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Abstract

We introduce a new Adaptive Integration Approach (AIA) to be used in a wide range of mo-
lecular simulations. Given a simulation problem and a step size, the method automatically
chooses the optimal scheme out of an available family of numerical integrators. Although
we focus on two-stage splitting integrators, the idea may be used with more general families.
In each instance, the system-specific integrating scheme identified by our approach is opti-
mal in the sense that it provides the best conservation of energy for harmonic forces. The
AIA method has been implemented in the BCAM-modified GROMACS software package.
Numerical tests in molecular dynamics and hybrid Monte Carlo simulations of constrained
and unconstrained physical systems show that the method successfully realizes the fail-safe
strategy. In all experiments, and for each of the criteria employed, the AIA is at least as
good as, and often significantly outperforms the standard Verlet scheme, as well as fixed
parameter, optimized two-stage integrators. In particular, for the systems where harmonic
forces play an important role, the sampling efficiency found in simulations using the AIA is
up to 5 times better than the one achieved with other tested schemes.

Keywords: Molecular Dynamics, Hybrid Monte Carlo, multi-stage integrators, velocity
Verlet, adaptive integration, GROMACS

1. Introduction

We introduce a new Adaptive Integration Approach (AIA) to be used in a wide range of
molecular simulations. Given a molecular simulation problem and a step size ∆t, the method
automatically chooses the optimal scheme out of an available family of numerical integrators.
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Although we focus on two-stage splitting integrators [1], the idea may be used with more
general families. The system-specific integrating scheme identified by our approach is optimal
in the sense that it provides the best conservation of energy for harmonic forces. For hybrid
Monte Carlo (HMC) methods [2, 3, 4, 5], the chosen scheme may be expected to provide the
biggest possible acceptance rate in the Metropolis accept–reject test.

The efficiency, and even the feasibility, of molecular dynamics (MD) simulations depend
crucially on the choice of numerical integrator. The Verlet algorithm is currently the method
of choice; its algorithmic simplicity and optimal stability properties make it very difficult to
beat, as discussed in [1]. Splitting integrators may however offer the possibility of improving
on Verlet, at least in some circumstances. Those integrators evaluate the forces more than
once per step and, due to their simple kick–drift structure, may be implemented easily by
modifying existing implementations of the Verlet scheme. Here we study two-stage integra-
tors. There is a one-parameter family of them [1], and the parameter value that results in a
method with smallest error constant was first identified by McLachlan [6]. While McLach-
lan’s scheme is the best choice in any given problem if the step length ∆t is very small, it
turns out that its stability interval is not long. This entails that in molecular simulations,
where small time steps are prohibitively expensive, McLachlan’s method is likely not to be
a good choice. One has then to sacrifice the size of the error constant to ensure that the
integrator is able to operate satisfactorily with larger step sizes. Recommended in [1] is a
parameter value that achieves a balance between good conservation of energy for reasonable
values of ∆t and accuracy for small ∆t. That parameter value does not vary with the prob-
lem being considered or with the value of ∆t attempted by the user. On the contrary, in
the AIA suggested here, the parameter value is automatically adjusted for each problem and
each choice of ∆t. On stability grounds, for any given problem, there is a maximum possible
value of ∆t; beyond this maximum all integrators in the family are unstable. When the
step size chosen by the user is near the maximum value, AIA picks up an integrator that is
(equivalent to) the standard Verlet scheme. As ∆t decreases, AIA changes the integrator to
ensure optimal conservation of energy; for ∆t close to 0, AIA chooses McLachlan’s scheme.

The ideas behind the method are presented in Section 2. We also explain how to ex-
tend the algorithm to cases with holonomic constraints. As described in Section 3, we have
implemented the AIA in the BCAM modified GROMACS software package [7, 8]; this modi-
fication [9, 10] was developed to achieve better accuracy and sampling performance by means
of the incorporation of hybrid Monte Carlo methods and multi-stage numerical integrators.
Section 4 presents the problems used to test the performance of the novel adaptive scheme
in molecular dynamics and HMC simulations of constrained and unconstrained physical sys-
tems. Section 5 is devoted to numerical results. The performance of the AIA method is
compared with the standard velocity Verlet algorithm and the two-stage integrators with the
fixed parameter values suggested in [1] and [11]. In all experiments and for each of the criteria
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employed, the performance of AIA is at least as good as, and often significantly better than,
the performances of the Verlet scheme and the fixed parameter two-stage integrators. The
final section presents our conclusions.

2. Adaptive Integration Approach

The section provides the formulation of the algorithm suggested in this paper.

2.1. The one-parameter family of two-stage integrators

We consider Hamiltonians H that can be written as a sum H = A + B of two partial
Hamiltonian functions

A =
1

2
pTM−1p, B = V (q),

that respectively correspond to the kinetic and potential energies; q denotes the positions, p
the momenta and M is the mass matrix. The equations of motion associated with H are

d

dt
q = ∇pA(q, p) = M−1p,

d

dt
p = −∇qB(q, p) = −∇qV (q).

(1)

For the partial Hamiltonians A and B the equations of motion may of course be integrated
in closed form. In fact, for A the solution is a drift in position

(q(t), p(t)) = ϕAt (q(0), p(0)), q(t) = q(0) + tM−1p(0), p(t) = p(0),

and for B the solution is a momentum kick

(q(t), p(t)) = ϕBt (q(0), p(0)), q(t) = q(0), p(t) = p(0)− t∇qV (q(0)).

Here ϕAt and ϕBt denote the exact solution flows of the partial systems, i.e., the maps that
associate with each initial condition (q(0), p(0)) the exact solution value (q(t), p(t)).

The integration schemes under study belong to the family of two-stage splitting methods
of the form [1]

ψ∆t = ϕBb∆t ◦ ϕA∆t/2 ◦ ϕB(1−2b)∆t ◦ ϕA∆t/2 ◦ ϕBb∆t. (2)

Here b is a parameter, 0 < b < 1/2, that identifies the particular integrator being considered
and ψ∆t denotes the mapping that advances the numerical solution over one step of length
∆t.1 Note that ψ∆t is symplectic [12] as the composition of symplectic mappings and it is

1It would be possible to consider ‘position’ integrators obtained by swapping the symbols A and B in (2);
however the present study just uses the ‘velocity’ form (2).
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time-reversible as a consequence of the palindromic structure of (2). The transformation
Ψ = Ψ∆t,I that advances the numerical solution over I steps is given by the composition

Ψ = Ψ∆t,I =

I times︷ ︸︸ ︷
ψ∆t ◦ ψ∆t ◦ · · · ◦ ψ∆t .

Even though ϕB appears three times in (2), the methods essentially require two evalua-
tions of the force −∇Vq per step: the evaluation implicit in the leftmost ϕBb∆t in (2) at the
current step is reused in the rightmost ϕBb∆t at the next step. Hence the terminology two-
stage integrator. A fair comparison, in terms of computational cost, between an integration
consisting of I steps of length ∆t with a method of the form (2) and an integration with the
standard Verlet integrator uses Verlet with 2I steps of length ∆t/2 (which, in view of Verlet
being second order accurate, provides errors that are roughly 1/4 of those given by Verlet
with I steps of length ∆t).

It is useful in what follows to note that (2) may be rewritten as

ψ∆t =
(
ϕBb∆t ◦ ϕA∆t/2 ◦ ϕB(1/2−b)∆t

)
◦
(
ϕB(1/2−b)∆t ◦ ϕA∆t/2 ◦ ϕBb∆t

)
. (3)

The map ϕB(1/2−b)∆t ◦ ϕA∆t/2 ◦ ϕBb∆t advances the solution over a first half step of length ∆t/2

and is followed by the map ϕBb∆t ◦ ϕA∆t/2 ◦ ϕB(1/2−b)∆t that effects a second half step, also of

length ∆t/2. In the particular case b = 1/4 both of these maps correspond to a step of length
∆t/2 of the velocity Verlet algorithm:

ψ∆t =
(
ϕB∆t/4 ◦ ϕA∆t/2 ◦ ϕB∆t/4

)
◦
(
ϕB∆t/4 ◦ ϕA∆t/2 ◦ ϕB∆t/4

)
= ΨV V∆t/2 ◦ ΨV V∆t/2.

For other values of b the half step maps in (3) do not coincide with the map of the velocity
Verlet integrator, because the durations b∆t and (1/2− b)∆t are different from one another.
However, regardless of the choice of b, the half step maps have the same kick/drift/kick
structure of velocity Verlet. This makes it easy to implement (3) by modifying software that
implements the Verlet scheme: it is mainly a matter of adjusting the durations of kicks and
drifts (see section 3).

2.2. Nonadaptive choices of the parameter b

Let us now discuss how best to choose the value of b. Regardless of the value of b the
method is second order accurate, i.e. the size of the error over one step may be bounded by
C∆t3 + O(∆t5), where C > 0 varies with b. McLachlan [6] was the first to point out that
the minimum error constant C is achieved when b ≈ 0.1932; this is then the optimal value in
the limit ∆t→ 0 of very small step lengths. In molecular dynamics, simulations with values
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of ∆t that are too small (relatively to the time scales present in the problems) are often
unfeasible due to their cost; one may aim to operate with large values of ∆t, provided that
they are not so large that the integrations become unstable. Unfortunately the minimum
error constant method possesses a short stability interval (0, 2.55) and therefore may not be
the best choice when ∆t is large. The stability of (2) is maximized [1] when b = 1/4 with a
stability interval (0, 4). We recall that, for this value of the parameter, integrations with (2)
are really Verlet integrations with time step ∆t/2, hence, for b = 1/4, the stability interval
of (2) is twice as long as the stability interval (0, 2) of Verlet [13, 14, 15]. In fact, it is well
known, see e.g. [1], that among all explicit integrators that use k force evaluations per step,
the longest possible stability interval is obtained by concatenating k Verlet substeps each of
length ∆t/k.

From the discussion above we conclude that the most useful range of values of b is 0.1932 ≤
b ≤ 0.2500. As b increases in this range, both the error constant and the stability interval
increase, thus trading accuracy for small ∆t by the possibility of running stably with larger
values of ∆t.

The paper [1] recommends the intermediate value b ≈ 0.2113. Let us review the ideas
leading to this choice, as they will be used in the derivation of our adaptive approach.
Considered in [1] is the use of algorithms of the form (2) for hybrid Monte Carlo and related
simulations. There and in other situations, the aim is to minimize the energy error

∆(q, p, ∆t) = H(Ψ∆t,I(q, p))−H(q, p).

The analysis in [1] focuses on the model problem where the potential energy is quadratic
(harmonic forces), which corresponds to Gaussian probability distributions. With the help
of a change of variables, the study of the model problem may be reduced to that of the
standard harmonic oscillator in nondimensional variables (standard univariate Gaussian):

(d/dt)q = p, (d/dt)p = −q. (4)

Assume then that the problem (4) is integrated by means of (2) and, for reasons that will
be apparent immediately, denote by h the step size. The expectation or average E(∆) of the
energy error over all possible initial conditions is shown in [1] to possess the bound

0 ≤ E(∆) ≤ ρ(h, b),

where

ρ(h, b) =
h4(2b2(1/2− b)h2 + 4b2 − 6b+ 1)2

8(2− bh2)(2− (1/2− b)h2)(1− b(1/2− b)h2)
.

It is understood that ρ =∞ for combinations of b and h leading to a denominator ≤ 0; these
combinations correspond to unstable integrations. Thus choices of b and h that lead to a

5



small value of ρ will result in small energy errors for (4). The study of the function ρ is more
discriminating than the study of the stability interval of the integrators: it is possible for
two integrators to share a common stability interval and yet have very different values of ρ
for a given value of h that is stable for both of them.

Let us now move from the scalar oscillator (4) to multidimensional linear oscillatory
problems integrated with step length ∆t and denote by ωj, j = 1, 2, . . . , the corresponding
angular frequencies (the periods are Tj = 2π/ωj). By superposing the different modes of the
solution, one sees that if the (nondimensional) quantities hj = ωj∆t = 2π∆t/Tj are such
that, as j varies, all the values ρ(hj, b) are small, then the energy errors will also be small. In
[1], the authors aimed to identify one value of b that would result in small values of ρ(h, b)
over a meaningful range of values of h. More precisely, the recommended b = 0.2113 was
found by minimizing the function of b given by

max
0<h<2

ρ(h, b). (5)

The range 0 < h < 2 was chosen because, for the test problems considered, the standard
Verlet method was found to perform well for 0 < ωj∆t = 2π∆t/Tj < 1 (which is half the max-
imum allowed by the Verlet linear stability interval (0, 2)); since, as we emphasized already,
(2) uses two force evaluations per step and Verlet only one, for (2) to be an improvement on
standard Verlet it must be demanded that it works well for twice as long values of ∆t, i.e.
for 0 < ωj∆t = 2π∆t/Tj < 2.

Numerical tests in [1] show the merit of the choice b = 0.2113. However the fact remains
that, if, for a given problem and ∆t, the maximum of ωj∆t = 2π∆t/Tj as j varies is sig-
nificantly smaller than 2, i.e., the chosen ∆t is relatively small, then a smaller value of b
would provide a better integrator. On the other hand, if that maximum is significantly larger
than 2, then it would be advisable to increase b.

A different approach is taken in the present study. Rather than choosing a single value
of b that is later applied in all simulations, we suggest an algorithm that, once the system to
be integrated has been specified and the user has chosen a value of ∆t, identifies the ‘best’ b.

2.3. Adapting the integrator to the problem

Although the physical systems that one wishes to simulate in practice are very complex,
it is helpful to consider the case where the forces are two-body interactions. Note that the
most stringent stability restrictions on ∆t are likely to stem from stiff two-body forces, in
particular from pairs of bonded atoms. For relatively small energy values, those stiff forces
may be assumed to be harmonic.

For two particles attracting each other harmonically, the period of the oscillations is

T = 2π

√
µ

k
, µ =

m1m2

m1 +m2

, (6)
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where m1, m2 are the masses of the particles, µ the reduced mass and k the force constant.
The stability of the integration is of course determined by the highest frequency ω̃ or,

equivalently, the smallest period T̃ present in the system. For the standard Verlet integrator,
the linear stability restriction is, as noted above,

∆t <
2

ω̃
=
T̃

π
. (7)

Due to nonlinear effects, including nonlinear resonances, and to other difficulties [16, 17, 18,
14, 13], this requirement may be too weak to ensure stability in practice. Some authors
suggest that the stability restriction for the Verlet integrator

∆t <

√
2

ω̃
=

T̃√
2π

(8)

is more realistic in applications than (7) [14, 13, 19]. Note that moving from (7) to (8) may
be seen as the result of multiplying the smallest period by a safety factor 1/

√
2 (equivalently

multiplying the frequency by
√

2).
In our adaptive method, if ∆t is the step size attempted by the user, we exploit the

stability restriction in (8) to form, similarly to the preceding section, the nondimensional
quantity

h̄ =
√

2ω̃∆t =
√

2
2π

T̃
∆t (9)

and determine b so as to minimize (cf. (5))

max
0<h<h̄

ρ(h, b). (10)

Here the function ρ that bounds the energy error is minimized in the shortest interval (0, h̄)
that contains all the values

√
2ωj∆t, where ωj are the frequencies in the problem being

integrated. Let us illustrate how this works. If the user attempts a value of ∆t slightly
smaller than

√
2T̃ /π, then h̄ will be just below 4 and the minimization of 10 will lead to b

close to 0.2500. For this value of b, I steps of length ∆t are, as discussed above, equivalent to
2I steps of length ∆t = T̃ /

√
2π of the Velocity Verlet algorithm; in other words the adaptive

algorithm will run the optimally stable Verlet with the maximum ∆t allowed by (8). As
the value of ∆t attempted by the user decreases from

√
2T̃ /π towards 0, the value of b will

decrease from 0.2500 to McLachlan’s 0.1932, thus improving the error constant. The length
of the stability interval will shrink as b is decreased, but this will cause no problem because
by construction all values ωj∆t will fall in the stability interval (in fact, for safety, even the
larger

√
2ωj∆t will lie on the stability interval). Finally if ∆t ≥

√
2T̃ /π, the quantity (10)

will be ∞ for all values of b; this indicates that ∆t is too large for the problem at hand.
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2.4. Algorithm

Given a physical system and a value of ∆t, the AIA algorithm determines the value of
the parameter b to be used in (2) as follows:

1. Use equation (6) to find the periods or frequencies of all two-body interactions in the
system. Determine the minimum period T̃ and compute the nondimensional quantity
h̄ in (9).

2. Check whether h̄ < 4. If not, there is no value of b for which the scheme (2) is stable
for the attempted step size ∆t and the integration is aborted. In other case go to the
next step.

3. Find the optimal value of the parameter b by minimizing (10) with the help of an
optimization routine.

2.5. Extension to constrained dynamics

Holonomic constraints g(q) = 0 allow the use of bigger time steps in physical systems
that contain high frequency modes. By freezing those modes, it is possible to bypass the
demanding restriction they would otherwise impose on the time step. SHAKE [20] and
RATTLE [21] are widely used algorithms in this connection. We now show how, by following
the idea behind RATTLE, two-stage integrators of the family (2) may be applied to problems
with constraints. In this way the Adaptive Integration Approach may be extended to the
constrained case.

The constrained equations of motion corresponding to (1) are

d

dt
q = M−1p,

d

dt
p = −∇qV (q) + g′(q)Tλ,

g(q) = 0,

where λ is the vector of Lagrange multipliers and g′(q)Tλ represents the forces exerted by
the constrains. The holonomic constraint implies, by differentiation with respect to time, a
constraint on the velocities (d/dt)q = M−1p:

g′(q)M−1p = 0.

As in (3), we divide one step into two half steps. The equations for the first are

pn+b = pn − bh∇qV (qn) + bhg′(qn)Tλn,

qn+1/2 = qn +
h

2
M−1pn+b,
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where the Lagrange multiplier λn is chosen to ensure

g(qn+1/2) = 0,

and

pn+1/2 = pn+b − (
1

2
− b)h∇qV (qn+1/2) + (

1

2
− b)hg′(qn+1/2)Tλ

(v)
n+1/2,

where the velocity Lagrange multiplier λ
(v)
n+1/2 is chosen so that

g′(qn+1/2)M−1pn+1/2 = 0.

The equations for the second half step (qn+1/2, pn+1/2)→ (qn+1, pn+1) are similar. The proof
of the symplecticness of RATTLE given in [22] may be easily adapted to prove that each half
step (qn, pn) → (qn+1/2, pn+1/2), (qn+1/2, pn+1/2) → (qn+1, pn+1) is symplectic. Therefore the
whole step (qn, pn)→ (qn+1, pn+1) is also symplectic.

It is clear that 2I steps of length ∆t/2 of the Verlet integrator supplemented with the
constraining technique envisaged here are as expensive as I steps of length ∆t of the extension
of two-stage schemes to constrained dynamics we have just described.

Hybrid Monte Carlo methods can be easily used in constrained dynamics. Only one
consideration has to be made: right after the Metropolis test, when the momenta pnew are
resampled, the constraint g′(q)M−1pnew = 0 has to be fulfilled. Further details can be found
in [23].

3. Implementation

3.1. MultiHMC-GROMACS

AIA has been implemented in the MultiHMC-GROMACS software code, an in-house
modified version of GROMACS. GROMACS [7, 8] is a popular software package for molecular
dynamics simulations of systems consisting of hundreds to millions of particles, such as
proteins, lipids or nucleic acids. GROMACS supports state-of-the-art molecular dynamics
algorithms and offers extremely fast calculation of non-bonded atomic interactions, which
usually are the dominant part of molecular dynamics simulations. It is mainly written in C,
highly parallelized, optimized and distributed under the GPL license.

Currently MultiHMC-GROMACS is based on GROMACS 4.5.4 [24] though its migration
to later versions of GROMACS, to take an advantage of CUDA-based GPU acceleration on
GPUs [25], is underway.

MultiHMC-GROMACS has been developed to achieve better accuracy and sampling
performance in GROMACS through the use of hybrid Monte Carlo methods and multi-
stage numerical integrators. The new algorithms introduced in GROMACS via MultiHMC-
GROMACS are the following:
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• Hybrid Monte Carlo (HMC) [2], Generalized Hybrid Monte Carlo (GHMC) [3, 4], Gen-
eralized Shadow Hybrid Monte Carlo (GSHMC) [26, 27].

The implementation of GSHMC in GROMACS has been discussed in detail in [9,
10]. HMC and GHMC are implemented as special cases of GSHMC [26]. Additional
parameters have been introduced in the standard GROMACS input file .mdp to initiate
the new functionalities. These parameters as well as their optional values are presented
in the following fragment of .mdp:

; Hybrid Monte Carlo =

method = HMC; HMC / GHMC / GSHMC / NO

parameter_phi = 0.2; 0<phi<pi/2

nr_MD_steps = 1000; any integer

canonical_temperature = 310; any rational

momentum_flip = yes; yes / no

• Multi-stage (two-, three- and four-stage) integrators for unconstrained dynamics.

The routine do md() in md.c, which performs the integration of the equations of motion,
is modified in such a manner that velocity Verlet steps are concatenated in different
ways to form various multi-stage integrators exploiting the Trotter nature of the original
implementation [24]. The parameters needed to construct the desired integrator among
all members of the multi-stage families are defined only once, at the beginning of the
simulation, and passed to the update coords() routine in update.c, where the actual
integration is performed. The implementation of multi-stage integrators in MultiHMC-
GROMACS is general enough to allow the use of all members of the families introduced
in [1] (we denote them two-s, three-s, four-s, etc.) and in Predescu et al. [11] (two-
s-HOH, etc.) as well as the minimum error integrator from [6] (two-s-minE). The
integrators resulting from the Adaptive Integration Approach described above (two-s-
AIA) belong to the family (2) of [1] and thus are naturally included in the list.

No extra variables are needed in the .mdp input file. All currently available values of
the variable “integrator” in .mdp are shown below:

integrator = md / md-vv / two-s / two-s-AIA / two-s-HOH /

two-s-minE / three-s / four-s

• Two-stage integrators for constrained dynamics.

The SHAKE algorithm is implemented in the released version of GROMACS using the
original approach in [20], combined with the Lagrange multipliers procedure of [28] for
improving the accuracy in the calculation of velocities of constrained particles [8].
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The implementation of the RATTLE step in GROMACS is done following the algorithm
in [21]. The modifications explained in subsection 2.5 for the two-stage integrators for
constrained dynamics are combined with the implementation of the released version
of GROMACS. Any further developments in terms of performance, parallelization or
formulation have not been considered so far.

• The v-rescale thermostat [29] for two-stage integrators.

The routine update coupling() is adapted for two-stage schemes in such a way that the
rescaling of the velocities is accurately performed.

• AIA has been introduced in the preprocessing module of GROMACS. Its implementa-
tion will be described in detail presently.

3.2. Implementing AIA

AIA has been implemented in the GROMACS preprocessing module, grompp, which has
to be run once before a simulation and thus does not introduce extra computational costs in
the simulation itself.

In the original GROMACS code, the module grompp reads the GROMACS input files
and processes them for further use in the molecular dynamics module, mdrun. It also checks
input data and, if necessary, generates warnings that allow the users to reconsider their
chosen setup. For example, the input time step ∆t is inspected for its ability to provide
a stable numerical integration in molecular dynamics. This check is implemented in the
check bonds timestep(·) routine and consists of two main steps. First, for each pair of bonded
particles the corresponding period T is calculated with the help of (6). Then, for given ∆t
and T , the Verlet stability condition 5∆t < T [19] is checked. If the condition does not hold,
an error message is issued and the simulation is not allowed. (It is easy to see that this
restriction is in agreement with condition (8), since 1/(

√
2π) ≈ 1/5.) Otherwise, if 10∆t ≥ T

[19] the code issues a message warning that instabilities may arise and recommending to
decrease ∆t or to use a constrained algorithm. Once a warning or error message appears,
the search for further problematic oscillations stops.

For our purposes, we modified this part of the code in such a way that the search continues
till the period of the fastest oscillation T̃ is found. Its value is used to define h̄ in (9). Then
the optimal parameter value b is calculated by means of (10). A particle swarm optimization
algorithm driven by a golden section search [30] is used to perform the required minimization.
The parameter b is stored in the input record structure of GROMACS, so that it can be
accessed from every routine in the package after running the grompp preprocessing module.

In standard GROMACS, molecular dynamics simulations are performed with the mdrun
module using the input file .tpr generated by grompp. The velocity Verlet integrator is
implemented in the update coords(·) function, which is called from do md(·) sequentially to
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Input
* Modified .mdp file
* Standard GROMACS input

Adaptivity?

Adaptivity
1. Do 1. as in No adaptivity case
2. Set up the limits for the parameter b:

b ∈ [b1, b2] ≡ B [1]
3. Calculate the fastest period T̃ (6) and

the dimensionless time step h̄ (9).
Take h ∈ (0, h̄) ≡ H

4. For each b ∈ B calculate max
h∈H

ρ(h, b) (10)

5. Find optimal b as arg min
b∈B

max
h∈H

ρ(h, b)

6. Pass value of ‘integrator’ and optimal b
to .tpr

No adaptivity
1. For all pairs of particles:

1.a. Calculate period T in (6)
1.b. If 5∆t ≤ T , STOP
1.c. If 10∆t ≤ T , WARNING

2. Pass value of ‘integrator’ to .tpr

.tpr file

* Define the integrator in the Trotter factorization form
* Run MD

yes
no

Preprocessed input

Runner (mdrun)

Preprocessor

(grompp)

Figure 1: Flowchart of the Adaptive Integration Approach (AIA) as implemented in GROMACS.

update velocities, positions and velocities again. The procedure is repeated as many times
as desired.

To efficiently implement multi-stage integrators in the GROMACS package, it is useful
to present a multi-stage scheme in kick/drift factorization form [24]. For example, two-stage
integrators are best rewritten in the form (3), which is more suitable for its implementation
inside the mdrun module in GROMACS. The scheme can be implemented with six evalu-
ations of the update coords(·) function, alternating velocity and position updates in which
modified parameters such as b, 1/2 and 1/2 − b are used. Note that this formulation also
allows the extension to constrained dynamics, as explained in subsection 2.5. With our imple-
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mentation, multi-stage integrators have computational costs equal to those of the standard
Verlet method, provided that the latter is run with the choice of time step that equalizes the
number of force evaluations.

The flow chart in Fig. 1 summarizes AIA.

4. Numerical experiments

4.1. Testing procedure

In order to evaluate the efficiency of the proposed AIA scheme, we compared it in accuracy
and performance with the velocity Verlet integrator and with the two-stage integrator (BCSS)
of Blanes et al. [1]. In addition, some selected tests also involved the two-stage HOH scheme
by Predescu et al. [11].

All tests probing various integrating schemes have been repeated with three different sim-
ulation techniques, MD combined with the v-rescale thermostat, HMC and GHMC. We omit
here the data obtained with GHMC for two reasons. First, as expected, HMC and GHMC
showed very similar behavioral trends. On the other hand, the GHMC method possesses an
extra parameter that needs to be tuned properly to guarantee optimal performance. Such a
tuning is likely to be time consuming and was not attempted. We therefore decided to avoid
reporting data that may not correspond to the best possible performance of GHMC.

To ensure a comparison as clear as possible, the following points have been taken into
account.

As we have explained repeatedly (see section 2 for details), whenever a two-stage splitting
scheme (AIA or not) and Verlet are used on the same problem, the comparisons here are
fair (in computational cost terms) because Verlet is run with half the step size and double
number of steps.

In hybrid Monte Carlo (HMC and GHMC) simulations, the number of Metropolis tests
was also kept constant regardless of the acceptance rate achieved. For two-stage integrators,
the number of MD time steps between two successive Monte Carlo tests was chosen half of
the corresponding number for Verlet.

A broad range of step sizes has been tested for two benchmark systems with the aim of
observing the dependence of the optimal parameter b in AIA on the value of ∆t. Different
lengths of MD trajectories in HMC simulations were also explored. Each individual test has
been repeated 10 times for unconstrained dynamics and 15 times for constrained dynamics
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and every single point in the reported data in this paper was obtained by averaging over the
multiple runs to reduce statistical errors.

4.2. Benchmarks and Simulation setup

Two test systems were chosen for the numerical experiments: one describes the non-
constrained coarse-grained VSTx1 toxin in a POPC bilayer [31] and the other the constrained
atomistic 35-residue villin headpiece protein subdomain [32, 33]. We will refer to these
systems as toxin and villin respectively.

In the coarse-grained toxin system, four heavy particles on average were represented as
one sphere [34, 35], which produced a total number of 7810 particles. For both Coulomb
and Van der Waals interactions the shift algorithm was used. Both potential energies were
shifted to 0 kJ mol−1 at a radius of 1.2 nm. Periodic boundary conditions were considered
in all directions. No constraint algorithm was applied to this system. The total length of
all simulation runs was 20 ns, which was sufficient, with stable time steps, for a complete
equilibration of the system.

The villin protein was composed of 389 atoms and the system was solvated with 3000
water molecules. Coulomb interactions were solved with the PME algorithm of order 6 and
Van der Waals interactions were considered as in the toxin system, with the only difference
of a radius of 0.8 nm. Periodic boundary conditions were again defined in all directions.
The bonds involving hydrogens were constrained. Instead of constraining all atoms, as it is
commonly suggested in the literature (see [36] for instance), we have only constrained the
hydrogens, because it is the only case that allows the integration algorithm to perform in
parallel with domain decomposition [8]. Constraining only the hydrogen atoms does not affect
the accuracy of the simulation, but allows bigger time steps for the integration. Since villin
system is an atomistic model, simulations are expected to be slower than for the coarse-
grained toxin. However, an exhaustive study of the complete folding process of the villin
protein is out of the scope of this work. Thus, with the available computational resources,
simulations were run only to observe the effect of the AIA on accuracy and performance of
a constrained atomistic system. It has to be remarked also that there are examples in the
literature of similar tests for which a weak coupling thermostat and a barostat were used
to have more realistic results [36]. Barostats are not considered in this study, since the aim
is to compare the performance of the AIA scheme with that of velocity Verlet when both
integrators sample in the NVT ensemble. The total length of all experiments performed for
this system was 5 ns.

The temperature in MD simulations was controlled by the standard v-rescale algorithm
for both benchmarks. The reference temperatures were 310 K for toxin and 300 K for villin.
The same temperatures were used in HMC and GHMC. No thermostat is required in HMC
simulations.

14



5. Results
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Figure 2: Dependence of the parameter b on the choice of ∆t (left) and its effect on resulting acceptance rates
in HMC simulations of toxin (right). “Number of stages” as appears in x-axis label refers to 1 for velocity
Verlet and 2 for all two-stage integrators.

We stress that throughout this section the different setups used for the simulation will be
expressed in terms of parameters appropriate for the velocity Verlet (one-stage) integrator.
This implies that for two-stage schemes the time-steps are doubled and the trajectory lengths
are halved which guarantees the fair comparison between these integrators. For improving
the readability all the plots have been created following the same criteria.

5.1. Unconstrained system

We first present the results for the unconstrained test system.
The tests were run using the following set of time steps for the Verlet integrator {10 fs,

15 fs, 20 fs, 22.5 fs, 25 fs} (recall that for two-stage integrators these values are doubled). Two
different number of steps in the MD trajectories, L, have been tested in the HMC experiments
for each ∆t. In the case of velocity Verlet, the values of L were 2000 and 4000 for all ∆t
except when ∆t = 25 fs, where L was chosen to be 1000 and 2000. The corresponding values
of L for the two-stage schemes are, as pointed out repeatedly above, halved. The acceptance
rates that appear in Fig. 2 were obtained by averaging over all experiments with the same
∆t, regardless of the choice of L.

As stated earlier, AIA finds, for a given physical system and a chosen time step, the
unique value of the parameter b in (2) that provides the best energy conservation achievable
with the members of the family (2). Fig. 2 presents the parameter b determined by the AIA,
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Figure 3: Distance between the c.o.m. of the toxin and the c.o.m. of the bilayer (expected to be ∼2.48 nm)
predicted by HMC simulations with different lengths of trajectories L, time steps ∆t and integrating schemes
(left) and by MD simulations using various time steps ∆t and integrators (right).

as a function of ∆t, for simulations of toxin and compares them with the ones previously
identified for different two-stage integrating schemes. As it was intended, for small ∆t, AIA
chooses McLachlan’s minimum error constant method, and, as ∆t increases, b approaches
0.2500, a value which, as discussed in section 2, essentially yields the Verlet integrator. The
two-stage integrator BCSS [1] is the optimal choice for time steps roughly twice smaller than
the stability limit of the velocity Verlet integrator.

We then investigated the effect of the AIA on the performance of HMC simulations by
monitoring acceptance rates as functions of ∆t with different two-stage integrators. Con-
servation of energy has a direct impact on acceptance or rejection in the Metropolis test of
the hybrid Monte Carlo methods: the better the energy is preserved, the more proposed
trajectories are accepted [37]. Thus, by design, AIA has to provide, at least for Gaussian dis-
tributions, the highest acceptance rates for any choice of ∆t. This is demonstrated in Fig. 2.
The two-stage schemes of [1] and [11] ensure higher acceptance rates than velocity Verlet
for time steps significantly smaller than the Verlet stability limit. However the performance
of those two-stage schemes drops dramatically for larger time steps. AIA yields acceptance
rates that are as good as those of BCSS when ∆t is small and as good as those of Verlet near
the Verlet stability limit. In particular AIA does not yield worse results than Verlet for any
values of ∆t.

The trend observed for the HMC method as shown in Fig. 2 was also apparent in GHMC
tests.

To compare the impact of different integrating schemes on the accuracy of HMC and MD
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Figure 4: Temperature RMSD with respect to the target temperature observed in HMC simulations of toxin
with different lengths of trajectories L, time steps ∆t and integrating schemes (left) and average temperature
in MD simulations of toxin using various time steps ∆t and integrators (right). The target temperature was
set to 310 K. The v-rescale thermostat was applied in MD.

simulations, we calculated averages for two thermodynamic observables: the temperature T
and the distance d traveled by the toxin from the center of the membrane to the preferable
location at the surface of the membrane. The expected average values of the distance are
around ∼2.48 nm [31, 38], whereas the target temperature was chosen to be 310 K. The per-
formed simulations had a fixed total length of 20 ns, which was long enough for equilibrating
the system if stable time steps were used, but not sufficient for obtaining accurate averages.
So, the tests are meaningful for observing trends rather than obtaining good production
results. For HMC we found more informative to plot the RMSD between the target temper-
ature and the observed temperatures rather than the average temperatures themselves. For
MD simulations, where the overall fluctuations are smaller and the trends for averages, even
in short simulations, are clearer, we plot temperatures.

Fig. 3 and Fig. 4 summarize the averages for the two observables, distance and tem-
perature. From now on, we plot the properties obtained with HMC simulations versus the
product ∆t × L of the time step and the number of steps in an MD trajectory. This is due
to the important role this product plays in the overall acceptance rate and in the correlation
in HMC simulations [39].

As follows from Fig. 3 and Fig. 4, for both properties, d and T , the accuracy of AIA
is comparable to, but typically better than, the accuracy provided by BCSS and Velocity
Verlet for step sizes distant from the Verlet stability limit. However near the stability limit
the accuracy of all integrators decreases – more dramatically for BCSS and less noticeably
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Figure 5: Distance between the c.o.m. of the toxin and the c.o.m. of the bilayer as a function of time obtained
in HMC simulations with time step ∆t = 15 fs, trajectory length L = 4000 and different integrators (left)
and in MD simulations with time step ∆t = 10 fs and the same integrators (right). The expected value is
∼2.48 nm.

for AIA. Interestingly, longer MD trajectories (L = 2000) in HMC allow AIA to be accurate
at such large values of ∆t (see Fig. 3 at ∆t × L = 50 ps). In contrast, the accuracy in
simulations with BCSS and Verlet are rather sensitive to the choice of ∆t. The former failed
to produce meaningful averages for ∆t = 25 fs. Less dramatic differences but similar trends
were observed for molecular dynamics simulations (right panels of Fig. 3 and Fig. 4).

Finally, we inspected the role of numerical integrators in the sampling efficiency of HMC
and MD simulations.

In Fig. 5 the distance d between the c.o.m. of the toxin and the c.o.m. of the bilayer is
shown as a function of time for a single choice of the time step ∆t = 15 fs and the trajectory
length L = 4000 in HMC, and for ∆t = 10 fs in MD. The superiority of the AIA method
is clearly demonstrated in both HMC and MD, since AIA makes the toxin reach the target
destination earlier than the rest of the integration schemes do.

Fig. 6 presents the distributions of the distances d collected from simulations with differ-
ent integrators, i.e. AIA, VV and BCSS, and compares them with the “true” distribution
obtained from the HMC simulation with velocity Verlet at ∆t = 15 fs and L = 4000 of
200 ns length, i.e. ten times longer than the other ones. It can be seen that AIA samples
more closely to this distribution. As for all tests in this section, the plotted data are resulted
from averaging over several repetitive runs (see section 4 for more details).

Finally, the integrated autocorrelation function IACF of the drift of the toxin to the
preferred interfacial location was measured during the equilibration stage of the simulations
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Figure 6: Distribution of the distances between the c.o.m. of the toxin and the c.o.m. of the bilayer
observed in HMC simulations of 20 ns length with time step ∆t = 15 fs, trajectory length L = 4000 using
different integrators. The solid magenta line presents the “true” distribution produced with a ten times
longer simulation (200 ns) that used the same input. The y-axis presents frequencies which are calculated
as the normalized numbers of hits registered for a distance bin within a simulation. Here normalization is
performed with respect to a product of a total number of samples and the size of a distance bin (0.1 in this
particular case).

for the range of step sizes and trajectory lengths. The autocorrelation function (ACF) is
a commonly used tool for evaluating sampling efficiency in molecular dynamics simulations
[40], statistics and other fields. For a certain property f depending on time it is defined as

ACF(f(t)) = 〈f(ξ)f(ξ + t)〉ξ.

The integral of the correlation function over time is called the integrated autocorrelation
function (IACF) or integrated autocorrelation time

IACF(f(t)) =

∫ ∞
0

ACF(f(t))dt.

Intuitively, IACF can be understood as measuring the time needed, on average, for generating
a non-correlated sample. It can be seen as the inverse of the effective sample size (ESS) [41],
a measure often used in statistical applications of Monte Carlo methods. In practice, all the
correlation functions are calculated for discrete values. Low values of measured IACFs mean
low correlations between the generated samples and thus better sampling.

Fig. 7 presents the IACF measured in HMC and MD with different integrating schemes for
the same range of time steps and trajectory lengths described above. Note, in the vertical axis,
that computational time is used to normalize the results. The IACF values for 25 fs/50 fs are
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Figure 7: IACF of the drift of the toxin to the preferred interfacial location evaluated as a function of L and
∆t in HMC tests (left) and as a function of ∆t in MD runs (right). Four integrating schemes were tested in
HMC and MD simulations: velocity Verlet (a dashed line), the two-stage integrator BCSS (a dotted line),
the HOH-integrator of Predescu et al. (open symbols) and the AIA integrators (a dot–dashed line).

not plotted since the lack of stability at those step lengths in all integrating schemes produces
poor, non-informative results. For completeness we present the data in the Appendix.

In Fig. 7 we use different symbols for different values of ∆t to provide a better feeling for
the relation between ∆t and the efficiency achieved. Two different symbols corresponding to
the same ∆t × L mean that two different combinations of ∆t and L are possible to get the
same number on the x axis.

As seen from Fig. 7, for all combinations of ∆t and L, both HMC and MD simulations
using the AIA integrators decorrelated faster than the corresponding simulations that used
the velocity Verlet integrator, BCSS or the method of Predescu et al. In fact, for some specific
choices of ∆t the AIA integrators led to an efficiency several times higher than that of the
velocity Verlet or any of the tested two-stage integrators. This applies to both simulation
methods, HMC and MD. The fact that the better energy conservation of AIA led to better
sampling efficiency in hybrid Monte Carlo simulations was not surprising. For molecular
dynamics, better conservation energy guarantees better accuracy but not necessarily better
sampling. However Fig. 7 clearly demonstrates the positive impact of energy conservation
on the sampling performance of MD. Still, comparison of the two plots in Fig. 7 reveals the
clear superiority in sampling efficiency of HMC over MD for the tested system.

A few more useful observations may be extracted from Fig. 7. Analyzing the IACF
calculated for HMC simulations with different combinations of ∆t and L, one can conclude
that, for fixed ∆t, a larger L gives better performance for all integrators. Moreover, to achieve
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Figure 8: Effect of the parameter b on the resulting acceptance rates in HMC simulations of water (left) and
autocorrelation functions of the hydrogen bonding in MD simulations (right) for ∆t = 2 fs. The two-stage
integrator looses performance at the chosen time step whereas the AIA not only outperforms this integrator
but also shows faster convergence than the standard velocity Verlet provides. The IACF’s are: VV = 12.31,
BCSS = 22.92, AIA = 5.66.

better performance, the choice of the product of ∆t and L is more important than ∆t itself.
For instance, ∆t = 30 fs and L = 2000 is a better choice than ∆t = 40 fs and L = 1000.

At this stage, we can conclude that the Adaptive Integration Approach outperforms the
other tested schemes in accuracy, stability and sampling efficiency for all tested step sizes. As
one can expect, long step sizes, close to the maximum allowed by stability, lead to accuracy
and performance degradation in all schemes. For the adaptive scheme this effect is much
smoother.

These conclusions are also supported by the results obtained in HMC and MD simulations
of 216 molecules of water at 300 K. The model used is the flexible version of SPC [42]. Taking
into account the important role water plays in bimolecular simulations, we include here two
plots in Fig. 8 showing the advantage of AIA over other integrating schemes in sampling with
HMC (left) and MD (right) simulations.

5.2. Constrained system

For testing efficiency of the AIA integrators in simulations of constrained systems we
followed the same strategy as in subsection 5.1. The time steps chosen for the tests in this
case, however, were in the range typical for step sizes used in atomistic simulations and
thus differed from those considered in coarse-grained experiments in subsection 5.1. More
specifically, we tested the following time steps, ∆t/nr (nr = 1 for Verlet and 2 otherwise):
1 fs, 1.5 fs, 2 fs, 2.5 fs. The number L of steps in MD trajectories in HMC were exactly the
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Figure 9: Dependence of the parameter b on the choice ∆t (left) and its effect on the resulting acceptance
rates in HMC simulations of villin (right).

same as in subsection 5.1, i.e. 2000 and 4000 in the tests with Verlet, and 1000 and 2000 for
the two-stage methods. The measured acceptance rates were averaged over different lengths
L for each ∆t.

To our satisfaction, the positive impact of the AIA strategy on the quality of simulations
demonstrated in unconstrained systems has also been observed in the case of constrained
dynamics.

Fig. 9 shows trends that match those summarized in Fig. 2. The only significant difference
is for BCSS; where the loss in performance at larger ∆t is smaller for villin (Fig. 9) than for
toxin (Fig. 2).

As in the case of the unconstrained system, the “convergence” of AIA to the velocity
Verlet integrator was also observed (at around 2.25 fs/4.5 fs), but the resulting acceptance
rates were so low in all tests that the corresponding experiments have been excluded from
consideration.

Villin system is a popular benchmark for studying folding processes, due to its compar-
atively fast folding times. In this paper, we did not aim to investigate in full the folding
of villin. Rather, the fast folding helped us to design computationally feasible tests for
measuring accuracy and efficiency of the different numerical integrators.

Calculated averages of simulated temperatures in HMC and MD tests were used for eval-
uating the accuracy provided by the Velocity Verlet integrator and the two-stage integrating
schemes of interest. As in subsection 5.1, the length of tests with HMC and MD simula-
tions was fixed and sufficient to analyze the effect of ∆t on the level of accuracy achieved in
simulations, but not to guarantee low statistical errors.
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Figure 10: Temperature RMSD with respect to the target temperature in HMC simulations of villin with
different lengths of trajectories L, time steps ∆t and integrating schemes (left) and average temperature in
MD simulations of villin using various time steps ∆t and integrators (right). The target temperature was set
to 300 K. The v-rescale thermostat was applied in MD.

As in subsection 5.1, Fig. 10 shows the dependence of the temperature RMSD with
respect to the target temperature on the chosen ∆t, trajectory lengths and integrators for
HMC and the average temperatures with the v-rescale thermostat for different time steps
and integrators in MD. Evidently, AIA provided the smallest fluctuations of averages as a
function of ∆t within the inspected range of step sizes, even though the differences in the
data obtained with the different integrators were less marked than in the case of toxin in
subsection 5.1. Degradation of accuracy was observed for larger ∆t in all simulations, but
was less visible for AIA than for Verlet or BCSS. The data collected at ∆t/nr = 2.5 fs showed
poor accuracy for all tests.

We completed our testing of AIA for constrained dynamics with an analysis of its impact
on the sampling performance of HMC and MD. We chose to measure the quality of sampling
through the positional RMSD from the native structure as a function of the simulation
steps in both HMC and MD cases. The state of a protein folding can be understood by
computing the root-mean-square deviation (RMSD) of the α-carbon. It can be used to make
a comparison between the structure of a partially folded protein and the structure of the
native state. The RMSD of certain atoms in a molecule with respect to a reference structure
is calculated as

RMSD =

√√√√ 1

N

N∑
i=1

δ2
i ,
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Figure 11: Maximum α-carbon RMSD between any two structures in HMC simulations of villin with different
lengths of trajectories L, step sizes ∆t and integrating schemes (left) and in MD simulations of villin using
various step sizes ∆t and integrators (right).

where δi is the distance between the atoms i in the two structures compared. As it is done in
[36], we have calculated what the authors call RMST, the maximum RMSD of the α-carbon
between any two structures in a simulation. The idea is to roughly measure the extent of
the conformational space sampled in a simulation. As in the unconstrained case, we have
also plotted these values for the different combinations of time step and length of trajectories
∆t × L. In Fig. 11 the simulation results obtained with different integrators are compared.
It can be observed, in both HMC and MD cases, that AIA leads to broader sampling of
the conformational space no matter the choice of time step or trajectory length. The largest
difference with respect to velocity Verlet can be observed when the biggest time step ∆t = 2 fs
is used.

We have also computed the radius of gyration, which provides an estimation of the com-
pactness of a desired structure. As in [36], we have considered the experimental value 0.94 nm
[33] as a target value. The simulations performed are not long enough to observe any proper
convergence to the value, however the tendency of the protein evolution can be seen through
the comparison of the simulated radius of gyration with the target one. In Fig. 12 the aver-
age radii of gyration obtained from HMC (left) and MD (right) simulations using different
integrators and different values of simulation step sizes and trajectory lengths are presented.
While the results associated with the Velocity Verlet and BCSS integrators are still far from
the target value, the averages produced with AIA are, regardless a choice of simulation pa-
rameters, always closer to 0.94 nm both in HMC and in MD.

Similar trends were seen in GHMC simulations. The results are not shown (see section 4).
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Figure 12: Average radii of gyration in HMC simulations of villin with different time steps ∆t, lengths of
trajectories L and integrating schemes (left) and in MD simulations of villin using various step sizes ∆t and
integrators (right). The target experimental radius of gyration is 0.94 nm.

Obviously, it is impossible, with basis on these short tests, to make precise conclusions
about features of the folding process, e.g. about the folding rate. More detailed studies of
the protein folding are advisable. However, what can be concluded without hesitation is
that sampling in molecular simulations of atomistic constrained systems with HMC and MD
benefits from integrators that guarantee the best possible conservation of energy, as is the
case with AIA.

6. Conclusions

We have presented an alternative to the standard velocity Verlet integrator, known to be
the state-of-the-art method for numerical integration of the Hamiltonian equations in mo-
lecular dynamics. The novel methodology, which we call the Adaptive Integration Approach,
or AIA, offers, for any chosen step size, a system-specific integrator which guarantees the
best energy conservation for harmonic forces achievable by an integrator from the family of
two-stage splitting schemes, including Verlet. While improvements in energy conservation
do not necessarily imply dramatic changes in sampling, they improve acceptance rates in hy-
brid Monte Carlo methods. The experiments performed in the present study also show that
in molecular dynamics AIA leads to improvements of sampling as measured by the metrics
considered. The improved sampling may arise as a consequence of either enhanced accuracy
with a given step size or to the possibility of longer step sizes.

The AIA scheme can be implemented, without introducing computational overheads in
simulations, in any software package which includes MD and/or HMC. In this study, we
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implemented the AIA method in multiHMC-GROMACS, a modified version of the popular
GROMACS code, and tested the new algorithm in HMC and MD simulations of uncon-
strained and constrained dynamics. The tests demonstrated the superiority of the novel
scheme over Verlet, BCSS and the HOH-integrator of Predescu et al. [11]. For a wide range
of step sizes and MD trajectory lengths, AIA outperformed other tested integrating schemes
in accuracy and sampling efficiency. The analysis of integrated autocorrelation functions and
folding evolution demonstrated, for selected sizes of time steps, that AIA possesses up to 5
times better sampling performance than the other tested schemes.

The idea proposed here may be extended in a natural way to multiple-time-step (MTS)
algorithms such as those based on Reversible multiple time scale molecular dynamics [43],
the generalized hybrid Monte Carlo method [44], the Stochastic, resonance-free multiple
time-step algorithm [45], etc. Such extensions are the subject of ongoing work [46].

In summary, the proposed Adaptive Integration Approach introduces a rational control on
integrating the equations of motions in molecular dynamics simulations, leading to enhanced
accuracy and performance. To our knowledge this feature was desired but missing by the
molecular simulation community.
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AppendixA. Toxin data at ∆t/nr = 25 fs

The data collected from the HMC and MD simulations of the unconstrained toxin system
at the step size, identified as the stability limit for the velocity Verlet integrator, are presented
in Table A.1 and Table A.2 respectively.
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