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Abstract

The Hamiltonian Monte Carlo (HMC) method has been recognized as a powerful sampling
tool in computational statistics. In this thesis, we show that performance of HMC can be dramati-
cally improved by replacing Hamiltonians in the Metropolis test with modified Hamiltonians, and
a complete momentum update with a partial momentum refreshment. The resulting general-
ized HMC importance sampler, which we called Mix & Match Hamiltonian Monte Carlo (MMHMC),
arose as an extension of the Generalized Shadow Hybrid Monte Carlo (GSHMC) method, previ-
ously proposed for molecular simulation. The MMHMC method adapts GSHMC specifically to
computational statistics and enriches it with new essential features: (i) the e�icient algorithms
for computation of modified Hamiltonians; (ii) the implicit momentum update procedure and
(iii) the two-stage splitting integration schemes specially derived for the methods sampling with
modified Hamiltonians. In addition, di�erent optional strategies for momentum update and flip-
ping are introduced as well as algorithms for adaptive tuning of parameters and e�icient sam-
pling of multimodal distributions are developed. MMHMC has been implemented in the in-house
so�ware package HaiCS (Hamiltonians in Computational Statistics) written in C, tested on the
popular statistical models and compared in sampling e�iciency with HMC, Generalized Hybrid
Monte Carlo, Riemann Manifold Hamiltonian Monte Carlo, Metropolis Adjusted Langevin Algo-
rithm and Random Walk Metropolis-Hastings. The analysis of time-normalized e�ective sample
size reveals the superiority of MMHMC over popular sampling techniques, especially in solving
high-dimensional problems.
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Summary

Both academia and industry have been witnessing exponential accumulation of data, which,

if carefully analyzed, potentially can provide valuable insights about the underlying pro-

cesses. The main feature of the resulting problems is uncertainty, which appears in many

forms, either in data or assumed data models, and causes great challenges. Therefore, we

need more complex models and advanced analysis tools to deal with the size and complex-

ity of data.

The Bayesian approach offers a rigorous and consistent manner of dealing with un-

certainty and provides a means of quantifying the uncertainty in our predictions. It also

allows us to objectively discriminate between competing model hypotheses, through the

evaluation of Bayes factors (Gelman et al., 2003). Nevertheless, the application of Bayesian

framework to complex problems runs into a computational bottleneck that needs to be ad-

dressed with efficient inference methods. The challenges arise in the e.g. evaluation of

intractable quantities or large-scale inverse problems linked to computationally demanding

forward problems, and especially in high dimensional settings. Theoretical and algorithmic

developments in computational statistics have been leading to the possibility of undertaking

more complex applications by scientists and practitioners, but sampling in high dimensional

problems and complex distributions is still challenging.

Various methods are being used to practically address these difficulties, which techni-

cally reduce to the calculation of integrals, as the core of a Bayesian inference procedure.

These integrals appear either in evaluating an expected value over some complex posterior

distribution or in determining the marginal likelihood of a distribution. For example, we

are interested in computing an expected value (or some other moment) of a function f

with respect to a distribution π

I =

∫
f(θ)π(θ)dθ. (1)

Deterministic methods aim to find analytically tractable approximations of the distributions

π. We are interested however in Monte Carlo (stochastic) methods (Metropolis and Ulam,

1949), which can sample from the desired distribution, are exact in the limit of infinite

number of samples, and can achieve an arbitrary level of accuracy by drawing as many

samples as one requires. The integral (1) in this case is estimated as

Î =
1

N

N∑
n=1

f(θn),
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where random samples {θn}Nn=1 are drawn from π(θ).

Bayesian statistics have been revolutionized by ever-growing computational capacities

and development of Markov chain Monte Carlo (MCMC) techniques (Brooks et al., 2011).

In this thesis, we focus on an advanced MCMC methodology, namely Hamiltonian (or hy-

brid) Monte Carlo (HMC) (Duane et al., 1987; Neal, 2011), which arose as a good candi-

date for dealing with high-dimensional and complex problems. Interestingly, both MCMC

and HMC were originally developed in statistical mechanics; however, they made a signifi-

cant impact on the statistical community almost 35 and 10 years later, respectively.

The HMC method has proved to be a successful and valuable technique for a range of

problems in computational statistics. It belongs to the class of auxiliary variable samplers,

which defines an augmented target distribution through the use of a Hamiltonian function.

HMC incorporates the gradient information of the target π(θ) and can follow this gradient

over considerable distances. This is achieved by means of generating Hamiltonian trajecto-

ries (integrating Hamiltonian equations of motion), which are rejected or accepted based

on the Metropolis test. As a result, HMC suppresses the random walk behavior typical of

the Metropolis-Hastings Monte Carlo method (Metropolis et al., 1953; Hastings, 1970).

On the other hand, the performance of HMC deteriorates exponentially, in terms of ac-

ceptance rates, with respect to the system’s size and the step size due to errors introduced

by numerical approximations (Izaguirre and Hampton, 2004). Many rejections induce high

correlations between samples and reduce the efficiency of the estimator of (1). Thus, in

systems with large numbers of parameters, or latent parameters, or when the data set of

observations is very large, efficient sampling might require a substantial number of eval-

uations of the posterior distribution and its gradient. This may be computationally too

demanding for HMC. To maintain the acceptance rate for larger systems at a high level,

one should either decrease the step size or use a higher order numerical integrator, which

is usually impractical for large systems.

Ideally, one would like to have a sampler that increases acceptance rates, converges fast,

improves sampling efficiency and whose optimal simulation parameters are not difficult to

determine.

In this thesis we develop, test and analyze the HMC based methodology that enhances

the sampling performance of the HMC method. We introduce a new approach, called Mix

& Match Hamiltonian Monte Carlo (MMHMC), which arose as an extension of the Gener-

alized Shadow Hybrid Monte Carlo (GSHMC) method by Akhmatskaya and Reich (2008).

GSHMC was proposed for molecular simulation and has been published, patented and suc-

cessfully tested on complex biological systems. As GSHMC, the MMHMC method samples

with modified Hamiltonians, but it enriches GSHMC with the new essential features and

adapts it specifically to computational statistics.

To the best of our knowledge, this is the first time that the method sampling with

modified Hamiltonians has been implemented and applied to Bayesian inference problems

in computational statistics.

The MMHMC method can be defined as a generalized HMC importance sampler. It

vi



offers an update of momentum variables in a general form and samples with respect to

a modified distribution that is determined through modified Hamiltonians. In particular,

the method involves two major steps, the Partial Momentum Monte Carlo step, and the

Hamiltonian Dynamics Monte Carlo (HDMC) step. The partial momentum update adds a

random noise, controlled by an additional parameter, to the current momentum variable

and accepts this update through the modified Metropolis test. As is the case with HMC,

in the HDMC step a proposal state is generated by integrating Hamiltonian equations of

motion and accepted according to the Metropolis test. The only difference in the HDMC

step of MMHMC from the one in HMC is that in the Metropolis test the modified Hamil-

tonian is used instead of the true Hamiltonian. This leads to higher acceptance rates of

MMHMC, as symplectic numerical integrators preserve modified Hamiltonians to a higher

accuracy than the true Hamiltonian. Since sampling is performed with respect to the mod-

ified distribution, the importance weights are taken into account when estimating integral

(1).

Within this thesis, we provide new formulations of modified Hamiltonians of 4th and

6th order for the splitting integrating schemes, which include families of two-, three- and

four-stage integrators, recently proposed in the literature for improving the accuracy of nu-

merical integration. The newly derived modified Hamiltonians are defined either through

analytical derivatives of the potential function or numerical time derivatives of its gradient,

which are computed from the quantities accessible during the simulation. We consider the

former formulation being appropriate for sparse Hessian matrices of the potential and the

latter, although including additional integration steps, are beneficial for cases where higher

order derivatives are computationally demanding.

The novel numerical integrators from the two- and three-stage families of splitting in-

tegrators and specific to sampling with modified Hamiltonians are derived. We design new

integrators by minimizing either error in modified Hamiltonian introduced due to numer-

ical integration or its expected value, taken with respect to the modified density. With a

high dimensional Gaussian model problem, two-stage integrators demonstrate a remark-

able improvement over the commonly used Verlet integrator, both in terms of acceptance

rates and sampling efficiency, over a range of simulation parameters. Moreover, the im-

provement increases with dimension and comes at no additional computational cost. Our

recommendation is to use the new two-stage integrators instead of Verlet for high dimen-

sional problems.

We also propose a computationally effective Metropolis test for momentum update and

show that its use can potentially reduce computational time by 60%. In addition, different

alternative strategies for momentum update, including transformation of momenta vari-

ables and several repetitive momentum update schemes are investigated. We implement,

test and analyze these strategies but do not find any benefit from these formulations what-

soever.

Further on, we adapt the reduced momenta flipping technique (Wagoner and Pande,
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2012) to MMHMC, which potentially can improve sampling. While in molecular simula-

tions a momentum flip can indeed have a negative impact on dynamics, in computational

statistics there is no clear evidence regarding a harmful influence on the sampling perfor-

mance. Nevertheless, having implemented the statistically rigorous though an optional tool

for reduced flipping can help to collect the information on the role of a momentum flip in

MMHMC.

Considering ideas used for designing the MMHMC method, one could expect the follow-

ing advantages over HMC: (i) high acceptance rates (due to better conservation of modified

Hamiltonians by symplectic integrators than true Hamiltonian); (ii) access to second-order

information about the target distribution and (iii) an extra parameter for improving the per-

formance. These advantages come with an expense in terms of (i) a reduced efficiency of

an estimator of the integral (1) due to importance sampling and (ii) a larger computational

cost, consisting of the computation of modified Hamiltonian for each proposal (higher or-

ders being even more expensive) and extra Metropolis test for momentum update.

Several extensions to the MMHMC method are proposed in this thesis. We first adapt

MMHMC to sampling of constrained variables. We then devise two algorithms for auto-

matic adaptation of MMHMC simulation parameters using Bayesian optimization approach

in order to reduce the efforts of manual tuning. We also formulate the parallel temper-

ing MMHMC method, whose benefits are twofold. Firstly, due to the use of an ensemble

of chains it improves mixing and enables sampling from the multimodal probability distri-

butions. Secondly, it provides samples from all required power posteriors simultaneously,

which then can be used for estimation of the marginal likelihood, as we also describe.

We develop the user-friendly software package written in C HaiCS (Hamiltonians in

Computational Statistics) targeted to computers running UNIX certified operating systems.

The code is intended for statistical sampling of high dimensional and complex distributions

and parameter estimation in different models through Bayesian inference using Hamilto-

nian Monte Carlo based methods. The currently available sampling techniques include

HMC, Generalized Hamiltonian Monte Carlo (GHMC), Metropolis Adjusted Langevin Algo-

rithm (MALA), second order Langevin Monte Carlo (L2MC) and Mix & Match Hamiltonian

Monte Carlo, the method developed in this thesis.

The package benefits from efficient implementation of modified Hamiltonians, the accu-

rate multi-stage splitting integration schemes (as previously proposed as novel), the anal-

ysis tools compatible with CODA toolkit for MCMC diagnostics as well as the interface for

implementing complex statistical models. The popular statistical models multivariate Gaus-

sian distribution, Bayesian Logistic Regression (BLR) and Stochastic Volatility (SV) are im-

plemented in HaiCS.

The MMHMC method has been carefully tested and compared with the traditional and

advanced sampling techniques for computational statistics such as Random Walk Metropolis-

Hastings, HMC, GHMC, MALA and Riemann Manifold Hamiltonian Monte Carlo (RMHMC).

We examine the performance of these methods on a set of standard benchmark statistical

models.
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We inspect space exploration using an illustrative banana-shaped distribution. MMHMC

accepts more proposals that result in better coverage of the space than with HMC. Although

it uses the second-order information on the posterior, MMHMC does not follow its local

curvature as obviously as it does RMHMC.

Acceptance rate is higher for MMHMC than for other methods consistently for all ex-

periments.

Being a method that generates both correlated and weighted samples, MMHMC requires

a metric for sampling efficiency different from the one commonly used for MCMC. Here we

suggest a new metric for ESS estimation for samples drawn by MMHMC, which can also be

employed for any MCMC importance sampling based method.

Our tests demonstrate that in terms of sampling efficiency MMHMC, HMC and GHMC

perform comparably for small dimensional problems. In high dimensional problems how-

ever, when compared to HMC and GHMC, the MMHMC method demonstrates superior per-

formance, in terms of bigger time-normalized ESS, for a range of applications, a range of

dimensions and choice of simulation parameters. It allows for bigger step sizes to be used

without decreasing acceptance rate; moreover, it achieves better performance for larger

step sizes. The improvements increase with dimension – for a multivariate Gaussian prob-

lem MMHMC shows an improvement over HMC of up to remarkable 40 times and for the

BLR model up to 4 times. We expect even higher enhancement for problems of higher

dimensions, as the new integrators specifically designed for MMHMC are particularly ben-

eficial for high dimensional problems. An additional advantage of MMHMC lays in the fact

that it is less sensitive than HMC to the choice of a number of integration steps. The SV

model experiments demonstrate the clear superiority of MMHMC and RMHMC over the

HMC and GHMC methods. The sampling performance of MMHMC and RMHMC is compa-

rable for this benchmark. Nevertheless, in contrast to the original RMHMC, MMHMC does

not require higher order derivative and inverse of the metric and thus is computationally

less expensive. This issue becomes particularly important for high-dimensional problems

with dense Hessian matrix. Besides, choices of integrators for RMHMC are limited due to

the use of non-separable Hamiltonians, whereas MMHMC allows for the use of the novel

efficient numerical integrators.

The structure of the thesis We begin with introducing our motivation for the develop-

ment of efficient sampling techniques in computational statistics and reviewing some basic

methods in Chapter 1. Chapter 2 provides details of the HMC methodology and an outlook

on the further developments in computational statistics and computational sciences. In

Chapter 3 we present the novel Mix & Match Hamiltonian Monte Carlo (MMHMC) method

and a number of different strategies that can be employed within. These include (i) new

formulations of modified Hamiltonians; (ii) novel multi-stage numerical integrators, as

alternatives to the Verlet integrator; (iii) different strategies for momenta update and flip-

ping. Several extensions to MMHMC are designed in Chapter 4. In particular, we formulate

a parallel tempering algorithm for efficient multimodal sampling that utilizes MMHMC as

an underlying sampler. An algorithm for Bayesian adaptation of MMHMC parameters is also
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proposed. In addition, we discuss the estimation of the marginal likelihood using MMHMC

and formulate sampling of constrained parameters in the context of the MMHMC method.

In Chapter 5 we describe the software package developed along this thesis in which the

novel MMHMC has been implemented. Testing and comparison of MMHMC with popular

sampling techniques are provided in Chapter 6. Chapter 7 summarizes contributions made

by this thesis and outlines some future directions of research that can follow from the the-

sis. Finally, Appendix provides a list of contributions in model and algorithm development

that I have made during my Ph.D. program.
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Resumen

Tanto el ámbito académico como el industrial han sido testigos de una acumulación ex-

ponencial de datos que, analizándolos con atención, pueden proporcionar valiosas aporta-

ciones sobre los procesos subyacentes. La principal característica de los problemas deriva-

dos es la incertidumbre en sus diferentes variantes, bien en forma de datos o bien en

supuestos modelos de datos, planteando grandes retos. Por lo tanto, se necesitan mod-

elos más complejos y herramientas de análisis avanzadas para gestionar el tamaño y la

complejidad de los datos.

El enfoque bayesiano permite afrontar la incertidumbre de forma rigurosa y coherente,

tratándose de una herramienta para cuantificar dicha incertidumbre en nuestras predic-

ciones. Nos permite también discriminar objetivamente hipótesis de modelos competidores

a través de la evaluación de los factores de Bayes (Gelman et al., 2003). Sin embargo, la

aplicación del marco bayesiano a problemas complejos deriva en un cuello de botella com-

putacional que hace que sea necesario abordarlos utilizando métodos eficaces de inferencia.

Los retos aparecen p. ej. en la evaluación de cantidades difíciles de tratar o problemas in-

versos a gran escala ligados a problemas prospectivos exigentes desde el punto de vista

computacional, y especialmente en los ajustes dimensionales altos. Los desarrollos teóri-

cos y algorítmicos en estadística computacional han permitido a científicos y profesionales

asumir aplicaciones más complejas, aunque todavía sigue siendo un reto el muestreo en

problemas de grandes dimensiones y distribuciones complejas.

Se utilizan varios métodos para resolver de manera práctica estas dificultades que técni-

camente se reducen al cálculo de integrales, como núcleo del procedimiento de inferencia

bayesiano. Estas integrales aparecen tanto al evaluar un valor esperado con respecto a

algunas distribuciones posteriores complejas, como también al determinar la probabilidad

marginal de una distribución. Por ejemplo, estamos interesados en computar un valor es-

perado (u otro momento) de una función f con respecto a una distribución π

I =

∫
f(θ)π(θ)dθ. (2)

El objetivo de los métodos determinísticos es buscar aproximaciones analíticamente mane-

jables de las distribuciones π. No obstante, nuestro interés se centra en los métodos Monte

Carlo (estocásticos) (Metropolis and Ulam, 1949), que permiten el muestreo desde la dis-

tribución deseada, son exactos en el limite de un numero infinito de muestras y logran un
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nivel arbitrario de precisión tomando tantas muestras como sea necesario. La integral (2)

en este caso se estima como sigue

Î =
1

N

N∑
n=1

f(θn),

donde las muestras aleatorias {θn}Nn=1 se toman desde π(θ).

La estadística bayesiana ha experimentado una revolución gracias a unas capacidades

computacionales cada vez mayores y al desarrollo de técnicas Markov chain Monte Carlo

(MCMC) (Brooks et al., 2011). En esta tesis nos centramos en la metodología MCMC avan-

zada, concretamente en el método hamiltoniano (o híbrido) de Monte Carlo (HMC, por sus

siglas en inglés) (Duane et al., 1987; Neal, 2011), que nació como un buen candidato para

abordar problemas complejos de grandes dimensiones. Curiosamente, los métodos MCMC

y HMC se desarrollaron originalmente en la mecánica estadística aunque no tuvieron gran

impacto en la comunidad estadística hasta 35 y 10 años después, respectivamente.

El método HMC ha demostrado ser exitoso además de una técnica valiosa para una

serie de problemas en la estadística computacional. Pertenece a la clase de muestreadores

de variables auxiliares, que definen una distribución proyectada aumentada mediante la

utilización de una función hamiltoniana. El HMC incorpora la información de gradiente

del π(θ) objetivo y es capaz de seguir este gradiente a grandes distancias. Esto se logra me-

diante la generación de trayectorias hamiltonianas (integrando ecuaciones de movimiento

de Hamilton), que son rechazadas o aceptadas en base a un test de Metropolis. Como

resultado, el HMC suprime el comportamiento de recorrido aleatorio típico del método

Metropolis-Hastings Monte Carlo (Metropolis et al., 1953; Hastings, 1970).

Por otra parte, el rendimiento del HMC se deteriora exponencialmente en términos de

tasas de aceptación con respecto al tamaño del sistema y al tamaño del paso, debido a los

errores introducidos por las aproximaciones numéricas (Izaguirre and Hampton, 2004). En

caso de muchos rechazos se producen altas correlaciones entre las muestras y se reduce la

eficiencia del estimador de (2). Por consiguiente, en sistemas con muchos parámetros, o

parámetros latentes, o cuando el conjunto de datos de las observaciones es muy grande,

para que el muestreo sea eficiente puede que se requiera un número sustancial de evalua-

ciones de la distribución posterior y de su gradiente. Desde el punto de vista computacional,

dichas evaluaciones pueden resultar demasiado exigentes para el HMC. Para mantener el

alto nivel de la tasa de aceptación en sistemas más grandes, se debería disminuir el tamaño

del paso o utilizar un integrador numérico de orden superior, hecho que no suele resultar

práctico en sistemas grandes.

Lo ideal sería disponer de un muestreador que aumente las tasas de aceptación, converja

rápido, mejore la eficiencia de muestreo y cuyos parámetros de simulación opcionales no

sean difíciles de determinar.

En la presente tesis hemos desarrollado, comprobado y analizado la metodología basada

en HMC que aumenta el rendimiento de muestreo del método HMC. Introducimos un nuevo
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enfoque, el denominado Mix & Match Hamiltonian Monte Carlo o MMHMC (Hamiltoni-

ano Combinado de Monte Carlo), que surgió como ampliación del método Generalized

Shadow Hybrid Monte Carlo o GSHMC (Monte Carlo Híbrido generalizado con hamilto-

niano shadow) por parte de Akhmatskaya and Reich (2008). El GSHMC se propuso para

la simulación molecular y se ha publicado, patentado y comprobado con éxito en sistemas

biológicos complejos. Al igual que el GSHMC, el método MMHMC realiza el muestreo con

hamiltonianos modificados (o shadow) pero enriquece el GSHMC con nuevas características

fundamentales, adaptándolo específicamente a la estadística computacional.

Según nuestros datos, se trata de la primera vez en la que se ha implementado y apli-

cado el método de muestreo con hamiltonianos modificados a problemas de inferencia

bayesianos en estadística computacional.

El método MMHMC puede definirse como muestreador de importancia (importance
sampling) HMC generalizado. Ofrece la actualización general de las variables de canti-

dad de movimiento y realiza muestreos con respecto a la distribución modificada que se

define a través de los hamiltonianos modificados. Este método contempla concretamente

dos pasos principales: el paso de Cantidad de Movimiento Parcial de Monte Carlo y el paso

de Dinámica Hamiltoniana de Monte Carlo (HDMC). La actualización de la cantidad de

movimiento parcial añade un ruido aleatorio, controlado por un parámetro adicional, a la

variable actual de cantidad de movimiento y acepta esta actualización a través de la prueba

Metropolis modificada. Al igual que con el HMC, en el paso HDMC se genera un estado

de propuesta integrando ecuaciones de movimiento hamiltonianas, aceptado a su vez de

acuerdo con el test de Metropolis. La única diferencia en el paso HDMC del MMHMC con

respecto al del HMC es que en la prueba Metropolis se utiliza el hamiltoniano modificado

en vez del hamiltoniano real. En consecuencia, el MMHMC ofrece unas tasas de aceptación

superiores porque los integradores numéricos conservan los hamiltonianos modificados con

más precisión que en el caso del hamiltoniano real. Como el muestreo se realiza con re-

specto a la distribución modificada, los pesos de importancia se tienen en cuenta al estimar

la integral (2).

En esta tesis presentamos nuevas formulaciones de los hamiltonianos modificados de

4.o y 6.o orden para los esquemas de integración de división, que incluyen familias de

integradores de dos, tres y cuatro etapas, propuestas recientemente en la bibliografía para

mejorar la precisión de la integración numérica. Los nuevos hamiltonianos modificados

derivados están bien definidos a través de derivadas analíticas de la función potencial o de

derivadas temporales numéricas de su gradiente, que se computan a partir de las cantidades

accesibles durante la simulación. Consideramos que la anterior formulación es apropiada

para matrices hessianas dispersas del potencial; las siguientes, aunque incluyen pasos de

integración adicionales, son favorables para casos en los que las derivadas de orden superior

son exigentes desde el punto de vista computacional.

Nuevos integradores numéricos de las familias de dos y tres etapas de integradores de

división y específicos para muestreos con hamiltonianos modificados son derivados. Hemos
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diseñado nuevos integradores minimizando el error en el hamiltoniano modificado intro-

ducido debido a la integración numérica o minimizando su valor esperado, tomado con

respecto a la densidad modificada. Ante un problema de modelo gaussiano de grandes

dimensiones, los integradores de dos etapas demostraron mejoras considerables en com-

paración con el integrador de Verlet comúnmente utilizado, tanto en términos de tasas

de aceptación como en eficiencia de muestreo, sobre una amplia gama de parámetros de

simulación. Asimismo, esta mejora aumenta junto con la dimensión y no produce costes

computacionales adicionales. Para problemas de grandes dimensiones, recomendamos uti-

lizar los nuevos integradores de dos etapas en lugar del integrador de Verlet.

Proponemos también una prueba Metropolis eficaz en términos computacionales para

la actualización de la cantidad de movimiento y demostramos que su uso puede reducir

potencialmente el tiempo computacional en un 60%. Además, se están investigando difer-

entes estrategias alternativas para la actualización de la cantidad de movimiento, incluída

la transformación de variables de cantidad de movimiento y varios esquemas repetitivos

para la actualización de la cantidad de movimiento. Hemos implementado, comprobado

y analizado estas estrategias, pero no hemos detectado ninguna mejora con respecto a la

formulación original.

Posteriormente, hemos adaptado la técnica de inversión de la cantidad de movimiento

(Wagoner and Pande, 2012) al MMHMC, que potencialmente puede mejorar el muestreo.

Mientras que en las simulaciones moleculares una inversión de la cantidad de movimiento

puede tener un impacto negativo sobre la dinámica, en la estadística computacional no hay

evidencia clara de la influencia negativa sobre el rendimiento de muestreo. Sin embargo,

habiendo implementado el rigor estadístico, una herramienta opcional para inversión re-

ducida puede ayudar a recopilar información sobre el rol de la inversión de la cantidad de

movimiento en el MMHMC.

Teniendo en cuenta las ideas a partir de las cuales se ha diseñado el método MMHMC,

se podrían esperar las siguientes ventajas con respecto al HMC: (i) altas tasas de aceptación

(debido a que los integradores simplécticos conservan mejor los hamiltonianos en compara-

ción al hamiltoniano real); (ii) acceso a información de segundo orden sobre la distribución

objetivo y (iii) un parámetro adicional para mejorar el rendimiento. Estas ventajas conll-

evan un gasto en términos de (i) eficiencia reducida de un estimador de la integral (2)

debido al importance sampling (ii) y un coste computacional más alto que consiste en la

computación del hamiltoniano modificado para cada propuesta (siendo los órdenes supe-

riores incluso más caros) y en una prueba Metropolis adicional para la actualización de la

cantidad de movimiento.

En esta tesis se proponen varias ampliaciones con respecto al método MMHMC. En

primer lugar hemos adaptado el MMHMC para el muestreo de variables dependientes. Pos-

teriormente hemos ideado dos algoritmos para la adaptación automática de los parámetros

de simulación del MMHMC utilizando un enfoque de optimización bayesiano para reducir

los esfuerzos de la sintonización manual. Hemos formulado también el método MMHMC de

temple paralelo que ofrece una doble ventaja. En primer lugar, como se utiliza un conjunto
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de cadenas, mejora la mezcla y permite el muestreo desde distribuciones de probabilidad

multimodal. En segundo lugar, ofrece simultáneamente muestras desde todas las posteri-

ores de potencia requeridas, que después pueden ser utilizadas para la estimación de la

probabilidad marginal, tal y como describimos.

Hemos desarrollado un paquete de software intuitivo y fácil de utilizar en C HaiCS
(Hamiltonians in Computational Statistics) dirigido a ordenadores con sistemas operativos

certificados UNIX. El código está previsto para el muestreo estadístico de distribuciones

complejas y de grandes dimensiones, así como la estimación de parámetros en diferentes

modelos a través de la inferencia bayesiana utilizando métodos basados en el Hamiltoni-

ano de Monte Carlo. Las técnicas de muestreo actualmente disponibles incluyen el HMC,

el Generalized Hamiltonian Monte Carlo o GHMC (Hamiltoniano Generalizado de Monte

Carlo), Metropolis Adjusted Langevin Algorithm o MALA (Algoritmo de Langevin Ajustado

de Metropolis), el Langevin Monte Carlo de segundo orden (L2MC) y el Mix & Match Hamil-

tonian Monte Carlo (Hamiltoniano Combinado de Monte Carlo), el método desarrollado en

esta tesis.

El paquete incluye ventajas como la implantación eficiente de hamiltonianos modifica-

dos, los precisos esquemas de integración de división multietapa (propuestos anteriormente

como novedosos), las herramientas de análisis compatibles con la serie de herramientas

CODA para diagnósticos MCMC, así como la interfaz para implementar modelos estadísti-

cos complejos. La popular distribución gaussiana multivariante de modelos estadísticos,

la regresión logística bayesiana (BLR) y la volatilidad estocástica (SV) se implementan en

HaiCS.

El método MMHMC ha sido exhaustivamente comprobado y comparado con técnicas de

medición tradicionales y avanzadas para la estadística computacional, tales como el Ran-

dom Walk Metropolis-Hastings (Recorrido Aleatorio de Metropolis-Hastings), HMC, GHMC,

MALA y Riemann Manifold Hamiltonian Monte Carlo o RMHMC (Hamiltoniano de Monte

Carlo con variedades de Riemann). El rendimiento de estos métodos ha sido examinado en

un conjunto de modelos estadísticos de referencia estándar.

Inspeccionamos la exploración del espacio utilizando una distribución ilustrativa en

forma de plátano. El MMHMC acepta más propuestas, obteniendo una mejor cobertura del

espacio en comparación con el HMC. Aunque emplea información de segundo orden en la

probabilidad a posteriori, el MMHMC no sigue su curvatura local con tanta evidencia como

lo hace el RMHMC.

Sistemáticamente las tasas de aceptación son más altas para el MMHMC que para otros

métodos para todos los experimentos.

Al tratarse de un método que genera muestras tanto correlativas como ponderadas, el

MMHMC requiere una métrica para la eficiencia de muestreo diferente a la utilizada común-

mente para el MCMC. Sugerimos una nueva métrica para la estimación ESS para muestras

tomadas mediante el MMHMC, que también puede utilizarse para cualquier método basado

en el muestreo por importancia MCMC.

Nuestra tesis demuestra que en términos de eficiencia de muestreo, los métodos MMHMC,
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HMC y GHMC actúan de forma comparable en caso de pequeños problemas dimensionales.

No obstante, en grandes problemas dimensionales, en comparación con los métodos HMC

y GHMC, el método MMHMC demuestra un rendimiento superior en términos de ESS nor-

malizado en tiempo más alto para una amplia gama de aplicaciones y dimensiones, así

como para la elección de parámetros de simulación. Permite utilizar tamaños más grandes

de paso sin disminuir la tasa de aceptación, mejorando a su vez el rendimiento en pasos

más largos. Las mejoras aumentan con la dimensión: para un problema gaussiano mul-

tivariante, el MMHMC muestra una mejora con respecto al HMC de hasta 40 veces; para

el modelo BLR es de hasta 4 veces. Esperamos mejoras incluso superiores en el caso de

problemas de grandes dimensiones, ya que los nuevos integradores diseñados específica-

mente para el MMHMC resultan especialmente adecuados para problemas de grandes di-

mensiones. Una ventaja adicional del MMHMC radica en que es menos sensible que el HMC

al elegir el número de pasos de integración. Los experimentos con modelos SV demuestran

claramente la superioridad del MMHMC y del RMHMC con respecto a los métodos HMC y

GHMC. El rendimiento de muestreo del MMHMC y del RMHMC es comparable para esta

cota de referencia. Sin embargo, en comparación con el RMHMC original, el MMHMC no

requiere ninguna derivada de orden superior ni inversión de la métrica, por lo que es menos

caro desde el punto de vista computacional. Este aspecto adquiere especial relevancia en

grandes problemas dimensionales con matriz hessiana densa. Además, las opciones para

incorporar integradores en el RMHMC son limitadas ya que se utilizan hamiltonianos que

no se pueden separar; el MMHMC, por su parte, permite el uso de los novedosos y eficientes

integradores numéricos.

Estructura de la tesis En primer lugar presentamos los motivos que nos han llevado a

desarrollar técnicas de muestreo eficientes en la estadística computacional y revisamos al-

gunos métodos básicos en el capítulo 1. En el capítulo 2 se detalla la metodología HMC

y se ofrece una perspectiva de los desarrollos posteriores llevados a cabo en la estadística

computacional y en las ciencias computacionales. En el capítulo 3 presentamos el nove-

doso método Hamiltoniano Combinado de Monte Carlo (MMHMC), junto con diferentes

estrategias que pueden utilizarse, entre las que se incluyen (i) nuevas formulaciones de

hamiltonianos modificados; (ii) novedosos integradores numéricos multietapa, como alter-

nativa al integrador de Verlet; (iii) diferentes estrategias para la inversión y actualización de

la cantidad de movimiento. En el capítulo 4 se diseñan varias extensiones para el MMHMC.

En particular, formulamos un algoritmo de temple paralelo para el muestreo multimodal

eficiente que utiliza el MMHMC como muestreador subyacente. Se propone también un al-

goritmo para la adaptación bayesiana de los parámetros del MMHMC. Asimismo, también

abordamos la estimación de la probabilidad marginal utilizando el MMHMC y formulamos

el muestreo de parámetros dependientes en el contexto del método MMHMC. En el capítulo

5 describimos el paquete de software desarrollado a lo largo de esta tesis, en el que se ha

implementado el novedoso MMHMC. Las pruebas y comparaciones del método MMHMC

con otras técnicas populares de muestreo se reflejan en el capítulo 6. El capítulo 7 resume

las contribuciones de esta tesis y describe las futuras vías de investigación que pueden dar
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continuidad a la presente. Finalmente, en el Anexo se incluye una lista de contribuciones

realizadas al desarrollo de modelos y algoritmos que he confeccionado durante mi doctor-

ado.
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1
Introduction

1.1 Motivation: Learning from data

The proliferation of innovations across various industries and their incorporation in our

daily lives, together with advancements in technology and communication have enlight-

ened a whole new arena for the buzzing business environment of the 21st century. What

once was a computational system accessible only to scientists at prestigious universities and

laboratories (e.g. in Pennsylvania, Princeton, Los Alamos, Manchester) or corporations (e.g.

IBM, RAND)1 is nowadays around 240 million2 pieces of personal computers sold world-

wide in 2015 only; what once was a status symbol of super-rich is nowadays around 70

million3 cars produced in 2015 and what once was military-based communication system

is nowadays the Internet with 3.5 billion4 people able to connect to it.

These trends did not only affect improvement in the quality of life, but they have sig-

nificantly influenced exponential accumulation of both scientific and commercial data. The

data that surround us come from sources such as sensors (temperature, pressure), mobile

devices (location, activity tracking), financial activity (transactions, stock market fluctua-

tions), market scans (user preferences), Internet searches and many others. Fields such

as aerospace, manufacturing, retail, pharmaceuticals, insurance and finance, public sector

administration and academia have a common trait: they are all in the business of accumu-

lating and analyzing the data.

Although the measuring techniques for capturing data have become more accurate,

the wealth of data does come with uncertainty, arising for example from incompleteness

1http://www.computerhistory.org/timeline/computers/
2http://www.statisticbrain.com/computer-sales-statistics/
3http://www.statisticbrain.com/cars-produced-in-the-world/
4http://www.statista.com/statistics/273018/number-of-internet-users-worldwide/

1

http://www. computerhistory.org/timeline/computers/
http://www.statisticbrain.com/computer-sales-statistics/
http://www.statisticbrain.com/cars-produced-in-the-world/
http://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
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due to a frequency of measurements, inaccuracy of devices or even impossibility to ob-

tain measurements (e.g. clinical trials). Therefore, mining the valuable information from

the overwhelming gigabytes of observed data and translating those findings into decision-

making has become the imperative to secure competitive efficiency, desired profits and

innovative prestige or advancement in science. Consequently, the new multi-disciplinary

field of data science emerged, with the main focus to deal with uncertain data and the

underlying processes. This core focus is equally applicable to problems in physics, genet-

ics, econometrics, statistics, robotics, signal processing, geophysical and space exploration,

(bio)engineering, astronomy, weather forecast, clinical trials, personalized medicine, risk

prediction/management, uncertainty quantification, etc. which led to data scientists being

in high demand across the broad spectrum of industries (Davenport and Patil, 2012).

With the main objective to learn from the data (meaning to extract information from the

observations to learn about the underlying process that generated the data, and use that

knowledge to make predictions for yet unobserved scenarios) experts are faced with many

challenges.

The difficulties in modern data analysis lay in the fact that complex models are needed

for data representation, and more and more sophisticated and robust algorithms that scale

well both with those kinds of models and the size of the data are necessary to be developed.

A natural way of dealing with the uncertain world of data is by employing statistical model-
ing and algorithms, which provide insights through the probabilistic approach. Those tools

characterize uncertainty, both in the observed data and proposed data model, in a mathe-

matically consistent and rigorous manner, but also allow us to quantify the uncertainty in

our predictions. In particular, if we aim to infer parameters of a model, with this approach

we can assess the variance and covariance structure of the estimated values.

As Green et al. (2015) put it

We must retain a sense of the stochastic elements in data collection, data anal-

ysis, and inference, recognising uncertainty in data and models, to preserve the

inductive strength of data science–seeing beyond the data we have to what it

might have been, what it be next time, and where it came from.

Mathematically, the problem of learning about the data-generating process comes down

to inferring unobserved variables given data. This problem is used under different termi-

nology across fields: inverse problem, data assimilation, data mining, calibration, system

identification, parameter estimation, statistical inference (frequentist or Bayesian), etc. A

true data-generating process (model) is assumed to exist. In practice, we consider a small

set of models which adequately approximate the true model, and do not necessarily include

the true model. Inference is then the identification of the set of models in agreement with

a particular set of observed data. Although the classical (frequentist) inference has been

used extensively, in this thesis we adopt the Bayesian approach.
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1.1.1 Bayesian statistics

Bayesian inference is a powerful methodology for dealing with complex statistical models

used in a wide range of problems. It provides a consistent and principled way of incor-

porating uncertainties in observations, prior information or beliefs, and assumptions about

the data model.

The groundwork for the modern Bayesian statistics had been set as early as in the 18th

and 19th century by Bayes and Laplace. The cornerstone of the Bayesian methodology is

the Bayes’ theorem, named after Reverend Thomas Bayes, due to his essay (Bayes and Price,

1763)5 on how humans can learn from experience by updating their beliefs as more data

become available. It was Richard Price who discovered Bayes’ unpublished work, recog-

nized its importance and contributed to the publication. Laplace independently reinvented

Bayes’ principle (Laplace, 1820) and made probability theory applicable to many scientific

and practical problems. Despite its early discovery, the Bayesian methodology was on hold

almost for two centuries. Its uprising started with increasing computing power and de-

velopment of the Markov chain Monte Carlo methods. Nowadays, when one can perform

Bayesian data analysis on laptops, this approach has become common across many applied

fields.

The Bayesian approach includes the knowledge before observing data through prior
distributions and incorporates the observations through a likelihood to calculate posterior
and predictive probabilities of different outcomes as refinements of our beliefs in light of

those newly observed data. More concretely, for a considered model m, the Bayes’ theorem

computes the posterior (conditional) distribution of the (hidden) model parameters θ =

(θ1, . . . , θD) given the (observed) data y = (y1, . . . , yK)

p(θ|y,m)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(y|θ,m)

Prior︷ ︸︸ ︷
p(θ|m)

p(y|m)︸ ︷︷ ︸
Marginal Likelihood

. (1.1)

The posterior distribution expresses the variability or uncertainty within model parame-

ters after taking both the prior belief and observations into account. The likelihood (or

likelihood function) of the data given model parameters accounts for errors in e.g. mea-

surements and/or underlying models. Usually, it is assumed that errors are independent

and identically distributed (i.i.d.) and therefore the likelihood appears as a product over

all data points. The likelihood is a function (not a distribution) in which all variables are

related in a full statistical model. The prior distribution incorporates prior beliefs and quan-

tifies uncertainty about each model parameter. It is chosen before seeing the observed data

and generally, may be categorized as informative or uninformative. The marginal likeli-
hood normalizes the posterior distribution, ensuring it is a proper probability distribution

and integrates to one. It is the probability of the data given the model and is obtained by

5Published posthumously by Price.
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integrating over the parameter space

p(y|m) =

∫
p(y|θ,m)p(θ|m)dθ. (1.2)

For most statistical models of interest, the marginal likelihood involves an intractable inte-

gration problem, and therefore, it must be approximated.

Usually, one wishes to understand the uncertainty associated with each statistical model,

or to use this uncertainty for estimation of quantities of interest or prediction of unobserved

scenarios, or eventually, to discriminate between the proposed models. Bayesian inference

is used for one or more of the following tasks.

Marginalization Given joint posterior of parameters (θ,φ), where φ can be a set of nui-

sance parameters included in the model, we may wish to marginalize parameters we are

not interested in

p(θ|y) =

∫
p(θ,φ|y)dφ.

Prediction The likelihood of the predicted data y′ can be evaluated using the posterior
predictive distribution

p(y′|y) =

∫
p(y′|θ)p(θ|y)dθ,

where the integral is taken over the posterior distribution. Data y′ can play the role of any

potential new data or an attempt to replicate the observed data y and make a comparison

(Gelman et al., 2003). This task can be generalized as a calculation of the expected value

of a function f with respect to the posterior distribution given data y

E[f ] =

∫
f(θ)p(θ|y)dθ.

Model selection The task of selecting a model which explains data better than another

model is performed by evaluating Bayes factor, a Bayesian alternative to hypothesis testing

in frequentist statistics. Bayes factor is the ratio of model evidences for two competing

models m1 and m2 given a particular dataset y (Kass and Raftery, 1995)

p(y|m1)

p(y|m2)
.

The terms in Bayes factor are marginal likelihoods (1.2), also known as model evidence or

normalizing constant (of a posterior distribution function).

Conclusions from Bayes factor of the model m1 over model m2 (as introduced by Jef-

freys (1961)), given in terms of strength of evidence in favor of the model m1, are summa-

rized in Table 1.1.
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Bayes Factor Strength of Evidence form1

<1 negative (supportsm2)
1 to 3 barely worth mentioning

3 to 10 substantial
10 to 30 strong

30 to 100 very strong
>100 decisive

TABLE 1.1: Interpretation of Bayes factor.

A common issue in these three tasks of Bayesian inference is the computation of high-

dimensional and usually analytically intractable integrals. Our focus now moves to com-

putational statistics, an active area in which efficient techniques for dealing with the chal-

lenges related to these tasks are being developed. For more details on Bayesian inference

we refer the reader to e.g. Bernardo and Smith (1994) and Gelman et al. (2003) and the

references therein.

1.2 Computational statistics

The core of a Bayesian inference procedure is the calculation of integrals, appearing ei-

ther in evaluating an expected value over some posterior distribution or in determining

the marginal likelihood of a distribution. For most problems of interest, these integrals are

high dimensional and intractable and therefore, efficient techniques are required. In gen-

eral, these integrals can be treated either using deterministic or stochastic (or Monte Carlo)

methods. The former ones include techniques such as Laplace Approximation, Variational

Bayes, etc. and the latter ones e.g. Approximate Bayesian Computation, Rejection Sam-

pling, Importance Sampling, Markov chain Monte Carlo methods. We focus on the Monte

Carlo methods that rely on statistical sampling – drawing samples from the desired distri-

bution to evaluate integrals by estimators that converge to true solutions. Some problems

may involve complex distributions that are extremely difficult to sample from, and thus,

sophisticated methods are needed.

For an excellent review and significance of different methods of Bayesian computation

in the era of data science, we refer the reader to Green et al. (2015).

1.2.1 Monte Carlo

Building the first electronic general-purpose computer ENIAC in the 1940s caused a rebirth

of experimental mathematics and in particular, of statistical sampling through the use of

the Monte Carlo (MC) method. Metropolis and Ulam (1949) published the MC method for

the first time although Enrico Fermi invented it and used it in the 1930s independently but

never published it (Metropolis, 1987).
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Monte Carlo methods represent a large class of algorithms that repeatedly draw random

samples to estimate an integral of interest by a sample average estimator. More concretely,

we aim at generating samples from the desired distribution π, or in general, computing an

expected value (or some other moment) of a function f with respect to the distribution π

I =

∫
f(θ)π(θ)dθ. (1.3)

We assume π is some posterior distribution, though the same approach applies to any dis-

tribution. The basic idea of the conventional Monte Carlo method is to draw a set of N i.i.d.

random samples {θn}Nn=1 from the desired distribution π(θ) and obtain an unbiased Monte

Carlo estimate of the integral (1.3) as

ÎN =
1

N

N∑
n=1

f(θn). (1.4)

By the Strong Law of Large Numbers (SLLN), the estimator ÎN converges almost surely to I

as the number of samples N tends to infinity, i.e. P(ÎN = I) = 1, as N →∞. If the variance

of f(θ), σ2
f , is finite, then the Central Limit Theorem states that the error

√
N(ÎN − I)

converges in distribution to a N (0, σ2
f ) random variable. Therefore, the variance of the

Monte Carlo estimator ÎN is

Var(ÎN ) =
σ2
f

N
.

In most of the problems, however, it is not possible to draw independent samples di-

rectly from the desired distribution in order to find the Monte Carlo estimate (1.4). Many

techniques have been developed over the past decades (see e.g. Robert and Casella, 2005).

In this thesis, we focus on the methodology which combines several advanced Monte Carlo

based techniques in a rigorous way. Among them are importance sampling and Markov

chain Monte Carlo methods for which we give more details in the following sections.

1.2.2 Importance Sampling

Rather than sampling directly from the desired distribution π, the importance sampling

method (Kahn and Marshall, 1953) generates samples from a different but easy-to-sample-

from distribution %. The samples then need to be reweighted to account for differences

in probabilities. Both the target and importance distribution may be known only up to

normalizing constants. Let Z and Z% be the normalizing constants of π and %, respectively,

such that π = p/Z and % = q/Z%. Using a few simple tricks, one can prove that the expected

value of a function f with respect to the distribution π can be obtained as an expectation

with respect to the distribution %, as follows

Eπ[f ] = I =

∫
f(θ)

p(θ)

Z
dθ =

∫
f(θ)

p(θ)

Z
dθ∫ p(θ)

Z
dθ

=

Z

Z%

∫
f(θ)

p(θ)

Z
dθ

Z

Z%

∫ p(θ)

Z
dθ
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=

∫
f(θ)

p(θ)

q(θ)

q(θ)

Z%
dθ

∫ p(θ)

q(θ)

q(θ)

Z%
dθ

=
E%[wf ]

E%[w]
, (1.5)

where

w(θ) =
p(θ)

q(θ)

is the importance weight function and accounts for differences in the desired probability π

and probability % used for generating a sample.

The Monte Carlo estimate of I follows as

ÎN =

∑N
n=1w(θn)f(θn)∑N

n=1w(θn)
, θn ∼ %(θ) (1.6)

and SLLN holds, that is ÎN
a.s.−−−−→

N→∞
I.

Efficiency of an importance sampler depends on the choice of the importance function

%(θ), which should satisfy the following:

(i) %(θ) is a fairly good approximation of the desired distribution. In particular, %(θ) > 0

whenever π(θ) > 0.

(ii) It is easy to simulate samples from %(θ).

Problems with importance samplers may occur e.g. when a small number of weights are

much larger than others, which means that there are effectively only few samples gener-

ated. Also, high variability in weights might increase the variance of ÎN , therefore resulting

in an inefficient Monte Carlo estimator of I.

Importance samplers especially suffer from severe limitations in high dimensional spaces.

For such problems it is difficult, if not impossible, to find a distribution % that fulfills (i) and

(ii) and we consider more sophisticated methods that introduce correlation among samples

through Markov chains.

1.2.3 Markov chain Monte Carlo

A widely used alternative to generating independent samples from the desired distribution

is to draw random samples by evolving a Markov chain on parameter space. This approach

was developed starting from a statistical mechanics perspective, and it was introduced by

Metropolis et al. (1953). The resulting Markov chain Monte Carlo (MCMC) method is a

commonly used sampling technique for Bayesian computation. Actually, Bayesian uprising

took place when Geman and Geman (1984) and Gelfand and Smith (1990) adopted MCMC

and also due to increased computing power. Thanks to this powerful methodology, we

can now assess the uncertainties in a Bayesian analysis through a numerically calculated

posterior distribution. MCMC provides a means to simulate from a complex distribution π

in high-dimensional problems, without knowing its normalizing constant.
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The idea behind MCMC is to construct a Markov chain whose invariant distribution is

the target distribution π and simulate the chain for many steps. In the long run, the states

of the chain follow the target distribution.

In a Markov chain, the probability of introducing a new state in the chain depends on

the current state only and not on the past. In particular, a new state of the chain θn+1 is

generated from a transition density that only depends on the current state θn

θn+1 ∼ K(θn+1|θn).

A distribution π is called the invariant (stationary) distribution for the transition kernel K

if for all points θ′

π(θ′) =

∫
K(θ′|θ)π(θ)dθ. (1.7)

In other words, the transition kernel K preserves the invariant distribution π.

The properly designed MCMC method samples the target distribution rigorously, pro-

vided that the Markov chain possesses some properties and that the number of states in the

chain approaches infinity.

If a Markov chain is irreducible, meaning that all states can be reached with positive

probability in a finite number of steps, and aperiodic, meaning that return to a state can

occur at irregular time, then the chain has a unique invariant distribution π and it will

converge to π for n → ∞, independently of the initial distribution. Moreover, as a conse-

quence of the SLLN, the chain is ergodic and time averages on a single realization converge

to ensemble averages for n→∞.

The states from the beginning of the chain are highly dependent on the initial state,

due to the Markovian nature of the MCMC algorithm. Therefore, those samples are usually

removed as warm-up.

A very important condition on a Markov chain is the detailed balance condition

π(θ)K(θ′|θ) = π(θ′)K(θ|θ′), ∀θ,θ′. (1.8)

If the detailed balance (DB) condition holds, the chain is called reversible, as the proba-

bilities of the chain going from θ to θ′ and from θ′ to θ are equal for all θ and θ′. DB

is important because it implies the invariant distribution condition (1.7), which follows

straightforwardly by integrating both sides of the equality of (1.8). It is a sufficient but not

necessary condition for π to be the desired invariant distribution, i.e. a chain can have an

invariant distribution although not satisfying detailed balance. A way to design an MCMC

algorithm with invariant distribution π is to ensure that the DB condition is satisfied, which

is easier than proving the invariance condition.

Another role of the DB condition in MCMC lays in the fact that if the chain is reversible,

irreducible and all states are drawn from the invariant distribution, then the Central Limit

Theorem holds for long time averages and thus the variance of the MC estimator can be

estimated (Geyer, 1992).
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Metropolis-Hastings algorithm

Metropolis-Hastings was the first MCMC algorithm, initially designed by Metropolis et

al. (1953) for simulation of a liquid in equilibrium with its gas phase and later extended to

the more general case by Hastings (1970). The method was formulated in the year 1953,

from the statistical mechanics perspective, but the mainstream community of statisticians

adopted it significantly later. It was Geman and Geman (1984) who made use of it in

Bayesian inference problems and sampling from posterior distributions applied to computer

vision. In the year 2000, Metropolis-Hastings was ranked as one of the “10 algorithms with

the greatest influence on the development and practice of science and engineering in the

20th century” (Dongarra and Sullivan, 2000).

The method is designed in a way to generate states that make a large contribution to the

integral of interest. At each iteration, a parameter vector is sampled from a proposal dis-

tribution, which depends on the current state, and either accepted or rejected according to

the probability of the new sample relative to the current one. The algorithm is summarized

below.

Algorithm 1 Metropolis-Hastings

1: Input: N : number of Monte Carlo samples
q(θ′|θ): proposal distribution

2: Initialize θ0

3: for n = 1, . . . , N do
4: θ = θn−1

5: Generate a candidate state from the proposal distribution

θ′ ∼ q(θ′|θ)

6: Calculate acceptance probability

α = min

(
1,
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

)
7: Metropolis test

Draw u ∼ U(0, 1)
if u < α
θn = θ′ {accept}

else
θn = θ {reject}

end if
8: end for

The acceptance probability α can also be seen as a ratio of importance weights, of the

target and proposal distribution of the current and proposed state. As mentioned above,

MCMC overcomes the need of knowing the normalizing constant of the target distribution,

9
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since it cancels out in the acceptance probability. MCMC draws samples from the target π

by calculating πZ, where Z is the (unknown) normalizing constant.

In the Metropolis algorithm (Metropolis et al., 1953), the proposal distribution q is

symmetric, which simplifies the acceptance criteria. Metropolis method is also referred to as

a Random Walk Metropolis-Hastings method, and it is widely used because of its simplicity.

Nevertheless, some problems deteriorate the efficiency of this algorithm. For example,

due to the random walk nature, the Metropolis algorithm is slow in sampling from target

distributions, i.e. the chain can be stuck in a local maximum of a distribution with multiple

modes, and the convergence rate to the target distribution can be slow. It may require too

many iterations to explore the state space and the samples generated are usually highly

correlated. The method becomes even more inefficient when applied to high-dimensional

problems and with strong correlations among parameters.

In general, the following issues affect the efficiency of an MCMC sampler: (i) con-
vergence to the target distribution; (ii) mixing properties, i.e. level of correlation among

samples; (iii) computational cost and (iv) tuning mechanisms.

A very active research is being conducted on the development of efficient MCMC meth-

ods for sampling from distributions arising from high dimensional problems and complex

statistical models. Many different MCMC approaches to improve (i)-(iv) have been pro-

posed in the literature in the last decades. Excellent reviews can be found e.g. in (Andrieu

et al., 2003; Robert and Casella, 2005; Liu, 2008; Brooks et al., 2011). One way to over-

come problems encountered with the Metropolis-Hastings algorithm is to sample from an

augmented distribution π(θ,φ), where φ is an auxiliary variable, using so-called auxiliary
variable samplers. We now shift our focus towards a very successful and popular method

from this class, namely the Hamiltonian Monte Carlo methodology, which explores gradient

information of the target distribution.

1.2.4 Hamiltonian Monte Carlo

As is the case with MCMC, the Hamiltonian Monte Carlo (HMC) method originates from

statistical physics, where it is known as Hybrid Monte Carlo. It was initially developed by

Duane, Kennedy, Pendleton, and Roweth (1987), but it was Neal (1994) who launched the

application of HMC for statistical problems.

HMC is an MCMC algorithm that produces a chain whose invariant distribution is an

augmented target distribution

π(θ,p) = π(θ)p(p) ∝ exp(−H(θ,p)),

with Hamiltonian function

H(θ,p) = U(θ) +
1

2
pTM−1p,

where

U(θ) = − log π(θ) + const

10
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is the potential function and p is an auxiliary “momenta” variable, independent on param-

eters θ and drawn at every Monte Carlo iteration from a zero-mean Gaussian distribution

with a covariance matrix M . The resulting chain incorporates the gradient information of

the target π(θ) and can follow this gradient over considerable distances. This is achieved

by means of generating Hamiltonian trajectories (integrating Hamiltonian equations of mo-

tion), which are rejected or accepted based on the Metropolis test. The (marginal) distri-

bution of parameters θ, π(θ), is then obtained from π(θ,p) by simply marginalizing out

momenta variables.

The potential efficacy of this approach lays in the fact that the value of the Hamiltonian

function, and so the value of π(θ,p), does change along a Hamiltonian trajectory only due

to the inaccuracies in numerical integration of Hamiltonian equations, which leads to a

likely acceptance of the proposed state with a possibly quite different value of π(θ). As a

result, HMC suppresses the random walk behavior from traditional Monte Carlo techniques

and samples high dimensional and complex distributions more efficiently than conventional

MCMC.

We provide a thorough overview of the HMC methodology in Chapter 2.

1.3 Summary

Both academia and industry have been witnessing exponential accumulation of data, which,

if carefully analyzed, potentially can provide valuable insights about the underlying pro-

cesses. The main feature of the resulting problems is uncertainty, which appears in many

forms, either in data or assumed data models, and causes great challenges. Therefore, we

need more complex models and advanced analysis tools to deal with the size and complex-

ity of data.

The Bayesian approach offers a rigorous and consistent manner of dealing with uncer-

tainty and provides a means of quantifying the uncertainty in our predictions. It also allows

us to objectively discriminate between competing model hypotheses, through the evalua-

tion of Bayes factors. However, the application of the Bayesian framework to complex

problems runs into a computational bottleneck that needs to be addressed with efficient

inference methods. The challenges arise in the e.g. evaluation of intractable quantities

or large-scale inverse problems linked to computationally demanding forward problems,

and especially in high dimensional settings. Theoretical and algorithmic developments in

computational statistics have been leading to the possibility of undertaking more complex

applications by scientists and practitioners, but sampling in high dimensional problems and

complex distributions is still challenging.

Various methods are being used to address these difficulties practically. Deterministic

methods for example, aim to find analytically tractable approximations of distributions of

interest. We are interested however in Monte Carlo (stochastic) methods, which can sam-

ple from the desired distribution, are exact in the limit of infinite number of samples, and

can achieve an arbitrary level of accuracy by drawing as many samples as one requires.
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Bayesian statistics have been revolutionized by ever-growing computational capacities and

development of Markov chain Monte Carlo (MCMC) techniques. In this thesis, we focus on

an advanced MCMC methodology, namely Hamiltonian Monte Carlo (HMC), which arose

as a good candidate for dealing with high-dimensional and complex problems. Interest-

ingly, both MCMC and HMC were originally developed in statistical mechanics; however,

they made a significant impact on the statistical community almost 35 and 10 years later,

respectively.

Our objective in this thesis is to improve the HMC method further by developing more

efficient methodologies for rigorous enhanced sampling in complex problems and to ana-

lyze their performance.

We start with providing details and an outlook on the HMC methodology in Chapter

2. In Chapter 3 we present the novel Mix & Match Hamiltonian Monte Carlo (MMHMC)

method and a number of different strategies that can be employed within. Several exten-

sions to MMHMC are designed in Chapter 4. In Chapter 5 we describe the software package

developed along this thesis in which the novel MMHMC has been implemented. Testing and

comparison of MMHMC with popular sampling techniques is provided in Chapter 6. Finally,

Chapter 7 concludes this thesis and outlines some directions for further research.

12



2
Hamiltonian Monte Carlo Methods

2.1 Background essentials

We begin with reviewing the basic concepts and main ingredients of the Hamiltonian Monte

Carlo method. These include Hamiltonian dynamics, numerical integration of Hamilton’s

equations of motion and the framework of modified Hamiltonians. Further details can be

found in e.g. (Sanz-Serna and Calvo, 1994; Hairer et al., 2006; Leimkuhler and Reich,

2005).

2.1.1 Hamiltonian dynamics

We consider a system of D particles in which the state (x,p) ∈ Ω at time t ∈ T ⊆ R+ is

determined by a position vector x = (x1, . . . , xD) and a momentum vector p = (p1, . . . , pD),

where Ω ⊆ R2D is called the phase space. The system is characterized by a real valued

Hamiltonian function H = H(x,p, t), which is interpreted as the total energy of the system.

The associated Hamiltonian dynamics is governed by the system of ordinary differential

equations

dx

dt
= Hp(x,p, t)

dp

dt
= −Hx(x,p, t), (2.1)

where Hp and Hx are partial derivatives of the Hamiltonian with respect to momentum

and position, respectively. We focus on a class of separable Hamiltonians, defined in Ω as

H(x,p) = U(x) +K(p), (2.2)

13



2. HAMILTONIAN MONTE CARLO METHODS

where U(x) is interpreted as the potential energy and K(p) = 1
2pTM−1p is interpreted

as the kinetic energy with M being a symmetric positive definite matrix (mass matrix of

position variables). This is known as an autonomous system, meaning that the Hamiltonian

remains constant over time. Equations (2.1) then read as

dx

dt
= M−1p

dp

dt
= −Ux(x). (2.3)

Throughout this chapter the notation z = (x,p) will also be used. The system (2.1) can

then be rewritten as
dz

dt
= JHz(z), J =

[
0 I

−I 0

]
, (2.4)

where I is the identity matrix of dimension D. An alternative formulation,

dz

dt
= {Id, H} (z) ≡ LH(z), (2.5)

where Id denotes the identity map, uses the definition of the Poisson bracket and Lie deriva-

tive, which will be used later in this thesis.

The Poisson bracket of operators F,G : R2D → R is defined as

{F,G}(z) = Fz(z)TJGz(z). (2.6)

For functions F,G,H : R2D → R, and scalars α, β it holds

{F, αG+ βH} = α{F,G}+ β{F,H}

and

{F,G} = −{G,F}.

The last identity implies that {F, F} = 0.

The Lie derivative is defined in terms of Poisson bracket as

LFG = {G,F}.

If the structure matrix J is defined as in (2.4), the Hamiltonian system is called canoni-
cal, whereas different generalizations of J correspond to non-canonical systems.

The solution flow associated to this system Φt : Ω→ Ω, defined as

z(t) = Φt(z(0)),

has some key properties that form the basis of HMC as a valid MCMC method.

14



2.1 BACKGROUND ESSENTIALS

Conservation of the Hamiltonian For systems given by the equation (2.4), Hamiltonian

is a constant quantity along the solutions, i.e.

H ◦ Φt = H.

Change in the potential energy is balanced by the change in kinetic energy.

Relevance to HMC: If proposals in the Markov chain are obtained using the solution

flow Φt, the probability of all states is equal, and thus, the acceptance probability in

the Metropolis test is equal to one. In practice, however, due to numerical discretiza-

tion, this is not the case as the Hamiltonian is only approximately conserved.

Conservation of volume A volume element dz is preserved under Φt, i.e.

dz = dΦt(z).

Alternatively, if Φ′t ∈ Ω×Ω is the Jacobian of the flow Φt then

det(Φ′t) = 1 for each t.

This property is known as Liouville’s Theorem (Arnold, 1989) and is equivalent to the

divergence of the vector field defined by the system (2.4) being equal to zero. In the

case D = 1, conservation of volume corresponds to conservation of area in the (x, p)

plane.

Relevance to HMC: In general, one should account for the change in volume intro-

duced by the mapping for proposing new states in an MCMC method and this is done

through the calculation of det(Φ′t). A solid formulation and analysis of the technique

are given by Fang et al. (2014). If Hamiltonian dynamics is used for proposals, there

is no need to consider volume change.

Symplecticness Hamiltonian flow map Φt is a symplectic map, that is, satisfies the condi-

tion

Φ′t(z)TJ−1Φ′t(z) = J−1, for every z ∈ Ω.

Symplecticness implies certain conservation laws, in particular, the conservation of

volume.

Relevance to HMC: Numerical methods that preserve the symplectic structure are good

candidates for HMC because of their good numerical stability properties and implied

preservation of volume.

Reversibility For a map F(x,p) = (x,−p) in phase space, which flips the sign of momenta,

the flow Φt is reversible. This can be written as

Φt ◦ F = (Φt ◦ F)−1

15



2. HAMILTONIAN MONTE CARLO METHODS

or

Φ−t = F ◦ Φt ◦ F ,

since map F is an involution, i.e. F◦F = Id. This means that the backward evolution

is equivalent to flipping the initial momenta, evolving in time, and flipping the final

momenta.

Also, the Hamiltonian is an even function of momenta, i.e.

H ◦ F = H.

Relevance to HMC: Reversibility of the flow that proposes states (i.e. Markov transi-

tions) in an MCMC method is essential for proving the detailed balance condition,

which ensures that the Markov chain leaves the target distribution invariant.

2.1.2 Numerical integration

In practice, the analytical expression of the flow is rarely available. Hence, the continuous

Hamiltonian dynamics is approximated using a numerical scheme with a small time step

h. This scheme gives rise to a map Ψh that approximates the flow Φt. We focus here on

one-step numerical methods, which iteratively evolve the approximate solution zn ≈ z(nh)

using only the previously computed solution, i.e. zn+1 = Ψh(zn). The approximate solution

at time τ = Lh is obtained by applying L times the map Ψh

Φτ (z) ≈ Ψτ (z) = Ψh,L(z) = Ψh ◦ · · · ◦Ψh︸ ︷︷ ︸
L times

(z).

These numerical schemes are also Ω → Ω mappings, and one can apply the same

analysis as for flow maps, which leads to the characterization of some properties that are

desirable for HMC methods.

Commonly, the integrators of choice are reversible and symplectic, i.e. preserve the

symplectic structure of the Hamiltonian dynamics. Analogously to Hamiltonian flows, the

numerical integrator Ψh is symplectic if[
∂

∂z
Ψh(z)

]T
J−1

[
∂

∂z
Ψh(z)

]
= J−1.

Symplecticness of the map Ψh implies preservation of volume, but Ψh does not exactly con-

serve energy due to discretization and thus, introduces an integration error. The difference

between the approximated and true solution after one step of integration is called the local
error and has an order of O(hp+1) for a p-order numerical method,

Ψh(z) = Φh(z) +O(hp+1).
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The global error is an error accumulated after integrating over a fixed time interval τ using

L steps. It follows

Ψτ =
(

Φh +O(hp+1)
)L

= ΦLh + (Lh)O(hp) = Φτ +O(hp).

Hence, for a method of order p the global integration error is O(hp). A numerical integrator

is said to be stable if all trajectories remain bounded as time goes to infinity. This means that

using unstable numerical integrators within the HMC method might result in substantial

differences in Hamiltonians after integration and low acceptance rates.

From now on, we focus on second-order integrators. The most popular of them is the

Verlet method, also known as Verlet/Störmer or leapfrog method (Verlet, 1967). The Verlet

integrator is a numerical approximation to the dynamics (2.3) of separable Hamiltonian

systems, defined by the fully explicit three-steps procedure

ph
2

= p0 −
h

2
Ux(x0)

xh = x0 + hM−1ph
2

(2.7)

ph = ph
2
− h

2
Ux(xh).

More sophisticated symplectic methods exist, but the Verlet method is commonly used in

both molecular and statistical simulations, due to its stability and preservation properties

and easy implementation.

In general, a symplectic scheme can be constructed using the simple but useful tech-

nique based on splitting Hamiltonian H as

H = H1 +H2 + · · ·+Hk.

The corresponding Hamiltonian vector fields

dz

dt
= JH i

z(z), i = 1, . . . , k

have exact solution flows ϕH
i

t , i = 1, . . . , k, that can be calculated explicitly. From (2.5) it

can be seen that each flow is an exponential operator defined on a Lie derivative

z(t) = ϕH
i

t (z(0)) = etLHiz(0), i = 1, . . . , k.

The composition of the flows ϕH
i

t then can be used for the construction of different

numerical methods for integration of (2.4). As ϕH
i

t are exact Hamiltonian flows and thus,

symplectic, their composition is symplectic. Each flow is also reversible, and if a symmetric

composition is used, the integrator is time-reversible. Moreover, it can be proved that a

symmetric method is of even order.
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2. HAMILTONIAN MONTE CARLO METHODS

Let us come back to the Verlet integrator (2.7) and Hamiltonian (2.2), which is defined

as a composition of kinetic and potential term, i.e.

H(x,p) = K(p) + U(x) ≡ A+B. (2.8)

The exact flows are

ϕAh (x,p) =

[
x + hM−1p

p

]
and

ϕBh (x,p) =

[
x

p− hUx(x)

]
.

The Verlet integrator (2.7) can now be regarded as a symmetric composition

Ψh = ϕBh/2 ◦ ϕ
A
h ◦ ϕBh/2

associated to Strang’s splitting

H1 =
1

2
B, H2 = A, H3 =

1

2
B.

Analogously, we can construct the position variant of the Verlet integrator

Ψh = ϕAh/2 ◦ ϕ
B
h ◦ ϕAh/2.

The Verlet integrator is time reversible due to the symmetry in the composition and re-

versibility of the flows ϕAh and ϕBh .

If the dynamics is integrated for L steps using the Verlet integrator Ψh,L, the conserva-

tion of Hamiltonian is violated with error

H(zn) = H(z0) +O(h2),

but the modified Hamiltonian H̃ is conserved as discussed below..

2.1.3 Modified Hamiltonians

For a discrete solution to dz/dt = f(z), given by a p-order numerical method Ψh there exist

the modified equations
dz

dt
= f̃(z) (2.9)

that are exactly satisfied, i.e. Ψh(z) = Φh,f̃ (z). Modified equations are defined by an asymp-

totic expansion in powers of the discretization parameter as

f̃ = f + hp+1fp+1 + hp+2fp+2 + . . . , (2.10)
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where vector fields fj can be determined by expanding the exact flow Φh,f̃ and the numer-

ical integrator Ψh as Taylor series in terms of h and matching corresponding terms in the

two expansions. The asymptotic expansion (2.10) does not converge in general, except for

appropriate integrators applied to linear differential equations.

Modified equations (or backward error) analysis leads to a modified (or shadow) Hamil-
tonian

H̃ = H + hpHp+1 + hp+1Hp+2 + . . .

that is conserved nearly exactly by a symplectic method Ψh, i.e.

|H̃(Ψh(z))− H̃(z)| ≤ c1he−
c2
h , for some c1, c2 ∈ R. (2.11)

For a p-order symplectic method the difference between the true and modified Hamiltonian

is

H(z)− H̃(z) = O(hp). (2.12)

It can be proved that the modified differential equations of the system (2.4) are also

Hamiltonian for some modified Hamiltonian H̃ if and only if the integration method is

symplectic (Sanz-Serna and Calvo, 1994). On the contrary, non-symplectic integrators, for

which the modified equations are not Hamiltonian, will not preserve Hamiltonian proper-

ties of the system. It follows that the equations (2.9) can be written in terms of a modified

Hamiltonian as
dz

dt
= JH̃z(z).

In practice, one is interested in a k-order modified Hamiltonian, defined as a truncation
of a modified Hamiltonian H̃ up to hk−1 terms

H̃ [k] = H + hpHp+1 + · · ·+ hk−1Hk. (2.13)

It can be proved that for a reversible integrator, the modified Hamiltonian has an expansion

in even powers of h. This implies that e.g. for a second-order integrator the truncated

modified Hamiltonian is of order k ≥ 4. Clearly,

H̃ [k](z) = H̃(z) +O(hk)

and hence, a symplectic method Ψh preserves the truncated Hamiltonian up to order hk,

i.e.

H̃ [k](Ψh(z)) = H̃ [k](z) +O(hk).

Precisely this property of modified Hamiltonians, i.e. better conservation with symplectic

integrators versus true Hamiltonian, will be used in HMC methodologies for improving

acceptance rates.
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2. HAMILTONIAN MONTE CARLO METHODS

The construction of a modified Hamiltonian is always defined by choice of the integrator.

In case of the Verlet integrator, we first write it down using exponential notation as

Ψh(z) = ϕBh/2 ◦ ϕ
A
h ◦ ϕBh/2(z) = e(h/2)LBehLAe(h/2)LBz = ehLH̃z.

The corresponding modified Hamiltonian can now be determined by multiple application of

the Baker-Campbell-Hausdorff (BCH) formula (Sanz-Serna and Calvo, 1994) on Lie deriva-

tives, obtaining

H̃ = H +
h2

24

(
2{A, {A,B}} − {B, {B,A}}

)
+ . . .

Modified Hamiltonians for more general composition methods might be obtained in the

same fashion, or alternatively, following the approach of Murua and Sanz-Serna (1999).

2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) method is a popular MCMC technique for sampling of

high dimensional and complex systems. It combines deterministic with stochastic appro-

aches, i.e. Hamiltonian dynamics with Metropolis Monte Carlo sampling.

The strength of HMC as a sampling technique comes from its efficient use of gradient

information to reduce random walk behavior of conventional Metropolis Monte Carlo. The

gradient provides information about the local behavior of the target distribution. This

allows for larger moves across the state space and thus faster convergence to the target

distribution. Proposals can be distant from current states but still with high acceptance

probabilities.

2.2.1 History

Despite the complementary nature, Hamiltonian dynamics and Metropolis Monte Carlo

had never been considered jointly until the Hybrid Monte Carlo method was formulated

in the seminal paper by Duane et al. (1987). It was initially applied to lattice field theory

simulations and remained unknown for statistical applications till 1994, when Neal used the

method in neural network models (Neal, 1994). Since then, the common name in statistical

applications is Hamiltonian Monte Carlo (HMC). A practitioners-friendly guide to HMC can

be found in (Neal, 2011), while comprehensive geometrical foundations are provided in

(Betancourt et al., 2016). Conditions under which HMC is geometrically ergodic have been

established recently (Livingstone et al., 2016).

Nowadays, HMC is used in a wide range of applications – from molecular simulations

to statistical problems appearing in many fields, such as ecology, cosmology, social sci-

ences, biology, pharmacometrics, biomedicine, engineering, business. Software package

Stan (Stan Development Team, 2016) has contributed to the increased popularity of the

method by implementing HMC based sampling within a probabilistic modeling language in

which statisticians can write their models in a familiar notation.
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2.2 HAMILTONIAN MONTE CARLO

2.2.2 Formulation

Let us focus on the statistical perspective of the HMC method, namely the Hamiltonian

Monte Carlo method. We are interested in sampling a random variable θ ∈ RD with density

π(θ). The target probability density function (p.d.f.) can be written as

π(θ) =
1

Z
exp(−U(θ)), (2.14)

where the variable θ corresponds to the position vector, U(θ) to the potential function

of a Hamiltonian system and Z is the normalizing constant such that π(θ) integrates to

one. In the Bayesian framework, the target distribution π(θ) can be seen as the posterior

distribution π(θ|y) of model parameters given data y = {y1, . . . , yK}, K being the size of

the data, and the potential function can be defined as

U(θ) = − logL(θ|y)− log p(θ), (2.15)

for the likelihood function L(θ|y) and prior p.d.f. p(θ) of model parameters.

The auxiliary momentum variable p ∈ RD, conjugate to and independent on the vector

θ is typically drawn from a normal distribution

p ∼ N (0,M), (2.16)

with a covariance matrix M , which is positive definite and often diagonal. The Hamiltonian

function can be defined in terms of the target p.d.f. as the sum of the potential function and

the kinetic function

H(θ,p) = U(θ) +K(p) = U(θ) +
1

2
pTM−1p +

1

2
log((2π)D|M |). (2.17)

The joint p.d.f. is then

π(θ,p) = π(θ)p(p) =
1

Z
exp(−H(θ,p)) =

(2π)
D
2 |M |
Z

exp(−U(θ)) exp(−1

2
pTM−1p)

∝ exp(−U(θ)) exp(−1

2
pTM−1p).

(2.18)

By simulating a Markov chain with the invariant distribution (2.18) and marginalizing out

momentum variables, one recovers the target distribution π(θ).

HMC samples from π(θ,p) by alternating a step for a momentum update and a step for

a joint, position and momentum, update, for each Monte Carlo iteration. In the first step,

momentum is replaced by a new draw from the normal distribution (2.16). In the second

step, a proposal for the new state, (θ′,p′), is generated by integrating Hamiltonian dynam-

ics for L steps using a symplectic integrator Ψh with a step size h. Due to the numerical

approximation of integration, Hamiltonian function and thus, the density (2.18), are not

preserved. In order to restore this property, which ensures invariance of the target density,

an accept-reject step is added through a Metropolis criteria. The acceptance probability has
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a simple form

α = min
{

1, exp(−(H(θ′,p′)−H(θ,p)))
}
,

which, due to the preservation of volume, does not include potentially difficult to compute

Jacobians of the mapping. As in any MCMC method, in case of rejection, the current state

is counted again in the estimation of integral (1.3). Once next sample is obtained, mo-

mentum is replaced by a new draw, so Hamiltonians have different values for consecutive

samples. This means that samples are drawn along different level sets of Hamiltonians,

which actually makes HMC an efficient sampler.

For a constant matrix M the last term in the Hamiltonian (2.17) is a constant that

cancels out in the Metropolis test. Therefore, the Hamiltonian can be defined as

H(θ,p) = U(θ) +
1

2
pTM−1p.

The algorithmic summary of the HMC method is given below.

Algorithm 2 Hamiltonian Monte Carlo

1: Input: N : number of Monte Carlo samples
h: time step
L: number of integration steps
M : mass matrix
Ψh,L: numerical integrator

2: Initialize θ0

3: for n = 1, . . . , N do
4: θ = θn−1

5: Draw momentum from Gaussian distribution

p ∼ N (0,M)

6: Generate a proposal by integrating Hamiltonian dynamics

(θ′,p′) = Ψh,L(θ,p)

7: Calculate the acceptance probability

α = min{1, exp(−∆H)}, ∆H = H(θ′,p′)−H(θ,p)

8: Metropolis test
Draw u ∼ U(0, 1)
if u < α
θn = θ′ {accept}

else
θn = θ {reject}

end if
9: Discard momentum p′

10: end for

22



2.2 HAMILTONIAN MONTE CARLO

It is known that the average error between the Hamiltonians at initial and final state of

a trajectory generated by a pth order numerical integrator satisfies

E(∆H) = O(Dh2p), (2.19)

where D is the number of degrees of freedom (Kennedy and Pendleton, 2001). The average

acceptance probability is

Pacc = ercf

(
1

2

√
E(∆H)

)
,

as derived first by Gupta et al. (1990). This means that in order to maintain a reasonable

acceptance rate for increasing dimension of the system, the step size should be proportional

to D−1/4.

Some work has been done for finding the optimal average acceptance rate with respect

to computational cost. Beskos et al. (2013) identified the value of 0.651 as an optimal

acceptance rate for distributions with independent and identically distributed variates and

the Verlet integrator. This result was extended for general distributions and symplectic

integrators by Betancourt et al. (2014) with the optimal interval for average acceptance

rate being between 0.6 and 0.9.

2.2.3 Numerical integrators

As already mentioned, the computer implementation of HMC requires a numerical scheme

to approximate the Hamiltonian flow (2.3). These schemes do not conserve the Hamil-

tonian, hence, do not exactly preserve the probability measure π, but can be used as a

proposing mechanism. The invariance of π is ensured by the Metropolis test, which uses

the error in the Hamiltonian introduced by the numerical approximation. If the exact flow

could be used for integration, the Metropolis probability would be

exp(H(θ,p)−H(θ′,p′)) = 1.

Therefore, a numerical method that preserves Hamiltonian better than another implies

higher acceptance rate of Monte Carlo samples.

Here we list some of the symplectic integrators suggested and used for HMC sampling.

Verlet / leapfrog integrator (Verlet, 1967) is the integrator of choice for most of the

HMC based methods, due to its robustness and simple implementation. One integration

step is defined as (2.7). The standard approach for implementation of the Verlet integrator

is to merge the last step of momentum update of one integration step with the first of

the next integration step so that half steps for momentum are performed only at the very

beginning and very end of a trajectory. Step 6. of the Algorithm 2 becomes
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p = p− h
2Uθ(θ)

for i = 1, . . . , L− 1 do

θ = θ + hM−1p

p = p− hUθ(θ)

end for

θ′ = θ + hM−1p

p′ = p− h
2Uθ(θ)

Exponential integrators These integrators are based on splitting the Hamiltonian func-

tion as

H =
1

2
pTM−1p +

1

2
θTΣ−1θ︸ ︷︷ ︸

H1

+ Φ(θ)︸ ︷︷ ︸
H2

or, in other words, decomposing the linear and nonlinear parts of the dynamics

Uθ(θ) = Σ−1θ + f(θ). (2.20)

The quadratic term of the Hamiltonian, corresponding to the Gaussian component, can

then be integrated analytically.

At least three new HMC methods have emerged from this approach. Hilbert space HMC

(Beskos et al., 2011) and Split HMC (Shahbaba et al., 2014) use integrator constructed as

a composition

ϕH2
h
2

◦ ϕH1
h ◦ ϕ

H2
h
2

.

Hilbert space HMC was formulated in the framework of high-dimensional approximations

of distributions on infinite-dimensional Hilbert space defined via density with respect to a

Gaussian measure. A generalization of this method, designed as a non-reversible MCMC

for a potential improvement of mixing properties was proposed by Ottobre et al. (2016).

In addition to splitting Hamiltonian such that the Gaussian component can be solved ex-

actly, Split HMC method suggests splitting when some parts of the potential and its gradient

do not require costly computation, contrary to the slowly varying part. They recommend

to use small step size for the fast computation and bigger for costly. Another context is

when Hamiltonian can be split by splitting the data. Split HMC method was extended for

Gaussian process model by Lan and Shahbaba (2012).

Contrary to previous two methods, Exponential HMC (Chao et al., 2015) treats jointly

quadratic and non-quadratic parts of the Hamiltonian, at the cost of introducing the filtering

functions φ, ψ, ψ0, ψ1. Exact integration within HMC for Gaussian and truncated Gaussian

problems is analyzed by Pakman and Paninski (2014).

Below we summarize the reviewed exponential integration schemes using the same

notation in order to demonstrate the main differences. Here Σ accounts for the linear part

of the dynamics (2.20).
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Hilbert HMC

M = Σ−1 ≡ Ω2

1: (Θ,P)← (θ,Σp)

(C, S) = (cos(h), sin(h))

2: P = P− h
2

Ω−2f(Θ)

3: Θ = CΘ + SP

4: P = −SΘ + CP

5: P = P− h
2

Ω−2f(Θ)

Split HMC

M = I,Ω2 ≡ Σ−1

1: (Θ,P)← (θ,p)

(CΩ, SΩ) = (cos(hΩ), sin(hΩ))

2: P = P− h
2
f(Θ)

3: Θ = CΩΘ + Ω−1SΩP

4: P = −ΩSΩΘ + CΩP

5: P = P− h
2
f(Θ)

Exponential HMC

M−1,Ω2 ≡M−
1
2 Σ−1M−

1
2

1: (Θ,P)← (M
1
2 θ,M−

1
2 p)

(CΩ, SΩ) = (cos(hΩ), sin(hΩ))

F (Θ)←M−
1
2 f(M−

1
2 Θ)

2: Θ = CΩΘ + Ω−1SΩP −
h2

2
ψF (φΘ)

3: P = −ΩSΩΘ + CΩP −
h
2
ψ0F (φΘ)

4: P = P− h
2
ψ1F (φΘ)

Due to an exact integration of the linear part of the dynamics, these integrators are more

accurate than the Verlet integrator. This implies better conservation of the Hamiltonian and

thus, higher acceptance rate. Nevertheless, their performance depends on the problem at

hand. In particular, if the nonlinear part dominates the dynamics or if the linear part can

not be approximated accurately or in a computationally feasible manner, the performance

of these integrators might degrade.

Multi-stage integrators One can consider more sophisticated compositions of flows ϕAt
and ϕBt , such as two-stage

Ψh = ϕBbh ◦ ϕAh
2

◦ ϕB(1−2b)h ◦ ϕ
A
h
2

◦ ϕBbh, (2.21)

three-stage

Ψh = ϕBbh ◦ ϕAah ◦ ϕB( 1
2
−b)h ◦ ϕ

A
(1−2a)h ◦ ϕ

B
( 1

2
−b)h ◦ ϕ

A
ah ◦ ϕBbh (2.22)

and four-stage

Ψh = ϕBb1h ◦ ϕ
A
ah ◦ ϕBb2h ◦ ϕ

A
( 1

2
−a)h

◦ ϕB(1−2b1−2b2)h ◦ ϕ
A
( 1

2
−a)h

◦ ϕBb2h ◦ ϕ
A
ah ◦ ϕBb1h (2.23)

families of integrators, which require two, three of four gradient evaluations per time step,

respectively. Analogously, one can construct the position version of these integrators, with

the initial flow in the composition being ϕAt .

We note that the concatenation of two Verlet steps of size hV = h/2 are equivalent to

one step of the two-stage integrator with coefficient b = 1/4

ΨV
hV
◦ΨV

hV
=
(
ϕBh

4

◦ ϕAh
2

◦ ϕBh
4

)
◦
(
ϕBh

4

◦ ϕAh
2

◦ ϕBh
4

)
= ϕBh

4

◦ ϕAh
2

◦ ϕBh
2

◦ ϕAh
2

◦ ϕBh
4

= Ψh.

A particular integrator from two-, three- or four-stage family is specified by freely choos-

ing one, two or three parameters, respectively. Such parameters can be determined, for
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example by minimizing an appropriate energy error function. There are different ways in

which error function can be defined. Below we will review two possible ways of finding the

parameters.

Minimum error (ME) integrator

In order to find the optimal parameters of p-order integrators, McLachlan and Atela

(1992) have suggested to minimize the Euclidean norm of coefficients corresponding to hp

terms in the Hamiltonian truncation error, defined as a difference between the Hamiltonian

and the modified Hamiltonian, i.e.

H − H̃.

This idea was used later to derive the optimal coefficient for the two-stage integrator. In

this case, the modified Hamiltonian can be calculated e.g. using BCH formula, as

H̃ = H + h2α{A,A,B}+ h2β{B,B,A}+O(h4)

where

α =
6b− 1

24
, β =

6b2 − 6b+ 1

12

and iterated Poisson brackets {A, {A,B}} and {B, {B,A}} are abbreviated as {A,A,B}
and {B,B,A}. By minimizing the error function

E = α2 + β2,

McLachlan (1995) derived the integrator now known as the minimum error integrator with

coefficient b = 0.193183. This integrator has been used e.g. by Takaishi (2014) for sta-

tistical sampling and by Takaishi and Forcrand (2006) for simulation of lattice quantum

chromodynamics.

Minimum expected error (BCSS) integrator

Instead of considering Hamiltonian truncation error, Blanes et al. (2014) defined a mea-

sure of error through the expected value of the energy error ∆ introduced due to numerical

integration, i.e.

∆ = H(Ψh,L(θ,p))−H(θ,p). (2.24)

Their analysis is based on the standard harmonic oscillator1 with equations of motion

dθ

dt
= p,

dp

dt
= −θ (2.25)

and Hamiltonian

H(θ, p) =
1

2
(θ2 + p2). (2.26)

1This model problem is equivalent to HMC sampling from a univariate Gaussian distribution for the pa-
rameter θ, with zero mean and variance one.
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For each family (2.21)–(2.23) they constructed a functional in terms of integrator’s coeffi-

cients ξ = {a, b1, b2}, which bounds the expected value of the energy error E(∆):

0 ≤ E(∆) ≤ ρ(h).

Coefficients ξ are then chosen to minimize the function

‖ρ‖(h̄) = max
0<h<h̄

ρ(h, ξ),

where the maximum step size is set as h̄ = r, with r being the number of stages in the inte-

grator. This choice of h̄ follows from the fact that the Verlet integrator applied to standard

harmonic oscillator performs well with h ≈ 1, which is the half of its stability limit. Then

an r-stage integrator is assumed to perform well with h ≈ r.
Table 2.1 presents the values calculated for two-, three- and four-stage integrators

(Blanes et al., 2014; McLachlan, 1995).

BCSS coe�icients
2-stage b = 0.21178

3-stage a = 0.11888
b = 0.296195

4-stage
a1 = 0.0713539
a2 = 0.2685488
b1 = 0.1916678

ME (2-stage) b = 0.193183

TABLE 2.1: Multi-stage integrators. Two-stage coe�icients coincide for velocity and
position integrators. Coe�icients for three- and four-stages are derived for posi-

tion methods.

Multi-stage BCSS integrators were successfully employed by Attia and Sandu (2015) for

non-Gaussian data assimilation problems.

In general, the suggested multi-stage integrators may improve acceptance rate and sam-

pling efficiency of the HMC method, especially for high-dimensional problems that require

smaller time steps. An r-stage integrator requires r gradient evaluations per time step,

which is an r multiple of the time step of the Verlet integrator. Therefore, these integrators

do not introduce computational overheads. On the other hand, the stability limit normal-

ized by the number of stages is lower for multi-stage integrators than for the Verlet.

A choice of a numerical integrator for HMC sampling is not obvious. Further in this

thesis, we will discuss alternative methods for our purposes and compare them with existing

approaches.
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2.2.4 Choice of parameters in HMC

HMC has three tunable parameters that affect the performance of the method – the in-

tegration step size h, the number of integration steps L, and the mass matrix M . These

parameters may be chosen arbitrarily such that the validity of the method remains un-

harmed, except for some special cases when they might affect the ergodicity of the chain

(e.g. combinations leading to a value that is a multiple of the period of a mode of the sys-

tem). The goal is to tune free parameters such that the sampling efficiency is maximized

and the computational cost is minimized.

Step size The acceptance rate in HMC depends critically on the value of a step size. The

largest step size allowed is determined by the stability limit of the integrator. This limit

is related to the most constrained variate, but it is not easy to identify, especially in high

dimensional problems, as it can vary for the warm-up and stationary phases as well as

among different regions of the state space.

Values that are too small may lead to slow space exploration and high computational

costs if one wishes to maintain the trajectory length τ = hL. On the other hand, values

that are too large result in integration instabilities and low acceptance rates. Hence, there

is a trade-off between the accuracy and computational cost of numerical integration. The

choice of step size affects sampling efficiency through the trajectory length τ . For a fixed L

and varying h, the computational cost is not altered; bigger values of h induce more distant

proposal and less correlation among samples, however, values that are too big might result

in higher rejection rates which introduce more correlation among samples.

Common practice is to tune the step size by targeting the desired acceptance rate. This

can be achieved e.g. by dual averaging (Hoffman and Gelman, 2014).

Number of integration steps The computational cost and sampling efficiency are af-

fected by the number of integration steps L through the trajectory length τ . Trajectories

that are too short might resemble random walk behavior. Taking trajectories that are too

long might be computationally costly and even inefficient – trajectories might reverse di-

rection and continue towards points that are closer to the initial state.

In the case of a stable step size, the number of integration steps does not affect the

acceptance rate; therefore no additional correlation among samples is introduced due to

rejections. However, for some complex models, one might encounter an increase in rejec-

tion rate for bigger values of L.

Ideally, L should be large enough to ensure that successive MC samples are nearly

independent. Nevertheless, this may differ across variates.

Some analysis on identifying the optimal integration time has been done by Betancourt

(2016) through the use of exhaustions (families of appropriate integration times for a given

problem). However, these termination criteria include a problem specific parameter; hence

a good practical criterion in the general case is still to be developed.
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Alternatively, L can be adapted dynamically on the fly, for each MC step, as proposed

by Hoffman and Gelman (2014). Moreover, it has been proved (Livingstone et al., 2016)

that choosing the integration time dynamically leads to geometric convergence for a larger

class of target distributions than in the case of fixed integration time.

General advice for both step size and number of integration steps is randomization, as

first recommended by Mackenzie (1989). This helps to avoid some bad combinations of

fixed values that might lead to slow convergence and non-ergodicity. These parameters can

be selected independently from some chosen distributions p(h) and p(L) at each MC step.

In fact, a new method called Randomized HMC extends this idea for the trajectory length

(Bou-Rabee and Sanz-Serna, 2015).

Mass matrix In many problems that are dominated by global (non-varying) correlations,

the mass matrix can improve HMC performance significantly. One recommendation is to as-

sign smaller values to variates with larger variances so that the Hamiltonian flow can make

more distant steps along those variates (Liu, 2008). This can be achieved by estimating

covariances from the warm-up phase (Stan Development Team, 2016).

Local correlations, however, can be treated only with methods that have a position

dependent matrix (e.g. Girolami and Calderhead, 2011b).

2.2.5 Modifications of HMC in computational statistics

Further modifications of the HMC method in computational statistics have been recently

developed (see Figure 2.3).

Variable mass matrix Girolami and Calderhead (2011b) were the first to propose the

method that explores geometric properties of the underlying distribution. Their

method, called Riemann Manifold Hamiltonian Monte Carlo (RMHMC), employs a

mass matrix that changes with position at every step of the integration performed by

the implicit generalized leapfrog integrator. However, the Fisher-Rao metric used in

the original implementation of RMHMC limits the applicability of this method.

The improved metric (mass matrix) that extends the class of problems to be success-

fully treated by RMHMC was later proposed by Betancourt (2013a).

Two alternatives, semi-explicit and explicit, to the implicit integrator in RMHMC,

were suggested by Lan et al. (2015). In this case, the dynamics is driven in terms

of velocity rather than momentum, thus the name Riemannian Manifold Lagrangian

Monte Carlo (RMLMC).

Adaptive methods The No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014) imple-

ments an automated choice of trajectory lengths through the criterion of double back-

ing of trajectories, while the step size is adapted using dual averaging. The extension

of the NUTS to the RMHMC method was introduced by Betancourt (2013b).
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Alternatively, the adaptation of HMC parameters can be carried out using Bayesian op-

timization or Bayesian parametric bandit approaches (Wang and Freitas, 2011; Wang

et al., 2013), as formulated within the Adaptive (Riemann Manifold) Hamiltonian

Monte Carlo (A(RM)HMC) method.

Alternative integration approaches In Section 2.2.3 we already introduced several alter-

native to Verlet integration schemes, which can be grouped into two classes: expo-

nential integrators and multi-stage integrators. The exponential schemes were imple-

mented in HMC and gave birth to the following HMC-based methods: Hilbert space

HMC (Beskos et al., 2011), Split HMC (Shahbaba et al., 2014) and Exponential HMC

(Chao et al., 2015).

Delayed rejections The idea of delaying rejections in MCMC in order to reduce the effect

of correlated samples belonged to Mira (2001). Implementation of this idea into the

HMC framework was, however, introduced first by Sohl-Dickstein et al. (2014) and

Campos and Sanz-Serna (2015), leading to the Look Ahead HMC (LAHMC) and Extra

Chance Generalized HMC (ECGHMC) methods, respectively.

Accelerated computation by approximations Several approaches for an approximation

of the gradient of the posterior distribution were suggested recently for problems for

which its calculation is computationally too demanding. In case of large datasets, one

can use Stochastic gradient HMC (SGHMC) (Chen et al., 2014). Another method from

this group, Kernel Hamiltonian / Kamiltonian Monte Carlo (KMC) (Strathmann et al.,

2015) adaptively learns the gradient structure from the history of the Markov chain

and uses it to simulate Hamiltonian dynamics. Zhang et al. (2015a) approximate

the gradient structure using a neural network surrogate function, while Zhang et

al. (2015b) precompute the gradient on a grid and interpolate those values. The

Hamiltonian ABC (HABC) method (Meeds et al., 2015) incorporates approximate

Bayesian computation within the HMC framework.

Problem related HMC The HMC method was further developed to deal with some spe-

cific problems, such as constrained target distributions (Betancourt, 2010; Brubaker

et al., 2012; Lan et al., 2014b), multimodal distributions (Lan et al., 2014a; Betan-

court, 2014), hierarchal models (Betancourt and Girolami, 2015; Zhang and Sut-

ton, 2014). HMC was also extended for discrete distributions by using continuous

relaxations from discrete to continuous variables (Zhang et al., 2012; Pakman and

Paninski, 2013).

Others The tempering HMC method (Meent et al., 2014) formulates both parallel temper-

ing and tempered transitions through recursive subsampling of observations.

The Hamiltonian Annealed Importance Sampling approach (Sohl-Dickstein and Culpep-

per, 2012) was designed for evidence estimation problems.

Within the framework for a generalization of the Metropolis-Hastings method Calder-

head (2014) suggested the idea of improving the performance of HMC by making use
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of all integration steps from the leapfrog trajectory. A similar idea was formulated

under the Recycled HMC method and investigated by Nishimura and Dunson (2015).

Another popular method is Metropolis Adjusted Langevin Algorithm (MALA) (Kennedy,

1990). It can be seen as a special case of HMC for single step trajectories. The pro-

posal can be defined as

θ = θ − h2

2
Uθ(θ) + hu,

where u ∼ N (0, I).

The recently introduced Monomial Gamma HMC (Zhang et al., 2016) uses a different

kinetic function, which corresponds to the monomial Gamma distribution for mo-

mentum variables. The method leads to potentially better mixing of the chain. On

the other hand, it has an additional parameter to tune, and it might lead to numerical

instabilities for high dimensions.

2.2.6 Modifications of HMC in computational sciences

Among the modifications introduced in computational sciences, the most important ones

are partial momentum update and sampling with modified energies.

Before going into further details, we notice that as far as HMC is concerned, there are

often some differences in notations and interpretations between computational statistics

and computational sciences. For example in computational sciences, the mass matrix M is

not considered a preconditioning simulation parameter but rather it is determined by the

simulated system. The target distribution incorporates a real temperature through

exp(−βH(x,p)),

where β = 1/kBT is the inverse temperature with the Boltzmann constant kB. The total

energy of the system corresponds to the true Hamiltonian. The position vector in computa-

tional sciences is denoted e.g. as x.

The Partial Momentum Update

The partial momentum update (in contrast to the complete momentum update) was

introduced by Horowitz (1991) within Generalized guided Monte Carlo, a method that

relies on a single step of Hamiltonian dynamics. This method is also known as second

order Langevin Monte Carlo (L2MC). The purpose of this technique was to retain more

dynamical information of the simulated system.

Kennedy and Pendleton (2001) formalized this idea in the Generalized Hybrid Monte

Carlo (GHMC) method. GHMC is defined as the concatenation of two steps: Molecular

Dynamics Monte Carlo (MDMC) and Partial Momentum Update (PMU).

This method differs from HMC in the momentum update step – the complete reset of the

momentum for initiating a new trajectory is replaced with the partial momentum update.

The current momentum is mixed with an independent and identically distributed (i.i.d.)
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Gaussian noise vector u ∼ N (0, β−1M) to obtain

p∗ = cos(φ)p + sin(φ)u

u∗ = − sin(φ)p + cos(φ)u,
(2.27)

where φ ∈ (0, π/2] controls the level of noise.

At this point, a Metropolis test is not needed, because the variables p∗ and u∗ are

distributed according to the same Gaussian distribution as p and u. This follows from the

orthogonality of the transformation (2.27).

The parameter φ introduces extra control over the sampling efficiency of the method

and may lead to the superior performance of GHMC over HMC. It updates the momentum

between trajectories partially so that consecutive trajectories tend to move in more similar

directions.

Since momentum is not discarded, the method incorporates a momentum flip

F(x,p) = (x,−p)

upon rejection, in order to ensure the detailed balance condition is satisfied.

A Molecular Dynamics Monte Carlo step is defined in the same way as in the HMC

method.

The algorithm of GHMC is presented below in Algorithm 3.

Algorithm 3 Generalized Hybrid Monte Carlo

1: Input: N : number of Monte Carlo samples
h: time step
L: number of integration steps
M : mass matrix
T : temperature (β = 1/kBT )
Ψh,L: numerical integrator
φ ∈ (0, π/2]: noise parameter

2: Initialize (x0,p0)
3: for n = 1, . . . , N do
4: (x,p) = (xn−1,pn−1)
5: Partial momentum update

p∗ = cos(φ)p + sin(φ)u

u∗ = − sin(φ)p + cos(φ)u

where u ∼ N (0, β−1M)
6: Generate a proposal by integrating Hamiltonian dynamics

(x′,p′) = Ψh,L(x,p∗)
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7: Calculate the acceptance probability

α = min{1, exp(−β(H(x′,p′)−H(x,p∗))}

8: Metropolis test
Draw u ∼ U(0, 1)
if u < α

(xn,pn) = (x′,p′) {accept proposal}
else

(xn,pn) = F(x,p∗) {reject proposal and flip momentum}
end if

9: end for

Note that the formulation above differs from the original one (Kennedy and Pendleton,

2001) in that there is a reduced number of momentum flips performed. In the original

formulation, the momentum flip is applied before partial momentum refreshment and once

again upon acceptance, instead of rejection; thus more momentum flips are needed in this

case. The two formulations are equivalent, however.

Some well-known methods can be considered as special cases of GHMC:

• The standard HMC algorithm is a special case of GHMC if φ = π/2. The momentum

flips may be ignored in this case since p∗ = u and the previous momentum is entirely

discarded.

• If additionally L = 1, this method corresponds to the MALA method.

• The Generalized guided MC or Langevin Monte Carlo algorithm corresponds to a

single MD step (L = 1) and an arbitrary φ.

• In the case of all MD proposals being accepted and φ =
√

2γ∆t � 1 the method

coincides with stochastic Langevin Dynamics (LD), where γ > 0 plays the role of the

friction coefficient.

• If φ = 0 and all trajectories are accepted, meaning that one long trajectory is pro-

duced, the Molecular Dynamics method is recovered.

The special cases of GHMC are summarized in Table 2.2.

Applications of the GHMC method to date include mainly molecular simulations. The

behavior of non-special cases of GHMC is not well studied in statistical simulations, with

only a few exceptions, e.g. in (Sohl-Dickstein, 2012; Sohl-Dickstein et al., 2014).

Sampling with respect to modified density

The performance of the HMC method degrades for large systems and time steps due

to errors in Hamiltonians resulting from numerical integration. As noted in Section 2.1.3,

modified Hamiltonians are conserved with symplectic integrators to a higher accuracy than

true Hamiltonians. The idea of implementing the HMC method with respect to a modified
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Metropolis test φ L Method

3 π/2 arbitrary HMC

3 π/2 1 MALA

3 arbitrary 1 L2MC

7
√

2γ∆t� 1, γ > 0 1 LD

7 0 arbitrary MD

TABLE 2.2: Special cases of GHMC.

density by using the modified Hamiltonian in the Metropolis test was suggested by Iza-

guirre and Hampton (2004). The resulting method, Shadow Hybrid Monte Carlo (SHMC),

consists of the following steps. First, momentum is drawn from a Gaussian distribution

until it is accepted according to the modified density π̃(x,p) ∝ exp(−βH̃(x,p)), where

H̃(x,p) = max{H(x,p), Hh(x,p)− C},

Hh is an approximation of the modified Hamiltonian H̃, calculated as suggested by Skeel

and Hardy (2001), and C is a tunable parameter. This might be costly, due to a number of

evaluations of the modified energy. In the second step, MD is performed using a symplectic

integrator augmented with a scalar variable, which is needed for the calculation of shadow

Hamiltonians. A Metropolis test is then evaluated with respect to π̃. Importance sampling

reweighting is required for computing averages in order to recover the canonical density.

The performance of SHMC is limited by the need for fine tuning the parameter C and by

evaluation of a non-separable shadow Hamiltonian.

The SHMC was modified by Sweet et al. (2009) by replacing a non-separable shadow

Hamiltonian with the separable shadow Hamiltonian of order four, defined as

H̃ [4] =
1

2
pTM−1p + U(x) +

h2

24
UTx (x)M−1Ux(x).

This method, which used π̃(x,p) ∝ exp(−βH̃ [4](x,p)) as the target density and a corre-

sponding processed2 leapfrog integrator, was called the Separable Shadow Hybrid Monte

Carlo (S2HMC).

The first method to incorporate both the partial momentum update and sampling with

respect to a modified density was introduced by Akhmatskaya and Reich (2006) and called

Targeted Shadow Hybrid Monte Carlo (TSHMC). However, the Generalized Shadow Hy-

brid Monte Carlo (GSHMC) method formulated by Akhmatskaya and Reich (2008) appears

the most efficient among the listed methods. Full details of this method are given in the

following section.

2This processed leapfrog integrator consists of a preprocessing and a postprocessing step, each involving a
fixed point computation.
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2.3 Generalized Shadow Hybrid Monte Carlo

2.3.1 History

The GSHMC method was introduced in 2008 for sampling in molecular simulation (Akhmatskaya

and Reich, 2008). Its purpose was to enable sampling of large complex systems while re-

taining the dynamical information. This is achieved by employing the modified energy for

sampling and by partially updating momentum. The former leads to lower discretization

errors, which implies higher acceptance rates for large system sizes as well as a reduced

negative impact of the undesired momentum flips.

The method was patented by Fujitsu in the UK (Akhmatskaya et al., 2009c) and the US

(Akhmatskaya et al., 2011). Due to IPR issues, there were difficulties with the implementa-

tion of the method in open source software. This changed in November 2015, when Fujitsu

issued the license giving permission to use the patented method in open source software

and a permission to Elena Akhmatskaya to implement and use know-how.

GSHMC proved to be successful in simulations of complex molecular systems in Biology

and Chemistry (Wee et al., 2008; Akhmatskaya and Reich, 2012; Escribano et al., 2013;

Akhmatskaya et al., 2013; Fernández-Pendás et al., 2014). Initially designed for atomistic

simulations in the canonical (NVT) ensemble, in which the number of atoms N, volume V

and temperature T are kept constant, and the isobaric-isothermal (NPT) ensemble, in which

N, T and pressure P are kept constant, but implemented for the canonical ensemble only, the

method has been developed further to cover a range of problems. Multi-scale simulations

can be treated with the multiple-time stepping GSHMC (MTS-GSHMC) method (Escribano

et al., 2014), while coarse-grained systems with the Meso-GSHMC method (Akhmatskaya

and Reich, 2011; Terterov et al., 2013). The NPT-GSHMC (Fernández-Pendás et al., 2014)

ensures rigorous pressure control.

2.3.2 Formulation

The objective of the GSHMC method is to maintain a high acceptance rate while retaining

the dynamical information in simulations. It is achieved by combining the partial momen-

tum update, as introduced in the GHMC method, with importance sampling with respect

to a modified density in the appropriate manner.

Sampling is performed with respect to a modified canonical density

π̃(x,p) ∝ exp(−βH̃ [k](x,p)),

where H̃ [k] is the kth order modified Hamiltonian (see Section 2.1.3) that approximates the

true Hamiltonian as

H̃ [k] = H +O(hp),

for a p-order numerical integrator. In the case p = 2 the order of the modified Hamiltonian

is k ≥ 4 (cf. Equation 2.13).
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The method involves two major steps, the Partial Momentum Monte Carlo (PMMC)

step, and the Molecular Dynamics Monte Carlo (MDMC) step. The partial momentum

update allows for keeping the dynamical information during the simulation similar to a

stochastic Langevin dynamics simulation, in which the friction coefficient restricts the noise

added to the momentum. We note that momenta are no longer distributed according to the

normal distribution (2.16) under the modified density π̃. The momentum update step,

therefore, becomes more complex and it is combined with the modified Metropolis test.

The only difference in the MDMC step of the GHMC method is that in the Metropolis test

the modified Hamiltonian is used instead of the true Hamiltonian.

Since sampling is performed with respect to the modified distribution, the importance

weights have to be taken into account when calculating averages of quantities of interest.

In the following, we provide full details on how to calculate shadow Hamiltonians,

how to perform the PMMC and MDMC steps and the implementation of the reweighting

procedure.

2.3.2.1 Shadow Hamiltonians

The original formulation provides the expression of the kth order modified Hamiltonian for

the leapfrog method (Akhmatskaya and Reich, 2008; Akhmatskaya et al., 2009c), which in

the case of k = 4 has the explicit form

H̃ [4] =
1

2
Ẋ[MẊ] + U(X) +

h2

24

(
2Ẋ[MX(3)]− Ẍ[MẌ]

)
, (2.28)

where X(t) ∈ RD is the unique interpolation polynomial of degree four, constructed for

tn, n ∈ {0, L} from a given numerical trajectory {xi}L+2
i=−2, passing through points

X(ti) = xi, i = n− 2, . . . , n, . . . , n+ 2.

The derivatives of the position vector are approximated by the centered differences method.

The number of additional gradient evaluations per Monte Carlo step in GSHMC com-

pared with HMC may vary between 3 and 10 for the modified Hamiltonian of order 4. The

least number of additional evaluations can be achieved if previously calculated modified

Hamiltonians and gradients are stored and used for further calculation when possible.

2.3.2.2 PMMC

In this step, the partial momentum update is combined with the modified Metropolis test.

The Partial Momentum Update (PMU) is identical to the one in GHMC method, given by

p∗ = cos(φ)p + sin(φ)u

u∗ = − sin(φ)p + cos(φ)u
(2.29)

with φ ∈ (0, π/2], the noise vector u ∼ N (0, β−1M) i.i.d. and β = 1/kBT .
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The Modified Metropolis test: the proposal (p∗,u∗) is accepted according to

(p̄, ū) =

{
(p∗,u∗) with probability P
(p,u) otherwise

(2.30)

where

P = min

{
1,

exp
(
− (H̃(x,p∗) + 1

2(u∗)TM−1u∗)
)

exp
(
− (H̃(x,p) + 1

2uTM−1u)
) }

. (2.31)

This step can be considered as a standard HMC method in which the vector x is fixed,

the vector p plays a role of the “position” and the noise vector u becomes “conjugate mo-

menta”. The extended “Hamiltonian”

Ĥ(x,p,u) = H̃(x,p) +
1

2
uᵀM−1u (2.32)

defines the extended reference density π̂(x,p,u) ∝ exp(−βĤ(x,p,u)).

Note that additional steps forward and backward in time need to be performed to eval-

uate the interpolation polynomial X and thus shadow Hamiltonian H̃(x,p∗). The noise

vectors u and ū are discarded.

2.3.2.3 MDMC

The MDMC step of GSHMC differs from GHMC only in the Metropolis test.

Molecular dynamics starts from the current state (x,p) = (x, p̄) and integrates L steps

of Hamiltonian dynamics with a symplectic and time-reversible numerical integrator and a

time step h thus generating the proposal (x′,p′) = Ψτ (x,p), where τ = Lh. If the modified

Hamiltonian is defined as in (2.28) then Ψh(x,p) is the Verlet integrator, i.e.

p = p− h

2
Ux(x)

x = x + hM−1p

p = p− h

2
Ux(x).

The Monte Carlo step consists of the Metropolis test in which the new state is assigned

as

(xnew,pnew) =

{
(x′,p′) with probability α = min

{
1, exp(−β∆H̃)

}
F(x,p) otherwise

(2.33)

where ∆H̃ = H̃(x′,p′)− H̃(x,p).

The average energy fluctuation E(∆H̃) is

E(∆H̃) = O(Dh2k),
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where k ≥ 4 is the order of shadow Hamiltonian. This means that the energy error depends

on the order of shadow Hamiltonian rather than on order of an integrator (cf. Equation

(2.19)). Therefore, an increase in the dimension of the problem can be counterbalanced

by an increase in the order of the shadow Hamiltonian. This opens the possibility to main-

tain high acceptance rates even in simulations of high-dimensional systems while using an

integrator of the same order of accuracy.

2.3.2.4 Re-weighting

If Ωn, n = 1, 2, . . . , N are values of the observables along a sequence of states (xn,pn), then

the averages are calculated as

〈Ω〉 =

∑N
n=1wnΩn∑N
n=1wn

, (2.34)

where importance weights take into account the difference between the desired target dis-

tribution π and the modified distribution π̃ from which samples are drawn. These impor-

tance weights are therefore given by

wn = exp
(
− β(H(xn,pn)− H̃(xn,pn))

)
. (2.35)

The GSHMC method is presented below in Algorithm 4.

Algorithm 4 Generalized Shadow Hybrid Monte Carlo

1: Input: N : number of Monte Carlo samples
h: time step
L: number of integration steps
M : mass matrix
T : temperature (β = 1/kBT )
φ ∈ (0, π/2]: noise parameter

2: Initialize (x0,p0)
3: for n = 1, . . . , N do
4: Calculate the shadow Hamiltonian at (x,p) = (xn−1,pn−1)

PMMC step
5: Draw u ∼ N (0, β−1M)
6: Generate a proposal

p∗ = cos(φ)p + sin(φ)u

u∗ = − sin(φ)p + cos(φ)u

7: Calculate the shadow Hamiltonian H̃(x,p∗)
8: Accept the proposed momentum p̄ = p∗ with probability

P = min

{
1,

exp
(
− β(H̃(x,p∗) + 1

2(u∗)TM−1u∗)
)

exp
(
− β(H̃(x,p) + 1

2uTM−1u)
) }

otherwise set p̄ = p
MDMC step
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9: Generate a proposal by integrating Hamiltonian dynamics with time step h over
L steps

(x′,p′) = Ψh,L(x, p̄)

10: Calculate the shadow Hamiltonian H̃(x′,p′)
11: Calculate the acceptance probability

α = min{1, exp(−β(H̃(x′,p′)− H̃(x, p̄))}

12: Metropolis test

(xn,pn) =

{
(x′,p′) with probability α
F(x, p̄) otherwise

13: Compute the weight

wn = exp(−β(H(xn,pn)− H̃(xn,pn)))

14: end for
15: Calculate the average of an observable Ω(x,p) as

〈Ω〉 =

∑N
n=1wnΩn∑N
n=1wn

Note that the GSHMC method introduces computational overheads compared to HMC

due to two evaluations of the shadow Hamiltonian per MC step. This means that for short

trajectories the overheads might be significant, but for long trajectories, which require many

gradient calculations, they become negligible.

2.3.3 Choice of parameters

Time step If h is chosen to be too short, the computational cost of the simulation is

increased, while choices of too long ones enlarge the integration inaccuracies and can po-

tentially lead to the higher rejection rates.

Number of integration steps Similar to HMC, values of L that are too small reduce sam-

pling efficiency. In addition, they imply more frequent calculations of shadow Hamiltonians

for a fixed simulation time, which may well introduce significant computational overheads.

Angle Smaller values of φ are advisable for retaining the dynamical information of the

system, but values that are too small may reduce sampling efficiency. On the other hand,

values that are too large increase momenta rejection rates and do not reproduce dynamical

properties of a simulated system.
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Order of shadow Hamiltonian Large orders might be computationally demanding but

for some problems using orders that are too small may not provide a good approximation

of the true Hamiltonian and consequently the simulation properties.

A general recommendation for GSHMC is to choose a combination of parameters such

that simultaneous rejections of both momentum and position are kept sufficiently small

(Akhmatskaya and Reich, 2012).

2.3.4 Applications

One of the successful applications of the GSHMC method was the study of a peptide toxin

interacting with a phospholipid bilayer (Wee et al., 2008). At the beginning of the simula-

tion, a toxin is placed at the center of the membrane. The focus is on measuring a distance

from the center to the surface of the membrane and an orientation of the toxin with respect

to the membrane’s surface.

Both GSHMC and conventional MD simulation found the most probable position and

orientation. Nevertheless, GSHMC offered approximately an eight times increase in sam-

pling efficiency, measured in terms of autocorrelation functions for distances of toxin from

a bilayer center (see Figure 2.1).

FIGURE 2.1: Comparison of GSHMC and Molecular Dynamics (MD) performance for
peptide toxin / bilayer system. Image taken from (Akhmatskaya and Reich, 2011).

Another successful application is the study of the morphology development of multi-

phase polymers (Asua and Akhmatskaya, 2011). The simulation model accounts for the

formation of graft copolymer and can be used to predict the particle morphology.

Analysis of autocorrelation functions of radii of gyration indicates that GSHMC finds the

equilibrium morphology of graft polymer up to seven times faster than Langevin Dynamics

– the methodology often used for simulation of polymer systems (Figure 2.2). Moreover,
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using LD it was not possible to identify the optimal choice of the friction coefficient γ, the

important parameter in modeling particles morphologies, while for GSHMC it is the one

that corresponds to the optimal choice of the parameter φ in the terms of the momentum

acceptance rate.

FIGURE 2.2: In Situ Formation of Gra� Copolymer: Langevin Dynamics vs. GSHMC.
Image from the presentation at The International Conference on Scientific Com-

putation and Di�erential Equations, SciCADE 2015, Potsdam, Germany.

2.3.5 GSHMC in statistics

The GSHMC method has never been investigated for solving statistical inference problems

although its applicability has been recognized. A formulation under the name Generalized

shadow Hamiltonian Monte Carlo (GSHmMC) was given in (Akhmatskaya and Reich, 2008;

Akhmatskaya and Reich, 2012).

For a statistical model with unknown parameter vector θ, the target density π(θ) is

written as

π(θ) ∝ exp(−U(θ)).

Introducing the momentum p conjugate to θ, with the ‘mass’ matrix M (a preconditioner),

the guided Hamiltonian is defined in the usual manner as

H(θ,p) = U(θ) +
1

2
pTM−1p.

GSHmMC sampling is performed with respect to a modified canonical density

π̃(θ,p) ∝ exp(−H̃(θ,p)),
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where H̃ is an approximation of the modified Hamiltonian of a chosen order.

Therefore, the formulation of GSHmMC is equivalent to GSHMC, with the only differ-

ence that positions, momenta, mass matrix, temperature, and Hamiltonian do not have a

physical interpretation.

2.4 Summary

The HMC method has proved to be a successful and valuable technique for a range of

problems in computational statistics. The efficient use of gradient information of the pos-

terior distribution allows to overcome the random walk behavior typical of the Metropolis-

Hastings Monte Carlo method.

On the other hand, the performance of HMC deteriorates exponentially, in terms of ac-

ceptance rates, with respect to the system’s size and the step size due to errors introduced

by numerical approximations (Izaguirre and Hampton, 2004). Many rejections induce high

correlations between samples and reduce the efficiency of the estimator. Thus, in systems

with large numbers of parameters, or latent parameters, or when the data set of observa-

tions is very large, efficient sampling might require a substantial number of evaluations of

the posterior distribution and its gradient. This may be computationally too demanding for

HMC. In order to maintain the acceptance rate for larger systems at a high level, one should

either decrease the step size or use a higher order numerical integrator, which is usually

impractical for large systems.

Ideally, one would like to have a sampler that increases acceptance rates, converges fast,

improves sampling efficiency and whose optimal simulation parameters are not difficult to

determine.

In the following chapters, we provide a careful and detailed investigation of whether the

GSHMC method, adapted to statistical applications, can compete with the state-of-the-art

HMC method. Furthermore, we present some extensions and investigate in which settings

they provide the most benefit.
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FIGURE 2.3: Evolution and relationships between HMC methods.
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3
Mix & Match Hamiltonian Monte Carlo

3.1 Preface

The GSHMC method was originally designed for molecular simulation. The differences and

potential problems in adapting the method for computational statistics are the following.

1. All elements and parameters of the method, such as Hamiltonians, momenta, posi-

tions, do not have a physical interpretation and there are no natural hints regarding

a reasonable choice of parameters. Contrary to molecular simulation, randomized

simulation parameters for MD trajectories are preferable.

2. Due to the complex structure of target distributions, the resulting Hamiltonians are

highly oscillatory. This kind of problem may require higher orders of modified Hamil-

tonians or better Hamiltonian conservation by integrators to avoid a loss of accuracy

and sampling efficiency. Thus, an appropriate choice of the numerical integrator is

not obvious and consequently neither is the form of the modified Hamiltonian, which

depends directly on the choice of the integrator.

3. Hierarchical/latent-variable models, which are not typical in molecular simulation,

require tuning of multiple non-independent sets of simulation parameters.

4. Simulations in transformed non-canonical space are often unavoidable due to con-

straints in parameter space.

The potential advantage of GSHMC compared to HMC is enhanced sampling as a con-

sequence of: (i) higher acceptance rates, achieved due to better conservation of modified

Hamiltonians by symplectic integrators; (ii) an access to second-order information about
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the target distribution; (iii) an additional parameter φ for improving performance. Thus,

the convergence to the target distribution might be faster.

On the other hand, potential disadvantages include one more parameter that should

be tuned and some extra computational cost that is introduced through computation of

modified Hamiltonians for each proposal and an additional Metropolis test for momentum

update step.

In this chapter, we present the Mix & Match Hamiltonian Monte Carlo (MMHMC)

method which is based on the GSHMC method but modified, enriched with new features

and adapted specially to computational statistics. We also provide details of the implemen-

tation of MMHMC and present our software package HaiCS (details in Chapter 5), which

offers implementation of several HMC based samplers including MMHMC as well as a range

of popular statistical models. The modifications of GSHMC that led to the MMHMC method

include:

• Derivation of novel multi-stage numerical integrators, as alternatives to the Verlet

integrator, which can enhance accuracy in calculation of (modified) Hamiltonians.

• New formulations of modified Hamiltonians that allow for (i) employing the proposed

and existing multi-stage integrators; (ii) efficient implementation using quantities

available from a simulation; (iii) using non-canonical transformations of parameters

that are being sampled.

• Incorporating momentum updates within the Metropolis test, resulting in less fre-

quent calculation of derivatives in certain cases.

• An extension of the reduced momentum flipping technique to the methods sampling

with modified Hamiltonians, which lessens the potentially negative impact of reverse

trajectories.

In the following, we provide details on each modification to the original GSHMC. In

Section 3.2.1 we cover new formulations of modified Hamiltonians. Novel numerical inte-

grators for the Hamiltonian Dynamics step are introduced in Section 3.2.2. Section 3.2.3

includes a new Metropolis test for momentum, which incorporates the partial update, and

a few alternative strategies for the momentum update. A new Metropolis test for reduced

momentum flips upon rejections is presented in Section 3.2.4. In each of these sections, we

include some numerical results demonstrating the impact of the proposed techniques on

the performance of the method. We draw conclusions from the numerical tests taking into

account the acceptance rates, effective sample size (ESS) and computational time. ESS is

a commonly used metric for the sampling performance of MCMC methods (Geyer, 1992),

which gives the number of effectively uncorrelated samples among all collected. More de-

tails can be found in Chapter 6, where we provide a new ESS metric, adjusted to weighted

data. We also discuss a choice of simulation parameters and conclude this chapter with a

summary of the current state of the MMHMC method.
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3.2 Formulation

The MMHMC method aims at sampling a random variable of unknown parameters θ ∈ RD

with the distribution

π(θ) ∝ exp(−U(θ)).

This is achieved indirectly, as shown in Figure 3.1. MMHMC performs HMC importance

sampling on the joint state space of parameters and momenta (θ,p) with respect to a

modified Hamiltonian H̃. The importance sampling distribution is defined as

π̃(θ,p) ∝ exp(−H̃(θ,p)).

The target distribution on the joint state space π(θ,p) ∝ exp(−H(θ,p)), with respect to the

true Hamiltonian H, is recovered through importance reweighting and finally, the desired

distribution π(θ) can be computed by marginalizing momenta variables.

⇡̃(✓,p) ⇡(✓,p) ⇡(✓)
marginalizationreweighting

FIGURE 3.1: MMHMC sampling.

MMHMC consists of the three main steps:

1. Partial Momentum Monte Carlo (PMMC) – Momentum is partially updated using a

noise vector u ∼ N (0,M) and accepted according to the extended modified distribu-

tion π̂ ∝ exp(−Ĥ) with Ĥ defined as in (2.32).

2. Hamiltonian Dynamics Monte Carlo (HDMC) – A proposal (θ′,p′) is generated

by simulating Hamiltonian dynamics using a symplectic and reversible numerical in-

tegrator and accepted with the Metropolis criterion corresponding to the modified

distribution π̃ ∝ exp(−H̃) as

(θnew,pnew) =

{
(θ′,p′) with probability α = min

{
1, exp(−∆H̃)

}
F(θ,p) otherwise

(3.1)

where F(θ,p) flips the momentum in the case of rejection and ∆H̃ = H̃(θ′,p′) −
H̃(θ,p).

3. Reweighting – The estimation of the integral

I =

∫
f(θ)π(θ)dθ
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makes use of the standard technique for importance samplers. The integral is rewrit-

ten as

I =Eπ[f ] =

∫
f(θ)π(θ,p)dθdp =

∫
f(θ)

π(θ,p)

π̃(θ,p)
π̃(θ,p)dθdp

=

∫
f(θ)w(θ,p)π̃(θ,p)dθdp = Eπ̃[fw],

(3.2)

where π̃(θ,p) is the importance distribution and w(θ,p) the importance weight func-

tion. Since distributions π and π̃ are known up to a normalizing constant, we may

estimate this integral by following expressions (1.5)–(1.6) for importance samplers

as

Î =

∑N
n=1 f(θn)wn∑N

n=1wn
, wn = exp

(
H̃(θn,pn)−H(θn,pn)

)
, (3.3)

where (θn,pn) are draws from π̃, and wn are the corresponding weights.

If a step size is chosen such that the modified Hamiltonian is a close approximation

of the true Hamiltonian, backward error analysis is still valid. In particular, the differ-

ence between the true and modified Hamiltonian (2.12) implies that the reduction in

efficiency of the estimator (3.3), introduced due to importance sampling, is minor in

the case of the MMHMC method.

The main algorithmic differences between the Hamiltonian Monte Carlo (HMC) and

MMHMC methods are listed in Table 3.1.

HMC MMHMC
Momentum update complete partial

Momentum Metropolis test 7 3

Metropolis test H H̃
Re-weighting 7 3

TABLE 3.1: Di�erences between HMC and MMHMC.

In the following sections, we proceed with the details on each modification introduced

over the original GSHMC method. Due to the statistical framework in which MMHMC is

formulated, we set the inverse temperature β = 1. We also refer to the Hamiltonian Dy-

namics step instead of calling it the Molecular Dynamics step and we define the parameter

ϕ ∈ (0, 1] for the partial momentum update instead of φ ∈ (0, π/2], where ϕ = sin2(φ).

3.2.1 Modified Hamiltonians

The original GSHMC method has been formulated and implemented using the leapfrog inte-

grator and the corresponding modified Hamiltonians. Our intention is to combine MMHMC

with the numerical integrators which potentially can offer better conservation properties

than Verlet. More specifically, we are interested in numerical integrators belonging to two-,

three- and four-stage families of methods (2.21)–(2.23). For that, the formulation and
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implementation of appropriate modified Hamiltonians are required. One procedure to cal-

culate modified Hamiltonians of orders up to 24 is provided by Skeel and Hardy (2001) and

Engle et al. (2005) for the Verlet integrator and it is further improved using Richardson ex-

trapolation by Moan and Niesen (2014). This approach could be generalized to multi-stage

integrators. Nevertheless, it requires a modification of the integrator by introducing an

additional scalar variable into dynamics. We opt for a different strategy in deriving appro-

priate expressions for modified Hamiltonians depending on one, two and three parameters

for two-, three- and four-stage methods, respectively.

We consider splitting methods and start with writing the expansion of the Hamiltonian

function with a quadratic kinetic function, in terms of Poisson brackets of partial Hamilto-

nians (2.8)

H̃ = H + h2α{A,A,B}+ h2β{B,B,A}

+ h4γ1{A,A,A,A,B}+ h4γ2{B,A,A,A,B} (3.4)

+ h4γ3{B,B,A,A,B}+ h4γ4{A,A,B,B,A}+O(h6)

where α, β, γ1−4 are polynomials written in terms of the integrators’ coefficients ai, bi

(Blanes et al., 2014). Iterated Poisson brackets {F, {G,H}} are denoted as {F,G,H}.
The expressions for a modified Hamiltonian of an arbitrary order can be obtained by di-

rectly applying the BCH formula to the exponentials of Lie derivatives LA and LB iteratively,

but the computation is cumbersome except for a low order approximation (Sanz-Serna and

Calvo, 1994). Alternatively, coefficients multiplying Poisson brackets for the 4th, 6th and

8th order modified Hamiltonians for symmetric composition methods can be derived from

expressions given by Omelyan et al. (2002). In the case of general non-symmetric compo-

sition methods with an arbitrary number of stages, one can obtain the coefficients α and β

using results derived in (Hairer et al., 2006, see Lemma III.5.5).

Here we propose two alternative ways to derive the expression for the 4th and 6th

order modified Hamiltonians. One uses analytical derivatives of the potential function

whereas another one relies on numerical time derivatives of its gradient, obtained through

the quantities available from a simulation.

3.2.1.1 Analytical derivatives

For problems in which derivatives of the potential functions are available, we derive the

4th and 6th order modified Hamiltonians by first expanding terms from (3.4) using the

definition (2.6) of Poisson brackets as

{A,A,B} = pTM−1Uθθ(θ)M−1p

{B,B,A} = Uθ(θ)TM−1Uθ(θ)

{A,A,A,A,B} = Uθθθθ(θ)M−1pM−1pM−1pM−1p

{B,A,A,A,B} = −3Uθ(θ)TM−1Uθθθ(θ)M−1pM−1p

{B,B,A,A,B} = 2Uθ(θ)TM−1Uθθ(θ)M−1Uθ(θ)
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{A,A,B,B,A} = 2Uθ(θ)TM−1Uθθθ(θ)M−1pM−1p

+2pTM−1Uθθ(θ)M−1Uθθ(θ)M−1p.

This leads to the following 4th and 6th order modified Hamiltonians for splitting integrators

H̃ [4](θ,p) =H(θ,p) + h2c21p
TM−1Uθθ(θ)M−1p + h2c22Uθ(θ)TM−1Uθ(θ), (3.5)

H̃ [6](θ,p) =H̃ [4](θ,p) + h4c41Uθθθθ(θ)M−1pM−1pM−1pM−1p (3.6)

+ h4c42Uθ(θ)TM−1Uθθθ(θ)M−1pM−1p

+ h4c43Uθ(θ)TM−1Uθθ(θ)M−1Uθ(θ)

+ h4c44p
TM−1Uθθ(θ)M−1Uθθ(θ)M−1p,

where

c21 = α, c22 = β, c41 = γ1, c42 = 2γ4 − 3γ2, c43 = 2γ3, c44 = 2γ4. (3.7)

Coefficients α, β, γ1−4 can be derived from expressions in terms of Poisson brackets, given

by Omelyan et al. (2002) where the authors analyzed the so-called force-gradient integra-

tors for molecular dynamics. In particular, they considered the splitting integrators that are

extended by an additional higher-order operator into the single-exponential propagations.

If the potential function is quadratic, i.e. corresponding to problems of sampling from

Gaussian distributions, the 6th order modified Hamiltonian (3.6) simplifies to

H̃ [6](θ,p) = H̃ [4](θ,p) + h4c43Uθ(θ)TM−1Uθθ(θ)M−1Uθ(θ) (3.8)

+ h4c44p
TM−1Uθθ(θ)M−1Uθθ(θ)M−1p.

Combining (3.7) with expressions for α, β, γ1−4 we obtain the following coefficients for
the two-stage integrator family (2.21)

c21 =
1

24

(
6b− 1

)
c22 =

1

12

(
6b2 − 6b+ 1

)
c41 =

1

5760

(
7− 30b

)
c42 =

1

240

(
− 10b2 + 15b− 3

)
c43 =

1

120

(
− 30b3 + 35b2 − 15b+ 2

)
c44 =

1

240
(20b2 − 1).

(3.9)
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For three-stage integrators (2.22) (a two-parameter family) we get

c21 =
1

12

(
1− 6a(1− a)(1− 2b)

)
c22 =

1

24

(
6a(1− 2b)2 − 1

)
c41 =

1

720

(
1 + 2(a− 1)a(8 + 31(a− 1)a)(1− 2b)− 4b

)
c42 =

1

240

(
6a3(1− 2b)2 − a2(19− 116b+ 36b2 + 240b3) + a(27− 208b+ 308b2)− 48b2 + 48b− 7

)
c43 =

1

180

(
1 + 15a(1− 2b)(−1 + 2a(2− 3b+ a(4b− 2)))

)
c44 =

1

240

(
− 1 + 20a(1− 2b)(b+ a(1 + 6(b− 1)b))

)
.

(3.10)
Finally, for four-stage integrators (2.23) (a three-parameter family) the coefficients read as

c21 =
1

12

(
6b21 − 6b1 + 1 + 6b2(1− 2a)(2b1 + b2 − 1)

)
c22 =

1

24

(
6(b1 + b2(1− 2a)2)− 1

)
c41 =

1

5760

(
7 + 60(8(a− 1)2a2 − 1)b1

)
c42 =

1

96

(
1− 12b1 + 40b21 − 24b31 + 4(1− 2a)(a− 3 + (20− 6a)b1 + 6(3 + 2a)b21)b2 + 8(1− 2a)(5+

9a2 + 6a(b1 − 2)− 9b1)b22 − 24(1− 2a)2b32

)
c43 =

1

360

(
2− 15b1 + 30b21 + 15(1− 2a)2(4(1 + a)b1 − 1− 2a)b2 + 30(1− 2a)3b22

)
c44 =

1

120

(
2− 30b31 + 5b21(7− 6(4a(1 + a)− 3)b2) + 5(1− 2a)b2((7− 6b2)b2 − 3+

2a(6b22 − 1− 3b2)) + 5b1(2(1− 2a)b2(7− 9b2 + 6a(1 + b2))− 3)
)
.

(3.11)

Using (3.9) one can also obtain the modified Hamiltonian for the Verlet integrator since

two steps of Verlet integration are equivalent to one step of the two-stage integrator with

b = 1/4. The coefficients are therefore

c21 =
1

12
, c22 = − 1

24
(3.12)

c41 = − 1

720
, c42 =

1

120
, c43 = − 1

240
, c44 =

1

60
.

Figure 3.2 shows computational overheads of MMHMC, using the 4th order modified

Hamiltonian (3.5), compared to the HMC method. The left-hand graph presents the over-

head for a model with a tridiagonal Hessian matrix and indicates that for two different

dimensions of the system the overhead becomes negligible as the number of integration

steps increases. In contrast, for models with a dense Hessian matrix computation of mod-

ified Hamiltonians may introduce a significant additional cost, as shown in the right-hand

graph.

For a 100-dimensional Gaussian problem, we also compare the resulting numerical in-

tegration error ∆ observed in the true Hamiltonian H and the 4th and 6th order modified
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FIGURE 3.2: Computational overhead of MMHMC compared to HMC for models
with a tridiagonal (le�) and a dense Hessian matrix (right) using the 4th order

modified Hamiltonian (3.5) where all derivatives are calculated analytically.

Hamiltonians given by (3.5) and (3.8), respectively (see Figure 3.3). H̃ [4] is significantly

better conserved than H. H̃ [6] is even better conserved, as expected. Nevertheless, in

practice, this must be weighted up against the computational cost of the calculation of

the modified Hamiltonian (3.6) for non-Gaussian problems, which includes higher order

derivatives.

Iterations
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[6]

FIGURE 3.3: Error in Hamiltonians a�er numerical integration for a 100-
dimensional Gaussian problem.

3.2.1.2 Numerical derivatives

For applications with a dense Hessian matrix (and higher derivatives), the computational

overhead from calculations of modified Hamiltonians reduces the advantages of the MMHMC

method. In order to implement such calculations in an efficient manner, we wish to express

modified Hamiltonians in terms of quantities that are available during the simulation. In-

stead of making use of the time derivatives of the position vectors, as carried out in the
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original GSHMC method, we employ identities for time derivatives of the gradient of the

potential function, as follows,

U
(1)
θ = Uθθ(θ)M−1p

U
(2)
θ = Uθθθ(θ)M−1pM−1p− Uθθ(θ)M−1Uθ(θ) (3.13)

U
(3)
θ = Uθθθθ(θ)M−1pM−1pM−1p− 3Uθθθ(θ)M−1Uθ(θ)M−1p

−Uθθ(θ)M−1Uθθ(θ)M−1p.

Substituting these time derivatives (3.13) into the analytical expressions (3.5)–(3.6) for the

4th and 6th order modified Hamiltonians, we obtain

H̃ [4](θ,p) = H(θ,p) + h2k21p
TM−1Uθ

(1) + h2k22Uθ(θ)TM−1Uθ(θ), (3.14)

H̃ [6](θ,p) = H̃ [4](θ,p) + h4k41p
TM−1Uθ

(3) + h4k42Uθ(θ)TM−1Uθ
(2) (3.15)

+ h4k43Uθ
(1)TM−1Uθ

(1) + h4k44Uθ(θ)TM−1Uθθ(θ)M−1Uθ(θ),

where the coefficients are

k21 = c21, k22 = c22, (3.16)

k41 = c41, k42 = 3c41 + c42, k43 = c41 + c44, k44 = 3c41 + c42 + c43.

We note that the newly derived expression (3.14) does not include the Hessian of the

potential function and thus, allows for computation of H̃ [4] using quantities available from

a simulation. Nevertheless, this is not the case for the resulting 6th order Hamiltonians.

The last term in (3.15), arising from an expansion of the Poisson bracket {B,B,A,A,B},
cannot be computed using time derivatives of available quantities and requires explicit

calculation of the Hessian matrix of the potential function. Only for the Verlet integrator

does this term vanish and the resulting coefficients are

k21 =
1

12
, k22 = − 1

24
,

k41 = − 1

720
, k42 =

1

240
, k43 =

11

720
, k44 = 0. (3.17)

We can now write explicit expressions for coefficients kij by simply substituting the de-
rived coefficients cij (3.9), (3.10) or (3.11) into the relationship (3.16) for two-, three- or
four-stage integrators, respectively. For two-stage integrator family (2.21) we obtain the
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following coefficients

k21 =
1

24

(
6b− 1

)
k22 =

1

12

(
6b2 − 6b+ 1

)
k41 =

1

5760

(
7− 30b

)
k42 =

1

1920

(
− 80b2 + 90b− 17

)
k43 =

1

5760

(
480b2 − 30b− 17

)
k44 =

1

128
(1− 4b)2(1− 2b).

(3.18)

For three-stage integrators (2.22) they are

k21 =
1

12

(
1− 6a(1− a)(1− 2b)

)
k22 =

1

24

(
6a(1− 2b)2 − 1

)
k41 =

1

720

(
1 + 2(a− 1)a(8 + 31(a− 1)a)(1− 2b)− 4b

)
k42 =

1

240

(
2a(16− a(34− 31a2))− 4(a(45 + a(31a(2 + a)− 112))− 7)b+

8(a(29 + a(62a− 78))− 4)b2 − 5
)

k43 =
1

720

(
2a(19− a2(56− 31a)) + 4(23 + a(a(99 + (50− 31a)a)− 106))b+

24(a(29 + a(2a− 33))− 4)b2 − 11
)

k44 =
1

120
(1− 2b)(8b+ a(16 + 31a3 − 48b− 124a2b+ 12a(b(8 + 5b)− 2))− 3).

(3.19)

Coefficients for four-stage integrators (2.23) are

k21 =
1

12

(
6b21 − 6b1 + 1 + 6b2(1− 2a)(2b1 + b2 − 1)

)
k22 =

1

24

(
6(b1 + b2(1− 2a)2)− 1

)
k41 =

1

5760

(
7 + 60(8(a− 1)2a2 − 1)b1

)
k42 =

1

1920

(
− 17− 80b21 + 20b1(3 + 8a(3(a− 1)a(a− 4b2 − 1)− b2)− 8b2)+

40(2a− 1)b2(4a(3a− 1) + 2b2 − 3)
)

k43 =
1

5760

(
− 17 + 60(8b21 − 8(2a− 1)b2(a+ b2 + 6(a− 1)ab2) + b1(16b2 + 8a((a− 1)2a+

2(6a− 5)b2)− 1))
)

k44 =
1

128

(
1− 32b31 − 32b21((4a(1 + a)− 3)b2 − 1) + 8(2a− 1)b2(4a2 + (1− 2b2)2+

4a(1− 2b2)b2) + 4b1(8(a− 1)2a2 + 16b2 − 8a(3 + 4a2)b2 − 8(3 + 4(a− 2)a)b22 − 3)
)
.

(3.20)

In the original GSHMC method, an interpolating polynomial of positions Θ(ti) = θi, i =

n−k, . . . , n, . . . , n+k, n ∈ {0, L} is constructed from a numerical trajectory {θi}L+k
i=−k, where

k = 2 and k = 3 for the 4th and 6th order modified Hamiltonian, respectively. This requires
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four or six additional gradient calculations in order to compute H̃ [4] or H̃ [6], respectively.

We choose a different strategy and calculate the polynomial in terms of the gradient of the

potential function

U(ti) = Uθ(θi), i = n− k, . . . , n, . . . , n+ k.

With this approach k = 1 for the 4th order and k = 2 for the 6th order modified Hamilto-

nian, meaning that an evaluation of H̃ [4] or H̃ [6] requires two or four additional gradient

calculations, respectively. Note that k corresponds to a multiple of the full integration step

only in the case of the Verlet integrator; for others, it is the number of stages performed (e.g.

k = 2 corresponds to a half integration step of a four-stage method). Also, note that an effi-

cient implementation does not include the unnecessary integration sub-step of momentum

update at the very beginning and very end of the numerical trajectory {Uθ(θi)}L+k
i=−k.

Time derivatives of the gradient of the potential function are approximated using central

finite difference of second order of accuracy for the 4th order modified Hamiltonian

U
(1)
θ ≈ U(tn+1)−U(tn−1)

2ε
=: U(1), (3.21)

where ε = h for the Verlet, ε = h/2 for two-stage and ε = ah for three- and four-stage inte-

grators, h being the integration step size and a being the integrator’s coefficient advancing

position variables. The 6th order modified Hamiltonian, here considered only for the Verlet

and two-stage integrators, is calculated using centered differences of fourth order accuracy

for the first derivative and second order accuracy for the second and third derivatives

U
(1)
θ ≈ U(tn−2)− 8U(tn−1) + 8U(tn+1)−U(tn+2)

12ε
=: U(1)

U
(2)
θ ≈ U(tn−1)− 2U(tn) + U(tn+1)

ε2
=: U(2)

U
(3)
θ ≈ −U(tn−2) + 2U(tn−1)− 2U(tn+1) + U(tn+2)

2ε3
=: U(3),

where ε depends on the integrator as before. Different orders of accuracy are necessary in

order to achieve the overall required accuracy of the modified Hamiltonian.

The final expressions for our newly derived modified Hamiltonians are

H̃ [4](θ,p) = H(θ,p) + hk21p
TM−1P1 + h2k22Uθ(θ)TM−1Uθ(θ) (3.22)

H̃ [6](θ,p) = H̃ [4](θ,p) + hk41p
TM−1P3 + h2k42Uθ(θ)TM−1P2 (3.23)

+ h2k43P
T
1 M

−1P1 + h4k44Uθ(θ)TM−1Uθθ(θ)M−1Uθ(θ),

where Pi = U(i) · hi. We note that the term with the coefficient k22 is calculated ex-

actly, i.e. avoiding finite difference approximation, which therefore improves the approx-

imation of the modified Hamiltonian compared to the original strategy used in GSHMC.

We also note that compared to the expressions with analytical derivatives (3.5) and (3.6)

with coefficients cij multiplying exact derivatives, in the formulations (3.22) and (3.23) for
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the 4th and 6th order Hamiltonians, respectively, the terms arising from those multiplying

c21, c41, c42, and c44 are approximated with Pi. The level of accuracy provided by the modi-

fied Hamiltonians (3.22) and (3.23), however, are not affected by these approximations.

The computational overhead of MMHMC compared to the HMC method is shown in

Figure 3.4 for models with a tridiagonal (left-hand graph) and a dense Hessian matrix

(right-hand graph) using the modified Hamiltonians (3.22) and (3.23) of 4th and 6th order,

respectively, with numerical approximations of derivatives. Compared to Figure 3.2, where

all derivatives are calculated analytically, we note that for models with a sparse Hessian

(left-hand graphs), the 4th order modified Hamiltonian (3.5) with analytical derivatives

introduces less computational overhead than (3.22) with a numerical approximation. This

is due to additional forward and backward integration steps, which do not counterbalance

the inexpensive Hessian calculation. For models with a dense Hessian matrix (right-hand

graphs), we recommend always using (3.22), which significantly reduces the overhead. The

6th order modified Hamiltonian (3.23) clearly requires additional computational effort, due

to two extra gradient calculations per MC iteration. In the following sections, we show that

using the order of modified Hamiltonian higher than four can be avoided by introducing

accurate multi-stage integrators specially tuned for MMHMC.
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FIGURE 3.4: Computational overhead of MMHMC compared to HMC for models
with a tridiagonal (le�) and a dense (right) Hessian matrix, using 4th and 6th order

modified Hamiltonians with numerical approximation of the time derivatives.

In summary, we provided two alternative formulations of the 4th and 6th order modified

Hamiltonians corresponding to multi-stage integrators (2.21)–(2.23) with arbitrary coeffi-

cients. For the cases when analytical derivatives of the potential function are available and

inexpensive to compute, the modified Hamiltonians can be calculated using (3.5)–(3.12).

For problems in which this is not the case, we provided formulations of modified Hamilto-

nians which mainly rely on quantities available from the simulation. Both approaches can

be used with any multi-stage integrator (2.21)–(2.23) including the Verlet integrator.

In the following section, we devise the novel numerical integrators specifically for sam-

pling with modified Hamiltonians and examine their performance in comparison with al-

ready proposed integrators for HMC methods.
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3.2.2 Integrators

Until now, the Verlet/leapfrog integrator has been the integrator of choice for the GSHMC

method. The modified Hamiltonian of order four is explicitly formulated, and a general

formula for modified Hamiltonians of an arbitrary order of accuracy has been obtained us-

ing Lagrangian formalism by Akhmatskaya and Reich (2008). In this section, we consider

alternative integrators and investigate their competitiveness with the Verlet integrator. Ex-

plicit expressions for the corresponding modified Hamiltonians of order four and six were

derived in Section 3.2.1.

3.2.2.1 Multi-stage integrators

Our focus now shifts to multi-stage integrators. There are two reasons for our interest

in these integrators. One is their potentially-higher-than-in-Verlet accuracy at the same

computational cost. This implies higher acceptance rate and longer step sizes, thus an

improved sampling performance. Another possible benefit from the integrators of this class

is avoiding the need for computationally expensive higher order modified Hamiltonians due

to the accurate integration.

In Section 2.2.3 we reviewed multi-stage integrators designed for molecular dynam-

ics and HMC simulations. In this section, we derive the new multi-stage integrators for

sampling with modified Hamiltonians and investigate whether the integrators previously

proposed for HMC (Blanes et al., 2014) and the newly derived integrators can improve

the performance of MMHMC compared to the Verlet integrator. We now proceed with the

derivation of multi-stage integrators specific to sampling with modified Hamiltonians.

In the MMHMC method, the underlying system is driven by Hamiltonian dynamics

(2.3). The equations of motion are therefore the same as in the HMC method; however,

MMHMC includes the different Metropolis test whose success depends on the accuracy of

an integrator. Indeed, the sampling performance of MMHMC is controlled not by an energy

error as in HMC but by a modified energy error. Thus, inspired by the ideas of McLachlan

(1995) and Blanes et al. (2014) for improving HMC performance by minimizing energy er-

ror / expected energy error through the appropriate choice of parameters of an integrator,

we design the new integrators by considering the (expected) error in the modified Hamil-

tonian H̃ [l] of order l, in order to enhance performance of MMHMC. The expected values of

such errors are taken with respect to the modified density π̃, instead of the true density π.

We choose integrating parameters through minimization of either Hamiltonian error

introduced after integration

∆ = H̃ [l](Ψh,L(θ,p))− H̃ [l](θ,p), (3.24)

or its expected value Eπ̃(∆). Recall that Ψh,L(θ,p) is the exact hL-time map of the modified

Hamiltonian H̃. With this approach, we design the minimum error and minimum expected

error integrators for sampling with modified (M) Hamiltonians. In order to distinguish
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these integrators from the corresponding ones designed for the HMC method, we denote

them as M-ME and M-BCSS, respectively.

Minimum error (M-ME) integrators

We wish to construct the minimum error integrators for the 4th order modified Hamil-

tonian.

The Taylor expansion of the 4th order modified Hamiltonian after one integration step

with the method Ψh can be written as (Sanz-Serna and Calvo, 1994)

H̃ [4](θ′,p′) = H̃ [4](Ψh(θ,p)) = exp
(
hLH̃

)
H̃ [4](θ,p)

= H̃ [4](θ,p) + hLH̃H̃
[4](θ,p) +

1

2
h2L2

H̃
H̃ [4](θ,p) + . . . ,

where H̃ is the modified Hamiltonian (3.4) expressed in terms of Poisson brackets. Re-

calling the definition of the Lie derivative, LF (·) = {·, F}, the error ∆ in H̃ [4] after one

integration step reads

∆(θ,p) = h5
(
γ1{A,A,A,A,A,B}(θ,p) + γ1{B,A,A,A,A,B}(θ,p)

+γ2{A,B,A,A,A,B}(θ,p) + γ2{B,B,A,A,A,B}(θ,p)

+γ3{A,B,B,A,A,B}(θ,p) + γ3{B,B,B,A,A,B}(θ,p)

+γ4{A,A,A,B,B,A}(θ,p) + γ4{B,A,A,B,B,A}(θ,p)
)
.

(3.25)

An error metric for the 4th order modified Hamiltonian can then be defined as a function

of the integrating coefficients

E =
√
γ2

1 + γ2
2 + γ2

3 + γ2
4 , (3.26)

where the explicit expressions for γ1−4 follow from relationship (3.7) as

γ1 = c41, γ2 =
1

3
(c44 − c42), γ3 =

1

2
c43, γ4 =

1

2
c44

and the coefficients cij are calculated from (3.9), (3.10) or (3.11) for two-, three- or four-

stage integrators, respectively. For quadratic potential and kinetic functions, corresponding

to the problem of sampling from a Gaussian distribution, error (3.25) simplifies and we can

define the error metric as

EG = |γ2 + γ4|. (3.27)

In contrast to this approach, the error metric for the minimum error integrator derived

for sampling with the true Hamiltonian, i.e. the HMC method, is defined through the Hamil-

tonian truncation error H − H̃ at the state (θ,p) (McLachlan, 1995), rather than the error

in Hamiltonian after numerical integration. Minimization of the error metric

EHMC = α2 + β2
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results in the coefficient b = 0.193183 for the two-stage integrator.

In order to obtain numerical values for integrating coefficients for the MMHMC method,

we minimized the metrics E and EG on the interval (0, 0.5) using Mathematica. In Table

3.2 we summarize the coefficients obtained for each integrator with the corresponding error

metrics for multi-stage minimum error integrators. The smallest error metric is achieved

using three-stage integrators.

Integrator Coe�icients E Coe�icients EG

2-stage b = 0.23061 2.720 · 10−4 b = 0.230907 1.444 · 10−11

3-stage a = 0.355423
7.391 · 10−5 a = 0.39263

2.304 · 10−19

b = 0.184569 b = 0.199778

4-stage
a = 0.0840641

7.782 · 10−4
a = 0.441252

8.289 · 10−12b1 = 0.0602952 b1 = 0.266011
b2 = 0.216673 b2 = 0.181055

TABLE 3.2: Coe�icients for the novel multi-stage minimum error integrators de-
rived for sampling with the 4th order modified Hamiltonian, with the correspond-

ing error metricE for general problems andEG for Gaussian problems.

Error metric definitions (3.26) and (3.27) are based on the assumption that the iterated

brackets from the error (3.25) in H̃ [4] contribute equally to the Hamiltonian error. This

assumption does not hold in general, although it is a reasonable assumption to start with.

Moreover, the weights of the brackets depend on the problem at hand, and their estimation

could lead to problem specific integrators. Nevertheless, in this thesis, our aim is to obtain

the integrators for use in a broad range of problems.

Minimum expected error (M-BCSS) integrators

The modified Hamiltonians we consider here are of order 4 and 6. We adopt a strategy

similar to the one proposed by Blanes et al. (2014), namely to find the parameters of inte-

grators that minimize the expected value of the error. In our case, the error (3.24), resulting

from numerical integration is in terms of the modified Hamiltonian and the expected value

is taken with respect to the modified density π̃.

As in the case when considering the error in the true Hamiltonian, we may prove that

the expected error in the modified Hamiltonian Eπ̃(∆) is also positive. Our objective is,

therefore, to find a function ρ(h, ξ) that bounds Eπ̃(∆), i.e.

0 ≤ Eπ̃(∆) ≤ ρ(h, ξ).

Here ξ is a parameter vector, e.g. ξ = {ξ1}, ξ1 = b, for two-stage integrators. From now on

we consider only univariate model problem, as suggested by Blanes et al. (2014), namely

a univariate harmonic oscillator with equations of motion given in (2.25) and the corre-

sponding Hamiltonian (2.26). This implies that the error ∆ defined in (3.24) becomes

∆ = H̃ [l](Ψh,L(θ, p))− H̃ [l](θ, p). (3.28)
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We first find the numerical solution to the dynamics (2.25) for a single time step (θn+1, pn+1) =

Ψh(θn, pn). In matrix form this is given by[
θn+1

pn+1

]
= M̃h

[
θn

pn

]
, M̃h =

[
Ah Bh

Ch Ah

]
,

where the coefficients Ah, Bh, Ch depend on the integrator. After L integration steps the

state of the system (θL, pL) = ΨhL(θ, p) is given by[
θL

pL

]
= M̃h . . . M̃h︸ ︷︷ ︸

L times

[
θ

p

]
= M̃L

h

[
θ

p

]
. (3.29)

For the Verlet integrator the matrix M̃h can be calculated as

M̃h = B

(
1

2

)
·A (1) ·B

(
1

2

)
,

where

A(a) =

[
1 ah

0 1

]
, B(b) =

[
1 0

−bh 1

]

correspond to mappings ϕAh and ϕBh , respectively. The resulting elements of M̃h are

Ah = 1− h2

2
Bh = h (3.30)

Ch =
h3

4
− h.

We derive the matrix M̃h for two-stage integrators, which follows as

M̃h = B (b) ·A
(

1

2

)
·B (1− 2b) ·A

(
1

2

)
·B (b)

=

[
1 0

−bh 1

]
·

[
1 h/2

0 1

]
·

[
1 0

−(1− 2b)h 1

]
·

[
1 h/2

0 1

]
·

[
1 0

−bh 1

]

=

[
Ah Bh

Ch Ah

]
,

such that

Ah =
h4

4
b(1− 2b)− h2

2
+ 1

Bh = −h
3

4
(1− 2b) + h (3.31)

Ch = −h
5

4
b2(1− 2b) + h3b(1− b)− h.
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Similarly, for three-stage integrators we compute

M̃h = B(b) ·A(a) ·B(
1

2
− b) ·A(1− 2a) ·B(

1

2
− b) ·A(a) ·B(b)

and obtain

Ah =
h6

4
a2(2a− 1)(1− 2b)2b+

h4

4
a
(
1− 4b2 − a(1− 4b)

)
− h2

2
+ 1

Bh =
h5

4
a2(1− 2a)(1− 2b)2 − h3a(1− a)(1− 2b) + h (3.32)

Ch =
h7

4
a2(1− 2a)(1− 2b)2b2 +

h5

2
a(2a(1− b)− 1)b(1− 2b) +

h3

4

(
1− 2a(1− 2b)2

)
− h.

For four-stage integrators the computation becomes a bit more involved and results in co-

efficients

Ah =
h8

4
(1− 2a)2a2b1b

2
2(1− 2b1 − 2b2) +

h6

4
ab2 (2b1(1− 2a)(2b1 − 1 + 3b2 − 4ab2) + b2(2b2 + a(4− 5a− 8(1− a)b2))) +

h4

4

(
b1(1− 4b2(1− 2a)) + b2(1− 2b2 + 4a(b2 − a))− 2b21

)
− h2

2
+ 1

Bh = −h
7

4
(1− 2a)2a2b22(1− 2b1 − 2b2) +

h5a

2
(1− 2a)b2(1− 2b1 + 2(a− 1)b2) +

h3

4

(
2(1− 2a)2b2 − (1− 2b1)

)
+ h (3.33)

Ch =
h9

4
ab21b

2
2(8b1 + a(2b1 − 1 + 4a(1− a− 2b1) + 2b2 + 8(a− 1)ab2))−

h7

2
ab1b2(1− 2a)

(
2b21 − (1− 2a)b2(1− 2b2)− b1(1 + 2(3a− 2)b2)

)
+

h5

4
(2b31 − (1− 2a)2b22(1− 2b2)− b21(1 + (8a(1 + a)− 6)b2)−

2(1− 2a)b1b2(1− 3b2 + 2a(1 + b2))) +

h3
(
(1− 2a)(1− b2)b2 + b1(1− 2(1− 2a)b2)− b21

)
− h.

It is well known that if step size h is such that |Ah| < 1 the integration is stable. In that

case we may define

ζh := arccosAh

χh := Bh/ sin ζh,

for which the one-step and L-steps integration matrices M̃h and M̃L
h , respectively, are

M̃h =

[
cos(ζh) χh sin(ζh)

−χ−1
h sin(ζh) cos(ζh)

]
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and

M̃L
h =

[
cos(Lζh) χh sin(Lζh)

−χ−1
h sin(Lζh) cos(Lζh)

]
. (3.34)

We now proceed to the calculation of the univariate error (3.28) for the 6th order

modified Hamiltonian, which for the univariate harmonic oscillator model problem has the

form

H̃ [6](θ, p) =
1

2
θ2 +

1

2
p2 + h2c21p

2 + h2c22θ
2 + h4c44p

2 + h4c43θ
2

=

(
1

2
+ h2c22 + h4c43

)
θ2 +

(
1

2
+ h2c21 + h4c44

)
p2, (3.35)

where coefficients cij depend on the integrator’s formulation and its coefficients, which we

derived before in Section 3.2.1. The derivation for the 4th order modified Hamiltonian

follows directly from setting c43 = c44 = 0.

In order to calculate the expected value of the error (3.28) we follow the calculations

from the proof of Proposition 3 in (Blanes et al., 2014) and denote

c = cos(Lζh)

s = sin(Lζh)

S1 = 1 + 2h2c22 + 2h4c43

S2 = 1 + 2h2c21 + 2h4c44

for a simplified notation. Substituting (3.35), (3.34) and (3.29) into (3.28) we obtain

2∆ = S1 (cθ + χhsp)
2 + S2

(
− 1

χh
sθ + cp

)2

− S1θ
2 − S2p

2

= s2

(
1

χ2
h

S2 − S1

)
θ2 + s2

(
χ2
hS1 − S2

)
p2 + 2sc

(
S1χh − S2

1

χh

)
θp.

Since the expectations are taken with respect to the modified density π̃,

Eπ̃(θ2) =
1

S1
, Eπ̃(p2) =

1

S2
, Eπ̃(θp) = 0,

it follows that

2Eπ̃(∆) = s2
( 1

χ2
h

S2

S1
+ χ2

h

S1

S2
− 2
)
.

We can simplify the equation by defining

χ̃2
h := χ2

h

S1

S2
= χ2

hS

so that we obtain

Eπ̃(∆) = s2ρ(h, ξ)
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where

ρ(h, ξ) =
1

2

(
χ̃h −

1

χ̃h

)2
=

(
SBh + Ch

)2

2S(1−A2
h)

. (3.36)

For the 4th order modified Hamiltonian

S =
1 + 2h2c22

1 + 2h2c21

and for the 6th order modified Hamiltonian

S =
1 + 2h2c22 + 2h4c43

1 + 2h2c21 + 2h4c44
.

The conditions for stable integration and positivity of ρ(h, ξ) are that |Ah| < 1 and S >

0. For the two-stage integrators and the 4th order modified Hamiltonian this is equivalent

to the following conditions

h <
√

12/(1− 6b) for b <
1

6
,

h >
√

12/(1− 6b) for b >
1

6
,

0 < h < min
{√

2/b,
√

1/(1− 2b)
}
,

which are always satisfied for b ∈ (0, 1
2).

We note that we can recover the true Hamiltonian by setting coefficients cij to zero.

Doing so, we obtain exactly the same function as derived by Blanes et al. (2014)

ρHMC(h, ξ) =
(Bh + Ch)2

2(1−A2
h)

. (3.37)

Finally, we choose coefficients ξ that minimize the function

‖ρ‖(h̄) = max
0<h<h̄

ρ(h, ξ), (3.38)

where h̄ is equal to the number of stages in the integrator (see Section 2.2.3). For the
family of two-stage integrators and 4th order modified Hamiltonian we have

ρ(h, b) =
h8
(
b
(
12 + 4b(6b− 5) + b(1 + 4b(3b− 2))h2

)
− 2
)2

4
(
2− bh2

)(
4 + (2b− 1)h2

)(
2 + b(2b− 1)h2

)(
12 + (6b− 1)h2

)(
6 + (1 + 6(b− 1)b)h2

) .
(3.39)

Minimizing the function ‖ρ‖(2) we obtain the coefficient b = 0.238016 for the two-stage

M-BCSS integrator derived for sampling with the MMHMC method. We note the difference

in value for the coefficient of the original two-stage BCSS integrator, introduced for HMC,

being b = 0.21178.

Minimization of ‖ρ‖(3) and ‖ρ‖(4) for the three- and four-stage integrators, respectively,
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is more laborious than for two-stage integrators and we leave this derivation and perfor-

mance comparison for future research.

The above analysis can be extended to the multivariate case. Thus, for a D-variate

Gaussian distribution

π(θ) ∝ exp

(
−1

2
θTΣ−1θ

)
,

we bound the expected error as

Eπ̃(∆) ≤
D∑
d=1

ρ(fdh, ξ),

where fd = 1/σd and σ2
d are the eigenvalues of the covariance matrix Σ (Blanes et al.,

2014). This model problem can be seen as D coupled harmonic oscillators with angular

frequencies fd.

In Figure 3.5 we plot ‖ρHMC‖(h̄) (3.37)–(3.38) as a function of the maximal step size h̄

for the two-stage BCSS, ME, and Verlet integrators for the HMC method (dashed lines), and

the corresponding function ‖ρ‖(h̄) (3.38)–(3.39) for the two-stage M-BCSS, M-ME, and Ver-

let integrators, derived in this section for sampling with MMHMC (solid lines). The upper

bound of the expected error in Hamiltonian, and thus the error of the method, is lower for

integrators developed for MMHMC than in the case of the HMC specific integrators, which

confirms a better conservation of modified Hamiltonians by symplectic integrators than true

Hamiltonian. This is becoming more obvious when comparing ‖ρHMC‖(h̄) and ‖ρ‖(h̄) for the

Verlet integrator. As follows from Figure 3.5 the two-stage integrators derived for HMC and

MMHMC provide better accuracy than Verlet for step sizes less or equal to a half stability

limit of Verlet, i.e. h̄ = 2. The integrators derived for MMHMC guarantee a better accuracy

than other integrators for h̄ even bigger than 2 (Figure 3.5), which implies their efficiency

for longer step sizes compared with Verlet and two-stage integrators for HMC. Please notice

that h̄ in Figure 3.5 refers to a step size for a two-stage integrator. If Verlet is viewed as

a single stage integrator, this corresponds to h̄ = 1. It is important to note that the Verlet

integrator has the highest stability limit among other two-stage integrators. Nevertheless,

as Figure 3.5 suggests, the accuracy is degrading with h̄ approaching the stability limit. It is

the characteristics of the sampling problem (such as the number of parameters, the number

of observations, the nature of the underlying model) that determine the optimal step size

and therefore the integrator which would provide the best performance. A zoom-in of the

left-hand graph, shown in the right-hand graph, gives a bit better insight into the functions’

behavior for the MMHMC method.

We compare the performance of the standard Verlet integrator, the previously proposed

two-stage BCSS and ME integrators, and the newly derived two-stage M-BCSS and M-

ME and three-stage minimum error (M-ME3) integrators, for sampling from a multivariate

Gaussian distribution of dimension D = 100, 1000, 2000 with the MMHMC method. We also

tested the four-stage M-ME4 integrator, but since the results are worse than for M-ME3, we

do not include them in the plots for the sake of clarity. We adjust the step size h and the
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FIGURE 3.5: Upper bound for the expected energy error for the (M-)BCSS, (M-)ME
and Verlet integrators for sampling with the true Hamiltonian (dashed) and 4th
order modified Hamiltonian (solid). Right-hand graph is a zoom-in of the le�-

hand graph.

number of integration steps L to the number of stages in the integrator such that the com-

putational cost is equal for all tested integrators, e.g. for the Verlet we set hV = h/2 and

LV = 2L. We discard the first 2000 samples from the collected 10000 and show results av-

eraged over ten runs. Figure 3.6 presents the obtained acceptance rates as functions of the

step size h. MMHMC specific integrators always result in higher AR than the correspond-

ing ones derived for the HMC method. We note that for the small dimension (D = 100)

the Verlet integrator remains the best choice, due to its larger stability limit. For bigger

dimensions, which require smaller step sizes, better Hamiltonian conservation of two-stage

integrators (see Figure 3.5) implies higher acceptance rates. In this case both the newly de-

rived two-stage integrators show improvement over Verlet, with M-BCSS performing better

than M-ME. Although the smallest error metric was obtained with M-ME3 in the design of

minimum error integrators (see Table 3.2), this integrator shows the worst performance,

which might mean that the considered range of step sizes is close to the stability limit for

the M-ME3 (please, note that the stability limit of multi-stage integrators is dropping with

number of stages).
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FIGURE 3.6: Acceptance rates as functions of the step size h for sampling from
a D-dimensional Gaussian distribution. Comparison of the two-stage (M-)BCSS,

(M-)ME, three-stage M-ME3 and Verlet integrators.
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The relative sampling performance with respect to the Verlet integrator, in terms of

minimum, median, and maximum ESS, obtained for the tested integrators is presented in

Figure 3.7. Values below 1 correspond to cases of lower than Verlet’s sampling efficiency

and analogously, values above 1 correspond to an outperformance of an integrator over

Verlet. The stars on the step size scale mark the choices of step size providing the best

sampling performance for the considered problem. As in the case of resulting acceptance

rates, for the smallest dimension, the Verlet integrator demonstrates the best performance.

We note that for the smallest step sizes there is no difference among integrators. For bigger

step sizes and dimensions, the M-BCSS integrator improves sampling efficiency over the

Verlet up to 2.5 times for minimum ESS and up to 4 times for median and maximum

ESS. The improvement clearly increases with dimension; therefore we believe that for high

dimensional problems the new two-stage integrators are crucial component of an efficient

sampler.
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FIGURE 3.7: The relative sampling performance with respect to the Verlet integra-
tor, as functions of the step size h for sampling from a D-dimensional Gaussian
distribution. Comparison of the two-stage (M-)BCSS, (M-)ME and three-stage M-

ME3 integrators.

In this section we have derived the first two- and three-stage integrators specially tuned

66



3.2 FORMULATION

for modified Hamiltonians that guarantee minimal (expected) modified energy, leading to

a better acceptance rate and sampling performance.

In the next two sections, we investigate alternative strategies for some components of

the MMHMC method which may improve sampling or computational efficiency of MMHMC.

We start with the analysis of a momentum update step.

3.2.3 Momentum update

Contrary to the HMC method, in which momentum is completely reset before numerical

integration, the MMHMC method employs the Partial Momentum Monte Carlo (PMMC)

step in the following manner.

For the current momentum p and a noise vector u ∼ N (0,M) we make a proposal

p∗ =
√

1− ϕp +
√
ϕu

u∗ = −√ϕp +
√

1− ϕu
(3.40)

that is accepted according to the extended p.d.f.

π̂(θ,p,u) ∝ exp

(
−
(
H̃(θ,p) +

1

2
uTM−1u

))
(3.41)

with probability

P = min

{
1,

exp
(
− (H̃(θ,p∗) + 1

2(u∗)TM−1u∗)
)

exp
(
− (H̃(θ,p) + 1

2uTM−1u)
) }

. (3.42)

The parameter ϕ ∈ (0, 1] controls the amount of noise introduced in every iteration and is

related to the parameter φ from the original GSHMC formulation as ϕ = sin2(φ).

In the continuation of this Section, we derive a modified PMMC step that reduces the

number of calculations of derivatives, and we also investigate a few alternative strategies

for the momentum update, which were previously proposed in the literature.

3.2.3.1 Modified PMMC step

The computational overhead of MMHMC compared to the HMC method includes two eval-

uations of the modified Hamiltonian within the Metropolis probability (3.42). With the

aim of reducing the overhead, we modify the PMMC step such that the partial momentum

update step is integrated into the modified Metropolis test.

Let us first consider the 4th order modified Hamiltonian (3.5) with analytical derivatives

of the potential function, for which coefficients c21, c22 can be calculated either from (3.9),

(3.10) or (3.11) for two-, three- or four-stage integrators or from (3.12) for the Verlet

integrator. We find the difference in the extended “Hamiltonian”, introduced in equation

(2.32), between the current state and a state with partially updated momentum as

∆Ĥ =H̃ [4](θ,p∗) +
1

2
(u∗)TM−1u∗ − H̃ [4](θ,p)− 1

2
uTM−1u
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=��
�U(θ) +

1

2
(p∗)TM−1p∗ + h2c21(p∗)TM−1Uθθ(θ)M−1p∗ +

(((
((((

((((
h2c22Uθ(θ)M−1Uθ(θ))+

1

2
(u∗)TM−1u∗ −��

�U(θ) − 1

2
pTM−1p− h2c21p

TM−1Uθθ(θ)M−1p−

(((
((((

((((
h2c22Uθ(θ)M−1Uθ(θ))− 1

2
uTM−1u

=
1

2

(
(
√

1− ϕp +
√
ϕu)TM−1(

√
1− ϕp +

√
ϕu)+

(−√ϕp +
√

1− ϕu)TM−1(−√ϕp +
√

1− ϕu)− pTM−1p− uTM−1u
)

+

h2c21

(
(
√

1− ϕp +
√
ϕu)TM−1Uθθ(θ)M−1(

√
1− ϕp +

√
ϕu)−

pTM−1Uθθ(θ)M−1p
)

=
1

2

(
((((

((((
(

(1− ϕ)pTM−1p +���
���ϕuTM−1u +((((

(((
((((

2
√
ϕ(1− ϕ)uTM−1p+

���
���ϕpTM−1p +((((

((((
(

(1− ϕ)uTM−1u −(((((
(((

(((
2
√
ϕ(1− ϕ)uTM−1p���

���−pTM−1p −���
��

uTM−1u
)

+

h2c21

(
(�1− ϕ)pTM−1Uθθ(θ)M−1p + ϕuTM−1Uθθ(θ)M−1u−

((((
(((

((((
pTM−1Uθθ(θ)M−1p + 2

√
ϕ(1− ϕ)uTM−1Uθθ(θ)M−1p

)
=h2c21

(
ϕ
(
uTM−1Uθθ(θ)M−1u− pTM−1Uθθ(θ)M−1p

)
+

2
√
ϕ(1− ϕ)uTM−1Uθθ(θ)M−1p

)
. (3.43)

Therefore, if the 4th order modified Hamiltonian (3.5) with analytical derivatives is used,

a new momentum can be defined as

p̄ =

{ √
1− ϕp +

√
ϕu with probability P = min{1, exp(−∆Ĥ)}

p otherwise
(3.44)

where u ∼ N (0,M) is the noise vector, ϕ ∈ (0, 1] and

∆Ĥ = h2c21

(
ϕA+ 2

√
ϕ(1− ϕ)B

)
(3.45)

with
A = (u− p)TM−1Uθθ(θ)M−1(u + p)

B = uTM−1Uθθ(θ)M−1p.
(3.46)

Consequently, for models with no hierarchical structure, there is no need to calculate gradi-

ents within the PMMC step, second derivatives can be taken from the previous Hamiltonian

Dynamics Metropolis test, and there is no need to generate u∗.

We note here that in our implementation of the MMHMC method, a gradient calculation

is not necessary at this stage even when using the original PMMC step because we keep a

track of the current gradient in addition to the current position and momenta variables.

In Figure 3.8 we show the saving in computational time observed when using the new

PMMC step instead of the original PMMC step, as a function of the number of integra-

tion steps, for a model with dense Hessian matrix, using the modified Hamiltonian (3.5)
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with analytical derivatives. Clearly, for shorter HD trajectories the new momentum update

significantly improves the performance of MMHMC (up to 60% faster).
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FIGURE 3.8: Saving in computational time with the new PMMC step over the orig-
inal PMMC step, using the 4th order modified Hamiltonian (3.5) with analytical
derivatives, for a model with no hierarchical structure and dense Hessian of the

potential function.

In the case of the 6th order modified Hamiltonian (3.8) for Gaussian problems, the error

in the extended Hamiltonian (2.32) that enters the Metropolis test (3.44) can be calculated

in a similar manner

∆Ĥ = h2c21

(
ϕ(A−B) + 2

√
ϕ(1− ϕ)C

)
+ h4c44

(
ϕ(D − E) + 2

√
ϕ(1− ϕ)F

)
, (3.47)

with
A = uTM−1Uθθ(θ)M−1u

B = pTM−1Uθθ(θ)M−1p

C = uTM−1Uθθ(θ)M−1p

D = (Uθθ(θ)M−1u)TM−1Uθθ(θ)M−1u

E = (Uθθ(θ)M−1p)TM−1Uθθ(θ)M−1p

F = (Uθθ(θ)M−1u)TM−1Uθθ(θ)M−1p.

(3.48)

For the 4th order modified Hamiltonian (3.22) calculated using numerical time deriva-

tives of the gradient of the potential function, and for the Verlet, two-, three- and four-stage

integrators, we calculate the difference in the extended Hamiltonian as

∆Ĥ = hk21

(
(p∗)TP ∗1 − pTP1

)
, (3.49)

where P ∗1 is the first order scaled time derivative of the gradient (see Section 3.2.1.2)

calculated from the trajectory with updated momentum p∗. The computational gain of the

new PMMC step, in this case, results from not having to calculate the term multiplying k22 in

the modified Hamiltonian (3.22). In our implementation, however, this term is of negligible

cost, therefore, the gain from the new expression for the error (3.49) in the extended
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Hamiltonian that enters the Metropolis test (3.44) is not as significant as for the error

(3.45) derived for the 4th order modified Hamiltonian (3.5) with analytical derivatives.

For the 6th order modified Hamiltonian (3.23) with numerical time derivatives the

difference in the extended Hamiltonian may be calculated as

∆Ĥ =hk21

(
(p∗)TP ∗1 − pTP1

)
+ hk41

(
(p∗)TP ∗3 − pTP3

)
+ h2k42

(
UTx P

∗
2 − UTx P2

)
+ h2k43

(
(P ∗1 )TP ∗1 − P T1 P1

)
,

(3.50)

where P ∗2 , P
∗
3 are second and third order scaled time derivatives, respectively. These may

be computed as in Section 3.2.1.2 from trajectories with updated momenta p∗. The saving

in computation arises from the absence of terms multiplying k22 and k44 in the modified

Hamiltonian (3.23), which in this case is not negligible, contrary to the case of the 4th

order modified Hamiltonian (3.22).

In this section, we provided new formulations for the momentum Metropolis test for the

4th and 6th order modified Hamiltonians, with analytical and numerical derivatives. In the

case of the 6th order modified Hamiltonian, with derivatives calculated either analytically

or numerically, the new expressions for momentum refreshment lead to computational sav-

ing compared to the original GSHMC method, as is the case with the 4th order modified

Hamiltonian with analytical derivatives. In the latter case, however, if the Hessian matrix of

the potential function is dense, instead of using the modified Hamiltonian with analytical

derivatives, we recommend using numerical derivatives, for which the saving is negligible.

On the other hand, if the computation of the Hessian matrix is not very costly (e.g. be-

ing block-diagonal, sparse, close to constant), it might be more efficient to use analytical

derivatives, for which the new formulation of the Metropolis test leads to computational

saving.

3.2.3.2 Change of momentum variables

It might be useful to have a control on the acceptance rate of a PMMC step, ARPMMC, as

extremely low or high ARPMMC may lead to loss of sampling performance.

One possible strategy for keeping the acceptance rate of a PMMC step from being too

low was mentioned in (Akhmatskaya and Reich, 2008). Inspired by the approach in the

S2HMC method (Sweet et al., 2009), the authors suggest performing a change of momenta

variables as

p̂ = T (θ,p, h),

where the transformation T is invertible in p. The PMU step

p̂∗ =
√

1− ϕp̂ +
√
ϕu

u∗ = −√ϕp̂ +
√

1− ϕu

then takes the place of the original PMU step (3.40). The new momentum p∗ = T −1(θ, p̂∗, h)

is then still accepted with probability (3.42). It was suggested in (Akhmatskaya and Reich,
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2008) that the transformation T for the Verlet integrator could be defined as

p̂ = p− h

24

(
Uθ(θ+)− Uθ(θ−)

)
,

where θ+ and θ− are position vectors for the additional forward and backward integration

steps, respectively. We note that this definition actually corresponds to

p̂ = p− hk21P1 (3.51)

for the 4th order modified Hamiltonian (3.22) with numerical time derivatives, or to

p̂ = p− h2c21Uθθ(θ)M−1p (3.52)

for the 4th order modified Hamiltonian (3.5) with analytical derivatives. Both types of

transformation correspond to multi-stage integrators (2.21)–(2.23). Making use of defini-

tion (3.51), the new momentum p∗ is implicitly defined by

p̂∗ = p∗ − hk21P
∗
1

and can be obtained as an iterative solution.

In this thesis, however, we choose a different strategy and recover the “untransformed”

momentum p∗ using P1 calculated from the old momentum p as

p∗ = p̂∗ + hk21P1 ≈ T −1(θ, p̂∗, h). (3.53)

Thus, we avoid the iterative solution by assuming the h term in the transformation T de-

fined in (3.51) is constant within an MC step. The new momentum p∗ is accepted accord-

ing to the target distribution, and so the invariant distribution is preserved. The Metropolis

probability for the new PMMC step in our case becomes

P = min{1, exp(−∆Ĥ)},

where

∆Ĥ = hk21

(
(p∗)TP ∗1 − 2pTP1 + (p̂∗)TP1 + hk21P

T
1 P1

)
.

Making use of the transformation (3.52) and following the same approach, we obtain

∆Ĥ = h2c21

(
(p∗)TUθθp

∗ − 2pTUθθp + (p̂∗)TUθθp + h2c21(Uθθp)TUθθp
)

for the modified Hamiltonian (3.5) with analytical derivatives.

We implemented a change of momenta variables and tested this technique sampling

from a 100-dimensional Gaussian distribution with the 4th order modified Hamiltonian

(3.22) with numerical time derivatives. We note that the computational overhead con-

sists only in a few simple multiplications of already precomputed values and is, therefore,
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negligible.

Figure 3.9 demonstrates the steady improvement in momentum acceptance rates with

the use of a change of momenta variables for a range of step sizes h and parameter ϕ.

Nevertheless, it clearly reveals that a high momentum acceptance rate does not necessarily

mean better performance. Indeed, as follows from Figure 3.9 for the studied system, the

best performance (minimum ESS across variates) is observed at small values of ϕ. Such a

choice of ϕ always guarantees a high momentum acceptance rate and using a change of

variables does not provide extra benefits.

Nevertheless, too high momentum acceptance rates achieved with a change of variables

for bigger ϕ can lead to lowering a position acceptance rate and thus to a performance

degradation. This becomes more obvious when ϕ is increasing. In these cases, too high

acceptance of unfavorable momenta with a change of variable leads to a noticeable decrease

in performance.
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FIGURE 3.9: Acceptance rate and minimum ESS across variates for sampling from
a 100-dimensional Gaussian distribution with the 4th order modified Hamilto-
nian (3.22) with numerical time derivatives of the gradient, depending on dif-
ferent step size h and noise parameter ϕ. Although transformation of momenta
variables (green) improves momentum acceptance rate for all parameters, it does
not improve position acceptance rate and ESS compared to the original method

without momenta transformation (grey).

3.2.3.3 Repeat momenta update

Increasing an acceptance rate in a PMMC step can also be achieved by a repetition of a

momentum update step. We mention four alternatives to the single PMMC step in the
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MMHMC method. These techniques were proposed earlier, but it was not clear whether

they provide improved results. A strategy suggested by Akhmatskaya and Reich (2008) is

to update momentum by repeating the PMMC step n times iteratively. Each of the several

PMMC steps, an HDMC step, and a momentum flip step in the case of rejection, leaves the

target distribution invariant; therefore their concatenation preserves the target distribution.

This technique may plausibly improve the efficiency but at an increased computational cost.

The second alternative is to repeat the momentum update until acceptance, as carried out

in the SHMC method (Izaguirre and Hampton, 2004). Thirdly, the momentum update

could be performed n times but each time starting from the current momentum and taking

the first accepted value as the next momentum. If none of the n proposed momenta was

accepted, we continue to use the current one. This procedure can easily be performed in

parallel, resulting in no additional computational cost.

Finally, the orientational bias Monte Carlo (OBMC) (or multiple-try Metropolis method)

as proposed by Liu et al. (2000) can be applied to enhance the acceptance rate in the

momentum update within Generalized Hamiltonian Monte Carlo methods. The OBMC

method provides a rigorous tool to exploit multiple (parallel) proposals within a Monte

Carlo context.

The basic idea is to generate in parallel k trial momentum vectors p∗i , i = 1, . . . , k given

a momentum vector p as
p∗i =

√
1− ϕp +

√
ϕui

u∗i = −√ϕp +
√

1− ϕui.

Select p̄ = p∗l among the momentum vectors {p∗i } with probability proportional to the

extended probability π̂ given in Equation (3.41). Next, generate another k − 1 reference

points {p̂i} using the momentum proposal step with p̄ as the initial value and set p̂k = p.

Finally accept p̄ with probability

min

{
1,

∑k
i=1 π̂(p∗i )∑k
i=1 π̂(p̂i)

}

and reject with the remaining probability.

This method may be reasonable to consider only if all multiple trials are implemented

in parallel in the MMHMC code. Even in this case, the computational overhead is expected

due to an additional momentum update on each processing element (PE) and unavoidable

communications between PEs.

We implemented the first and third technique, namely iterative repetition of the PMMC

step n times, which we denote itPMMC, and n parallel momenta updates with the first

accepted as the next momentum, which we call parPMMC. We performed tests on a 100-

dimensional Gaussian problem and show results in Tables 3.3 and 3.4, respectively. We used

a step size h = 0.07, a number of integration steps L = 300 and three different choices of

parameter ϕ and the number of repetitions n = 1, 5, 10. The itPMMC technique (Table 3.3)

improves only slightly both position and momentum acceptance rates. Only maximum ESS

across variates increases for larger numbers of repetitions and median ESS in the case of the
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small value of ϕ. Nevertheless, time normalized ESS indicates that there is no advantage in

using this technique.

AR (%) Time ESS ESS/sec
ϕ n θ p (sec.) min med max min med max

0.1
1 85.32 87.04 8.53 3388 4025 5079 397 472 595
5 85.74 87.11 9.18 3355 4160 5737 366 453 625

10 86.19 87.12 10 3109 4200 5988 310 419 597

0.5
1 86.05 71.8 8.53 3354 4202 5806 393 493 681
5 86.24 71.52 9.18 2575 3844 6278 281 419 684

10 86.48 71.75 10 2218 3372 6322 221 336 630

0.9
1 86.06 63.31 8.53 3038 4149 5778 356 486 677
5 86.34 63.25 9.18 1955 3260 6156 213 355 671

10 86.32 62.81 10 2013 3191 6305 201 318 629

TABLE 3.3: Iterative repetition of the PMMC step n times for sampling from a 100-
dimensional Gaussian distribution.

The parPMMC (Table 3.4) clearly improves the momentum acceptance rate; however,

the position acceptance rate remains on the same level as well as ESS values.

AR (%) ESS
ϕ n θ p min med max

0.1
1 85.32 87.28 3278 3988 4904
5 85.42 100 3398 4040 4967

10 85.58 100 3325 3948 5233

0.5
1 85.8 72.27 3288 4076 5547
5 85.37 99.56 3178 4141 5531

10 85.5 99.99 3198 4151 5543

0.9
1 85.82 63.14 3062 4146 5829
5 85.59 97.57 2545 3737 5826

10 85.14 99.72 2515 3644 5701

TABLE 3.4: Repetition of the current momentum update n times, taking the first
accepted as the next momentum or continuing with the current one if all n pro-
posed momenta were rejected, for sampling from a 100-dimensional Gaussian
distribution. No data for ESS/sec is shown as parPMMC does not introduce the

overhead if run in parallel.

Since our results show little or no improvement between these different approaches for

the momentum update, we subsequently employ only a single momentum update for the

rest of this work.

In the next section, we outline previously proposed alternative strategies to the auto-

matic momenta flip upon rejections and investigate whether they improve sampling effi-

ciency within the MMHMC method.

74



3.2 FORMULATION

3.2.4 Reduced flipping

In order to satisfy the detailed balance condition and ensure a stationary distribution, a mo-

mentum flip upon rejection of a Hamiltonian Dynamics proposal step is required for meth-

ods employing the partial momentum update. These momentum reversals combined with

small values of parameter ϕ may lead to potential problems. It was noted that momentum

reversals might cause slow exploration of the state space and therefore slow decorrelation

of the chain or can have a significant impact on molecular kinetics (Akhmatskaya et al.,

2009a; Akhmatskaya et al., 2009b; Wagoner and Pande, 2012). This effect was investi-

gated for molecular simulation problems in (Akhmatskaya et al., 2009a; Akhmatskaya et

al., 2009b; Wagoner and Pande, 2012) and only tackled for a simple statistical problem in

(Sohl-Dickstein, 2012). For a computational statistics problem, there is no physical dynam-

ics of the simulated system that we wish to maintain and it is not clear, however, whether

momenta reversals cause problems or actually help sampling.

A possible way to reduce an impact of flipping would be to decrease the rejection rate so

that double-backing of trajectories occur only occasionally. This could be achieved by (a)

reducing the step size, which actually increases the computational cost; (b) using multi-

stage integrators for high dimensional problems (Blanes et al. (2014), Section 3.2.2 of

this thesis) or (c) delaying rejections, as done in (Sohl-Dickstein et al., 2014; Campos and

Sanz-Serna, 2015). Another strategy would be to try to decrease the number of momentum

flips.

In this section, we outline the techniques for the latter strategy and investigate the effect

of reducing momentum flips on sampling efficiency in computational statistics.

No flip (Akhmatskaya et al., 2009a) The authors proposed the GHMC/

GSHMC method without momentum flipping upon rejection, for which the Metropolis test

(3.1) becomes

(θnew,pnew) =

{
(θ′,p′) with probability α

(
(θ,p), (θ′,p′)

)
(θ,p) otherwise.

It is demonstrated that the method without momentum flipping is capable of accurately

reproducing the desired distribution, provided the rejection rate is kept sufficiently small,

though the algorithm cannot be proven to satisfy the detailed balance condition. Numerical

evidence indicates, however, that the standard GHMC/GSHMC method with momentum

flip leads to higher acceptance rates and more efficient sampling. On the other hand, the

results demonstrate the large impact of the momentum flip on dynamic properties of the

simulated system.

Reduced flip (Sohl-Dickstein, 2012) The author proposed a technique within the GHMC

method, which can reduce the number of momentum flips by making the distribution of

interest a fixed point. This technique introduces calculation of the probability of the mo-

mentum flip, which in the case of rejection of the proposal ΨhL(θ,p) = (θ′,p′) is given
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by

PF (θ,p) = max

{
0,min

{
1,
p (ΨhL(θ,−p))

p(θ,p)

}
−min

{
1,
p (ΨhL(θ,p))

p(θ,p)

}}
.

The Metropolis test is then defined as

(θnew,pnew) =


ΨhL(θ,p) with probability α

(
(θ,p),ΨhL(θ,p)

)
F(θ,p) with probability PF
(θ,p) otherwise.

(3.54)

The computational overhead introduced by this probability includes an additional evalu-

ation of the reverse trajectory and the probability of the resulting state ΨhL(θ,−p). This

overhead depends on the rejection rate, due to additional calculations only in the case

of rejections. The author demonstrates a slight improvement in the autocovariance func-

tion compared to automatic flipping, though the test was performed on a very simple 2-

dimensional model.

Reduced flip (Wagoner and Pande, 2012) Another modification of the traditional auto-

matic-flipping GHMC method, called Reduced-Flipping GHMC, was suggested by Wagoner

and Pande (2012). The authors proposed a simple technique that uses the information of

the previous, current, and candidate states to reduce the probability of momentum flipping

following the candidate rejection, while rigorously satisfying the detailed balance condition.

In the case of rejection of the HD proposal (θ′,p′), the probability of flipping momentum

within the Metropolis test (3.54) is given by

PF ((θ,p)|(θprev,pprev), (θ′,p′)) = 1− α
(
(θ,p), (θ′,p′)

)
− PS((θ,p)|(θprev,pprev), (θ′,p′)),

where the probability of the state (θ,p) is

PS((θ,p)|(θprev,pprev), (θ′,p′)) =
min

{
1− α

(
(θ,p), (θ′,p′)

)
,

α
(

(θ,p),(θ′,p′)
)

α
(
F(θ,p),F(θprev,pprev))

) (1− α(F(θ,p),F(θprev,pprev)
))}

if (θprev,pprev)→ (θ,p) was an accepted move

0 otherwise.

and α(ξ, ξ′) is the acceptance probability of a transition ξ → ξ′. Using this method, the

authors observed an improvement in terms of autocorrelations over automatic flipping for

high acceptance rates. Nevertheless, no advantage of this technique was noted for bigger

step sizes and low acceptance rates neither bigger values of ϕ (Wagoner and Pande, 2012).

We adapted the reduced flipping technique by Wagoner and Pande (2012) within the

MMHMC method. The Metropolis test (3.1) now becomes

(θnew,pnew) =


(θ′,p′) with probability α

(
(θ,p), (θ′,p′)

)
F(θ,p) with probability PF
(θ,p) otherwise,
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where we simplified the flipping probability as

PF ((θ,p)|(θprev,pprev), (θ′,p′)) =


max

{
0, 1− α

(
(θ,p),(θ′,p′)

)
α
(
F(θ,p),F(θprev,pprev))

)}
if (θprev,pprev)→ (θ,p) was an accepted move

1− α((θ,p), (θ′,p′)) otherwise.

and probability α(·, ·) is defined through a modified Hamiltonian.

In Table 3.5 we report all position and momentum acceptance rates and the reduced

flipping rate (RFR) obtained with the reduced flipping technique on a 100-dimensional

Gaussian problem. RFR is calculated as a portion of rejected samples for which the mo-

mentum flip was not applied. We also compare MMHMC with automatic flipping, reduced

AR (%) RFR
ϕ h θ p (%)

0.1

0.055 95.26 91.71 33.03
0.06 93.00 90.17 29.51
0.07 85.32 87.26 22.28
0.08 72.12 83.86 12.99

0.085 62.41 82.18 8.73

0.5

0.055 95.22 82.00 30.32
0.06 93.10 78.68 28.07
0.07 85.93 72.20 22.02
0.08 73.00 65.52 12.93

0.085 63.22 61.58 8.97

0.9

0.055 95.23 75.79 28.35
0.06 93.02 71.90 27.46
0.07 86.09 63.40 22.08
0.08 72.85 54.76 13.52

0.085 62.86 50.84 8.53

TABLE 3.5: Position and momenta acceptance rates and reduced flipping rates
(RFR) obtained in sampling from a 100-dimensional Gaussian distribution using
MMHMC with reduced flipping, for a range of values of the noise parameterϕ and

step size h.

flipping and no flipping techniques on a 100-dimensional Gaussian problem. Figure 3.10

shows acceptance rates and minimum ESS across variates obtained for different values of

the noise parameter ϕ and step size h. We observe that acceptance rates are not affected

by any of these techniques and sampling efficiency is comparable for all of them.

While in molecular simulations a momentum flip can indeed have a negative impact

on dynamics, in computational statistics there is no clear evidence regarding a harmful

influence on the sampling performance. Nevertheless, the implementation of a statistically

rigorous yet optional tool for reduced flipping can help in collecting the information on the

role of momentum flip in MMHMC.
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FIGURE 3.10: Acceptance rates and minimum ESS across variates for sampling
from a 100-dimensional Gaussian distribution using MMHMC with automatic
(grey), reduced (black) and no flipping (red) techniques. All methods demon-
strate comparable sampling e�iciency for the range of values of the noise param-

eter ϕ and step size h.

3.2.5 Choice of parameters

The performance of the MMHMC method is affected by the choice of simulation parameters,

namely the step size h, the number of integration steps L, the mass matrix M , the noise

parameter ϕ and the order of the modified Hamiltonian. A typical procedure for tuning

parameters is heuristic and time-consuming, which is also true for the HMC method but

with only three parameters. The whole discussion on the choice of parameters in HMC

and GSHMC (see Sections 2.2.4 and 2.3.3) applies to the MMHMC method, with a few

additional insights. In this section, we present some examples illustrating an effect of

different parameters on the MMHMC performance in sampling from a 100-dimensional

Gaussian distribution.

As we stated before, MMHMC allows for larger values of step sizes compared to HMC,

while maintaining a high level of acceptance rate. In many cases, those larger values can

result in better overall sampling efficiency than do values found to be optimal for HMC.

Figure 3.11 illustrates this fact by displaying the dependence of acceptance rates (left-hand

graph) and minimum ESS (right-hand graph) on the choice of step size h for MMHMC and

HMC. The plot shows that the best performance of MMHMC is achieved when acceptance

rates are around 90% whereas for HMC the best ESS results are achieved at smaller step

sizes and lower acceptance rates.
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FIGURE 3.11: Position and momenta acceptance rates (le�) and minimum ESS
(right) obtained in sampling from a 100-dimensional Gaussian distribution using

MMHMC and HMC with di�erent step size h.

MMHMC has an additional advantage over HMC in terms of its sensitivity to the choice

of the number of integration steps L. As will be shown in Chapter 6, the numerical experi-

ments demonstrate that MMHMC is not as sensitive on the choice of L as the HMC method,

which may reduce the necessity for fine tuning of this parameter.

Nevertheless, as in HMC, in MMHMC the meaning of an “optimal” L often remains

unclear. Figure 3.12 demonstrates that there is no single optimal choice of L for all variates.
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FIGURE 3.12: Time-normalized minimum, median and maximum ESS obtained in
sampling from a 100-dimensional Gaussian distribution using MMHMC with dif-

ferent number of integration stepsL.

As a general recommendation for HMC, it is advisable to randomize both step size and

number of integration steps within the MMHMC method.

We now show the effect of the noise parameter ϕ on the performance of

MMHMC. Figure 3.13 presents position and momenta acceptance rates (top) and sampling

efficiency, in terms of time-normalized minimum ESS (bottom) in the problem of sampling

from a 100-dimensional Gaussian distribution for different choices of trajectory length hL.

We report results for three different choices of the noise parameter rϕ, namely using a

fixed value ϕ at every MC iteration, i.e. r = 1; choosing a random value uniformly from the

interval (0.8ϕ, 1.2ϕ), i.e. r ∼ U(0.8, 1.2); and choosing a random value uniformly from the

interval (0, ϕ), i.e. r ∼ U(0, 1). Position acceptance rate is not affected by ϕ, unless ϕ = 1 at

which it slightly drops, whereas the acceptance rate of the PMMC step is higher for smaller
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values of ϕ. Bigger values of ϕ, corresponding to more random noise introduced in mo-

menta, might mean better space exploration; however, those values lead to more momenta

rejections. For smaller trajectory length hL, smaller values of ϕ result in better sampling

efficiency, while for longer hL very small values of ϕ might not be the best choice. A no-

ticeable drop in efficiency appears for a fixed value ϕ = 1, however, randomization around

1 mitigates the effect of complete momentum update.

We believe that a random value around 0.5 drawn for every MC iteration is a safe initial

guess for a good choice of the parameter ϕ. Finally, we note that different values of ϕ can

be assigned to different variates – those that require longer trajectories to decorrelate could

have assigned smaller values of ϕ and those that do not, can use bigger values.
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FIGURE 3.13: Position and momenta acceptance rates and time-normalized min-
imum ESS obtained in sampling from a 100-dimensional Gaussian distribution
using MMHMC with the noise parameter set as rϕ, resulting in fixed values of ϕ

for every MC iteration and two randomizing schemes.

The decision on the order of modified Hamiltonian is not a problematic one. Our experi-

ments indicate that the 4th order modified Hamiltonian combined with the new integrators

performs just well. For more complex models, if the acceptance rate is low with the 4th

order and one wish to maintain the trajectory length hL, the 6th order modified Hamilto-

nian might be needed. This comes at a higher computational cost; however, such complex

models might require large values of L for which the computational overhead due to the

calculation of modified Hamiltonian becomes negligible.
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3.3 Summary

In this chapter, we introduced the Mix & Match Hamiltonian Monte Carlo method, an alter-

native to HMC for efficient sampling in computational statistics. It is based on the GSHMC

method by Akhmatskaya and Reich (2008) designed for molecular simulation but has been

modified, enriched with new features and adapted specifically to computational statistics.

The MMHMC method can be defined as a generalized HMC importance sampler. It offers

an update of momentum in a general form and samples from a modified distribution that

is determined through modified Hamiltonians.

In Section 3.2.1 we have provided new formulations of modified Hamiltonians of 4th

and 6th order for the splitting integrating schemes, which include families of two-, three-

and four-stage integrators, recently proposed in the literature for improving the accuracy

of numerical integration. The newly derived modified Hamiltonians are defined either

through analytical derivatives of the potential function or numerical time derivatives of its

gradient, which are computed from the quantities accessible during the simulation. We

consider the former formulation being appropriate for sparse Hessian matrices of the po-

tential and the latter, although including additional integration steps, being beneficial for

cases where higher order derivatives are computationally demanding.

The novel numerical integrators from the two- and three-stage families of splitting inte-

grators and specific to sampling with modified Hamiltonians have been derived in Section

3.2.2. We have designed new integrators by minimizing either error in modified Hamilto-

nian introduced due to numerical integration or its expected value, taken with respect to

the modified density. With a high dimensional Gaussian model problem, two-stage integra-

tors demonstrate a remarkable improvement over Verlet, both in terms of acceptance rates

and sampling efficiency. Moreover, the improvement increases with dimension and comes

at no additional computational cost. Our recommendation is to use the new two-stage

integrators instead of Verlet for high dimensional problems.

In Section 3.2.3 we have proposed a computationally effective Metropolis test for mo-

mentum update and show that its use can potentially reduce computational time by 60%. In

addition, different alternative strategies for momentum update, including a transformation

of momenta variables and several repetitive momentum update schemes have been investi-

gated. We have implemented, tested and analyzed these strategies but have not found any

benefit from these formulations whatsoever.

In Section 3.2.4 we have adapted the reduced momenta flipping technique (Wagoner

and Pande, 2012) to MMHMC, which potentially can improve sampling. Nevertheless, the

tested models did not reveal a significant improvement in sampling efficiency of MMHMC

with the use of this methodology.

We provide the summary for the MMHMC method using Hessian of the potential func-

tion and numerical time derivatives of its gradient in Algorithms 5 and 6, respectively. Both

algorithms are formulated for the case of the 4th order modified Hamiltonian.
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Algorithm 5 MMHMC using Hessian of the potential function

1: Input: N : number of Monte Carlo samples
p(h): step size randomization policy
p(L): number of integration steps randomization policy
p(ϕ): noise parameter randomization policy
M : mass matrix
r: number of stages in the numerical integrator (r = 1, 2, 3, 4)
Ψh,L: symplectic r-stage numerical integrator

2: Initialize (θ0,p0)
3: Calculate Hessian Uθθ(θ0)
4: for n = 1, . . . , N do
5: Draw hn ∼ p(h), Ln ∼ p(L), ϕn ∼ p(ϕ)
6: (θ,p) = (θn−1,pn−1)

PMMC step
7: Draw noise u ∼ N (0,M)
8: Update momenta

p̄ =

{ √
1− ϕnp +

√
ϕnu with probability P = min{1, exp(−∆Ĥ)}

p otherwise

∆Ĥ defined in (3.45)–(3.46)
9: Calculate modified Hamiltonian H̃ [4](θ, p̄) defined in (3.5)

HDMC step
10: Generate a proposal by integrating Hamiltonian dynamics with step size hn over

Ln steps
(θ′,p′) = Ψhn,Ln(θ, p̄)

11: Calculate Hessian Uθθ(θ′) and modified Hamiltonian H̃ [4](θ′,p′)
12: Calculate acceptance probability

α = min
{

1, exp
(
−(H̃ [4](θ′,p′)− H̃ [4](θ, p̄)

)}
13: Metropolis test

(θn,pn) =

{
(θ′,p′) accept with probability α
F(θ, p̄) reject otherwise

F(θ,p) =

{
(θ,−p)
reduced flip (optionally)

14: Compute weight

wn = exp
(
H̃ [4](θn,pn)−H(θn,pn)

)
15: end for
16: Estimate integral (1.3) as

Î =

∑N
n=1 f(θn)wn∑N

n=1wn
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Algorithm 6 MMHMC using numerical derivatives of the gradient of the potential

1: Input: N : number of Monte Carlo samples
p(h): step size randomization policy
p(L): number of integration steps randomization policy
p(ϕ): noise parameter randomization policy
M : mass matrix
r: number of stages in the numerical integrator (r = 1, 2, 3, 4)
Ψh,L: symplectic r-stage numerical integrator

2: Initialize (θ0,p0)
3: Integrate one stage (i.e. one gradient calculation) backward (Ψh,−1(θ0,p0)) and

forward (Ψh,1(θ0,p0))
4: Calculate scaled time derivative of the gradient P1 using (3.21)
5: for n = 1, . . . , N do
6: Draw hn ∼ p(h), Ln ∼ p(L), ϕn ∼ p(ϕ)
7: (θ,p) = (θn−1,pn−1)

PMMC step
8: Draw noise u ∼ N (0,M)
9: Propose momenta

p∗ =
√

1− ϕnp +
√
ϕnu

10: Integrate one stage backward (Ψhn,−1(θ,p∗)) and forward (Ψhn,1(θ,p∗))
11: Calculate the resulting scaled time derivative of the gradient P ∗1
12: Update momenta

p̄ =

{
p∗ with probability P = min{1, exp(−∆Ĥ)}
p otherwise

∆Ĥ defined in (3.49)
13: Calculate modified Hamiltonian H̃ [4](θ, p̄) defined in (3.22)

HDMC step
14: Integrate Hamiltonian dynamics with step size hn over L+

n steps {+ stands for an
additional forward integration}

15: Assign a proposal
(θ′,p′) = Ψhn,Ln(θ, p̄)

16: Calculate the resulting scaled time derivative of the gradient P ′1
17: Calculate modified Hamiltonian H̃ [4](θ′,p′)
18: Calculate acceptance probability

α = min
{

1, exp
(
−(H̃ [4](θ′,p′)− H̃ [4](θ, p̄)

)}
19: Metropolis test

(θn,pn) =

{
(θ′,p′) accept with probability α
F(θ, p̄) reject otherwise

F(θ,p) =

{
(θ,−p)
reduced flip (optionally)
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20: Compute weight

wn = exp
(
H̃ [4](θn,pn)−H(θn,pn)

)
21: end for
22: Estimate integral (1.3) as

Î =

∑N
n=1 f(θn)wn∑N

n=1wn

Considering ideas used for designing the MMHMC method, one could expect its advan-

tages over HMC originating from: (i) higher acceptance rates (due to better conservation

of modified Hamiltonians by symplectic integrators than true Hamiltonian); (ii) access to

second-order information about the target distribution and (iii) an extra parameter for im-

proving the performance. These advantages come with an expense in terms of (i) a reduced

efficiency of an estimator of the integral (1.3) due to importance sampling and (ii) a higher

computational cost, consisting of the computation of modified Hamiltonian for each pro-

posal (higher orders being even more expensive) and extra Metropolis test for momentum

update. In Chapter 6 we examine the performance of MMHMC on various benchmark

models and answer the question of whether MMHMC emerges as a competitor to HMC, a

method which is rather successful in computational statistics.

In the next chapter, we introduce some extensions to the MMHMC method. In particular,

we formulate a parallel tempering algorithm for efficient multimodal sampling that utilizes

MMHMC as an underlying sampler. An algorithm for Bayesian adaptation of MMHMC pa-

rameters is also proposed. In addition, we discuss the estimation of the marginal likelihood

using MMHMC and formulate sampling of constrained parameters in the context of the

MMHMC method.
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Extensions of Mix & Match Hamiltonian
Monte Carlo

This chapter introduces the important extensions of the MMHMC method which make pos-

sible a use of MMHMC in a wide range of applications. We formulate an approach for

sampling of a certain class of constrained parameters using MMHMC in Section 4.1. Two

algorithms for Bayesian adaptation of MMHMC simulation parameters are formulated in

Section 3.2.5, and the Parallel Tempering MMHMC method is devised in Section 4.3. Esti-

mation of the marginal likelihood using MMHMC as the underlying method is discussed in

Section 4.4.

4.1 Sampling constrained parameters using MMHMC

Similar to HMC, the MMHMC method has been designed to sample unconstrained param-

eters with respect to which the posterior distribution is differentiable almost everywhere.

Some simple constraints, like nonnegativity, lower or upper bounds, can be dealt with an

appropriate transformation of variables. Examples of such constraints and transformations

suitable for HMC sampling are listed in Stan manual (Stan Development Team, 2016).

Here we formulate MMHMC for sampling constrained parameters using a transforma-

tion of variables.

We consider transformation T that is a bijection, monotonic and such that the inverse

transformation T −1 is differentiable. If π(·) is the p.d.f. of the random variable θ, then the

p.d.f. of the random variable ψ = T (θ) is

π̄(ψ) = π(T −1(ψ))|det(JT −1)|, (4.1)
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where JT −1 is the Jacobian of the transformation T −1 at ψ defined as

JT −1 =


∂θ1
∂ψ1

. . . ∂θ1
∂ψD

...
. . .

...
∂θD
∂ψ1

. . . ∂θD
∂ψD

 .
The absolute determinant of the Jacobian accounts for the differential change in volume in

the state space due to introduced transformation.

Since the p.d.f. can be written as π ∝ exp(−U) it follows that the potential function

with respect to the unconstrained variable ψ is

Ū(ψ) = U(T −1(ψ))− log |det(JT −1)|.

Proposal states in the Markov chain are generated using Hamiltonian dynamics driven with

respect to the transformed variables ψ; therefore the required gradient of the potential

energy is with respect to ψ, i.e. Ūψ. If for the purpose of implementation, one wants to

store original, constrained variables, the potential function computed in terms of θ is

Ū(T (θ)) = U(θ)− log(|det(JT −1)|)

and the gradient is

ŪT (θ) = ŪθJT −1 .

The Hamiltonian function for the unconstrained parameters is then defined as

H̄ = H ◦ T −1 − log |det(JT −1)|,

as also noted by Fang et al. (2014), and the target joint density of unconstrained parameters

and momenta variables is

π̄(ψ,p) = π̄(ψ)π(p) ∝ exp(−H̄(ψ,p)).

The MMHMC method draws samples with respect to the modified density

˜̄π(ψ,p) ∝ exp(− ˜̄H(ψ,p))

with modified Hamiltonian defined as

˜̄H(ψ,p) = Ū(ψ) +K(p) + h2
(
c21p

ᵀM−1Ūψψ(ψ)M−1p + c22Ūψ(ψ)ᵀM−1Ūψ(ψ)
)
.

Estimating expected values. The expected value with respect to probability distribution

π of the function f of constrained parameters θ is equivalent to the expected value with

respect to distribution π̄ of f of unconstrained parameters φ. This follows from simple
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change of variables and Equation (4.1) as

Eπ[f ] =

∫
f(θ)π(θ,p)dθdp =

∫
f(T −1(ψ))π(T −1(ψ),p)|det(JT −1)|dψdp

=

∫
f(T −1(ψ))π̄(ψ,p)dψdp = Eπ̄

[
f ◦ T −1

]
For MMHMC however, we need to take into account the importance weights and find the

expected value with respect to the modified density as

Eπ[f ] =

∫
f(T −1(ψ))π̄(ψ,p)dψdp =

∫
f(T −1(ψ))

π̄(ψ,p)
˜̄π(ψ,p)

˜̄π(ψ,p)dψdp

=

∫
f(T −1(ψ))w(ψ,p)˜̄π(ψ,p)dψdp

= E˜̄π

[
w · f ◦ T −1

]
.

Finally, this can be estimated by ∑N
n=1wnf(T −1(ψn))∑N

n=1wn

with importance weights

wn = exp
( ˜̄H(ψn,pn)− H̄(ψn,pn)

)
= exp

(
h2(c21(pn)T Ūψψ(ψn)pn + c22Ūψ(ψn)T Ūψ(ψn)

)
.

4.2 Bayesian adaptation of MMHMC simulation parameters

We now formulate two algorithms for adaptation of MMHMC simulation parameters based

on ideas from (Mahendran et al., 2012; Wang et al., 2013). In one of the approaches, we

perform adaptation in a finite number of steps, prior to sampling, while in the other, adap-

tation is carried out on the fly, during sampling with a diminishing condition. Our aim is to

replace a manual tuning of the parameters with the rational automatic adaptation in order

to (i) improve sampling efficiency by locating parameters that lead to more uncorrelated

samples; (ii) reduce the computational cost that some choices of parameters imply and (iii)

reduce the effort of manual tuning.

Instead of finding particular fixed values of simulation parameters, we choose a Baye-

sian approach that provides a distribution over simulation parameters with probabilities

estimated during adaptation procedure. The advantage of randomization of simulation

parameters has been discussed in Section 2.2.4.

Adaptation prior to sampling

We employ a two-stage mechanism based on (Mahendran et al., 2012) that consists of

(1) finite adaptation, which guarantees convergence of the Markov chain and (2) sampling.

In the first stage, the chain is being adapted for a finite number of steps using Bayesian

optimization and a randomized policy over parameter space is constructed. In the second
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stage, we run the chain again with parameters randomly drawn from this policy at each

MC step.

More specifically, if we denote the vector of MMHMC simulation parameters as λ =

(h, L, ϕ), in the first stage of the algorithm each adaptation step i = 1, . . . , I consists of the

following:

• Specify the number of Monte Carlo steps Nupdate between a Bayesian update and a

variance σ2
η of the noise in the objective function (4.2).

• Run MMHMC chain for Nupdate steps with parameters λi ∈ Λ, where Λ is a box

constraint with lower (l) and upper (u) bounds for all parameters, i.e.

Λ = {(h, L, ϕ) : h ∈ [hl, hu], L ∈ [Ll, Lu], ϕ ∈ [ϕl, ϕu]} .

• Use Nupdate samples to obtain a noisy evaluation of the objective function f(·)

zi = f(λi) + ε, ε ∼ N (0, σ2
η), (4.2)

where a Gaussian process is a surrogate model for the true objective. In particular,

we take a zero-mean Gaussian prior

f(·) ∼ GP (0, k(·)),

with covariance function

k(λi,λj) = exp(−1

2
λTi Σ−1λj)

and Σ being a diagonal matrix

Σ = diag
(
[0.2(hu − hl)]2; [0.2(Lu − Ll)]2; [0.2(ϕu − ϕl)]2

)
,

as suggested by Wang et al. (2013).

• Augment the data D1:i = {D1:i−1, (λi, zi)}.

• Update the Gaussian process mean µi(λ) and covariance function σ2
i (λ) of the poste-

rior predictive distribution of the objective function

fi+1|D1:i,λ ∼ N (µi(λ), σ2
i (λ))

such that

µi(λ) = kT (K + σ2
ηI)−1zi

σ2
i (λ) = k(λ,λ)− kT (K + σ2

ηI)−1k,

88



4.2 BAYESIAN ADAPTATION OF MMHMC SIMULATION PARAMETERS

where

K =


k(λ1,λ1) . . . k(λ1,λi)

...
. . .

...

k(λi,λ1) . . . k(λi,λi)


and k = [k(λ,λi) . . . k(λ,λi)]

T and zi = [z1 . . . zi]
T .

• Find λi+1 by maximizing an acquisition function u(λ|D1:i) derived from the predictive

distribution.

The adaptive procedure results in a Gaussian process of I objective function obser-

vations z1:I obtained with λ1:I . We then construct a randomization policy p(λ|z1:I) over

parameter space.

In the sampling stage, we run the chain again with λ randomly drawn from p(λ|z1:I)

at each step and sample the target distribution. In this way, the final sampler consists of a

mixture of N transition kernels each parametrized by λn, n = 1, ..., N .

Algorithm 7 summarizes the procedure of the adaptation of MMHMC parameters us-

ing the Bayesian approach performed prior to sampling. The choice of the objective and

acquisition function will be discussed at the end of this section.

Algorithm 7 Bayesian adaptation of MMHMC parameters prior to sampling

1: Input: N0: number of iterations for adaptation
Nupdate: number of Monte Carlo steps between a Bayesian update
N : number of posterior samples
λl,λu: lower and upper bounds for parameters
λ1: initial set of parameters

I = N0/Nupdate
2: for i = 1, . . . , I do
3: Run MMHMC chain for Nupdate steps with parameters λi
4: Use Nupdate samples to obtain a noisy evaluation of the objective function

zi = f(λi) + ε

5: Augment the data D1:i = {D1:i−1, (λi, zi)}
6: Update the Gaussian process mean and covariance function
7: λi+1 ← arg maxλ u(λ|D1:i)
8: end for
9: Construct a randomized policy p(λ|z1:I) over parameter space

Adaptation built-in sampling

The second approach follows ideas from (Wang et al., 2013) and allows for adapta-

tion on the fly, hence avoiding parameter traps that might occur in the finite adaptation

approach. This approach introduces a parameter p that ensures that the diminishing adap-

tation condition is satisfied and therefore ergodicity of the chain can be proved (Roberts
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and Rosenthal, 2007). In this case, there is no need for running the Markov chain again,

and all generated samples can be used for estimation of quantities of interest.

We set initial mean values of parameters λ̄1 and draw λ for every Monte Carlo step

from a chosen distribution p(λ). The mean λ̄ of this randomization policy is being adapted

using Bayesian optimization. Algorithm 8 presents our version of the on the fly Bayesian

adaptation of MMHMC parameters with diminishing condition. This algorithm reduces the

computational cost of the algorithm by Wang et al. (2013) for adaptation of HMC param-

eters, by means of calculating the objective function only when it is required for optimiza-

tion. Indeed, optimization is performed with probability p that is vanishing throughout the

simulation, so is a number of objective function evaluations. This is not the case with the

original algorithm (Wang et al., 2013) where the objective function is calculated after every

Nupdate Monte Carlo steps.

Algorithm 8 Bayesian adaptation of MMHMC parameters built-in sampling

1: Input: Nupdate: number of Monte Carlo steps between a Bayesian update
N : number of Monte Carlo samples
λ̄l, λ̄u: lower and upper bounds for parameters’ mean
λ̄1: initial mean of parameters
p(λ): probability distribution with mean λ̄ for randomization
l ∈ N+: parameter for a diminishing condition

2: I = N/Nupdate
3: t = 0 {counter of repeated λ}
4: for i = 1, . . . , I do
5: Run MMHMC chain for Nupdate steps with parameters λ randomly drawn from
p(λ) with mean λ̄i

6: pi = (max{i− l + 1, 1})−0.5

7: Draw u ∼ U(0, 1)
8: if u < pi then
9: Use Nupdate samples to obtain a noisy evaluation of the objective function

zi = f(λ̄i) + ε

10: Augment the data
if t = 0
D1:i = {D1:i−1, (λ̄i, zi)}

else
D1:i = {D1:i−t, (λ̄i, zi), . . . , (λ̄i, zi)︸ ︷︷ ︸

t times

}

end if
11: Update the Gaussian process mean and covariance function
12: λ̄i+1 ← arg maxλ u(λ|D1:i)
13: t = 0
14: else
15: λ̄i+1 ← λ̄i
16: t = t+ 1
17: end if
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18: end for

A critical aspect of the Bayesian adaptation procedure for MMHMC parameters is the

choice of the objective and acquisition function. The objective function should represent

some measure of performance of the sampler. Performance metrics are usually expensive

and cannot be evaluated analytically, however running the sampler for some number of

steps with a particular set of parameters λ, or λ drawn from the same distribution p(λ),

one can obtain noisy observations of the objective function to be employed within the

Bayesian adaptation.

The acquisition function uses the Gaussian process posterior mean and variance to iden-

tify areas with potentially higher objective function and areas of high variability, respec-

tively. The acquisition function should be optimized by some method, but this is signifi-

cantly easier than optimizing the original objective function.

Several different objective and acquisition functions have been proposed in the litera-

ture but we adopt the option from (Wang et al., 2013).

The objective function is assigned to be the expected squared jumping distance (ESJD)

normalized by the number of integration steps L, i.e.

f(λ) =
ESJD√

L
,

where ESJD, an efficiency measure proposed by Pasarica and Gelman (2010), takes into

account first-order autocorrelations and is defined as

ESJD(λ) = Eλ‖θn+1 − θn‖2.

The intractable expectation is approximated by an empirical estimator from Nupdate sam-

ples. Therefore, the objective function accounts for both correlation among samples and

computational cost.

The acquisition function is defined as the Upper Confidence Bound (UCB) (Srinivas

et al., 2010)

u(λ|D1:i) = µi(λ) + piβ
1
2
i+1σi(λ),

where βi+1 = 2 log( (i+1)7/2π2

3δ ), pi = (max{i − l + 1, 1})−0.5 ensures that the diminishing

adaptation is satisfied, l is an integer value for the diminishing condition and δ is set to 0.1.

4.3 Parallel Tempering with MMHMC

If the distribution of interest has more than one mode, as is often the case in practice,

there is a risk that a Markov chain is being trapped in one of them. In order to make

the chain explore all areas of high probability one can (i) use “tunnels” through barriers,

as e.g. suggested by Lan et al. (2014a) or (ii) “flatten/melt down” the roughness of the
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distribution by annealing or tempering. In order to improve convergence to multimodal

target distributions using MMHMC sampler, we focus on the second approach, namely

the parallel tempering (PT) method (Earl and Deem, 2005), in which multiple chains at

different temperatures are used for exploration of the target distribution.

The PT method, also known as the exchange Monte Carlo (Hukushima and Nemoto,

1996), Metropolis-Coupled Markov Chain Monte Carlo ((MC)3) (Geyer, 1991), replica-

exchange Monte Carlo (Sugita and Okamoto, 1999), is originating from physics (Swendsen

and Wang, 1986). The method is simulating K parallel chains (replicas) whose stationary

distributions of parameters θ given data y are different though related and defined as

πk(θ|y) ∝ L(θ|y)βkp(θ), k = 1, ...,K, (4.3)

where {βk} is a sequence of inverse temperatures such that 0 < β1 < ... < βK = 1. The

replicas are assumed to be independent. Smaller βk are “flattening” the rough surface

of the posterior and allowing broader exploration of the space by escaping modes. On

the other hand, higher values of βk enable the chain to accurately sample peaks of the

posterior. The prior distribution of parameters θ is recovered for β = 0 (“hot” chain),

whereas β = 1 (“cool” chain) corresponds to the posterior distribution of interest. The

Markov chain including all replicas is now defined with a joint density

π(Θ|y) =
K∏
k=1

πk(θ(k)|y),

where Θ = (θ(1), . . . ,θ(K)) is a state of the chain. The stationary distribution (4.3) of each

individual chain k = 1, ...,K can be written as

πk(θ(k)|y) ∝ e−βkUk(θ(k)),

where

Uk(θ(k)) = − logL(θ(k)|y)− 1

βk
log p(θ(k))

is the potential function. Following MMHMC methodology, we introduce momenta P =

(p(1), . . . ,p(K)), p(k) ∼ N (0, βkM) and for each individual chain define joint density

πk(θ(k),p(k)) ∝ exp
(
−βkHk(θ(k),p(k))

)
,

where

Hk(θ(k),p(k)) = Uk(θ(k)) +
1

2
pT(k)M

−1p(k)

is the Hamiltonian function. Each MMHMC individual chain samples with respect to the

modified density

π̃k(θ(k),p(k)) ∝ exp
(
−βkH̃k(θ(k),p(k))

)
, (4.4)
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with modified Hamiltonian H̃k defined in Section 3.2.1. Finally, the joint density of all

MMHMC chains is defined as

π̃(Θ,P) =
K∏
k=1

π̃k(θ(k),p(k)). (4.5)

Exchange step. Occasionally, states of individual chains with adjacent temperature levels

are exchanged, i.e. (θ(k),p(k), βk) → (θ(k+1),p(k+1′), βk)

(θ(k+1),p(k+1), βk+1) → (θ(k),p(k′), βk+1).
(4.6)

Following Sugita and Okamoto (1999), who proposed the replica-exchange method for

molecular dynamics, the new momenta are defined as

p(k′) =

√
βk
βk+1

p(k)

p(k+1′) =

√
βk+1

βk
p(k+1).

Transitions (4.6) are then accepted with exchange Metropolis probability

αE = min

{
1,
π̃k(θ(k+1),p(k+1′))π̃k+1(θ(k),p(k′))

π̃k(θ(k),p(k))π̃k+1(θ(k+1),p(k+1))

}
. (4.7)

Exchanges between the individual chains introduce dependence among them, and they are

no longer Markov. However, as the probability (4.7) ensures the detailed balance condition,

the chain Θ1,Θ2, ... is Markov with (4.5) as a stationary distribution. The probability (4.7)

reduces to expression

αE = min
{

1, exp
[
βk

(
H̃(θ(k),p(k))− H̃(θ(k+1),p(k+1′))

)
xxxxxxxx− βk+1

(
H̃(θ(k),p(k′))− H̃(θ(k+1),p(k+1))

)]}
,

in which most of the terms either cancel out or are already computed within the MMHMC

update. This implies just a minor computational overhead introduced by the exchange step.

MMHMC update. Between exchange steps, all chains are updatedNupdate times according

to a π̃k-reversible transition at each Monte Carlo iteration. In particular, a partial momenta

update is performed and accepted with probability

P = min
{

1, exp
[
−βk∆Ĥ

]}
, (4.8)

where ∆Ĥ is defined as (3.45) or (3.49) for the 4th order modified Hamiltonian with

analytical or numerical derivatives, respectively. Then, Hamiltonian dynamics is simulated
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with a symplectic splitting integrator (2.21)–(2.23) and the generated proposal is accepted

according to the update probability

αU = min
{

1, exp
[
−βk

(
H̃(θ′(k),p

′
(k))− H̃(θ(k),p(k))

)]}
. (4.9)

The algorithm of parallel tempering with MMHMC is summarized below.

Algorithm 9 Parallel Tempering with MMHMC

1: Input: K: number of replicas
2: {βk}: set of inverse temperatures
3: Nupdate: number of Monte Carlo iterations between each exchange
4: N : total number of Monte Carlo iterations
5: λ = (h, L, ϕ): MMHMC simulation parameters
6: for k = 1 to K do {in parallel}
7: Initialize θ0

(k),p
0
(k)

8: end for
9: t = 0

10: while t < N −Nupdate do
11: for k = 1 to K do {in parallel}
12: for s = 1 to Nupdate do
13: Perform a partial momenta update and accept with probability (4.8)
14: Propose a state (θ′(k),p

′
(k)) by integrating Hamiltonian equations

15: Assign

(θt+s(k) ,p
t+s
(k) ) =

{
(θ′(k),p

′
(k)) with probability (4.9)

(θt+s−1
(k) ,F(pt+s−1

(k) )) otherwise.

16: end for
17: end for
18: t = t+Nupdate
19: draw k from {1, ...,K − 1}
20: exchange (θt(k),p

t
(k)) and (θt(k+1),p

t
(k+1)) with probability (4.7)

21: end while

Estimation of expected values. If the ultimate goal is the estimation of integral (1.3),

i.e. sampling from the posterior distribution π(θ|y), then the auxiliary chains serve only for

bridging towards the target distribution. Integral (1.3) is then estimated from the marginal

chain {θn(K),p
n
(K)}

N
n=1 with inverse temperature βK = 1 and importance weights

wn = exp
(
H̃(θ(K),p(K))−H(θ(K),p(K))

)
.

On the other hand, samples from intermediary distributions πk(θ|y) can be employed for

an efficient estimation of the marginal likelihood, which we discuss in Section 4.4.
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4.3.1 Choice of parameters

The coupling of MMHMC chains may make all of the chains mix faster than any of them

individually by making the entire method more than 1/K times more efficient than a single-

chain simulation. The overall performance of the method is highly affected by efficiency of

(i) parallel implementation and (ii) a choice of simulation parameters, which besides the

MMHMC parameters include the following:

Number of replicas (K) Each replica requires either a processing unit or additional com-

putational time if the simulation is not parallelized. Nevertheless, the total number of

replicas should be sufficiently large to ensure that exchanges occur between all neighbor-

ing replicas.

Sequence of temperatures {βk} The choice on temperature schedule is vital to any par-

allel tempering method. The spacing of temperatures affects the acceptance rate of swaps.

Temperature values that are too distant result in low acceptance but values that are too

close cause significant overlapping of distributions, and so weak improvement in sample

variability. The distributions on adjacent temperature levels, however, should have fair

overlap so as to ensure a reasonable acceptance rate.

The lowest βk should be low enough to enable chain escaping from local minima and ex-

ploring the space. This way some unlikely reachable states in “cool” chains can be obtained

from warmer chains by crossing regions of low probability.

In order to take advantage of all replicas for sampling the target distribution, states

should be exchanged between the “warmest” and “coolest” chain after traveling through

the intermediate ones. One of the criteria to achieve this is to ensure that each chain spends

the same amount of time at each temperature level (Earl and Deem, 2005). Accordingly,

several techniques were proposed by achieving uniform acceptance rates across all chains.

A common choice, for which asymptotical optimality results can be found in (Predescu et

al., 2004), is to space temperatures geometrically, i.e. so that βk/βk+1 is a constant.

Instead of considering average acceptance rates, in the method called feedback-

optimized parallel tempering (FOPT) (Katzgraber et al., 2006), the authors propose to op-

timize the sequence of temperatures by analyzing the round-trip times between the lowest

and highest temperature chain.

Hamze et al. (2010) further improved FOPT by proposing a technique for optimizing

the initial choice of both the number of replicas and values of temperatures. In this case,

the number of processing units required for parallelization is not known in advance.

Frequency of swap steps The swap steps may be performed at every Monte Carlo itera-

tion or after a given number of iterations (Nupdate) chosen randomly or as fixed values. Due

to longer correlation times, “cool” chains might require more computational effort either

as a larger number of Monte Carlo iterations Nupdate or larger number of integration steps
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L. Nevertheless, different values across chains would cause unsynchronized parallelization

tasks.

4.4 Marginal likelihood estimation with MMHMC

In practice, instead of considering a single statistical model, very often the practitioner is

assuming several models which could have plausibly generated the data to be analyzed.

Bayesian framework offers a principled way for comparison of different models through

the calculation of Bayes factors (see Chapter 1). The crucial component of a Bayes factor is

the marginal likelihood of the data y for a given model m with associated parameters θm
defined as

p(y|m) =

∫
θm

L(θm|y)p(θm)dθm,

where L(θm|y) is the likelihood of the data under model m with parameters θm and p(θm)

is the prior on the parameters in model m. Throughout the rest of this Section, condition-

ing on a particular model m is omitted in notation to improve readability. The marginal

likelihood is also known as the integrated likelihood, model evidence, normalizing constant

or partition function.

For the most statistical models of interest, however, the marginal likelihood is analyti-

cally intractable, as it involves a high-dimensional integration over a complex function, and

therefore, it must be approximated. This task, however, is not trivial.

A number of different approaches for estimation of the marginal likelihood have been

proposed in both statistics and physics literature (where the problem is known as the free-

energy calculation), sometimes independently and in parallel. For a comprehensive review,

we refer the reader to e.g. (Friel and Wyse, 2012) and references therein. For example,

the harmonic mean estimator (Newton and Raftery, 1994) can be seen as an importance

sampling (IS) estimator which is easy to implement. IS approach estimates the marginal

likelihood simply through the average of the importance weights. Nevertheless, the es-

timate is usually biased if the chain is not mixing well, due to an inefficient underlying

sampler. This becomes more problematic for multimodal distributions.

A more sophisticated and successful IS was proposed by Neal (2001), who combined

importance sampling with simulated annealing, leading to the Annealed Importance Sam-

pling (AIS) method. An extension of AIS for the estimation of the marginal likelihood using

HMC approach was developed by Sohl-Dickstein and Culpepper (2012).

Another popular technique makes use of the power posteriors (Friel and Pettitt, 2008),

defined as in Equation (4.3). It is based on ideas of thermodynamic integration, which was

first developed in statistical physics (Frenkel, 1986) and later extended for statistics within

the path sampling approach (Gelman and Meng, 1998). Path sampling methods involve

sampling from a sequence of power posteriors, i.e. distributions which connect the prior

to the posterior distribution using a power of the likelihood. An estimator of the marginal

likelihood is then obtained by integrating over these distributions.
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For each of these approaches, the choice of the underlying sampler is crucial. MMHMC,

being an efficient sampler, can be used as a base sampler within path sampling or annealing

schemes to provide low variance estimates of the marginal likelihoods for model compari-

son.

For example, the parallel tempering MMHMC (PT-MMHMC) method, devised in the

previous Section, can be readily combined with path sampling in the following way. PT-

MMHMC draws samples from K modified distributions π̃k with different temperatures

βk, k = 1, . . . ,K, as defined in Equation (4.4). We can then estimate the marginal like-

lihood by making use of the standard thermodynamic identity

log p(y) =

∫ 1

0
Eπk

[
logL(θ(k)|y)

]
dβ. (4.10)

The expectation at each temperature βk is calculated as

Eπk
[
logL(θ(k)|y)

]
= Eπ̃k

[
w · logL(θ(k)|y)

]
≡ Ek

due to importance sampling of MMHMC, as follows from (3.2), where w is the importance

weight function. We employ power posterior samples {θn(k)}Nn=1, drawn from the modified

density π̃k, to find Monte Carlo estimates Êk, k = 1, . . . ,K of expectations at each dis-

crete temperature. Then a trapezoidal rule we can be used to approximate the marginal

likelihood as

log p(y) ≈
K−1∑
k=1

(βk+1 − βk)
Êk+1 + Êk

2
.

However, this estimation introduces two sources of error. One of them appears due to dis-

cretization of temperature in the thermodynamic integral (4.10). Calderhead and Girolami

(2009) characterized this error in terms of the Kullback-Leibler divergences between suc-

cessive tempered distributions. Therefore, the optimal spacing of temperatures βk, in terms

of minimizing this source of error, should be chosen such that the Kullback-Liebler distances

are minimized. The other source of error is the Monte Carlo error introduced from estimat-

ing the power posterior expectations Ek. Nevertheless, with MMHMC we expect this error

to be reduced compared with the one resulting from a less sophisticated sampler.

4.5 Summary

In this chapter, we have introduced several extensions of the MMHMC method, which make

it applicable to a broad range of problems. First, we have adapted MMHMC to sampling of

constrained variables, by defining all quantities that take part in the calculation of modified

Hamiltonians accounting for the transformation in the parameter space. In order to reduce

the efforts of manual tuning of MMHMC simulation parameters, we then have devised

two algorithms for automatic adaptation using Bayesian optimization approach. Also in

Section 4.3 we have formulated the parallel tempering MMHMC method. The benefits of

this method are twofold. Firstly, due to the use of an ensemble of chains it improves mixing
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and enables sampling from the multimodal probability distributions. Secondly, it provides

samples from all required power posteriors simultaneously, which then can be used for

estimation of the marginal likelihood, as described in Section 4.4.
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5
Implementation

This chapter provides a description of the software package HaiCS (Hamiltonians in Compu-

tational Statistics), developed along this dissertation within the Modelling and Simulation

in Life and Materials Sciences group in the Basque Center for Applied Mathematics (BCAM).

There exist several open-source software packages with implemented Hamiltonian

Monte Carlo (HMC) based methodologies, such as Stan (Stan Development Team, 2016),

PyMC3 (Salvatier et al., 2016), LaplacesDemon (Statisticat LLC, 2013). None of them how-

ever includes implementation of modified Hamiltonians. Instead of implementing MMHMC

in one of those packages, we decided to develop the in-house package from scratches in or-

der to achieve (i) flexibility in methodology development and testing, and (ii) control over

code performance and optimization.

5.1 Description

The HaiCS package is developed for statistical sampling of high dimensional and complex

distributions and parameter estimation in different models through Bayesian inference us-

ing HMC based methods. The currently implemented models include multivariate Gaus-

sian distribution, Bayesian Logistic Regression, and Stochastic Volatility, but new (hierar-

chical) models can be readily introduced through a template file for model implementa-

tion. Different existing and recently developed numerical integrators, strategies for mo-

menta update and flips are available in the package for being employed within the HMC,

Generalized Hamiltonian Monte Carlo (GHMC), Metropolis Adjusted Langevin Algorithm

(MALA), second order Langevin Monte Carlo (L2MC), Mix & Match Hamiltonian Monte

Carlo (MMHMC) methods and its variants. The package is suited for output analysis in
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CODA (Plummer et al., 2006) – a widely used R toolkit for Markov Chain Monte Carlo

(MCMC) diagnostics.

The HaiCS package is summarized below.

Package summary

Package title: Hamiltonians in Computational Statistics (HaiCS)
No. of lines in the source code: 8790
Core programming language: C
Operating system: UNIX certified (e.g. GNU/LINUX, OS X)
RAM: Dependable on application
External libraries: CBLAS, GSL
Sampling engines: HMC, MALA, GHMC, L2MC, MMHMC
Benchmark models: Multivariate Gaussian distribution, Bayesian Logistic Regres-
sion, Stochastic Volatility

The core functionality of HaiCS, namely performing statistical sampling, is implemented

in C programming language and consists of 22 files. In addition, the package includes

a template input file and 18 Bash and R scripts for running simulations or output data

analysis. The HaiCS workflow is depicted in Figure 5.1.

INPUT 

SAMPLER 
OUTPUT ANALYSIS 

•  ESS, MCSE 
•  averaging results 
•  CODA functions 

•  inputfile!

•  dataset !

•  HMC 
•  MALA 
•  GHMC 
•  L2MC 
•  MMHMC 

FIGURE 5.1: HaiCS workflow.

5.1.1 Structure of SAMPLER module

Subroutine dependencies of the HaiCS module SAMPLER are shown in Figure 5.2. All source

files are located in the HAICS/src/ directory. Below we list the main source files and explain

their functions.

5.1.1.1 Subroutine specification

main.c The main program. Passes the simulation ID (an argument given by a user at the

time of execution) to the read_input subroutine for reading all input data. Calls the hmc

subroutine for performing sampling.
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5.1 DESCRIPTION

SAMPLER 

integrators !x_model! mmhmc	
  

hmc!read_input!

main !

globals!

definitions !utils!

FIGURE 5.2: Structure of the HaiCS sampling module.

read_input.c

• According to the simulation ID, opens and reads the corresponding input file

HAICS/output/{ID}/inputfile{ID}.

• Assigns all simulation parameters for all Monte Carlo iterations, according to

inputfile{ID}.

• Assigns integrator(s)

• Defines the model.

• Prepares files for storing output data in the directory HAICS/output/{ID}.

x_model.c Contains model specific functions.

• For each model (x={GD,BLR,SV}), assigns functions for the logarithm of the prior,

likelihood, as well as the gradient and Hessian (optional) of the log posterior, and the

determinant of the Jacobian (optional).

• Reads input dataset from the directory HAICS/benchmarks/{model}.

• Initializes a state of the chain according to the prior distribution.

hmc.c Updates the Markov chain.

• For hierarchical models, samples parameters and hyper parameters in two phases,

allowing for different simulation parameters to be used.

• For the chosen methodology, defines and calls subroutines for

◦ momentum update,
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◦ momentum flips,
◦ Hamiltonian dynamics integration,
◦ calculation of Hamiltonians,
◦ Metropolis test.

• Calculates CPU time for warm-up and production phase.

mmhmc.c Provides components specific to MMHMC:

• calculation of modified Hamiltonians of different types and orders,

• calculation of finite differences,

• partial momentum Monte Carlo step,

• calculation of importance weights.

integrators.c

• Implements the Verlet, two-, three- and four-stage integrators, both velocity and po-

sition versions.

• Includes optimized versions of integrators used within MMHMC.

utils.c Offers the utility functions:

• allocation/freeing of the memory for customized data types,

• efficient matrix and tensor allocation/freeing (with consecutive elements in the mem-

ory).

definitions.h Defines customized data types, macros, constants, used along the code.

Particularly useful definitions are macros for efficient handling of column major order ma-

trix operations, required for BLAS calculations.

globals.h Defines all global variables, pointers to arrays and functions, file pointers, used

within the routines.

5.2 External libraries

CBLAS BLAS (Basic Linear Algebra Subprograms) is a library for performing fundamental

linear algebra operations (http://www.netlib.org/blas/). CBLAS is a C interface to the

Fortran BLAS library (http://www.netlib.org/blas/#_cblas). For an optimized perfor-

mance, HaiCS makes use of a number of CBLAS functions, especially for handling symmetric

and banded matrices. The link to the library (-lcblas) is provided in Makefile placed in

the directory HAICS/src/.

102

http://www.netlib.org/blas/
http://www.netlib.org/blas/#_cblas


5.3 INSTALLATION

GSL The GSL (GNU Scientific Library) is a C/C++ numerical library which provides over

1000 functions covering a broad range of mathematical areas (https://www.gnu.org/

software/gsl/). It is a part of the GNU Project, conceived in 1996 by Dr. M. Galassi

and Dr. J. Theiler of Los Alamos National Laboratory (Galassi et al., 2009).

Currently, only random number generators related routines are used in HaiCS. The link

to the library (-lgsl) is included in the provided Makefile.

5.3 Installation

Installing HaiCS involves unpacking the software and building the executable (called haics)

from source.

System requirements
The current version of HaiCS is intended for computers running Unix certified operat-

ing system (e.g. Linux, OS X). It requires C compilers as well as GSL and CBLAS libraries

installed.

Unpacking the software
The software is stored in the form of a gzip’ed tar file which contains the HaiCS source

code, parameter input file template, input data for three benchmark models, as well as

scripts for running the code and scripts for post-processing. The package can be unpacked

by typing the following command:

tar -xzvf HAICS.tgz

This will create a top-level directory called HAICS and subdirectories as shown in Figure

5.3.

HAICS 

src objects bin scripts output input benchmarks 

ID1 ID2 ID3 GD BLR SV 

FIGURE 5.3: Detailed structure of the HAICS directory.

Building haics executable from source
Installation procedure is straightforward and can be successfully performed by the fol-

lowing steps:

1. Go to source directory by typing:

cd src

2. If necessary, change the values of environmental variables (the definition of the C com-

piler, CC, and its path, COMP_PATH, flags, CFLAGS, IFLAGS and LDFLAGS) in the Makefile.
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3. Create the haics executable in the directory HAICS/bin by typing the command:

make

5.4 Running HaiCS

Running HaiCS involves the following steps:

1. Set input data.

2. Execute haics in a single run or a sequence of runs.

3. Analyze the output data (optional).

5.4.1 Setting input data

Two input files are required for running calculations: a file with the dataset placed in the

directory HAICS/benchmarks/{model}/, and a file with simulation parameters in the direc-

tory HAICS/input/. Columns of the dataset file correspond to variates and rows correspond

to observations.

The template file for input simulation parameters, HAICS/input/inputfile_tpl, is self-

explanatory and describes each input parameter to be specified by the user. An example is

shown below.

#------------------------------------------------------------------------------------------

# Input for model parameters

#------------------------------------------------------------------------------------------

model SV # SV; BLR; GD

data 2000 # SV - dimension; BLR - musk, sonar, secom, australian, german, heart,

pima, ripley; GD - dimension

method MMHMC # HMC; GHMC; MMHMC

seed 0 # 0 - shuffle seed; n - seed=n;

num_iter 30000 # total number of iterations

warm_up 10000 # number of iterations for warm-up

integrator 2S # V; 2S,3S,4S; ME2S,ME3S,ME4S

t_L 3 # type of the parameter number of int. steps: 0 - constant \

1 - random \~U{0.8L,1.2L} \ 2 - random ~N(L,0.0036L^2) \ 3 - random ~U{1,L}

L 10 # number of int. steps; if type 0 - length \ 1,2 - mean \ 3 - max

t_stepsize 1 # type of the parameter step size; 0 - constant \ 1 - random ~U(0.8h,1.2h)

\ 2 - random ~N(h,0.0036h^2)

stepsize 0.015 # step size; if type 0 - length \ 1,2 - mean

t_Phi 0 # type of the parameter phi; 0 - constant \ 1 - random ~U(0.8Phi,1.2Phi) \

2 - random ~N(Phi,0.0025Phi^2) \ 3 - random ~U(0,Phi) \ 4 - random \~U{0.01,0.99}

Phi 0.5 # noise parameter phi, values from (0,1]; if method=HMC set to 1;

if type 1,2 - mean \ 3 - max

flip 0 # 0 - automatic flip; 1 - reduced flip; 2 - no flip

thinning 1 # frequency of collecting posterior samples

mH A # type of derivatives in modified Hamiltonian; A - analytical, N - numerical

mH_order 4 # order of modified Hamiltonian; 4 or 6

newPMMC 1 # 0 - no; 1 - yes

momTransf 0 # change of momenta variables; 0 - no; 1 - yes

#-------------------------------------------------------------------------------------------
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# Input for latent variables

#-------------------------------------------------------------------------------------------

integrator 2S # V; 2S,3S,4S; ME2S,ME3S,ME4S

t_L_lat 3 # type of the parameter number of int. steps: 0 - constant \

1 - random ~U(0.8L,1.2L) \ 2 - random ~N(L,0.0025L) \ 3 - random ~U(0,L)

L_lat 50 # number of int. steps; if 0 - length \ 1,2 - mean \ 3 - max

t_stepsize_lat 1 # type of the parameter step size; 0 - constant \ 1 - random ~U(0.8h,1.2h)

\ 2 - random ~N(h,0.0025h)

stepsize_lat 0.04 # step size; if 0 - length \ 1,2 - mean

t_Phi_lat 0 # type of the parameter phi; 0 - constant \ 1 - random ~U(0.8Phi,1.2Phi) \

2 - random ~N(Phi,0.0025Phi) \ 3 - random ~U(0,Phi) \ 4 - random \~U{0.01,0.99}

Phi_lat 0.5 # noise parameter phi

Changes of input parameters should be made by the user in the already existing

inputfile_tpl, without the need to copy the file elsewhere.

5.4.2 Executing a simulation

We recommend running a calculation in directory HAICS/. The script runHAICS.sh located

in HAICS/scripts/ directory automates calculations by typing the command

./scripts/runHAICS.sh {ID}

where {ID} is a chosen identification number for the simulation. The following assumptions

are made in the script:

◦ the binary is placed in HAICS/bin/,

◦ input file inputfile_tpl is set and located in directory HAICS/input/,

◦ output files can be found in HAICS/output/{ID}/ on completion of the calculation.

The run script runHAICS.sh does not require any tuning, editing or corrections in order to

start the calculation. Provided that the input file HAICS/input/inputfile_tpl is prepared

for calculations, runHAICS.sh takes care of the following steps in the following order:

◦ creates the directory HAICS/output/{ID}/,

◦ copies inputfile_tpl in HAICS/output/{ID}/ under name inputfile{ID},

◦ starts the simulation.

Alternatively, typing the command

./bin/haics {ID}

immediately starts the calculation and will be performed successfully if the corresponding

directory and input file HAICS/output/ID/inputfile{ID} have been created previously.

In order to perform 10 repetitions of the same test (with same input parameters), one

should use another run script by typing

./scripts/run10HAICS.sh {ID}

This will (i) create 10 different output directories in HAICS/output/, named {ID},...,{ID+9}

and containing corresponding input files inputfile{ID},...,inputfile{ID+9}, and (ii) run

10 simulations.
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5.4.3 Output data

On completion of the calculation, the following output files can be found in directory

HAICS/output/{ID}/.

Filename Content

art acceptance rate, CPU time (in sec.)
dH(_lat) di�erence in Hamiltonians a�er integration, at each iteration
ham(_lat) value of the Hamiltonian at the end of each iteration
logfile{ID} log file
logP logarithm of unnormalized posterior at each iteration
samples(_lat) values of parameters at each iteration
weights(_lat) importance weights for MMHMC

If the binary is built with the debug option (CFLAGS += -DDEBUG) in Makefile, then a

number of additional output files are created in directory HAICS/output/{ID}/. Those files

contain detailed information at each iteration on e.g. Metropolis probability, simulation

parameters, intermediate values of Hamiltonians, etc.

5.5 Summary

We have developed the user-friendly software package written in C HaiCS (Hamiltonians in

Computational Statistics) targeted to computers running UNIX certified operating systems.

The code is intended for statistical sampling of high dimensional and complex distri-

butions and parameter estimation in different models through Bayesian inference using

Hamiltonian Monte Carlo based methods. The currently available sampling techniques

include Hamiltonian Monte Carlo (HMC), Generalized Hamiltonian Monte Carlo (GHMC),

Metropolis Adjusted Langevin Algorithm (MALA), second order Langevin Monte Carlo

(L2MC) and Mix & Match Hamiltonian Monte Carlo (MMHMC), the method developed

in this thesis.

The package benefits from efficient implementation of modified Hamiltonians, the ac-

curate multi-stage splitting integration schemes (as previously proposed as the novel), the

analysis tools compatible with CODA toolkit for MCMC diagnostics as well as the inter-

face for implementing complex statistical models. The popular statistical models multivari-

ate Gaussian distribution, Bayesian Logistic Regression and Stochastic Volatility are imple-

mented in HaiCS.
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In this chapter we evaluate the performance of MMHMC method and compare it with

the Random Walk Metropolis-Hastings (RWMH), Hamiltonian Monte Carlo (HMC), Gen-

eralized HMC (GHMC), Metropolis Adjusted Langevin Algorithm (MALA) and Riemann

Manifold HMC (RMHMC) methods on a set of standard benchmark models used in the lit-

erature. Space exploration of an algorithm is examined on a banana-shaped distribution,

while sampling efficiency is investigated on multivariate Gaussian distribution, Bayesian

logistic regression model, and a stochastic volatility model. Before introducing the bench-

mark models and numerical results we outline measures for performance evaluation in the

following section.

6.1 Performance evaluation

When assessing the performance of a method we focus on the following criteria:

• state space exploration by the chain;

• sampling efficiency – the ability of a method to produce more uncorrelated samples;

• convergence to the target distribution.

In order to evaluate these criteria we use the following metrics:

• Acceptance rate (AR);

• Effective Sample Size (ESS) and ESS normalized by the computational time in sec-

onds (ESS/s);
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• Efficiency Factor (EF) – relative ESS/s of a method with respect to ESS/s of the HMC

method;

• Potential scale reduction factor (R̂).

Effective Sample Size is a commonly used measure for sampling efficiency of an MCMC

method. It indicates the number of effectively uncorrelated samples out of N collected

samples and is defined as

ESS =
N

1 + 2
∑

k γ̂k
, (6.1)

where γ̂k is the k-lag sample autocorrelation. For an estimate Î of the expectation Eπ(f),

given by

Î =
1

N

N∑
n=1

f(θn),

the effective sample size can be estimated using the initial monotone sequence variance

estimator σ̂2
mono of Geyer (1992) as

ESS =
Nσ̂2

σ̂2
mono

,

where σ̂2 = 1
N−1

∑N
n=1(f(θn)− Î)2 is the sample variance.

ESS is related to both Monte Carlo estimate of the variance V̂ar(Î) of the estimator Î and

Integrated Autocorrelation Time (IACT), which are two alternative measures of efficiency

also used in the literature. Monte Carlo estimate of the variance of Î indicates how much

error is in the estimate due to the use of a Monte Carlo method. If the estimate is obtained

from uncorrelated samples, its variance is given by σ̂2/N . Due to use of an MCMC method,

this “naive" variance estimator has to be adjusted for autocorrelation leading to an estimate

V̂ar(Î) =
σ̂2

ESS
=
σ̂2
mono

N
. (6.2)

This estimator follows from the Central Limit Theorem (CLT), which states that
√
N(Î −

I)
d→ N (0, σ2). It follows that the estimated variance of the estimator obtained with cor-

related samples is N
ESS = σ̂2

mono
σ̂2 times bigger than the estimated variance obtained with

uncorrelated samples. Monte Carlo Standard Error (MCSE) is then just σ̂/
√
ESS.

IACT, being the number of MC iterations needed on average for an independent sample

to be drawn, is computed as

IACT =
N

ESS
.

Consequently, on average IACT correlated samples are needed to reduce the variance of the

estimator by the same amount as a single uncorrelated sample.

In our experiments, we compute ESS of the mean estimator for each variate, i.e. we

consider fi(θn) = θni , i = 1, . . . , D, n = 1, . . . , N . We report minimum, median, and maxi-

mum ESS across variates or just minimum ESS, as the most restrictive measure, calculated
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using the collected posterior samples.

Potential scale reduction factor (R̂) is a diagnostic for monitoring convergence of a

chain to the stationary distribution (Gelman and Rubin, 1992; Brooks and Gelman, 1998).

It forms a part of the CODA package (Plummer et al., 2006), developed for output analysis

for MCMC methods, and is also used in Stan (Stan Development Team, 2016).

R̂ is evaluated on M > 1 chains run with randomly assigned initial states until N

posterior samples are collected by each chain. Employing the mean of the sample variance

within each chain

W =
1

M

M∑
m=1

σ̂2
m

and the between-chain sample variance

B =
N

M − 1

M∑
m=1

(
θ̄m − ¯̄θ

)2
,

calculated for each parameter θi, i = 1, . . . , D, where

σ̂2
m =

1

N − 1

N∑
n=1

(
θnm − θ̄m

)2
and θ̄m are the variance and mean of the each chain, respectively, and ¯̄θ is the mean of all

chains combined, the sample variance σ̂2 from all chains combined is given as a weighted

average of within-chain variance and between-chain variance as

σ̂2 =

(
1− 1

N

)
W +

1

N
B.

The potential scale reduction factor for each parameter θi is then calculated as

R̂ =

√
d+ 3

d+ 1

V̂

W
(6.3)

where

V̂ = σ̂2 +
B

MN

and d is the number of degrees of freedom of a t-distribution with mean ¯̄θ and variance V̂ ,

and is estimated by the method of moments

d ≈ 2V̂ 2

Var(V̂ )
.

When R̂ is high (e.g. greater than 1.1 or 1.2), the dependence on the initial point

of the chain is still present, and one should increase the length of the chain to improve

convergence to the stationary distribution.
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This convergence diagnostic is suitable for inferences based on posterior means and

variances. In case inference is determined by higher moments, other measures may be

more appropriate.

We mention two alternative convergence tests proposed by Geweke (1992) and Hanson

(2002). The Geweke test, also implemented in CODA package, is monitoring convergence

using a single chain. The Hanson test is a convergence diagnostic specially designed for

HMC and employes gradients of samples. For ith variate, i = 1, . . . , D, the metric is com-

puted as

Ri =

∑
n

(
θni − θ̄ni

)3
∂θiU(θn)

3
∑

n

(
θni − θ̄ni

)2 .

In our experiments, however, we use only the potential scale reduction factor (6.3).

6.1.1 E�iciency evaluation for MMHMC

MMHMC is one of the methods which generate samples that are correlated (being an

MCMC method) and weighted (being an importance sampler). Examples of such meth-

ods include SHMC (Izaguirre and Hampton, 2004), S2HMC (Sweet et al., 2009), GSHMC

(Akhmatskaya and Reich, 2008), Gradient Importance Sampler (Schuster, 2015).

The estimation of the effective sample size for methods yielding correlated samples was

reviewed in the previous section. For importance samplers, however, the effective sample

size accounts for weighted samples and can be obtained in the following manner.

Let us assume that the function f(θ) and importance weight function w(θ) are indepen-

dent under the importance probability π̃(θ). Variance of the mean estimator Î, in this case

defined as the weighted average

Î =

∑N
n=1wnf(θn)∑N

n=1wn
, wn =

π(θn)

π̃(θn)
,

is given as

Varπ̃(Î) =
1

N

Eπ̃
[
w(θ)2

]
Eπ̃
[(
f(θ)− Î

)2
]

Eπ̃[w(θ)]2
. (6.4)

Its Monte Carlo estimate can be obtained as

V̂ar(Î) =
σ̂2

Ne
, (6.5)

where σ̂2 is the sample variance and

Ne =

(∑N
n=1wn

)2

∑N
n=1w

2
n
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is the effective sample size, as first introduced by Kong et al. (1994). As noted by Neal

(2001), we can write the expression (6.4) as

Varπ̃(Î) =

(
1 + Varπ̃

(
w(θ)

Eπ̃[w(θ)]

))
1

N
Eπ̃
[(
f(θ)− Î

)2
]

=

(
1 + Varπ̃

(
w

Eπ̃[w]

))
1

N
Varπ(f(θ)). (6.6)

We can easily see from (6.5) and (6.6) that(
1 + Varπ̃

(
w

Eπ̃[w]

))
≈ N

Ne
,

meaning that variance of the estimator obtained with weighted samples is N
Ne

times bigger

than the variance obtained with unweighted samples. We also note that the effective sample

size depends directly on variability in the normalized importance weights.

For the MMHMC method, the reduction in sampling efficiency due to use of importance

sampling is expected to be minor. The reason for this is because the chosen importance

density π̃ is a close approximation of the true density π and therefore, normalized weights

have values close to one. In case the Markov chain happens to draw samples from a region

of the space in which the true Hamiltonian is not well approximated by the modified Hamil-

tonian, or in general, for importance sampling methods for which the importance density

π̃ is not close enough to the target density π, high variability in the importance weights

might occur. One should then use a metric for sampling efficiency that takes into account

both correlations among samples and weights. To the best of our knowledge, a metric

for samplers that generate correlated weighed samples has not been proposed, though the

importance of such an objective criterion was discussed e.g. by Neal (2001) and Gramacy

et al. (2010).

Here we propose a new metrics that addresses these issues. With the aim of estimating

the variance from the CLT,
√
N(Î − I)

d→ N (0, σ2), we base our metric on the initial mono-

tone sequence estimator by Geyer (1992) and weighted sample variance (Rimoldini, 2014)

and covariance. More specifically, we start from an unbiased weighted sample variance

σ̂2
w =

∑N
n=1wn

(
∑N

n=1wn)2 −
∑N

n=1w
2
n

N∑
n=1

wn

(
f(θn)− Î

)2
(6.7)

and weighted sample covariance

γ̂k =

∑N−k
n=1
√
wnwn+k

(
∑N−k

n=1
√
wnwn+k)2 −

∑N−k
n=1 wnwn+k

N−k∑
n=1

√
wnwn+k

(
f(θn)− Î

)(
f(θn+k)− Î

)
.

(6.8)
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Following Geyer (1992), we define the variance estimator σ̂2
w,mono as

σ̂2
w,mono = −σ̂2

w + 2

K∑
k=0

Γ̂k,

where K is the largest integer such that

Γ̂k > 0, k = 0, . . . ,K,

and Γ̂k are defined recursively as

Γ̂0 = γ̂0 + γ̂1

Γ̂k = min
{

Γ̂k−1, γ̂2k + γ̂2k+1

}
.

Finally, we obtain the formula for estimating the effective sample size for importance sam-

pling as

ESS =
Nσ̂2

w

σ̂2
w,mono

. (6.9)

The Monte Carlo variance of the estimator Î in this case follows as

V̂ar(Î) =
σ̂2
w,mono

N
. (6.10)

6.2 Experimental results

The choice of the optimal simulations parameters remains an open question (Neal, 2011)

and not the subject of this thesis. To make the comparison with other methods fair, we

chose the following strategy. Since the stochastic volatility benchmark is studied well in

literature and HMC and RMHMC were tuned previously for a particular dimension of this

benchmark, we took the found set of optimal parameters as an initial guess and tuned it

further. For Bayesian logistic regression and Gaussian models, especially for some data

sets, such information is not available. In this case, we have located a range of reasonable

parameters L, h and ϕ and performed the comparison for these sets. For each MC iteration

we draw the number of integration steps uniformly from {1, . . . , L} for HMC, GHMC and

MMHMC and step size uniformly from (0.8h, 1.2h) for HMC, MALA, GHMC and MMHMC

methods. Additionally, we tested MMHMC for a range of fixed noise parameters ϕ or

drawn a noise parameter uniformly from (0, ϕ), but report here only results obtained with

the best ones among tested values for each trajectory length hL. Smaller values of ϕ tend

to perform better for smaller values of the product hL and vice versa. We then use the same

values of ϕ for simulations with the GHMC method. All our experiments are carried out

with the identity mass matrix for HMC, MALA, GHMC and MMHMC. The computational

time used for normalization of ESS and efficiency comparison is measured as CPU time
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that each method takes to collect posterior samples. Except for the case of a banana-

shaped distribution, for which we investigate trajectory of a single Markov chain, all results

are averaged over ten independent runs. We examine the banana-shaped model with the

Matlab code provided along with (Lan et al., 2015), in which we implemented the MMHMC

method. The rest of experiments are carried out with the in-house software package HaiCS
presented in Chapter 5.

Each test model has been prepared to sampling with MMHMC, which involves compu-

tation of derivatives of a model potential function.

6.2.1 Banana-shaped distribution

We begin with a comparison of space exploration achieved by MMHMC, Random Walk

Metropolis-Hastings (RWMH), Hamiltonian Monte Carlo (HMC) and Riemann Manifold

HMC (RMHMC) in sampling a 2-dimensional, non-linear target. Given data y = {yk}Kk=1 we

sample from a banana-shaped posterior distribution of the parameter θ = (θ1, θ2) (Girolami

and Calderhead, 2011b, discussion by Bornn and Cornebise) for which the likelihood and

prior distributions are given as

yk|θ ∼ N (θ1 + θ2
2, σ

2
y), k = 1, . . . ,K

θ1, θ2 ∼ N (0, σ2
θ)

respectively. Due to independence in the data and parameters, the posterior distribution is

proportional to

π(θ|y) ∝
K∏
k=1

p(yk|θ)p(θ1)p(θ2).

The potential function becomes (see (2.15))

U(θ) =
1

2σ2
y

K∑
k=1

(
yk − θ1 − θ2

2

)2
+ log(σ2

θσ
100
y ) +

1

2σ2
θ

(θ2
1 + θ2

2)

and its derivatives are

Uθ(θ) = − 1

σ2
y

(
K∑
k=1

yk −K(θ1 + θ2
2)

)[
1

2θ2

]
+

1

σ2
θ

[
θ1

θ2

]

Uθθ(θ) = − 1

σ2
y

K + 1
σ2
θ

2Kθ2

2Kθ2 −2
(∑K

k=1 yk −K
(
θ1 + 3θ2

2

))
+ 1

σ2
θ

 .
Experimental setting. We generate K = 100 data {yk}Kk=1 with θ1 + θ2

2 = 1, σy = 2 and

σθ = 1. Sampling with the MMHMC method is performed using the Verlet integrator, a

fixed number of integration steps, a step size and a noise parameter with values L = 7, h =

1/9, ϕ = 0.5, respectively. We compare MMHMC with RWMH, HMC and RMHMC for which

simulation parameters are chosen as suggested in (Lan et al., 2015).
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Results. The dynamics of the four samplers is illustrated in Figure 6.1, in which we show

sampling paths (lines) of the first 15 accepted proposals (dots). RWMH just started to

explore the parameter space and is still located in the low-density tail. In contrast, other

methods already visited high-density regions. As expected, RMHMC efficiently tracks a

local curvature of the parameter space and is able to move along the ridge to its full extent.

On the other hand, HMC and MMHMC tend to move across rather than along the ridge

and therefore explore the space less efficiently. Figure 6.2 shows the coverage of the space

FIGURE 6.1: The first 15 Monte Carlo iterations with sampling paths (lines) and
accepted proposals (dots) in sampling from a banana-shaped distribution with
Random Walk Metropolis-Hastings (RWMH), Hamiltonian Monte Carlo (HMC),

Mix&Match HMC (MMHMC) and Riemann Manifold HMC (RMHMC).

after 2000 iterations. We observe that RWMH1 still did not cover the posterior distribution

entirely. Other methods performed significantly better, though samples obtained with HMC

did not reach the tails of the posterior, in contrast to MMHMC and RMHMC.

6.2.2 Multivariate Gaussian distribution

We take this experiment from (Hoffman and Gelman, 2014) for which the task is to sam-

ple from a D-dimensional Gaussian N (0,Σ). The precision matrix Σ−1 is generated from

a Wishart distribution with D degrees of freedom and the D-dimensional identity scale

matrix, which results in strong correlations among variates.

1RWMH was run L times longer than other methods to somehow compensate for the cost of integration.
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FIGURE 6.2: Exploration of space in sampling from a banana-shaped distribution
achieved a�er 2000 samples obtained with Random Walk Metropolis-Hastings
(RWMH), Hamiltonian Monte Carlo (HMC), Mix&Match HMC (MMHMC) and Rie-

mann Manifold HMC (RMHMC). The red dots represent accepted points.

The potential function, its gradient and hessian are defined as

U(θ) =
1

2
θTΣ−1θ

Uθ(θ) = Σ−1θ,

Uθθ(θ) = Σ−1.

Experimental setting. We perform tests for three different dimensions, D = 100, 1000,

2000, using the HMC and MMHMC methods and for D = 100 we additionally run GHMC.

For the identity mass matrix, all three methods are invariant under rotations. Due to limited

computational resources, we therefore choose for cases D = 1000, 2000 the covariance

matrix Σ to be diagonal with

Σii = σ2
i ,

where σ2
i is the ith smallest eigenvalue of the original covariance matrix. Table 6.1 summa-

rizes the integrators used for sampling with MMHMC, which were chosen according to the

recommendations provided in Section 3.2.2. For two-stage integrators, we set a step size to

2h and a number of integration steps to L/2. We collect 10000 samples with each method
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D = 100 D = 1000 D = 2000

h Integrator h Integrator h Integrator

4 · 10−2 BCSS∗ 8 · 10−3 ME∗ 6 · 10−3 ME∗

5 · 10−2 BCSS∗ 10 · 10−3 BCSS∗ 8 · 10−3 BCSS∗

6 · 10−2 BCSS∗ 12 · 10−3 BCSS∗ 10 · 10−3 BCSS∗

7 · 10−2 Verlet 14 · 10−3 BCSS∗ 12 · 10−3 BCSS∗

8 · 10−2 Verlet 16 · 10−3 BCSS∗

TABLE 6.1: Values of step size h and corresponding integrators used for sampling
from aD-dimensional Gaussian distribution with the MMHMC method.

and discard first 2000 as a warm-up.

Results. Figure 6.3 compares the obtained acceptance rates (top) and the corresponding

time-normalized minimum ESS across variates (bottom). While acceptance rates for HMC

(and GHMC) drop considerably with increasing step size, especially for higher dimensions,

MMHMC maintains very high acceptance. For D = 100, the acceptance rate for MMHMC

starts to drop visibly but still stays reasonably high. As we noted before, the novel inte-

grators do not improve over Verlet for small dimensions, and thus the Verlet integrator has

been used for D = 100. It is interesting to note that although acceptance rates of GHMC are

identical to those of HMC, the efficiency is considerably improved for smaller step sizes by

just incorporating partial momenta update within HMC, as defined in the GHMC method.

Bigger values of L yield higher efficiency for HMC for all step sizes, however for MMHMC

and GHMC this is not the case. For all tests, MMHMC demonstrates significantly higher

sampling efficiency than HMC and GHMC, as can be seen from the inspection of ESS/s.

The results on sampling efficiency are summarized in Figure 6.4, from which we can

appreciate the amount of improvement achieved with MMHMC compared to HMC. For a

range of step sizes h we show the efficiency factor (EF), i.e. relative time-normalized mini-

mum ESS with respect to HMC, such that values above 1 indicate a superior performance of

MMHMC. Each bar covers a range of numbers of integration steps L tested for each step size

h. The minimal EF value within a bar corresponds to the least difference in performance

between HMC and MMHMC, whereas the maximal EF refers to the biggest improvement

achieved by MMHMC over HMC. The improvement factor clearly increases with dimen-

sion. Depending on the choice of h and L, the minimal improvement achieved is around

2 times (for the lowest dimension) and maximal one goes up to 40 times (for the highest

dimension). Since optimal simulation parameters are not known a priori, we expect that

sampling efficiency using MMHMC for this kind of problems will be at least 2 times better

than using HMC, but very likely much higher.

Beside acceptance rates and sampling efficiency of the tested samplers, we are also inter-

ested in the effect that a choice of simulation parameters L and h has on the performance of

each sampler. Figure 6.5 shows the maximal relative improvement in the time-normalized

minimum ESS achieved for different choices of L while keeping the step size constant for
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FIGURE 6.3: Acceptance rate (top) and time-normalized minimum ESS (bottom)
for a range of step sizes h and number of integration steps L, obtained in sam-
pling from aD-dimensional Gaussian distribution with Hamiltonian Monte Carlo

(HMC), Generalized HMC (GHMC) and Mix&Match HMC (MMHMC).
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FIGURE 6.4: Relative sampling e�iciency (EF) of MMHMC w.r.t. HMC for a range of
step sizes h in sampling from a D-dimensional Gaussian distribution. Each bar
accounts for the data obtained with di�erent choices of numbers of integration

stepsL.

each method. It demonstrates an additional advantage of MMHMC over the HMC method.

Indeed, for HMC a “right” choice of L can improve efficiency up to three times, i.e. a

“wrong” choice can worsen efficiency up to three times, whereas for MMHMC the effect is

almost always around 30%. Therefore, the problem of finding an optimal L is less relevant

to MMHMC than to HMC. This feature of MMHMC is particularly useful, as till now there is

no universal criterion for finding an optimal value of L. The only exception appears in the

case D = 2000 at the largest step size h, where MMHMC has a higher relative dependence

on L than HMC. The likely reason for this is because all choices of L other than the smallest

one induce trajectory lengths hL that are too large and consequently, those trajectories are
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FIGURE 6.5: E�ect of numbers of integration steps L on sampling e�iciency of
HMC, GHMC and MMHMC for sampling from a D-dimensional Gaussian distribu-
tion. Y-axis shows the maximal relative improvement in time-normalized mini-
mum ESS achieved when varyingL for a fixed step size h. MMHMC demonstrates

superiority over HMC, while being less sensitive to changes in parameterL.

making turns and getting closer to their initial state while still performing integration steps

and adding computational cost.

In the same fashion, in Figure 6.6 we show how the relative efficiency of the two tested

methods is affected by the changes in the chosen step size h. In this case, a clear advantage

of one method over another is not obvious, though we note that the effect of h on HMC

performance is quite high for the highest dimension. This is not surprising if we recall the

drop in acceptance rate for HMC for increasing step size in higher dimensions. In contrast,

the maximal improvement (or reduction) in the efficiency of MMHMC due to a choice of a

step size stays around 2 times for all dimensions and numbers of integration steps L.
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FIGURE 6.6: E�ect of step sizehon sampling e�iciency of HMC, GHMC and MMHMC
for sampling from aD-dimensional Gaussian distribution. Y-axis shows maximal
relative improvement in time-normalized minimum ESS achieved with di�erent

choices of h and a fixed number of integration stepsL.

6.2.3 Bayesian Logistic Regression model

The Bayesian Logistic Regression (BLR) model is used for solving binary classification prob-

lems appearing across various fields such as medical and social sciences, engineering, in-

surance, ecology, sports, etc.

118



6.2 EXPERIMENTAL RESULTS

Consider K instances of data {xk, yk}Kk=1, where xk are vectors of D− 1 covariates and

yk ∈ {0, 1} are binary responses. In the BLR model, the response variable y = (y1, . . . , yK)

is governed by a Bernoulli distribution with parameter p = (p1, . . . , pK). The unobserved

probability pk of a particular outcome is linked to the linear predictor function through the

logit function, i.e.

logit(pk) = θ0 + θ1x1,k + · · ·+ θD−1xD−1,k,

where logit(p) = log (p/(1− p)) and θ ∈ RD is the regression coefficient vector. The prior

of the regression coefficient is given e.g. as θ ∼ N (0, αI), with a known α.

If we construct the design matrix X ∈ RK,D of input data as

X =


1 x11 · · · x1,D−1

...
...

...

1 xK1 · · · xK,D−1

 ,
the likelihood function is given as

p(y|X,θ) =
K∏
k=1

p(yk|Xk,θ) =
K∏
k=1

(
eXkθ

1 + eXkθ

)yk ( 1

1 + eXkθ

)1−yk
,

where Xk is the kth row of the matrix X. The corresponding posterior distribution over the

regression coefficients is

π(θ|y,x) ∝
K∏
k=1

p(yk|Xk,θ)p(θ)

with the prior

p(θ) ∝ exp

{
−θ

Tθ

2α

}
.

The potential function then reads

U(θ) = −
K∑
k=1

[
yk

D∑
i=1

Xkiθi − log

(
1 + exp

(
D∑
i=1

Xkiθi

))]
+

1

2α

D∑
i=1

θ2
i

and its derivatives

∂θiU(θ) = −
K∑
k=1

Xki

yk − exp
(∑D

l=1Xklθl

)
1 + exp

(∑D
l=1Xklθl

)
+

1

α
θi

∂θiθjU(θ) =

K∑
k=1

XkiXkj exp
(∑D

l=1Xklθl

)
(

1 + exp
(∑D

l=1Xklθl

))2 +
δij
α
,

with

δij =

1, i = j

0, i 6= j
.
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Experimental setting. We use four different real datasets available from the University

of California Irvine Machine Learning Repository (Lichman, 2013). The dataset charac-

teristics, such as names, numbers of regression parameters (D) and observations (K) are

summarized in Table 6.2.

Dataset D K

German 25 1000
Sonar 61 208
Musk 167 476

Secom 444 1567

TABLE 6.2: Datasets used for BLR model with corresponding number of regression
parameters (D) and number of observations (K).

By following a common procedure, we normalize input data such that each covariate

has zero mean and standard deviation of one. For each dataset, a diffuse Gaussian prior is

imposed by setting α = 100.

In all experiments, N = 5000 posterior samples were generated after discarding the first

5000 as a warm-up. Apart from the comparison of MMHMC with HMC over the range of

datasets, we also tested it against MALA on the German dataset and GHMC on the German

and Musk datasets. We do not investigate the performance of RMHMC since as it was stated

in (Girolami and Calderhead, 2011b), RMHMC does not outperform HMC for dimensions as

high as for the German dataset, which in our case is the dataset of the smallest dimension.

In these experiments, we use MMHMC with the Verlet integrator, since dimensions of

the four datasets may be too small to expect an improvement with the novel integrators

derived in Section 3.2.2.

Results. Acceptance rate (top) and time-normalized minimum ESS across variates (bot-

tom) obtained for BLR are presented in Figures 6.7 and 6.8. For all datasets, the acceptance

rate is the highest for MMHMC, as is expected. Except MALA, which exhibits poor per-

formance, all methods demonstrate comparable efficiency for the smallest dataset. The

GHMC method improves HMC for the Musk dataset. Nevertheless, MMHMC outperforms

both HMC and GHMC for a range of simulation parameters. We note that the parameter L

found to be the best for HMC is not necessarily the best for MMHMC. Actually, too long val-

ues of L seem to result in poorer overall efficiency for MMHMC, although the computational

overhead is smaller for larger L, due to a less frequent calculation of modified Hamiltoni-

ans. In contrast, longer trajectories are needed for HMC to achieve its full potential for

larger datasets.

Figure 6.9 summarizes results on sampling efficiency in terms of relative improvement

of MMHMC compared to HMC, for a range of step sizes h and numbers of integration steps

L (included within bars). We note that MMHMC and HMC have comparable performance

for the smallest dimension D = 25; however, the sampling efficiency grows with increasing
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FIGURE 6.7: Acceptance rate (top) and time-normalized minimum ESS (bot-
tom) for Bayesian logistic regression using Hamiltonian Monte Carlo (HMC),
Mix&Match HMC (MMHMC), Generalized HMC (GHMC) and Metropolis Adjusted
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dimension in favor of MMHMC. For BLR model and tested datasets, MMHMC demonstrates

improvement over HMC of up to 4 times.
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FIGURE 6.9: Relative sampling e�iciency (EF) of MMHMC w.r.t. HMC for a range
of step sizes h, in sampling of Bayesian logistic regression models. Each bar ac-
counts for the data obtained with di�erent choices of numbers of integration

stepsL.

6.2.4 Stochastic Volatility model

The volatility of price returns, as a magnitude of price fluctuation, is important for mea-

suring the risk in empirical finance. Nevertheless, it is very difficult to extract the true

volatility from asset price returns themselves. Stochastic volatility (SV) models turned out

to be a useful tool for modeling time-varying volatility with significant potential for applica-

tions (e.g. risk management/risk prediction, pricing of financial derivatives). These models

appear as discrete approximations to various diffusion processes in the theoretical finance

literature on asset pricing (Hull and White, 1987) and have been extensively studied in

both theoretical and empirical finance literature for more than 20 years.

We consider the standard SV model defined with the latent, log-volatilities following

autoregressive AR(1) process. The model, as described by Kim et al. (1998), takes the

following form

yt = β exp(xt/2)εt, εt ∼ N (0, 1)

xt = φxt−1 + σηt, ηt ∼ N (0, 1)

x1 ∼ N
(

0,
σ2

1− φ2

)
where yt are observed data of mean corrected log-returns, equidistantly spaced in time for

t = 1, . . . , T , and xt are latent variables of log-volatility assumed to follow a stationary pro-

cess. This assumption leads to the constraint |φ| < 1. The error terms εt and ηt are serially

and mutually uncorrelated white noise sequences with the standard normal distribution.

The parameter β of the model can be interpreted as the modal instantaneous volatility, φ

as the persistence in the volatility and σ as the volatility of the log-volatility, leading to the

second constraint σ > 0.

Let denote the vector of model parameters as θ = (β, σ, φ). The difficulty in inferring

SV parameters, i.e. sampling from the posterior distribution π(θ|y) given a set of observed
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log-returns y = (y1, ..., yT ) lies in the fact that the likelihood function, defined as

p(y|θ) =

∫
x
p(y|x,θ)p(x|θ)dx,

is an analytically intractable T -dimensional integral with respect to the unknown log-

volatilities x = (x1, ..., xT ). Fortunately, the MCMC simulation-based inference overcomes

this difficulty. The first such analysis of the standard SV model was given by Jacquier et al.

(1994) and the estimations using HMC based methodologies were later carried out by Chen

et al. (2000), Liu (2008), Takaishi (2013), Girolami and Calderhead (2011b), Zhang and

Sutton (2014), and Wang et al. (2013). In the MCMC approach, instead of sampling from

π(θ|y) we focus on the joint posterior distribution of both model parameters and latent

volatilities, given through the conditional distributions as

π(θ,x|y) ∝ p(y,x,θ) = p(y|θ,x)p(θ,x) = p(y|θ,x)p(x|θ)p(θ)

= p(θ)p(x1|θ)

T∏
t=1

p(yt|θ, xt)
T∏
t=2

p(xt|xt−1,θ)

= p(β)p(σ)p(φ)p(x1|σ, φ)

T∏
t=1

p(yt|xt, β)

T∏
t=2

p(xt|xt−1, σ, φ).

The expressions for the conditional distributions follow straightforwardly from the model

specification as

p(x1|σ, φ) =

(
2πσ2

1− φ2

)− 1
2

exp

{
−x

2
1(1− φ2)

2σ2

}

p(xt|xt−1, σ, φ) = pηt

(
xt − φxt−1

σ

∣∣∣∣xt−1, σ, φ

) ∣∣∣∣d((xt − φxt−1)/σ)

dxt

∣∣∣∣
= (2π)−

1
2

1

σ
exp

{
−(xt − φxt−1)2

2σ2

}

p(yt|xt, β) = pεt

(
yt

β exp{xt/2}

∣∣∣∣xt, β) ∣∣∣∣d(yt/β exp{xt/2}
dyt

∣∣∣∣
= (2π)−

1
2 exp

{
− y2

t

2β2 exp{xt}

}
1

β
exp

{
−xt

2

}
= (2π)−

1
2

1

β
exp

{
−xt

2
− y2

t

2β2 exp{xt}

}
.

We follow Liu (2008) and choose the priors as p(β) ∝ 1/β, σ2 ∼ Scale-inv-χ2(10, 0.05), (φ+

1)/2 ∼ Beta(20, 1.5), leading to

p(β) ∝ 1

β

p(σ) ∝ σ−11 exp{−1/4σ2}

p(φ) ∝ (φ+ 1)19 (1− φ)
1
2 .
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We employ HMC based samplers and instead of sampling jointly model parameters and

latent volatilities from π(θ,x|y), we follow a common procedure of cycling through the two

full conditional distributions π(θ|y,x) and π(x|y,θ).

Since HMC methods sample real valued parameters, we handle the constraints σ2 > 0

and −1 ≤ φ ≤ 1 by making use of the transformation T : θ → θ̄ to the real line, defined as

θ̄ = T (θ) = (β, ln(σ), artanh(φ)) = (β, γ, α)

with the Jacobian

JT =


dβ
dβ 0 0

0 dγ
dσ 0

0 0 dα
dφ

 =


1 0 0

0 σ−1 0

0 0 (1− φ2)−1

 .
The inverse transformation T −1 to the constrained parameters is

θ = T −1(θ̄) = (β, eγ , tanh(α)) (6.11)

and its Jacobian is

JT −1 =


1 0 0

0 eγ 0

0 0 1− tanh2(α)

 . (6.12)

Sampling is performed in the unconstrained space (see Section 4.1). First, we sample

the transformed parameters from the distribution π(θ̄|x,y), for which the potential function

can be obtained as

Ū(θ̄) =
T∑
t=1

xt
2

+
1

2β2

T∑
t=1

y2
t

exp(xt)
+

1

2 exp(2γ)

T∑
t=2

(xt − tanh(α)xt−1)2 +
x2

1(1− tanh(α)2)

2 exp(2γ)

+T log(β) + Tγ − 1

2
log((1− tanh(α)2))

+ log(β) + 11γ +
1

4 exp(2γ)
− 19 log (tanh(α) + 1)− 1

2
log (1− tanh(α))︸ ︷︷ ︸

prior

−γ − log(1− tanh(α)2)︸ ︷︷ ︸
Jacobian

.

The gradient of the potential function with respect to the transformed parameters follows

from the chain rule (i.e. ∇θŪ = ∇θ̄ŪJT ) and reads

∇θ̄Ū = ∇θŪJ −1
T .
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In particular, the partial derivatives are

∂βŪ(θ̄) =
T + 1

β
−

T∑
t=1

y2
t

β3ext

∂γŪ(θ̄) = − 1

exp(2γ)

( T∑
t=2

(xt − tanh(α)xt−1)2 + x2
1(1− tanh(α)2) +

1

2

)
+ T + 10

∂αŪ(θ̄) = −1− tanh(α)2

exp(2γ)

( T∑
t=2

(xt − tanh(α)xt−1)xt−1 + x2
1 tanh(α)

)
+22.5 tanh(α)− 18.5.

Using the chain rule for higher derivatives

[
∇θθŪ

]
ij

=
∑

ε∈{β,γ,α}

∂εŪ · ε′′|ij +
∑

ε,ξ∈{β,γ,α}

∂εξŪ · ε′|i · ξ′|j , i, j ∈ {β, σ, φ},

we obtain

∂ββŪ(θ̄) =
1

β2

(
− T − 1 +

3

β2

T∑
t=1

y2
t

exp{xt}

)
∂γγŪ(θ̄) =

2

exp(2γ)

( T∑
t=2

(xt − tanh(α)xt−1)2 + x2
1(1− tanh(α)2) +

1

2

)
∂βγŪ(θ̄) = ∂γβŪ = 0

∂βαŪ(θ̄) = ∂αβŪ = 0

∂γαŪ(θ̄) =
2(1− tanh(α)2)

exp(2γ)

( T∑
t=2

xt−1(xt − tanh(α)xt−1) + x2
1 tanh(α)

)
∂ααŪ(θ̄) =

(1− tanh(α)2)

exp(2γ)

(
(1− tanh(α)2)

T−1∑
t=2

x2
t + 2 tanh(α)

( T∑
t=2

(xt − tanh(α)xt−1)xt−1

+x2
1 tanh(α)

))
+ 22.5(1− tanh(α)2).

We note that the second order partial derivatives can be expressed in terms of the first order

derivatives, therefore for an efficient implementation of the SV model we use the following

expressions

∂ββŪ(θ̄) =
(2(T + 1)

β
− 3∂βŪ

) 1

β

∂γγŪ(θ̄) = 2(T + 10− ∂γŪ)

∂βγŪ(θ̄) = ∂γβŪ = 0

∂βαŪ(θ̄) = ∂αβŪ = 0

∂γαŪ(θ̄) = 2(22.5 tanh(α)− 18.5− ∂αŪ)
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∂ααŪ(θ̄) =
(1− tanh(α)2)2

exp(2γ)

T−1∑
t=2

x2
t + tanh(α)∂γαŪ + 22.5(1− tanh(α)2).

This concludes the preparation for the first sampling step.

The second sampling step consists of simulating latent volatilities from the distribution

π(x|y,θ). The priors for the model parameters are constant with respect to the volatilities

and thus can be omitted from the potential function, which takes the form

Ū(x) =
T∑
t=1

xt
2

+
1

2β2

T∑
t=1

y2
t

exp(xt)
+

1

2 exp(2γ)

T∑
t=2

(xt − tanh(α)xt−1)2

+
x2

1(1− tanh(α)2)

2 exp(2γ)
+ T log(β) + Tγ − 1

2
log((1− tanh(α)2)).

First order partial derivatives follow straightforwardly as

∂x1Ū(x) =
1

2
− y2

1

2β2 exp{x1}
+
x1 − tanh(α)x2

exp(2γ)

∂xiŪ(x) =
1

2
− y2

i

2β2 exp{xi}
+
xi(tanh(α)2 + 1)− tanh(α)(xi+1 + xi−1)

exp(2γ)
, i = 2, . . . , T − 1

∂xT Ū(x) =
1

2
−

y2
T

2β2 exp{xT }
+
xT − tanh(α)xT−1

exp(2γ)

and second order derivatives as

∂x2
1
Ū(x) =

y2
1

2β2 exp{x1}
+

1

exp(2γ)

∂x2
i
Ū(x) =

y2
i

2β2 exp{xi}
+

1 + tanh(α)2

exp(2γ)
, i = 2, . . . , T − 1

∂x2
T
Ū(x) =

y2
T

2β2 exp{xT }
+

1

exp(2γ)

∂xixi+1Ū(x) = −tanh(α)

exp(2γ)
, i = 1, . . . , T − 1

∂xixj Ū(x) = ∂xjxiŪ(x)

∂xixj Ū(x) = 0, j 6= i− 1, i+ 1.

As in the case of partial derivatives of model parameters, we can write second order deriva-

tives of latent volatilities in terms of first order derivatives, thus simplifying the implemen-

tation with expressions

∂x2
1
Ū(x) = −∂x1Ū(x) +

1

2
+

1 + x1 − tanh(α)x2

exp(2γ)

∂x2
i
Ū(x) = −∂xiŪ(x) +

1

2
+

(1 + tanh(α)2)(xi + 1)− tanh(α)(xi+1 + xi−1)

exp(2γ)
,

i = 2, . . . , T − 1

∂x2
T
Ū(x) = −∂xT Ū(x) +

1

2
+

1 + xT − tanh(α)xT−1

exp(2γ)
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∂xixi+1Ū(x) = −tanh(α)

exp(2γ)
, i = 1, . . . , T − 1

∂xixj Ū(x) = ∂xjxiŪ(x)

∂xixj Ū(x) = 0, j 6= i− 1, i+ 1.

Experimental setting. We examine sampling of the standard SV on simulated data with

values β = 0.65, σ = 0.15, φ = 0.98, for T = 2000, 5000, 10000 time points. This results in

three experiments of dimensions D = 2003, 5003, 10003, which include three model param-

eters and T latent volatility variables to sample. We run 10000 iterations as a warm-up and

generate 200000 posterior samples collecting every 10th sample. We compare MMHMC

with HMC, and for D = 2003 we additionally run the GHMC and RMHMC methods. The

comparison with RMHMC was done indirectly by running HMC and RMHMC with the Mat-

lab code by Girolami and Calderhead (2011a). The noise parameter for MMHMC and

GHMC was tuned to values ϕθ = 0.5, ϕx = 0.8, the number of integration steps for HMC,

GHMC and MMHMC to Lθ = 6, Lx = 76 and for RMHMC we took values from the corre-

sponding paper, i.e. Lθ = 6, Lx = 50. The step sizes used are summarized in Table 6.3.

Naturally, for two-stage integrators, we set a step size to 2h and a number of integration

steps to L/2.

D Method hθ hx

2003

HMC 0.009 0.03
GHMC 0.009 0.03

RMHMC 0.5 0.1
MMHMC 0.009 0.0225

5003 HMC 0.006 0.02
MMHMC 0.006 0.0185

10003 HMC 0.004 0.02
MMHMC 0.004 0.015

TABLE 6.3: Step size values used for the SV model experiments.

Results. We first show ESS for SV model parameters obtained using different integrators

within the MMHMC sampler. The results are summarized in Table 6.4 and suggest the

advantage of using novel integrators specifically derived for sampling with modified Hamil-

tonians. The rest of results presented in this section are obtained with the M-ME integrator.

We next investigate convergence to the stationary distribution of the tested samplers

by calculating R̂ as a function of a number of Monte Carlo iterations (see Figure 6.10). If

we choose a commonly used threshold of 1.1, or even 1.05, we notice that for all meth-

ods the values of R̂ drop quickly below the threshold, with a slightly slower convergence

demonstrated by the HMC method in high dimensional experiments and the fastest one

achieved by RMHMC. We note that here only MC iterations are taken into account and not

the computational time. However, we stress that the computational cost per iteration in
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Integrator ESS
β σ φ

Verlet 1332 1208 2308
M-BCSS 1335 1237 2411
M-ME 1544 1175 2454

TABLE 6.4: ESS for SV model parameters obtained using di�erent integrators
within the MMHMC method.

tested methodologies varies, for example, one iteration of RMHMC takes 66% more time

than needed for one iteration of HMC or 49% more time than needed for one iteration of

MMHMC.
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0 1 2

1

1.05

1.1

1.15

1.2

R̂β

MC iterations×105
0 1 2

R̂σ
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FIGURE 6.10: Convergence in terms of the potential scale reduction factor (R̂) as
a function Monte Carlo iterations for sampling the model parameters of the SV

model.

Figures 6.11, 6.12 and 6.13 show sampling efficiency relative to HMC for experiments

with D = 2003, 5003, 10003, respectively. Acceptance rates (shown in inset figures) are

rather high for all methods. Nevertheless, there is no clear connection between obtained

acceptance rates and ESS. Results demonstrate that all three methods, GHMC, RMHMC and

MMHMC outperform HMC in terms of ESS. MMHMC and RMHMC show comparable per-

formance – MMHMC is not more than 28% less efficient in sampling β and latent variables

than RMHMC and up to 35% more efficient than RMHMC in sampling σ and φ.

We recall here that in contrast to the RMHMC method, HMC, GHMC and MMHMC

use the identity mass matrix. One way to improve the performance of these three meth-

ods compared to RMHMC would be to define the mass matrix from an estimate of global

covariances in the warm-up phase and use it for obtaining the posterior samples.

We do not have access to the optimal parameters for RMHMC for dimensions higher

than D = 2003. For D = 5003, 10003 we compare only MMHMC and HMC and observe

that the superiority of MMHMC for sampling of model parameters and latent variables is
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FIGURE 6.11: Sampling e�iciency of GHMC, RMHMC and MMHMC relative to HMC
for SV model parameters (le�) and latent variables (right) and corresponding ac-

ceptance rates (inset) for dimensionD = 2003.

maintained for higher dimensions.
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FIGURE 6.12: Sampling e�iciency of MMHMC relative to HMC for SV model param-
eters (le�) and latent variables (right) and corresponding acceptance rates (inset)

for dimensionD = 5003.

6.3 Summary

In this chapter we have examined performance of the MMHMC method on a set of stan-

dard benchmark statistical models and compared it with the popular sampling methods in

computational statistics such as Random Walk Metropolis-Hastings (RWMH), Hamiltonian

Monte Carlo (HMC), Generalized HMC (GHMC), Metropolis Adjusted Langevin Algorithm

(MALA) and Riemann Manifold HMC (RMHMC).
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FIGURE 6.13: Sampling e�iciency of MMHMC relative to HMC for SV model param-
eters (le�) and latent variables (right) and corresponding acceptance rates (inset)

for dimensionD = 10003.

Space exploration has been inspected using an illustrative banana-shaped distribution.

MMHMC accepts more proposals that result in better coverage of the space than with HMC.

Although it uses the second-order information on the posterior, MMHMC does not follow

its local curvature as obviously as it does RMHMC. Acceptance rate is higher for MMHMC

than for other methods consistently for all experiments. Our tests demonstrate that in

terms of sampling efficiency MMHMC and HMC perform comparably for small dimensional

problems. However, the advantage of MMHMC over HMC increases with dimension – for a

multivariate Gaussian problem MMHMC shows improvement of up to remarkable 20 times

and for the BLR model up to 4 times. We expect even higher enhancement for problems of

higher dimensions, as the new integrators specifically designed for MMHMC are particularly

beneficial for high dimensional problems. The SV model experiments demonstrate the clear

superiority of MMHMC and RMHMC over the HMC and GHMC methods. The sampling

performance of MMHMC and RMHMC is comparable for this benchmark.

In addition to MMHMC performance evaluation with numerical experiments, in the

beginning of this chapter we have proposed a new metric for ESS estimation. This metric

is designed for MMHMC but can be applied for efficiency evaluation of any method that

produces both correlated and weighted samples.
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7.1 Summary of contributions

Advances in Markov chain Monte Carlo (MCMC) methodology, together with increasing

computing power, have led Bayesian inference becoming a widely used and powerful tool

for dealing with complex statistical problems across a range of applications. The Bayesian

approach provides a consistent and rigorous manner for dealing with uncertainty present

in data and models, selection of a competing model among proposed and quantification

of uncertainty in predictions. MCMC methods provide an arbitrarily level of accuracy in

estimates by drawing as many samples from the target distribution as one requires. A very

active research is being conducted in the development of efficient MCMC approaches but

despite these efforts sampling in high dimensional problems and complex distributions, as

appears in many problems with real data, remains a challenge. Besides, for problems that

do not necessarily assume complex distributions but do involve large-scale simulations,

e.g. geophysical, atmospheric, hydrodynamics models, it is crucial to reduce the number of

forward model evaluations needed to achieve a particular level of accuracy in estimates.

In this thesis, we developed the methodology for enhanced statistical sampling, which

offers higher sampling efficiency than the state-of-the-art MCMC method, Hamiltonian

Monte Carlo. Our new approach, called Mix & Match HMC (MMHMC) arose as an ex-

tension of Generalized Shadow Hybrid Monte Carlo (GSHMC), proposed for molecular

simulation, which has been published, patented and successfully tested on complex biolog-

ical systems. The MMHMC introduces a number of modifications in GSHMC needed for

efficient sampling in statistical applications. It can be defined as a generalized HMC impor-

tance sampler – momentum is updated in a general form and sampling is performed with

respect to a modified density that is defined through modified Hamiltonians. To the best
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of our knowledge, this is the first time that the method sampling with modified Hamilto-

nians has been implemented and applied to Bayesian inference problems in computational

statistics.

We provided expressions for modified Hamiltonians of order 4 and 6 that can be read-

ily employed within the newly derived splitting integrating schemes with two, three and

four stages. In particular, the novel two-stage integrators derived in this thesis provide an

outstanding improvement over the commonly used Verlet integrator that increases with the

dimension of the problem. The improvement comes both in terms of acceptance rate and

sampling efficiency over a range of simulation parameters. We also formulated and inves-

tigated different strategies for momentum update and momentum flip within the MMHMC

method.

Being a method that generates both correlated and weighted samples, MMHMC requires

a metric for sampling efficiency different from the one commonly used for MCMC. Here we

suggested such a metric suitable for MCMC importance sampling based methods.

The method has been carefully tested and compared with the traditional and advanced

sampling techniques for computational statistics such as Random Walk Metropolis-Hastings,

Hamiltonian Monte Carlo, Generalized HMC, Riemann Manifold Hamiltonian Monte Carlo.

When compared to HMC and GHMC, the MMHMC method demonstrates superior per-

formance, in terms of higher acceptance rate and bigger time-normalized ESS, for a range of

applications, range of dimensions and choice of simulation parameters. It allows for bigger

step sizes to be used without decreasing acceptance rate; moreover, it achieves better per-

formance for larger step sizes. The improvements are more dramatic for high-dimensional

problems – for a multivariate Gaussian problem MMHMC demonstrated an improvement

over HMC of up to 40 times and for the BLR model up to 4 times. An additional advantage

of MMHMC lays in the fact that it is less sensitive than HMC to the choice of a number of

integration steps.

MMHMC and RMHMC demonstrate comparable sampling performance for the tested

SV model. Nevertheless, in contrast to the original RMHMC, MMHMC does not require

higher order derivative and inverse of the metric and thus is computationally less expen-

sive. This issue becomes particularly important for high-dimensional problems with dense

Hessian matrix. In addition, choices of integrators for RMHMC are limited due to the use

of non-separable Hamiltonians, whereas MMHMC allows for the use of the novel efficient

numerical integrators.

Several further extensions to the MMHMC method were designed in this thesis. These

include the formulation of MMHMC for sampling of constrained variables, two algorithms

for Bayesian adaptation of MMHMC simulation parameters, and Parallel tempering MMHMC

offering efficient exploration of multimodal posterior distributions as well as estimation of

the marginal likelihood.

The MMHMC method has been implemented in the in-house software package HaiCS
(Hamiltonians in Computational Statistics), developed as a part of this thesis for statisti-

cal sampling of different models and distributions using Hamiltonian Monte Carlo based
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methods.

MMHMC has been presented on following scientific events:

1. “Enhanced statistical sampling with GSHMC method”, Radivojević T., Akhmatskaya

E., Seminar Talk at Department of Statistics, University of Warwick, UK, May 5, 2015

2. “Employing modified Hamiltonians for sampling enhancement in statistical simula-

tion”, Radivojević T., Akhmatskaya E., International Conference on Scientific Compu-

tation and Differential Equations (SciCADE 2015), Potsdam, Germany, September 15,

2015, http://scicade2015.math.uni-potsdam.de/scicade2015/AbstractsBook_SciCADE2015.

pdf

3. “Mix & Match Hamiltonian Monte Carlo”, Akhmatskaya E., Radivojević T., 6th IMS-

ISBA joint meeting, BayesComp at MCMSki V, Lenzerheide, Switzerland, January 5,

2016, http://www.pages.drexel.edu/~mwl25/mcmskiV/abstracts/Mix&MatchEA&TR.

pdf

4. “Mix & Match Hamiltonian Monte Carlo”, Akhmatskaya E., Radivojević T., ICMAT

Workshop: Mathematical Perspectives in Biology, Madrid, Spain, February 3, 2016,

https://www.icmat.es/congresos/2016/BBVA/BBVA-ICMAT-workshop_3-5Feb2016-final.

pdf

5. “Hamiltonian Monte Carlo for high dimensional problems”, Radivojević T., Akhmatskaya

E., BCAM-IMUVA Summer School on Uncertainty Quantification for Applied Prob-

lems, Bilbao, Spain, July 7, 2016, http://www.bcamath.org/documentos_public/

archivos/actividades_cientificas/Radivojevic_rev_.pdf

6. “Adaptive two-stage integrators for sampling algorithms based on Hamiltonian dy-

namics”, Akhmatskaya E., Fernández-Pendás M., Radivojević T., Sanz-Serna J. M.,

ICERM Topical workshop Stochastic numerical algorithms, multiscale modeling and

high-dimensional data analytics, ICERM, Brown University, RI, USA, July 21, 2016,

https://icerm.brown.edu/materials/Slides/tw-16-5/Adaptive_two-stage_integrators_

for_sampling_algorithms_based_on_Hamiltonian_dynamics_]_Elena_Akhmatskaya,

_Basque_Center_for_Applied_Mathematics_-_BCAM.pdf

Development of enhanced sampling techniques in computational statistics was not the

only research interest during my Ph.D. program. Besides, I had contributed to the im-

plementation of the GSHMC method in the isobaric-isothermal statistical ensemble, which

resulted in the following publication:

• Fernández Pendás M., Escribano B., Radivojević T., Akhmatskaya E., Constant pres-

sure hybrid Monte Carlo simulations in GROMACS, Journal of Molecular Modeling

20, 2487 (2014)
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Another topic of my interest included a model development in finance and economy. In

particular, we studied a simple model of the continuous double auction for high-frequency

trading, and the results were published or submitted in:

• Radivojević T., Anselmi J., Scalas E., A stylized model for the continuous double

auction, Managing Market Complexity, Lecture Notes in Economics and Mathematical

Systems 662, 115–125 (2012)

• Radivojević T., Anselmi J., Scalas E., Ergodic transition in a simple model of the

continuous double auction, PLoS ONE 9(2): e88095 (2014)

• Scalas E., Rapallo F., Radivojević T., Low-traffic limit and first-passage times for a

simple model of the continuous double auction, submitted

Furthermore, we studied the wealth distribution of economic agents using three differ-

ent stochastic games and their combinations, resulting in publications:

• Garibaldi U., Radivojević T., Scalas E., Interplay of simple stochastic games as mod-

els for the economy, Proceedings of Applications of Mathematics 2013, Institute of

Mathematics, Academy of Sciences of the Czech Republic, Prague, 77–87 (2013)

• Scalas E., Radivojević T., Garibaldi U., Wealth distribution and the Lorenz curve: A

finitary approach, Journal of Economic Interaction and Coordination 10(1), 79–89

(2015)

More details on these models can be found in Appendix.

I had also participated in two industrial projects which resulted in two technical reports:

• Radivojević T., Fernández Pendás M., Akhmatskaya E., Technical Report for the in-

dustrial project within the Math-in framework, (confidential) (2014)

• Arran M., Benham G., Dempsey L., Dubrovina E., Feier R., Fozard J., Lambert A.,

Maestri J., Miyajima N., Radivojević T., Riley E., Represent the Degree of Mimicry

between Prosodic Behaviour of Speech Between Two or More People, ESGI107 Tech-

nical Report (2015)

7.2 Ongoing and future work

The MMHMC method has a wide scope for further research. For example, we are already

working on techniques that combine beneficial features of MMHMC with manifold meth-

ods, RMHMC and MMALA (Girolami and Calderhead, 2011b). These techniques rely on

different integrators, and so different modified Hamiltonians, than in MMHMC. On the

other hand, we are currently working on the development and testing of system-specific

adaptive integrators to be used for sampling with the MMHMC method.
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MMHMC can be extended in many other directions. We would like to adapt and imple-

ment new techniques for further performance and flexibility enhancing of MMHMC. These

include alternative approaches for parameter adaptation, different techniques for efficiency

improvement such as delayed rejections, zero-variance and quasi Monte Carlo, approximate

computations based on stochastic gradients or proximal MCMC aiming to reduce the com-

putational cost, alternative ways of calculating as well as making use of the second order

information, extensions to particle filters and parallelization.
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Appendix

A.1 Contributions to model development

A.1.1 Continuous double auction

Radivojević T., Anselmi J., Scalas E., A stylized model for the continuous dou-
ble auction, Managing Market Complexity, Lecture Notes in Economics and
Mathematical Systems 662, 115–125 (2012)

Abstract: A stylized phenomenological model for the continuous double auction is intro-

duced. This model is equivalent to two uncoupled M/M/1 queues. The conditions for

statistical equilibrium (ergodicity) are derived. The results of Monte Carlo simulations are

presented on the behaviour of price differences and log-returns.

Radivojević T., Anselmi J., Scalas E., Ergodic transition in a simple model of
the continuous double auction, PLoS ONE 9(2): e88095. (2014)

Abstract: We study a phenomenological model for the continuous double auction, whose

aggregate order process is equivalent to two independent M/M/1 queues. The continuous

double auction defines a continuous-time random walk for trade prices. The conditions for

ergodicity of the auction are derived and, as a consequence, three possible regimes in the

behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are

unstable and one can observe a heteroskedastic behavior in the logarithmic returns. On

the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be

seen.
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Scalas E., Rapallo F., Radivojević T., Low-traffic limit and first-passage times
for a simple model of the continuous double auction, submitted

Abstract: We consider a simplified model of the continuous double auction where prices are

integers varying from 1 to N with limit orders and market orders, but quantity per order

limited to a single share. For this model, the order process is equivalent to two M/M/1

queues. We study the behaviour of the auction in the low-traffic limit where limit orders

are immediately transformed into market orders. In this limit, the distribution of prices can

be computed exactly and gives a reasonable approximation of the price distribution when

the ratio between the rate of order arrivals and the rate of order executions is below 1/2.

This is further confirmed by the analysis of the first passage time in 1 or N .

A.1.2 Wealth distribution

Garibaldi U., Radivojević T., Scalas E., Interplay of simple stochastic games as
models for the economy, Proceedings of Applications of Mathematics 2013,
Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague,
77–87 (2013)

Abstract: Using the interplay among three simple exchange games, one may give a satisfac-

tory representation of a conservative economic system where total wealth and number of

agents do not change in time. With these games it is possible to investigate the emergence

of statistical equilibrium in a simple pure-exchange environment. The exchange dynamics

is composed of three mechanisms: a decentralized interaction, which mimics the pair-wise

exchange of wealth between two economic agents, a failure mechanism, which takes into

account occasional failures of agents and includes wealth redistribution favoring richer

agents, and a centralized mechanism, which describes the result of a redistributive effort.

According to the interplay between these three mechanisms, their relative strength, as well

as the details of redistribution, different outcomes are possible.

Scalas E., Radivojević T., Garibaldi U., Wealth distribution and the Lorenz
curve: A finitary approach, Journal of Economic Interaction and Coordination
10(1), 79–89 (2015)

Abstract: We use three stochastic games for the wealth of economic agents which may be at

work in a real economy and we derive their statistical equilibrium distributions. Based on a

heuristic argument, we assume that the expected observed wealth distribution is a mixture

of these three distributions. We compare the Lorenz curves obtained from this conjecture

with the empirical curves for a set of countries.
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A.2 Contributions to algorithm development

“Momentum flips in generalized hybrid/Hamiltonian Monte Carlo methods”,
Radivojevic T., Akhmatskaya E., Seminar at Department of Applied Mathe-
matics, Faculty of Sciences, University of Valladolid, Spain, January 22, 2014,
http://www.imuva.uva.es/en/actividades/ver/93

Abstract: Generalized hybrid / Hamiltonian Monte Carlo (GHMC) methods differ from

hybrid / Hamiltonian Monte Carlo (HMC) techniques in the momentum update step, where

a partial refreshment of momentum replaces a complete momentum reset. In order to

satisfy detailed balance condition and ensure a stationary distribution, a momentum flip is

required upon rejection of a Hamiltonian dynamics proposal step. These momentum swings

induce reverse trajectories and might, in principle, slow down mixing and decorrelation of

the chain. In this talk we analyze the effect of momentum flips on efficiency and accuracy

of several versions of GHMC applied to molecular and statistical simulations and discuss

possible ways for reducing potential negative effects of momentum flips.

Fernández Pendás M., Escribano B., Radivojević T., Akhmatskaya E., Constant
pressure hybrid Monte Carlo simulations in GROMACS, Journal of Molecular
Modeling 20, 2487 (2014)

Abstract: Adaptation and implementation of the Generalized Shadow Hybrid Monte Carlo

(GSHMC) method for molecular simulation at constant pressure in the NPT ensemble are

discussed. The resulting method, termed NPT-GSHMC, combines Andersen barostat with

GSHMC to enable molecular simulations in the environment natural for biological applica-

tions, namely, at constant pressure and constant temperature. Generalized Hybrid Monte

Carlo methods are designed to maintain constant temperature and volume and extending

their functionality to preserving pressure is not trivial. The theoretical formulation of NPT-

GSHMC was previously introduced. Our main contribution is the implementation of this

methodology in the GROMACS molecular simulation package and the evaluation of proper-

ties of NPT-GSHMC, such as accuracy, performance, effectiveness for real physical systems

in comparison with well-established molecular simulation techniques. Benchmarking tests

are presented and the obtained preliminary results are promising. For the first time, the

generalized hybrid Monte Carlo simulations at constant pressure are available within the

popular open source molecular dynamics software package.

“Employing modified Hamiltonians for sampling enhancement in statistical
simulation”, Radivojević T., Akhmatskaya E., International Conference on Sci-
entific Computation and Differential Equations (SciCADE 2015), Potsdam, Ger-
many, September 15, 2015, http://scicade2015.math.uni-potsdam.de/scicade2015/

Abstract: Sampling with modified (shadow) Hamiltonians in hybrid Monte Carlo methods

can dramatically improve efficiency of molecular simulation at different scales compared
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with conventional molecular dynamics and hybrid Monte Carlo simulations. We introduce

modified Hamiltonians in Hamiltonian Monte Carlo for enhancing sampling in statistical

simulation, and demonstrate advantages of the proposed method in different statistical

models through a comparison with well established Hamiltonian Monte Carlo based meth-

ods.

“Mix & Match Hamiltonian Monte Carlo”, Akhmatskaya E., Radivojević T., IC-
MAT Workshop: Mathematical Perspectives in Biology, Madrid, Spain, Febru-
ary 3, 2016, https://www.icmat.es/congresos/2016/BBVA/BBVA-ICMAT-workshop_

3-5Feb2016-final.pdf

Abstract: Hamiltonian (Hybrid) Monte Carlo (HMC) method, initially proposed in High

Energy Physics, is becoming a popular tool for solving complex and intractable problems

of statistical inference. We introduce multiple modifications in the original formulation of

the HMC in order to enhance sampling from high-dimensional or strongly correlated target

densities. The new features include the modified Metropolis test, the updated momentum

refreshment step, the novel numerical integrating scheme. All alterations have been for-

mulated and implemented within the Generalized Shadow Hybrid Monte Carlo framework,

earlier proposed by the authors for simulation of molecular systems. The sampling effi-

ciency of the resulting method is assessed by performing inference on standard statistical

benchmark models, and compared with Random Walk Metropolis-Hastings, the original

Hamiltonian Monte Carlo and Riemann Manifold Hamiltonian Monte Carlo methods.

“Adaptive two-stage integrators for sampling algorithms based on Hamilto-
nian dynamics”, Akhmatskaya E., Fernández-Pendás M., Radivojević T., Sanz-
Serna J. M., ICERM Topical workshop Stochastic numerical algorithms, multi-
scale modeling and high-dimensional data analytics, ICERM, Brown University,
RI, USA, July 21, 2016, https://icerm.brown.edu/materials/Slides/tw-16-5/
Adaptive_two-stage_integrators_for_sampling_algorithms_based_on_Hamiltonian_

dynamics_]_Elena_Akhmatskaya,_Basque_Center_for_Applied_Mathematics_-_BCAM.

pdf

Abstract: We present an alternative to the standard velocity Verlet integrator, known to

be the state-of-the- art method for numerical integration of the Hamiltonian equations in

molecular dynamics (MD) and hybrid / Hamiltonian Monte Carlo (HMC) simulations.

The novel methodology, which we call the Adaptive Integration Approach, or AIA, of-

fers, for any chosen simulation problem and step size, a system-specific two-stage splitting

integrator, which provides the best conservation of energy for harmonic forces. The pro-

posed new family of numerical integrators can be viewed as a one-parameter two-stage

splitting integrators family, with the parameter being a function of the simulation step size

and the highest angular frequency present in the simulated system. In contrast, all nu-

merical integrators for Hamiltonian dynamics used to date belong to the fixed parameters

families.
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The AIA has been formulated for a range of algorithms, which simulate either con-

strained or unconstrained dynamics, and sample with Hamiltonians or modified Hamilto-

nians. It can be implemented in a MD / HMC software code, without introducing compu-

tational overheads in the simulations.

Numerical tests show that the method successfully realises the fail-safe strategy. In all

experiments, and for each of the criteria employed, the AIA is at least as good as, and often

significantly outperforms the standard Verlet scheme, as well as fixed parameter, optimized

two- stage integrators.

The ideas underlying the AIA can be also used for a rational choice of simulation pa-

rameters.
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Bilbao, September 2016

154


	Abstract
	Summary
	Resumen
	Introduction
	Motivation: Learning from data
	Bayesian statistics

	Computational statistics
	Monte Carlo
	Importance Sampling
	Markov chain Monte Carlo
	Hamiltonian Monte Carlo

	Summary

	Hamiltonian Monte Carlo Methods
	Background essentials
	Hamiltonian dynamics
	Numerical integration
	Modified Hamiltonians

	Hamiltonian Monte Carlo
	History
	Formulation
	Numerical integrators
	Choice of parameters in HMC
	Modifications of HMC in computational statistics
	Modifications of HMC in computational sciences

	Generalized Shadow Hybrid Monte Carlo
	History
	Formulation
	Shadow Hamiltonians
	PMMC
	MDMC
	Re-weighting

	Choice of parameters
	Applications
	GSHMC in statistics

	Summary

	Mix & Match Hamiltonian Monte Carlo
	Preface
	Formulation
	Modified Hamiltonians
	Analytical derivatives
	Numerical derivatives

	Integrators
	Multi-stage integrators

	Momentum update
	Modified PMMC step
	Change of momentum variables
	Repeat momenta update

	Reduced flipping
	Choice of parameters

	Summary

	Extensions of MMHMC
	Sampling constrained parameters using MMHMC
	Bayesian adaptation of MMHMC simulation parameters
	Parallel Tempering with MMHMC
	Choice of parameters

	Marginal likelihood estimation with MMHMC
	Summary

	Implementation
	Description
	Structure of SAMPLER module
	Subroutine specification


	External libraries
	Installation
	Running HaiCS
	Setting input data
	Executing a simulation
	Output data

	Summary

	Applications
	Performance evaluation
	Efficiency evaluation for MMHMC

	Experimental results
	Banana-shaped distribution
	Multivariate Gaussian distribution
	Bayesian Logistic Regression model
	Stochastic Volatility model

	Summary

	Conclusions
	Summary of contributions
	Ongoing and future work

	Appendix
	Contributions to model development
	Continuous double auction
	Wealth distribution

	Contributions to algorithm development

	Bibliography
	Acknowledgements

