;(t.x, 1) is parallel to [g(t, + 7, 1), ] (see Fig. 4b),
which is excluded by (9).

We are now in the position to prove the statement about the invariance
of W. Assume the contrary, i.e. assume that there exists u, € M, w, €
W and t, € [t,,,t,. + 7| such that W = proj(ws, B + g(ts, ) ¢ W.
Since W € [wy, g(t«, t«)] and, as we noticed earlier, [w., g(ts, pus)] C Wi,
we have W € [g(t, p+), v], where v is the point of intersection of the arc
[e, 8] and the line segment [w., g(t«, f1+)]. Since |[W — g(t«, ps)|| = 1, then
lv=g(ts, ps)]] > 1. We will now show that At > 0 could have been assumed
smaller from the beginning to eliminate the latter possibility. This will
complete the proof of the invariance of W.

Reducing At: we claim that At > 0 can be diminished further, so that

lv—g(t,pw)|| <1, foralltelt,,t,+7],ve€a/pjl],
EEB+g(t,+7,p), 7€(0,At], pe M.

The square of ||[v — g(t, u)|| can be computed as

r(t) = (0 — g(t. 1), N)> + (v — g(t, ), N2)*.

(10)

We have

r'(t) = =2(v —g(t, 1), N)-(gi(t, ), N)=2 (v — g(t, ), N )-{gi(t, ), N*) .

By diminishing At > 0, we can make (v — g(t, ), N) as close to 1 as neces-
sary?. In addition, by the initial definition of At, we have (g, (t,,, ), N) <0
for all t € [t,,,t,+ At], p € M. Therefore, At > 0 can be reduced to ensure
min [— (v —g(t, 1), N) - {gi(t, ), N)] = ¢ > 0.
t e [t/mtu + 7], v €la,B],

EZ B+ gty + 7. 1),
7€ (0,At], pe M

2 Specifically, given 4 > 0 the value At > 0 can be chosen so small that
[(v—g(t,pn),N)—1] <~ forallt e [ty,t,+7],v€El[a,B], {§ € B+g(ty + 7, 1), 7€ (0, At],
e M.
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On the other hand, by diminishing A¢ > 0 we can make KU —g(t, 1), NL>‘
as small as necessary. Let us diminish At > 0 to ensure

max — (v —g(t, aNl {gi(t, 7]\7L <E_
et P e, [T IV it N < 5
EZ¢B+g(ty+ 7, 1),

T€(0,At], pe M

This choice of At leads to
() >0, t € [ty ty+7], v € o, B, € & B4g(tu+7, 1), 7 € (0, At], p € M.

Since r(t, +7) = |[v — g(t, + 7)||* = 1 by the definition of arc [«, 3], one
can conclude that r(t) < 1 for any t € [t,,t, + 7) and (10) follows.

The proof of the fact that proj(W, B+g(t,p)) C W for any t € [t,,t, +7],
EEB+g(t,+ 1), 7€ (0,At], p € M is now complete.

According to the theorem 2 from Kunze & Monteiro Marques [17], the solution
t — v(t) of (8) is the limit lim v, (¢) of piecewise linear functions with vertexes
n—oo

given by

{Ufﬂ = proj (vf,B +g (%T + tu)) , foranyieO,n—1,
vy = €.

Therefore, given an arbitrary 7 € (0, At] we have v(t) € W for all t € [t,,t, +
7], i.e.

[(v(ty +7) — f,Nl>’ < a,
where a = |<a, ]\7l>|7 see Fig. 4b.
It remains to show that a < ||g(t, + 7)|| - b, where b = |(N*, g(t, + 7))|.

1) Using the triangle (g(t,+7),&,0) we have [[a—£&|[+1 < ||g(t,+7)||+]/&]| <
l9(tu + 7)|| + 1. Therefore, [l — &[| < [[g(t, + 7).

2) By similarity of right triangles

a_ lla=¢&l _ llgttu+)l
b a—gl+1°> 1
The proof of the lemma is complete. O

Remark 1 Tt is well known (see e.g. Kunze & Monteiro-Marques [17]) that the
solution v(t) of (8) changes by a factor of At when the time change is At.
Lemma 1 states that a suitable projection of the solution changes by a factor
of (At)2. A similar property of sweeping processes is a key fact in the proof of
the existence of solutions to (8), see e.g. [17, Theorem 2, formula (23)].
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Proof of theorem 1. Let r > 0 be small enough to have

(Jo(N (=), N(=r)=) >0, (fo(N(r)),N(r)* ><0,
(fo(N(=7)), N(=r)) # 0,  (fo(N(r)),N(r)) #

Choose dy > 0 so small that

(o1 = DN N >0, (B0 INEN() <0,y
(ol(1 = N (=r)), N(=r)) £ 0, {fol(1 = )N (1), N(r)) #

for all § € [0, §g]. Choose g9 > 0 small enough to ensure

(Fo(t, (1 = N (7)), N (1) £0, 12)
(£, (1= )N (), N (&) ) £ 0,

for all § € [0,0¢], t € [0,T], € € [0,e0]. We want to use Lemma 1 in order to
find At > 0 such that

(u(t) —ulte), N(—r)") <0, t€ [to,to + At], (13)
for any solution w of (7) with the initial condition
up = u(to) € [(1 = 0o)N(=7), N(=r)], (14)

and arbitrary to € [0,T] and € € [0, gg]. Observe (see e.g. Castaing & Monteiro
Marques [10, theorem 4.1]) that u is the solution to

_/l..} t e N + v t ,
(t) B+ff€(s)9(s_’to’uo))ds( (t)
to
(to) = o, (15)

u(t) = v(t) —tj fe(s,02(s,t0,u0))ds,

where ¢ — 2(t,t9, up) is the solution of (7) that passes through ug at time t.

To apply Lemma 1 we define g : R x R* — R? as

ot ) = / Fo (5, 25, s 2))ds,
M1

t to
which takes the form [ f.(s, £2(s, to,uo))ds, when p = | ug | . Defining At:
to c

let At > 0 be the one given by Lemma 1 applied with

=[0,T] x [(1 = bo)N(=r), N(=r)] x [0, &].
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The conclusion of Lemma 1 is that

/t fe(s, £2(s,to,up))ds

to

[(u(t) — vlto), N(~r)*)| < ‘

' </t fs(sv Q(s,to,uo))ds, N(T)J—>
to
for any t € [tg, to + At], v(to) = uo, (to,uo,e) € M. This yields
(u(t) = ul(to), N(=r)*) =

= <v(t) —v(ty) — fe(s, 2(s,to,up))ds, N(—r)J‘> =

a

Diminish At > 0 further to have

Taking into account (11) and (12) we finally get

to

- 1) - < tfa(s,ﬂ(s,to,uo))ds,N(—T)L>.

to

/t fa(S, Q(S,to,Uo))dS

t fe(s, 2(s,to,up))ds

1
< 3 for all t € [tg, to + At], (to,up,e) € M.
to

(ult) —u(to), N(—r)*) €

e P o)), N () ) +
+ -3¢ / Jets.utsds N =) 5 / Jets.uteds N (-n) )| <

C (—o0,0], for all t € [to,to + At], (to,up,€) € M.

Analogous arguments allow to conclude that
(u(t) = ulto), N(r)=) 20, t€ [to,to + At], (16)

for any solution u of (7) with initial condition u(t) € [(1—do)N(r), N(r)] and
any to € [0,T], € € [0,&0] provided that At > 0 is sufficiently small.

Let us now consider a solution u of (7) with the initial condition
ug = uto) € [(1 = do)N(=r), (1 = do)N(r)]. (17)

Diminish At > 0 further to have

t
/fs(s,()(s,to,uo))ds < dp
to
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for any to € [0,T — At], t € [to, to + At], ug € U, € € [0,&0]. This ensures that
v(t) = ug for all ¢t € [to, to + At], where v is the solution of (15) and ug is from
(17). Therefore,

(u(t) — u(to), N(0)) = — </f6(57 Q(S,to,uo))ds,N(0)> : (18)

to

Due to (6), we don’t lose generality of the proof by considering r > 0, 6y > 0
and g9 > 0 so small that

<f€(t’ Q(ta to, UO))’N(OD < 07

for all tg € [0, T — At], t € [to, to + At], uo from (17) and € € [0,&¢]. Therefore,
(18) implies that

(u(t) = u(to), N(0)) = 0 (19)
for u(ty) satisfying (17).

The estimates (14), (16) and (19) ensure that none of the solutions of (7) with
u(0) € U can leave U during [0, T]. This completes the proof of the theorem.

O
The proof of Theorem 1 can be carried out through a direct application of the
Moreau discretization scheme with no resort to papers by Kunze & Monteiro-
Marques [17] and Castaing & Monteiro-Marques [10]. Our goal was to restrict
the paper to those aspects of justification that are essentially new (as much
as required for a rigorous proof).

3 Existence of periodic solutions

A possible positive parameterization of the ball B is given by Ny(r) = (;)?: r> .

The function f is thus f(r) = (fo (No(r)), No(r)*) . Theorem 1 allows to draw
the following corollary on the existence of T-periodic solutions to (7).

Corollary 1 Let f. be C! for all e € R and assume that f.(t,u) — fo(u) as
e — 0 uniformly in t € [0,T). If for some vy € R one has

fo(No(ro)) = —=ANo(ro) with some A >0 and f'(ro) <0, (20)

then, for all ¢ > 0 sufficiently small, the sweeping process (7) admits a T-
periodic solution uc(t) such that

ue(t) = No(ro) as € —0 wuniformly on [0,T). (21)



On the response of autonomous sweeping processes to periodic perturbations 13

To prove the statement one has to consider a sequence ¢ — 0 as kK — oo along
with the sequence of the respective values of ¢ given by Theorem 1 which will
now be denoted by ej. Given any ¢ € (0, ek, Theorem 1 ensures the existence
of a T-periodic solution us, ([0, 7]) C U to the sweeping process (7) where U
has to be taken with § = d;. Without loss of generality we can assume that
er — 0 as k — oo monotonically. The required solution u. can now be defined
for all € > 0 sufficiently small by

ue(t) = Uék,e(t)a €€ [€k7€k)+l)a ke N.

We recall that a function g : R? — R? is called real-analytic on an open set
W, if for each x, € R? there exists 7 > 0 such that if ||z — z.|| < r then

95() = Y a1 —2a1)™ - (w2 —2.2)*,  j=1,2,
a€N?

where g, ; are suitable numbers (see [26, §1.1]).

Corollary 2 Let f. be C! for all e € R and assume that f.(t,u) — fo(u) as
e = 0 uniformly in t € [0,T]. If fo is real-analytic in a neighborhood of the
unit ball B and for r1 < ro one has

<fO(N0(T))vNO(T)> < 07 re [’1"1,7”2], ?(Tl) > 0’ and ?(TQ) < 07 (22)

then there exists o € (r1,72), such that for all ¢ > 0 sufficiently small the
sweeping process (1) admits a T-periodic solution u.(t) that satisfies (21).

Beal—analyticity is here used to conclude the existence of 7y € (r1,72) at which
f vanishes and strictly decreases.

4 Conclusion

In this paper we introduced a notion of an equilibrium of an autonomous
sweeping process. We proved that, similar to what is happening in ordinary
differential equations (see Cronin [11]), the stability of an equilibrium implies
stability with respect to periodic perturbations. The goal of this paper was
to identify the framework that can lead to a bifurcation theory for Moreau
sweeping processes, not to make proofs in the most general possible settings
(in contrast, we attempted to keep them as short as possible). The result
can be extended to Lipschitz right-hand-sides in (6) and to time- and state-
dependent set B. At the same time, we don’t yet understand how our result
extends to BV sweeping processes.

Following the lines of Buica, Makarenkov & Llibre [7], one can establish unique-
ness and asymptotic stability of the periodic solution in theorem 1. The ideas
of Kamenskii, Makarenkov & Nistri [14] and Buica, Llibre & Makarenkov [7]
are useful in the study of the response of a family of equilibria on 0B to pe-
riodic perturbations. However, most importantly, assuming f’(0) = 0 leads to
bifurcations, i.e. allows to design sweeping processes with different dynamic
behavior.
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